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Reduction of abductive logic pro-grams to normal logic programsFrancesca Toni, Robert A. KowalskiDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, UKfft, rakg@doc.ic.ac.ukAbstractIn this paper we study a form of abductive logic programming which com-bines default and non-default abducibles and employs retractibles in integrityconstraints. We also present a transformation from abductive to normal logicprograms, which is correct and complete with respect to many semantics.These are all the semantics that can be formulated in an argumentationframework. A simpli�ed form of the event calculus is used as an illustration.1 IntroductionAbductive logic programming (ALP) is the extension of normal logic pro-gramming (NLP) to incorporate abducibles and integrity constraints. Ab-ducibles are atoms (or more generally literals) that represent incompleteinformation which can be added to programs, provided their addition doesnot violate the integrity constraints.Various forms of ALP have been presented in the literature (see [8] fora survey). In this paper we present a form of ALP based on those proposedby Eshghi and Kowalski [5, 6] and Kakas and Mancarella [9]. We allow bothdefault and non-default abducibles, as proposed by Poole [15]. Moreover,not only do we use integrity constraints to constrain abducibles, but we alsoindicate how satisfaction of integrity should be restored. We do this by iden-tifying one or more literals in each integrity constraint as being retractible,as proposed in [11].In this paper we transform abductive logic programs in which every re-tractible literal in an integrity constraint is either an abducible atom or itsnegation into normal logic programs. Hence, by virtue of this transformationfor this form of ALP, any semantics for NLP provides a semantics for ALP;and any proof procedure for NLP provides a proof procedure for ALP.The main result of this paper is that the transformation preserves almostall semantics for ALP. Using an argumentation framework, we de�ne thesemantics of ALP in such a way that NLP is a special case. It has beenshown [1, 2] that for NLP almost all known semantics can be de�ned ina uniform way, in such a framework, based upon a single notion of attackbetween sets of negative literals regarded as assumptions. The result that1



the transformation preserves semantics is proved by demonstrating a one toone correspondence between attacks before and after the transformation.2 Abductive logic programmingOur notion of ALP builds upon the following (by now conventional) notionof an abductive logic program as a triple hP ;AB0; I0i, where� P is a logic program, i.e. a set of clauses of the formH  L1; : : : ; Ln (1)where n � 0, H is an atom, L1; : : :Ln are literals, i.e. atoms Aor negations of atoms not A, and all the variables in H; L0; : : : ; Lnare universally quanti�ed. H is the conclusion and L1; : : :Ln theconditions of (1). If H is an atom p(t), 1 the set of all clauses havingH as a conclusion is a de�nition for the predicate p.� Ab0 is a set of predicate symbols, called abducible predicates. Lit-erals of the form a(t) or not a(t) where a is an abducible predicate arecalled abducible literals.� I0 is a set of denial integrity constraints, i.e. formulas of the form:[L1 ^ : : :^ Ln] where n � 1, each Li is a literal, and all variables inL1; : : : ; Ln are universally quanti�ed before the formula. 2Without loss of generality [8], we can assume that abducible predicates inAb0 have no de�nitions in P .Example 2.1 A simpli�ed version of the event calculus [13] can be ex-pressed by means of an abductive logic program hPec;ABec; Ieci, where Peccontains a persistence axiom expressing that a property P persists fromthe time T1 that it is initiated by an event E to a later time T2:holds at(P; T2) happens(E; T1); T1<T2; initiates(E;P ); persists(T1; P; T2)The predicates happens and persists are both abducibles in Abec. Newinformation that a property holds at a particular time can be assimilatedby adding an explanation in terms of the happening of some event thatinitiates this property at an earlier time together with an assumption thatthe property persists between the two time points. The predicate persists1In this paper the following conventions are used: t is a tuple of terms and X is a tupleof variables.2Note that two kinds of negation occur in the integrity constraints, namely : andnot. However, neither kind is actually needed. Indeed, negation as failure literals can bereplaced by positive abducible atoms and integrity constraints, as in [6]. Moreover, : issimply a shorthand indicating that literals are incompatible.2



expresses the default nature of the persistence axiom and is used to predictinformation, while the predicate happens is used as a non-default abducibleto explain observations. If no integrity constraint is violated, a variable-freeatom persists(t1; p; t2) must necessarily be assumed, while a variable-freeatom happens(e; t1) need not be assumed.The integrity constraints in Iec include the denials:[persists(T1; P; T2) ^ happens(E; T ) ^ terminates(E; P )^ T1 < T < T2]:[happens(E; T )^ precondition(E; T; P ) ^ not holds at(P; T )]The �rst expresses that a property P cannot persist from a time T1 to alater time T2 if an event E that terminates P happens at a time T betweenT1 and T2. The second expresses that an event E cannot happen at a timeT if a precondition P of E does not hold at time T .In many applications of the event calculus, the predicate happens is notabducible, but is de�ned by means of facts. In other applications, whichcombine narratives with hypothetical reasoning some instances of happensare de�ned by means of facts and others are abducible. In this latter case,the introduction of a new clausehappens(E; T ) hyp-happens(E; T )where the new predicate hyp-happens is abducible, but happens is not,makes abducible and non-abducible predicates disjoint.In general, abducibles can be of two kinds, namely default abduciblepredicates, like persists, represented byABd0, and non-default abduciblepredicates, like happens, represented by ABnd0 . Therefore, Ab0 is the unionof ABd0 and ABnd0 .Some approaches to ALP [9, 16] consider only non-default abducibles,and use negation as failure to express default reasoning. The distinctionbetween default reasoning and non-default abduction is made by Konolige[10], who, however, uses abduction for non-default hypothetical reasoning,but Reiter's default logic for default reasoning. Poole [15], on the other hand,uses an abductive framework where abducibles can be either default or non-default, and modi�es Theorist to incorporate both kinds of abducibles.Finally, in the form of ALP considered in this paper, in each integrityconstraint at least one literal is speci�ed as retractible. If the addition ofabducible literals leads to a violation of integrity, then one of the retractiblesis withdrawn to restore satisfaction. The use of retractibles in integrityconstraints was proposed by Kowalski and Sadri in [11] for similar purposes.The use of retractibles can be illustrated by means of the simpli�edevent calculus example 2.1. Here, if an instance of the �rst integrity con-straint is violated, it is natural to retract the corresponding instance ofpersists(T1; P; T2). If an instance of the second integrity constraint is vio-lated, it is natural to retract the corresponding instance of happens(E; T ).3



In this, as in many other examples, it is natural to identify only some ofthe literals in an integrity constraint as retractible. If this is not possible,one can always nominate all literals as retractible.The case where the retractibles are abducible literals is especially de-sirable, since it su�ces not to abduce them in order to retract them. Forthis reason and because it simpli�es the transformation, we shall assumethat retractibles are always abducible literals. As shown in [17], in manycases abductive logic programs with non-abducible literals as retractiblescan be transformed by \unfolding" into abductive logic programs where allretractibles are abducible literals. This transformation succeeds if the re-tractibles \depend upon" abducible literals; namely (and informally) theretractibles can be derived only by hypothesising abducible literals. Theassumption that retractibles \depend upon" abducible literals, is justi�edby the fact that, if a retractible \depends upon" non-abducible literals only,then it might not be possible to retract it at all.For the sake of readability, retractibles in integrity constraints will beunderlined, e.g. the integrity constraints in Iec will be written in the form::[persists(T1; P; T2) ^ happens(E; T ) ^ terminates(E; P ) ^ T1 < T < T2]:[happens(E; T ) ^ precondition(E; T; P ) ^ not holds at(P; T )] (2)In applications which combine narratives with hypothetical reasoning theintegrity constraint (2) needs to be modi�ed to satisfy the restriction thatretractibles are abducible literals. For this purpose, we can replace (2) by:[hyp-happens(E; T ) ^ precondition(E; T; P ) ^ not holds at(P; T )] (20)assuming that those instances of happens which are de�ned by facts havebeen veri�ed as satisfying (2) at time of input. We shall refer to this formof event calculus as the modi�ed event calculus.In most formulations of the persistence axiom, e.g. [4], a negative con-dition not broken(T1; P; T2) is used instead of a positive default abduciblecondition persists(T1; P; T2). Our transformation uses a variant of Satoh-Iwayama transformation [16] to justify the use of negation as failure to re-place positive abducibles in general. It uses a variant of the technique of[12], to eliminate integrity constraints.3 TransformationThe transformation is de�ned for abductive logic programs in which all re-tractibles are abducible literals (i.e. either abducible atoms or their nega-tion). For simplicity, and without loss of generality, we will assume thatexactly one abducible literal is retractible in each integrity constraint. In-deed, any integrity constraint with more than one retractible can be replaced4



by as many integrity constraints as the number of retractibles, every suchintegrity constraint having only one retractible.Given an abductive logic program hP ;AB0; I0i, for each abducible pred-icate a in AB0 let a0 be a new predicate, which intuitively represents the\complement" of a.Replacement of positive abducibles by negation as failure literalsFor each abducible predicate a in AB0,� all the positive conditions a(t) in clauses of P are replaced by conditionsnot a0(t). (Let PNAF be the resulting program.)� all the positive conditions a(t) in integrity constraints in I0 are replacedby conditions not a0(t). (Let INAF0 be the resulting set of integrityconstraints.)Note that the transformation does not a�ect negative occurrences of ab-ducible predicates. Moreover, since all retractibles in I0 are either abduciblesor their negation, each integrity constraint in INAF0 is of the form: [L1; : : : ; Li�1; not �(t); Li+1; : : : ; Ln]where 1 � i � n, n � 1 and � is either an abducible predicate a or the\complement" a0 of an abducible predicate a.Simulation of abduction by negation as failureLet P 0AB0 be the set of clauses obtained as follows: For each non-defaultabducible predicate a in AB0, P 0AB0 contains two clausesa(X)  not a0(X)a0(X) not a(X)For each default abducible predicate a in AB0, P 0AB0 contains the clausea(X)  not a0(X)Simulation of integrity constraints by program clausesLet P 0I0 be the set of clauses obtained as follows: For each integrity con-straint :[L1; : : : ; Li�1; not �(t); Li+1; : : : ; Ln]in INAF0 , P 0I0 contains the clause�(t) L1; : : : ; Li�1; Li+1; : : : ; LnDe�nition 3.1 Given an abductive logic program hP ;AB0; I0i, the corre-sponding program is P 0=PNAF[ P 0AB0[ P 0I0 .Finally, any query to hP ;AB0; I0i needs to be transformed into a corre-sponding query to P 0. 5



De�nition 3.2 Given a queryQ to hP ;AB0; I0i, the corresponding query,Q0, is obtained by replacing all positive conditions a(t) in Q, where a 2 AB0,by not a0(t).Example 3.1 The program P 0ec resulting from the transformation isholds at(P; T2)  not nohappens(E; T1); T1 < T2;initiates(E; P ); not broken(T1; P; T2)broken(T1; P; T2)  not nohappens(E; T ); terminates(E; P ); T1 < T < T2nohappens(E; T )  preconditions(E; P ); not holds at(P; T )happens(E; T )  not nohappens(E; T );nohappens(E; T )  not happens(E; T )persists(T1 ; P; T2)  not broken(T1; P; T2)where nohappens and broken stand for the complements of happens andpersists, respectively.The predicate persists does not occur anywhere in the conditions ofclauses in P 0ec; and therefore, if no query to P 0ec contains a call to persists,then the clause de�ning persists will never be used. As a result, P 0ec can besimpli�ed by deleting the clause de�ning persists.Note that variants of the program P 0ec have been used by many authors, e.g.[4], as a formalisation of the event calculus in NLP. Here we have shown howto construct such a program in a systematic manner from a \higher level"speci�cation. Moreover, (see section 5) we show that the transformationfrom hPec;ABec; Ieci to P 0ec is correct and complete.4 An argumentation frameworkThe correctness and completeness of the transformation can be proved byusing a variant of the abstract argumentation frameworks proposed in [1, 2,17] as a semantics for non-monotonic reasoning in general. An argumentationframework is a tuple hT ;`;AB; ICi where� T is a theory in some formal language,� ` is a notion of monotonic derivability for the given language,� AB is a set of assumptions, which are sentences of the language, and� IC is a set of denial integrity constraints with retractibles.In such a framework a sentence is a non-monotonic consequence if it followsmonotonically from the theory extended by means of an \acceptable" set ofassumptions. Various notions of \acceptability" can be de�ned, based upona single notion of \attack" between sets of assumptions. Intuitively, one setof assumptions \attacks" another if the two sets together with the theoryviolate an integrity constraint, and the second set is deemed responsible forthe violation. Retractibles identify the set as responsible for the violation,as formalised by the following de�nition of \attack".6



De�nition 4.1 Given an argumentation framework hT ;`;AB; ICi:� a set of assumptions A � AB attacks an assumption � 2 AB, if andonly if for some integrity constraint :[L1 ^ : : :^ Li ^ : : :^ Ln] 2 IC(1) T [ A ` L1; : : : ; Li�1; Li+1; : : : ; Ln, and(2) T [ f�g ` Li.� a set of assumptions A � AB attacks another set � � AB if and onlyif A attacks �, for some assumption � in �.Note that a set of assumptions violates a denial integrity constraint if allthe conjuncts in the denial can be derived from the theory together withthe set of assumptions; and a set of assumptions satis�es a denial integrityconstraint if it does not violate it.If all retractibles in integrity constraints in IC are assumptions and anyassumption � can be derived from T [� only if � 2 �, for any � � AB,then condition (2) in the de�nition of A attacks � becomes20) Li 2 �.As we will see below, this is the case for the argumentation frameworkscorresponding both to ALP and NLP.Various notions of \acceptability" can be de�ned in terms of the samenotion of attack. Here we mention some of the notions presented in [1, 2]:A set of assumptions which does not attack itself is called� stable, if and only if it attacks all assumptions it does not contain;� admissible, if and only if it attacks all sets of assumptions that attackit, i.e. it defends itself against all attacks;� preferred, if and only if it is maximally (with respect to set inclusion)admissible;� complete, if and only if it is admissible and it contains all assumptionsit defends against all attacks; (� defends an assumption � against anattack A if and only if A attacks � and � attacks A.)� grounded, if and only if it is minimally (with respect to set inclusion)complete.Note that any stable, admissible, preferred, complete or grounded set ofassumptions satis�es all the denial integrity constraints, since any such setis necessarily con
ict-free.Both ALP and NLP can be given a semantics by appropriately applyingany of the abstract semantics given above, treating NLP as a special caseof ALP. Given an abductive logic program hP ;AB0; I0i, the correspondingargumentation framework is hT ;`;AB; ICi where� T is the set of all variable-free instances of clauses in P ;7



� ` is modus ponens for the clause implication symbol  ;� AB is the set of all variable-free negative literals together with all thedomain-speci�c abducibles in AB0;� IC is the set consisting of(1) all denials of the form :[A^not A] where A is a variable-free atom,(2) all denials of the form :[A ^ not A] where A is a variable-freenon-default abducible atom, and(3) all domain-speci�c denial integrity constraints in I0.NLP is the special case of ALP where the assumptions are all variable-freenegative literals alone and the integrity constraints are the denials of kind(1) alone. Note that the notion of integrity satisfaction which is implicitin the notion of attack, is compatible with three-valued semantics for NLP,since an integrity constraint :[A^not A] is satis�ed by a program extendedwith a set of assumptions if neither A nor not A can be derived.Many existing semantics for NLP can expressed in argumentation-theoretic terms, as proved in [1, 2]. In particular, stable models correspondto stable sets of assumptions, partial stable models and preferred extensionscorrespond to preferred sets of assumptions, stationary expansions and com-plete scenaria correspond to complete sets of assumptions and well-foundedsemantics corresponds to the grounded set of assumptions. Moreover, vari-ous new semantics for the form of ALP we use in this paper are obtained asinstances of the abstract notions. Note that, in the well-founded semanticsfor ALP, all non-default abducibles are unde�ned, and consequently serve nopurpose. An alternative, less sceptical semantics for non-default abduciblesin ALP has been de�ned in [14].The following example illustrates the notions of attack and of admissi-bility in the ALP case. The example is the Kautz stolen car problem.Example 4.1 The problem is to explain that a car is not in a car park ata time t, after having been parked there at an earlier time t0. Namely, wewant to explain not holds-at(in; t) given thathappens(park; t0)t0 < tbelong to Pec. Moreover, in addition to these two facts and the persistenceaxiom, Pec also contains the factsinitiates(park; in)terminates(steal; in)precondition(steal; in):This problem illustrates the combination of a narrative with hypotheticalreasoning, since the predicate happens is both de�ned by a fact in Pec andis an abducible in Abec. In this case, we can use the modi�ed event calculus.8



....2
2

� = fnot h-at(in; t)g h-at(in; t) h(park; t0); t0<t; i(park; in); p(t0; in; t) p(t0; in; t) h(steal; t1); h(steal; t1) hy-h(steal; t1)t(steal; in); t0 < t1 < t� = fnot h-at(in; t); hy-h(steal; t1)g pre(steal; in); not h-at(in; t1) not h-at(in; t1) h-at(in; t1) h(park; t0); t0<t1; i(park; in); p(t0; in; t1) p(t0; in; t1)� = fnot h-at(in; t);hy-h(steal; t1);p(t0; in; t1)gFigure 1: Kautz's stolen car problem, in example 4.1To simplify the description below, we will assume that the Herbrand universeof hPec;ABec; Ieci contains a term t1 and that t0 < t1 < t.Figure 1 illustrates the construction of an admissible set of assumptionsfnot holds-at(in; t); hyp-happens(steal; t1); persists(t0; in; t1)g, starting fromthe initially given assumption not holds-at(in; t). The double boxes in the�gure represent the construction of attacks using SLD resolution. The singleboxes represent the construction of defences against attacks. These exten-sions are also constructed by SLD resolution. The transition from one box tothe next box inside it is done by resolving an assumption against a retractibleliteral in an integrity constraint. 9



5 Correctness and completenessIn this section we assume that an abductive logic program hP ;AB0; I0i andthe corresponding transformed program P 0 are given. Note that hP ;AB0; I0iand P 0 have the same Herbrand universe, but di�erent Herbrand bases, sinceP 0 contains more predicates than P . Let Lit be the set of variable-free literalsover the Herbrand base of hP ;AB0; I0i, and let Lit0 be the set of variable-freeliterals over the Herbrand base of P 0. First let us de�ne the correspondencebetween sets of assumptions for hP ;AB0; I0i and sets of assumptions for P 0.De�nition 5.1 Given L in Lit and L0 in Lit0, L and L0 are correspondingliterals (L corresponds to L0 and L0 corresponds to L) if and only if� L=a(t) and L0 = not a0(t), if a is an abducible predicate in AB0 anda0 represents the complement of a, or� L0 = L, otherwise.Given a set of literals S contained in Lit and a set of literals S 0 containedin Lit0, S and S 0 are corresponding sets (S corresponds to S 0 and S 0corresponds to S) if and only if for each literal L in S there is a literal L0in S 0 such that L and L0 are corresponding literals, and vice versa.The correctness and completeness of the transformation is a corollary of thefollowing theorem, which establishes a one-to-one correspondence betweenattacks in FhP;AB0;I0i and attacks in FP 0. The proof is in the appendix.Theorem 5.1 Let FhP;AB0;I0i be the argumentation framework correspond-ing to hP ;AB0; I0i and let FP 0 be the argumentation framework correspond-ing to P 0. Given sets of assumptions A and � in FhP;AB0;I0i and A0 and �0in FP 0 such that A, A0 and �, �0 are corresponding sets, then A attacks �in FhP;AB0;I0i if and only if A0 attacks �0 in FP 0.Corollary 5.1 Given corresponding sets of assumptions � in FhP;AB0;I0iand �0 in FP 0 � is stable (admissible, preferred, complete,grounded) in FhP;AB0;I0i if and only if �0 is stable (admissible, preferred,complete, grounded, respectively) in FP 0.The following theorem establishes a one to one correspondence between ab-ductive explanations for queries and abductive explanations for correspond-ing queries. The proof is in the appendix.Theorem 5.2 Given a query Q, corresponding query Q0, set of assumptions� in FhP;AB0;I0i, and corresponding set of assumptions �0 in FP 0,P [� ` Q if and only if P 0 [�0 ` Q0.10



An important consequence of this theorem and corollary 5.1 is that any proofprocedure which answers queries with respect to one of the above semanticsfor normal logic programs answers queries with respect to the same semanticsfor the corresponding abductive logic programs, and, less interestingly, viceversa. Therefore, instead of de�ning new proof procedures for ALP, we canuse proof procedures for NLP instead.6 ComparisonsWe use the transformation of Satoh and Iwayama [16] to simulate non-defaultabduction via negation as failure. Equivalent techniques are used also byInoue [7] and Pereira, Aparicio and Alferes [14] to eliminate non-defaultabducibles from extended logic programs augmented with abduction.Kowalski and Sadri [12] use exceptions, formulated as extended clausesof the form :p L1; : : : ; Lnto override general rules, of the formp K1; : : : ;KmThey transform rules with exceptions into extended logic programs, by re-placing general rules of the form above by clauses of the formp K1; : : : ;Km; not :pIn the special case of ALP, where we have an abducible p which is similar toa general rule with conclusion p, the transformation gives p not :p whichtreats p as a default abducible. This is similar to our rewriting of p as not p0.In an earlier paper [11], Kowalski and Sadri investigated a similar trans-formation, where, however, exceptions were represented as integrity con-straints with retractibles, i.e.:[L1 ^ : : :^ Ln ^ p]:Our simulation of integrity constraints can be viewed as the rewriting ofintegrity constraints in [11] as exceptions in [12], where explicitly negatedliterals :p are replaced by atoms p0.In [12] it was shown that the Kowalski-Sadri transformation preservesa variant of the answer set semantics. In this paper we show that allargumentation-theoretic semantics are preserved.In [4], Denecker and De Schreye present a transformation from abduc-tive logic programs with integrity constraints to abductive logic programswithout integrity constraints. Integrity constraints of the form: [L1 ^ : : : ^ Ln]11



are rewritten as clauses of the formfalse  L1; : : : ; Lnwhere false is a new predicate. The transformation allows query evalua-tion to be performed by using SLDNFA, an abductive procedure for ALPwithout integrity constraints. For this purpose, queries of the form  Qare transformed into queries of the form  Q, not false to the transformedprogram. The original abductive logic program and query are shown to beequivalent to the transformed ones under the completion semantics.In [3], Chakravarthy, Grant and Minker propose a transformation whichalso uses integrity constraints to transform programs, but for query optimi-sation rather than for query evaluation.7 ConclusionsIt can be argued [8, 5, 6, 9, 7] that abductive logic programs are at a higherlevel of speci�cation than normal logic programs. In this paper we haveshown that abductive logic programs can be transformed into normal logicprograms. The advantage of the transformation is that proof procedures forNLP can be used for ALP.We have proved that the transformation is correct and complete for manydi�erent semantics, by using a novel technique of showing that there is a one-to-one correspondence between attacks before and after the transformation.To the best of our knowledge, this is the only technique which has beenused to prove such a result for many di�erent semantics using only a singleproof. The same technique can be used to show that the unfolding transfor-mation also preserves many di�erent semantics (see [17]). Hopefully, otherapplications of this technique will also be useful in the future.AcknowledgementsThis research was supported by the Fujitsu Research Laboratories. Theauthors are grateful to Noboru Iwayama, Fariba Sadri and Ken Satoh forhelpful discussions.References[1] A. Bondarenko, F. Toni, R. A. Kowalski, An assumption-based framework fornon-monotonic reasoning. LPNMR'93 (A. Nerode and L. Pereira eds.) MITPress, 171{189[2] A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract,argumentation-theoretic framework for default reasoning. In preparation(1995) 12
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1) T [ A ` L1; : : : ; Li�1; Li+1; : : : ; Ln, and20) Li 2 �.Note also that we can assume that P , I0 and P 0 are variable-free. If theyare not, they can be replaced by all their variable-free instances over theirHerbrand universe.The following lemmas are used to prove the theorem.Lemma A.1 Given corresponding sets of assumptions � in FhP;AB0;I0i and�0 in FP 0 and corresponding variable-free literals L in Lit and L0 in Lit0,P [� ` L if and only if P 0 [�0 ` L0.Proof:We prove the only-if half by induction on the length n of the proof of L.n = 1 if and only if either(i) L = not p(t), where p is any predicate, and L 2 �, or(ii) L = a(t), where a is an abducible predicate, and L 2 �, or(iii) L = p(t), where p is a non-abducible predicate, and p(t) 2 P .In cases (i) and (ii), P 0 [�0 ` L0, since L 2 � if and only if L0 2 �0,by de�nition of corresponding literals and sets of literals. In case (iii),P 0 [�0 ` L0 since, by de�nition of P 0, p(t) 2 P 0, and, by de�nition ofcorresponding literals, L = L0.n > 1 if and only if L = p(t), where p is a non-abducible predicate and thereexists a clause L K1; : : : ; Km in P , with m � 1, such that P [� ` Ki foreach 1 � i � m, and each such proof requires less than n steps. By de�nitionof P 0 there exists a clause L0  K 01; : : : ; K 0m in P 0 and L = L0. By inductionhypothesis P 0 [�0 ` K 0i for each 1 � i � m. Therefore, P 0 [�0 ` L0, andthe only-if half is proved.The if half can be proved similarly, by induction.Lemma A.2 Given corresponding sets of assumptions � in FhP;AB0;I0i and�0 in FP 0, For each variable-free abducible atom a 2 AB0 and variable-freeterm t:1. If P [� ` a(t) then P 0 [�0 ` a(t);2. If a is a non-default abducible, i.e. a 2 ABnd0 andP [� ` not a(t) then P 0 [�0 ` a0(t);3. If :[L1 ^ : : :^Li ^ : : :Ln] is in I0 and Li = a(t) (Li = not a(t), resp.)and P [� ` L1; : : : ; Li�1; Li+1; : : : ; Ln, then P 0 [�0 ` a0(t) (a(t),resp.);4. If P 0 [�0 ` a(t) then either P [� ` a(t)or there exists :[L1 ^ : : : ^ Li ^ : : :Ln] in I0 such that Li = not a(t)and P [� ` L1; : : : ; Li�1; Li+1; : : : ; Ln.14



5. If P 0 [�0 ` a0(t) theneither a is a non-default abducible and P [� ` not a(t)or there exists :[L1 ^ : : :^ Li ^ : : :Ln] in I0 such that Li = a(t) andP [� ` L1; : : : ; Li�1; Li+1; : : : ; Ln.Proof:1. If P [� ` a(t) then, by lemma A.1, P 0 [�0 ` not a0(t). P 0 necessarilycontains the clause a(t) not a0(t) Therefore P 0 [�0 ` a(t);2. If P [� ` not a(t) then, by lemma A.1, P 0 [�0 ` not a(t). Since ais a non-default abducible, P 0 necessarily contains the clause a0(t)  not a(t). Therefore, P 0 [�0 ` a0(t);3. If P [� ` L1; : : : ; Li�1; Li+1; : : : ; Ln, then, by lemma A.1, P 0 [�0 `L01; : : : ; L0i�1, L0i+1; : : : ; L0n. If Li = a(t), then P 0 contains the clausea0(t)  L01; : : : ; L0i�1; L0i+1; : : : ; L0n. Therefore, P 0 [�0 ` a0(t). If Li =not a(t), then P 0 contains the clause a(t) L01; : : : ; L0i�1; L0i+1; : : : ; L0n.Therefore, P 0 [�0 ` a(t).4. and 5. Directly by de�nition of P 0.Proof of theorem 5.1: We prove the theorem by case analysis.By lemma A.1, A attacks � via :[p(t)^not p(t)], where p is an ordinary,non-abducible predicate, if and only if A0 attacks �0 via the same integrityconstraint.By lemmas A.1 and A.2, part (1), if A attacks � via :[a(t) ^ not a(t)],where a is an abducible predicate, then A0 attacks �0 via :[a(t)^ not a(t)].By lemmas A.1 and A.2, part (2), if A attacks � via :[a(t) ^ not a(t)],where a is a (non-default) abducible predicate, then A0 attacks �0 via:[a0(t) ^ not a0(t)].By lemmas A.1 and A.2, part (3), if A attacks � via :[L1^ : : :^Li^ : : :^Ln], where Li = a(t) (Li = not a(t), resp.) and a is an abducible predicate,then A0 attacks �0 via :[a0(t) ^ not a0(t)] (via :[a(t)^ not a(t)], resp.).By lemmas A.1 and A.2, part (4), if A0 attacks �0 via :[a(t)^ not a(t)],where a is an abducible predicate, then A attacks � via the same integrityconstraint or A attacks � via :[L1 ^ : : :^ not a(t) ^ : : :^ Ln].By lemmas A.1 and A.2, part (5), if A0 attacks �0 via :[a0(t)^not a0(t)],where a is an abducible predicate, then A attacks � via :[a(t) ^ not a(t)],or A attacks � via :[L1 ^ : : :^ a(t)^ : : :^ Ln].Since all possible cases in which A can attack � and A0 can attack �0are considered above, theorem 5.1 is proved.Proof of theorem 5.2: Directly from lemma A.1.15
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