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Reduction of abductive logic pro-
grams to normal logic programs

Francesca Toni, Robert A. Kowalski
Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, UK
{ft, rak}@doc.ic.ac.uk

Abstract

In this paper we study a form of abductive logic programming which com-
bines default and non-default abducibles and employs retractibles in integrity
constraints. We also present a transformation from abductive to normal logic
programs, which is correct and complete with respect to many semantics.
These are all the semantics that can be formulated in an argumentation
framework. A simplified form of the event calculus is used as an illustration.

1 Introduction

Abductive logic programming (ALP) is the extension of normal logic pro-
gramming (NLP) to incorporate abducibles and integrity constraints. Ab-
ducibles are atoms (or more generally literals) that represent incomplete
information which can be added to programs, provided their addition does
not violate the integrity constraints.

Various forms of ALP have been presented in the literature (see [8] for
a survey). In this paper we present a form of ALP based on those proposed
by Eshghi and Kowalski [5, 6] and Kakas and Mancarella [9]. We allow both
default and non-default abducibles, as proposed by Poole [15]. Moreover,
not only do we use integrity constraints to constrain abducibles, but we also
indicate how satisfaction of integrity should be restored. We do this by iden-
tifying one or more literals in each integrity constraint as being retractible,
as proposed in [11].

In this paper we transform abductive logic programs in which every re-
tractible literal in an integrity constraint is either an abducible atom or its
negation into normal logic programs. Hence, by virtue of this transformation
for this form of ALP, any semantics for NLP provides a semantics for ALP;
and any proof procedure for NLP provides a proof procedure for ALP.

The main result of this paper is that the transformation preserves almost
all semantics for ALP. Using an argumentation framework, we define the
semantics of ALP in such a way that NLP is a special case. It has been
shown [1, 2] that for NLP almost all known semantics can be defined in
a uniform way, in such a framework, based upon a single notion of attack
between sets of negative literals regarded as assumptions. The result that



the transformation preserves semantics is proved by demonstrating a one to
one correspondence between attacks before and after the transformation.

2 Abductive logic programming

Our notion of ALP builds upon the following (by now conventional) notion
of an abductive logic program as a triple (P, ABy,Zy), where

e P is a logic program, i.e. a set of clauses of the form

H—1Li,... Ly (1)
where n > 0, H is an atom, Lq,...L, are literals, i.e. atoms A
or negations of atoms not A, and all the variables in H, Lg,..., L,
are universally quantified. H is the conclusion and Lq,...L, the

conditions of (1). If H is an atom p(t), ! the set of all clauses having
H as a conclusion is a definition for the predicate p.

o Abg is a set of predicate symbols, called abducible predicates. Lit-
erals of the form a(t) or not a(t) where a is an abducible predicate are
called abducible literals.

o [y is a set of denial integrity constraints, i.e. formulas of the form
a[Ly Ao A Ly) where n > 1, each L; is a literal, and all variables in
Li,..., L, are universally quantified before the formula. 2

Without loss of generality [8], we can assume that abducible predicates in

Abg have no definitions in P.

Example 2.1 A simplified version of the event calculus [13] can be ex-
pressed by means of an abductive logic program (P.., AB..,Z..), where P..
contains a persistence axiom expressing that a property P persists from
the time T that it is initiated by an event F to a later time T5:

holds_at(P, Tz) — happens(E,T1), Th < Ty, initiates(E, P), persists(Ty, P, T)

The predicates happens and persists are both abducibles in Ab... New
information that a property holds at a particular time can be assimilated
by adding an explanation in terms of the happening of some event that
initiates this property at an earlier time together with an assumption that
the property persists between the two time points. The predicate persists

'In this paper the following conventions are used: tis a tuple of terms and X is a tuple
of variables.

?Note that two kinds of negation occur in the integrity constraints, namely — and
not. However, neither kind is actually needed. Indeed, negation as failure literals can be
replaced by positive abducible atoms and integrity constraints, as in [6]. Moreover, — is
simply a shorthand indicating that literals are incompatible.



expresses the default nature of the persistence axiom and is used to predict
information, while the predicate happens is used as a non-default abducible
to explain observations. If no integrity constraint is violated, a variable-free
atom persists(ty, p, t2) must necessarily be assumed, while a variable-free
atom happens(e,t1) need not be assumed.

The integrity constraints in I.. include the denials

—[persists(Ty, P, T2) A happens(E, T) Aterminates(E, PYANT) < T < T5]
lhappens(E, T) A precondition(E, T, P) A not holds_at(P,T)]

The first expresses that a property P cannot persist from a time T} to a
later time 715 if an event F that terminates P happens at a time T between
Ti and Ty. The second expresses that an event E cannot happen at a time
T if a precondition P of E does not hold at time 7.

In many applications of the event calculus, the predicate happens is not
abducible, but is defined by means of facts. In other applications, which
combine narratives with hypothetical reasoning some instances of happens
are defined by means of facts and others are abducible. In this latter case,
the introduction of a new clause

happens(E,T) — hyp-happens(E,T)

where the new predicate hyp-happens is abducible, but happens is not,
makes abducible and non-abducible predicates disjoint.

In general, abducibles can be of two kinds, namely default abducible
predicates, like persists, represented by ABZ, and non-default abducible
predicates, like happens, represented by AB3%. Therefore, Abg is the union
of ABZ and ABRY.

Some approaches to ALP [9, 16] consider only non-default abducibles,
and use negation as failure to express default reasoning. The distinction
between default reasoning and non-default abduction is made by Konolige
[10], who, however, uses abduction for non-default hypothetical reasoning,
but Reiter’s default logic for default reasoning. Poole [15], on the other hand,
uses an abductive framework where abducibles can be either default or non-
default, and modifies Theorist to incorporate both kinds of abducibles.

Finally, in the form of ALP considered in this paper, in each integrity
constraint at least one literal is specified as retractible. If the addition of
abducible literals leads to a violation of integrity, then one of the retractibles
is withdrawn to restore satisfaction. The use of retractibles in integrity
constraints was proposed by Kowalski and Sadri in [11] for similar purposes.

The use of retractibles can be illustrated by means of the simplified
event calculus example 2.1. Here, if an instance of the first integrity con-
straint is violated, it is natural to retract the corresponding instance of
persists(Ty, P, T3). If an instance of the second integrity constraint is vio-
lated, it is natural to retract the corresponding instance of happens(E,T).



In this, as in many other examples, it is natural to identify only some of
the literals in an integrity constraint as retractible. If this is not possible,
one can always nominate all literals as retractible.

The case where the retractibles are abducible literals is especially de-
sirable, since it suffices not to abduce them in order to retract them. For
this reason and because it simplifies the transformation, we shall assume
that retractibles are always abducible literals. As shown in [17], in many
cases abductive logic programs with non-abducible literals as retractibles
can be transformed by “unfolding” into abductive logic programs where all
retractibles are abducible literals. This transformation succeeds if the re-
tractibles “depend upon” abducible literals; namely (and informally) the
retractibles can be derived only by hypothesising abducible literals. The
assumption that retractibles “depend upon” abducible literals, is justified
by the fact that, if a retractible “depends upon” non-abducible literals only,
then it might not be possible to retract it at all.

For the sake of readability, retractibles in integrity constraints will be
underlined, e.g. the integrity constraints in I.. will be written in the form:

—[persists(Ty, P, Ta) A happens(E, T') Aterminates(E, PYANT) < T < T5]
lhappens(E, T) A precondition(E, T, P) Anot holds_at(P,T)] (2)

In applications which combine narratives with hypothetical reasoning the
integrity constraint (2) needs to be modified to satisfy the restriction that
retractibles are abducible literals. For this purpose, we can replace (2) by

lhyp-happens(E, T) A precondition(E, T, P) A not holds_at(P,T)] (2)

assuming that those instances of happens which are defined by facts have
been verified as satisfying (2) at time of input. We shall refer to this form
of event calculus as the modified event calculus.

In most formulations of the persistence axiom, e.g. [4], a negative con-
dition not broken(1y, P,T3) is used instead of a positive default abducible
condition persists(Ty, P,T;). Our transformation uses a variant of Satoh-
Iwayama transformation [16] to justify the use of negation as failure to re-
place positive abducibles in general. It uses a variant of the technique of
[12], to eliminate integrity constraints.

3 Transformation

The transformation is defined for abductive logic programs in which all re-
tractibles are abducible literals (i.e. either abducible atoms or their nega-
tion). For simplicity, and without loss of generality, we will assume that
exactly one abducible literal is retractible in each integrity constraint. In-
deed, any integrity constraint with more than one retractible can be replaced



by as many integrity constraints as the number of retractibles, every such
integrity constraint having only one retractible.

Given an abductive logic program (P,.ABy,Zy), for each abducible pred-
icate a in ABg let @’ be a new predicate, which intuitively represents the
“complement” of a.

Replacement of positive abducibles by negation as failure literals
For each abducible predicate a in ABy,

e all the positive conditions a(?) in clauses of P are replaced by conditions
nota'(t). (Let PNAY be the resulting program.)

e all the positive conditions a(?) in integrity constraints in Z are replaced
by conditions nota’(t). (Let Z)AF be the resulting set of integrity
constraints.)

Note that the transformation does not affect negative occurrences of ab-
ducible predicates. Moreover, since all retractibles in Zy are either abducibles
or their negation, each integrity constraint in Z)Y4" is of the form

—|[L1, . ..,Li_l,nOtOz(t),LH_l, . ..,Ln]

where 1 < 2 < n,n > 1 and « is either an abducible predicate a or the
“complement” a’ of an abducible predicate a.

Simulation of abduction by negation as failure
Let 771430 be the set of clauses obtained as follows: For each non-default
abducible predicate a in ABy, 77:430 contains two clauses

a(X) — not a'(X)
a'(X) — not a(X)

For each default abducible predicate a in ABg, 77:430 contains the clause
a(X) « not a'(X)

Simulation of integrity constraints by program clauses

Let P%O be the set of clauses obtained as follows: For each integrity con-

straint
—|[L1, ceey Li—l, not Oz(t), Li+1, ceey Ln]

in Z/AY, Pz, contains the clause

Oz(t) — L1,~~~,Li—1,Li+1,~~~,Ln

Definition 3.1 Given an abductive logic program (P, ABg,Zy), the corre-
sponding program is P'=PN4y Php,Y P,

Finally, any query to (P, ABgy,Zy) needs to be transformed into a corre-
sponding query to P’.



Definition 3.2 Given a query Q to (P, ABy, 7o), the corresponding query,
Q', is obtained by replacing all positive conditions a(t) in Q, where a € ABy,
by not a'(t).

Example 3.1 The program P/_ resulting from the transformation is

holds_at(P, T:) — notnohappens(E,T1),Th < T3,
initiates(E, P), not broken(Ty, P, Ty)
broken(Ty, P, Ta) — not nohappens(E, T),terminates(E, P), Ty < T < T
nohappens(FE, T) — preconditions(E, P), not holds_at(P, T)
happens(E, T) — not nohappens(E, T),
nohappens(E, T) — not happens(E, T)
persists(Ty, P, To) — notbroken(Ty, P, Ts)

where nohappens and broken stand for the complements of happens and
persists, respectively.

The predicate persists does not occur anywhere in the conditions of
clauses in P/ ; and therefore, if no query to P.. contains a call to persists,
then the clause defining persists will never be used. As a result, P.. can be
simplified by deleting the clause defining persists.

Note that variants of the program P.. have been used by many authors, e.g.
[4], as a formalisation of the event calculus in NLP. Here we have shown how
to construct such a program in a systematic manner from a “higher level”
specification. Moreover, (see section 5) we show that the transformation
from (Pee, ABec, Zee) to PL. is correct and complete.

4 An argumentation framework

The correctness and completeness of the transformation can be proved by
using a variant of the abstract argumentation frameworks proposed in [1, 2,
17] as a semantics for non-monotonic reasoning in general. An argumentation

framework is a tuple (7,+, AB,ZC) where

e 7 is a theory in some formal language,
e [ is a notion of monotonic derivability for the given language,
o AB is a set of assumptions, which are sentences of the language, and

o IC is a set of denial integrity constraints with retractibles.

In such a framework a sentence is a non-monotonic consequence if it follows
monotonically from the theory extended by means of an “acceptable” set of
assumptions. Various notions of “acceptability” can be defined, based upon
a single notion of “attack” between sets of assumptions. Intuitively, one set
of assumptions “attacks” another if the two sets together with the theory
violate an integrity constraint, and the second set is deemed responsible for
the violation. Retractibles identify the set as responsible for the violation,
as formalised by the following definition of “attack”.



Definition 4.1 Given an argumentation framework (7,+, AB,7ZC):

e a set of assumptions A C AB attacks an assumption é € AB, if and
only if for some integrity constraint =[Ly A...AL; A...ANL,] € IC

(1) T U .A F le---aLi—hLi—I—la---aan and
(2) T U {8} + L.

o a set of assumptions A C AB attacks another set A C AB if and only
if A attacks ¢, for some assumption 6 in A.

Note that a set of assumptions violates a denial integrity constraint if all
the conjuncts in the denial can be derived from the theory together with
the set of assumptions; and a set of assumptions satisfies a denial integrity
constraint if it does not violate it.

If all retractibles in integrity constraints in ZC are assumptions and any
assumption « can be derived from 7 U A only if a € A, for any A C AB,
then condition (2) in the definition of A attacks A becomes

2/) L; e A.
As we will see below, this is the case for the argumentation frameworks
corresponding both to ALP and NLP.

Various notions of “acceptability” can be defined in terms of the same
notion of attack. Here we mention some of the notions presented in [1, 2]:
A set of assumptions which does not attack itself is called

e stable, if and only if it attacks all assumptions it does not contain;

o admissible, if and only if it attacks all sets of assumptions that attack
it, i.e. it defends itself against all attacks;

o preferred, if and only if it is maximally (with respect to set inclusion)
admissible;

e complete, if and only if it is admissible and it contains all assumptions
it defends against all attacks; (A defends an assumption é against an

attack A if and only if A attacks 6 and A attacks A.)

o grounded, if and only if it is minimally (with respect to set inclusion)
complete.

Note that any stable, admissible, preferred, complete or grounded set of
assumptions satisfies all the denial integrity constraints, since any such set
is necessarily conflict-free.

Both ALP and NLP can be given a semantics by appropriately applying
any of the abstract semantics given above, treating NLP as a special case
of ALP. Given an abductive logic program (P,.ABy,Zy), the corresponding
argumentation framework is (7 ,+, AB,ZC) where

e 7 is the set of all variable-free instances of clauses in P;



e F is modus ponens for the clause implication symbol «;

o AB is the set of all variable-free negative literals together with all the
domain-specific abducibles in ABg;

e 7( is the set consisting of
(1) all denials of the form —[AAnot A] where A is a variable-free atom,
(2) all denials of the form —[A A not A] where A is a variable-free
non-default abducible atom, and
(3) all domain-specific denial integrity constraints in Zy.

NLP is the special case of ALP where the assumptions are all variable-free
negative literals alone and the integrity constraints are the denials of kind
(1) alone. Note that the notion of integrity satisfaction which is implicit
in the notion of attack, is compatible with three-valued semantics for NLP,
since an integrity constraint =[A A not A] is satisfied by a program extended
with a set of assumptions if neither A nor not A can be derived.

Many existing semantics for NLP can expressed in argumentation-
theoretic terms, as proved in [1, 2]. In particular, stable models correspond
to stable sets of assumptions, partial stable models and preferred extensions
correspond to preferred sets of assumptions, stationary expansions and com-
plete scenaria correspond to complete sets of assumptions and well-founded
semantics corresponds to the grounded set of assumptions. Moreover, vari-
ous new semantics for the form of ALP we use in this paper are obtained as
instances of the abstract notions. Note that, in the well-founded semantics
for ALP, all non-default abducibles are undefined, and consequently serve no
purpose. An alternative, less sceptical semantics for non-default abducibles
in ALP has been defined in [14].

The following example illustrates the notions of attack and of admissi-
bility in the ALP case. The example is the Kautz stolen car problem.

Example 4.1 The problem is to explain that a car is not in a car park at
a time ¢, after having been parked there at an earlier time ¢5. Namely, we
want to explain not holds-at(in,t) given that

happens(park,ty)
g <1

belong to P... Moreover, in addition to these two facts and the persistence
axiom, P.. also contains the facts

initiates(park,in)
terminates(steal,in)

precondition(steal, in).

This problem illustrates the combination of a narrative with hypothetical
reasoning, since the predicate happens is both defined by a fact in P.. and
is an abducible in Ab... In this case, we can use the modified event calculus.



A ={not h-at(in,t)}

— h-at(in,t)
|

— h(park,ty), to<t, i(park,in), p(to,in,t)
|

— p(ty,in,t)
|

u — h(steal t1),t(steal,in),to < t; <t
— lh(steal,tl)
— lhy—h(steal,tl)

0

A = {not h-at(in,t), hy-h(steal 1)}
— pre(steal,in), not h-at(in,ty)

— not h-at(in,t,)
|

— h-at(in,ty)
|

—h(park,to), to<ty, i(park,in), p(to, in, t1)
|

Hp(thinatl)
|
= A = {not h-at(in,t),

hy-h(steal t1
p(thinatl)}

bl

Figure 1: Kautz’s stolen car problem, in example 4.1

To simplify the description below, we will assume that the Herbrand universe
of (Pecy ABee, I..) contains a term t; and that tg < t; < t.

Figure 1 illustrates the construction of an admissible set of assumptions
{not holds-at(in,t), hyp-happens(steal,ty), persists(to,in,t1)}, starting from
the initially given assumption not holds-at(in,t). The double boxes in the
figure represent the construction of attacks using SLD resolution. The single
boxes represent the construction of defences against attacks. These exten-
sions are also constructed by SLD resolution. The transition from one box to
the next box inside it is done by resolving an assumption against a retractible
literal in an integrity constraint.



5 Correctness and completeness

In this section we assume that an abductive logic program (P, ABy,Zo) and
the corresponding transformed program P’ are given. Note that (P, ABy, Zp)
and P’ have the same Herbrand universe, but different Herbrand bases, since
P’ contains more predicates than P. Let Lit be the set of variable-free literals
over the Herbrand base of (P, ABg, Zy), and let Lit’ be the set of variable-free
literals over the Herbrand base of P’. First let us define the correspondence
between sets of assumptions for (P, ABg,Zo) and sets of assumptions for P’.

Definition 5.1 Given L in Lit and L' in Lit’, I and L' are corresponding
literals (L corresponds to L’ and L’ corresponds to ) if and only if

o L=a(t) and L' = not d/(t), if a is an abducible predicate in ABy and
a' represents the complement of a, or

o I' = L, otherwise.

Given a set of literals S contained in Lit and a set of literals &’ contained
in Lit', § and 8" are corresponding sets (S corresponds to &’ and &’
corresponds to §) if and only if for each literal L in § there is a literal L’
in & such that I and L’ are corresponding literals, and vice versa.

The correctness and completeness of the transformation is a corollary of the
following theorem, which establishes a one-to-one correspondence between
attacks in Fip ag,1,) and attacks in Fpr. The proof is in the appendix.

Theorem 5.1 Let Fip an, 1,) be the argumentation framework correspond-
ing to (P, ABo,Zo) and let Fp: be the argumentation framework correspond-
ing to P'. Given sets of assumptions A and A in Fip AB, To) and A" and A’
in Fpr such that A, A" and A, A’ are corresponding sets, then A attacks A
in Fip apy,1o) if and only if A" attacks A" in Fp:.

Corollary 5.1 Given corresponding sets of assumptions A in Fip g, 1,)
and A" in Fpr A is stable (admissible, preferred, complete,
grounded) in Fp 4B, To) if and only if A’ is stable (admissible, preferred,
complete, grounded, respectively) in Fp.

The following theorem establishes a one to one correspondence between ab-
ductive explanations for queries and abductive explanations for correspond-
ing queries. The proof is in the appendix.

Theorem 5.2 Given a query Q, corresponding query Q', set of assumptions
A in Fip aB, 1,), and corresponding set of assumptions A" in Fp,

P UA F Q if and only if P' UA" + Q.

10



An important consequence of this theorem and corollary 5.1 is that any proof
procedure which answers queries with respect to one of the above semantics
for normal logic programs answers queries with respect to the same semantics
for the corresponding abductive logic programs, and, less interestingly, vice
versa. Therefore, instead of defining new proof procedures for ALP, we can
use proof procedures for NLP instead.

6 Comparisons

We use the transformation of Satoh and Iwayama [16] to simulate non-default
abduction via negation as failure. Equivalent techniques are used also by
Inoue [7] and Pereira, Aparicio and Alferes [14] to eliminate non-default
abducibles from extended logic programs augmented with abduction.

Kowalski and Sadri [12] use exceptions, formulated as extended clauses
of the form

_'pFLla"'aLn
to override general rules, of the form
p— Ky, ... Kn

They transform rules with exceptions into extended logic programs, by re-
placing general rules of the form above by clauses of the form

p— Ki,..., K,,not —-p

In the special case of ALP, where we have an abducible p which is similar to
a general rule with conclusion p, the transformation gives p < not —p which

treats p as a default abducible. This is similar to our rewriting of p as not p'.

In an earlier paper [11], Kowalski and Sadri investigated a similar trans-
formation, where, however, exceptions were represented as integrity con-
straints with retractibles, i.e.

S[LyA... ALy Ap].

Our simulation of integrity constraints can be viewed as the rewriting of
integrity constraints in [11] as exceptions in [12], where explicitly negated
literals —p are replaced by atoms p'.

In [12] it was shown that the Kowalski-Sadri transformation preserves
a variant of the answer set semantics. In this paper we show that all

argumentation-theoretic semantics are preserved.

In [4], Denecker and De Schreye present a transformation from abduc-
tive logic programs with integrity constraints to abductive logic programs
without integrity constraints. Integrity constraints of the form

~[L1 A ... A L]

11



are rewritten as clauses of the form
false «— Li,..., L,

where false is a new predicate. The transformation allows query evalua-
tion to be performed by using SLDNFA, an abductive procedure for ALP
without integrity constraints. For this purpose, queries of the form «— Q
are transformed into queries of the form «— Q, not false to the transformed
program. The original abductive logic program and query are shown to be
equivalent to the transformed ones under the completion semantics.

In [3], Chakravarthy, Grant and Minker propose a transformation which
also uses integrity constraints to transform programs, but for query optimi-
sation rather than for query evaluation.

7 Conclusions

It can be argued [8, 5, 6, 9, 7] that abductive logic programs are at a higher
level of specification than normal logic programs. In this paper we have
shown that abductive logic programs can be transformed into normal logic
programs. The advantage of the transformation is that proof procedures for
NLP can be used for ALP.

We have proved that the transformation is correct and complete for many
different semantics, by using a novel technique of showing that there is a one-
to-one correspondence between attacks before and after the transformation.
To the best of our knowledge, this is the only technique which has been
used to prove such a result for many different semantics using only a single
proof. The same technique can be used to show that the unfolding transfor-
mation also preserves many different semantics (see [17]). Hopefully, other
applications of this technique will also be useful in the future.
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Appendix

As we remarked in section 4, in the argumentation frameworks for both ALP

and NLP all retractibles in integrity constraints are assumptions. Therefore,

without loss of generality we can use the following notion of attack:

e For any sets of assumptions A and A, A attacks A if and only if there
exists an integrity constraint =[Ly A... A L; A ... A Ly] such that
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1) TU.A" Ll,...,Li_l,LH_l,...,Ln,and
2/) L; e A.

Note also that we can assume that P, Zy and P’ are variable-free. If they
are not, they can be replaced by all their variable-free instances over their
Herbrand universe.

The following lemmas are used to prove the theorem.

Lemma A.1 Given corresponding sets of assumptions A in Fp ap, 1,y and
A" in Fp: and corresponding variable-free literals L in Lit and L' in Lit’,

P UA F L if and only if P UA" + L.

Proof:
We prove the only-if half by induction on the length n of the proof of L.
n = 1 if and only if either

(i) L = not p(t), where p is any predicate, and L € A, or
(ii)) L = a(t),  where a is an abducible predicate, and L € A, or
(iii) L = p(t), where p is a non-abducible predicate, and p(t) € P.

In cases (i) and (ii), P’ UA’ F I/, since L € A if and only if L' € A/,
by definition of corresponding literals and sets of literals. In case (iii),
P UA" F L' since, by definition of P’, p(t) € P’, and, by definition of
corresponding literals, I, = L'

n > 1if and only if L = p(t), where p is a non-abducible predicate and there
exists a clause L — Kq,..., K, in P, with m > 1, such that P UA F K, for
each 1 <7 < m, and each such proof requires less than n steps. By definition
of P’ there exists a clause L' — K1{,..., K/ in P"and L = L’. By induction
hypothesis P UA" F K| for each 1 < ¢ < m. Therefore, P’ UA" - L', and
the only-if half is proved.

The if half can be proved similarly, by induction.

Lemma A.2 Given corresponding sets of assumptions A in Fip g, 1,) and
A" in Fpi, For each variable-free abducible atom a € ABy and variable-free
term t:

1. If PUAF a(t) then P" UA'F a(t);

2. If a is a non-default abducible, i.e. a € ABSd and
P UAF not a(t) then P UA"+ d'(t);

3. Ifa[Lin. . ANLiN... Ly is in Ty and L; = a(t) (L; = not a(t), resp.)
and P UA F Ly,...,Li—1,Lix1,..., Ly, then P UA" b d'(t) (a(t),
resp. );

4. If PP UA'F a(t) then either P UA  a(t)

or there exists =[Ly A ... AN L; A ... L,] in Ty such that L; = not a(t)
andP UAl_Ll,...,Li_l,LH_l,...,Ln.
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5. If PP UA'+ d'(t) then
either a is a non-default abducible and P U A+ not a(t)
or there exists =[Ly A ... AN L; A...L,] in Iy such that L; = a(t) and
PUAFLy,...,Lic1, Ligq,.. ., Ly

Proof:

1. P UAF a(t) then, by lemma A.1, P’ UA" F not a/(t). P’ necessarily
contains the clause a(t) < not a'(t) Therefore P UA'" F a(t);

2. If P UA F not a(t) then, by lemma A.1, P’ UA’ t not a(t). Since a
is a non-default abducible, P’ necessarily contains the clause a/(t) —

not a(t). Therefore, P UA’ F o/(1);

3. WPUAWF Ly,....,Li—1,Liy1,..., Ly, then, by lemma A.1, P’ UA'
Ly,....Li_y, Ll y,.... L. If Ly = a(t), then P’ contains the clause
a'(t) — LY, .. L;_I,L;_H, ..., L},. Therefore, P" UA"Fa/(t). If L; =
not a(t), then 77’ contains the clause a(t) «— Li,...,Li_;, Lt ..., L.
Therefore, P UA' F a(t).

4. and 5. Directly by definition of P’.

Proof of theorem 5.1: We prove the theorem by case analysis.

By lemma A.1, A attacks A via =[p(t) Anot p(t)], where p is an ordinary,
non-abducible predicate, if and only if A" attacks A’ via the same integrity
constraint.

By lemmas A.1 and A.2, part (1), if A attacks A via —[a(t) A not a(t)],
where a is an abducible predicate, then A" attacks A’ via =[a(t) A not a(t)].

By lemmas A.1 and A.2, part (2), if A attacks A via —[a(t) A not a(t)],
where @ is a (non-default) abducible predicate, then A’ attacks A’ via
—[d/(t) A notd'(t)].

By lemmas A.1 and A.2, part (3),if A attacks A via =[LiA.. AL AN
L,], where L; = a(t) (L; = not a(t), resp.) and a is an abducible predicate,
then A" attacks A" via =[a'(t) A not a'(t)] (via =[a(t) A not a(t)], resp.).

By lemmas A.1 and A.2, part (4), if A" attacks A’ via =[a(t) A not a(t)],
where a is an abducible predicate, then A attacks A via the same integrity
constraint or A attacks A via =[Ly A...Anota(t)A... A L,].

By lemmas A.1 and A.2, part (5), if A" attacks A’ via =[a'(t) Anot a'(1)],
where @ is an abducible predicate, then A attacks A via =[a(t) A not ‘not a(t)],
or A attacks A via =[Ly A...Aa(t)A ... A Ly).

Since all possible cases in which A can attack A and A’ can attack A’
are considered above, theorem 5.1 is proved.

Proof of theorem 5.2: Directly from lemma A.1.
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