
ARTIFICIAL INTELLIGENCE 227

Linear Resolution with Selection Function

Robert Kowalski and Donald Kuehnm
Metamathematics Unit, University of Edinburah

Recommended by B. Meltzer

ABSTRACT

Linear resolution with selection function (SL.resolution) is a restricted form of linear resolution.
The main restriction is e~ected by a selection function which chooses fro:~ each clause a sit, gle
literal to be resolved upon in that clause. This and other restrictions are adapted to linear
resolution from Loveland's model elimination.

We show that SL-resolution achieves a substantial reduction in the generation of redundant
and irrelevant derivations and does so without significantly increasing the complexity o f
simplest proofs. We base our argument for the increased efficiency of SL-resolution upon
precise calculation of these quantities.

A more far reaching advantage of SL-resolution is its suitability fo .~. ristic search. In
particular, classification trees, subgoals, lemmas, and and/~./ search tret n all be used to
increase the efficiency of flndino refutations. These considerations alone sug. r. :t the superiority
of SL-resolution to theorem-proving procedures constructed solely for their I1euristie attraction.

From comparison with other theorem-proving methods, we conjectur~ that best proof
procedures for first order logic will be obtained by further elaboration of ~ ~.-resolution.

1. Introduction

Inference Systems and Efficiency

A good inference system for mechanising deduction should satisfy the follow-
ing criteria:

(1) It should admit few redundant derivations and limit those which are
irrelevant to a proof.

(2) It should admit simple proofs.
(3) It should determine a search space which is amenable to a variety of

methods for heuristic search.

We shall argue that, on the basis of these three criteria, linear resolution
with selection function (SL-resolution) is a good inference system and is
better than other systetr.s which have been investigated for first order logic.
We shall calculate precise bounds on the number of redundant derivations
eliminated and on the complexity of simplest proofs admitted by SL-resolu-
tion. Finally, we describe some of the use~l heuristics that can be applied
for searching the SL-resolution derivation space.

Artificial Intelligence 2 (1971), 227-260

Copyright ~ 1971 by North-Holland Publishing Company

228 ROBERT KOWALSKI AND DONALD KUEHNER

We shall assume that the reader is familiar with the basic terminology of
resolution theory. For this purpose, the review paper [20] by Robinson is a
more than adequate prelimina~,. We regard a proof procedure as consisting
of an inference system supplemented by a search strategy. The inference
system of a proof procedure consists of axioms and rules of inference which
determine for a given theorem the search space of all derivations obtainable
from the axioms by means of the inference rules. One inft:rence system is
a refinement of another, if the search space of the first is contained in the
search space of the second. A search strategy for a given inference system is
an algorithm for consecutively generating derivations in the search space
until a first proof is found. In general, every proof procedure generates a
number of unnecessary derivations in additien to the ~,st proof of the
theorem it tries to prove.

We propose that the number of derivations generated by a sear.~h strategy
before the generation of a first proof be treated ~s a measure of the di~iculty
of proving the theorem by means of the given proof procedure. We shall
use this ~neasure of difficulty as a means of comparing the effiziency of
different proof procedures.

It is important to distinguish the difficulty of proving a theorem from the
complexity of a proof of that theorem. Let the size of a resolution derivation
be the number of distinct occurrences of resolvents in the derivation. We
shall treat size as a first approximation to the complexity of a derivation.
(More sophisticated measures will be considered in a later section.) The
difficulty of proving a theorem depends upon the proof procedure and there-
fore upon both the inference system and the search strategy employed. The
complexity of a derivation depends only on the inference system which
admits the derivation, but not upon any search strategy.

The efficiency of a proof procedure is related to the complexity of the
simplest proofs its inference system allows. In general, the simpler the proofs
admitted by an inference system, the easier it is~or a search strategy to generate
a first proof. The fewer unnecessary derivations admitted by the inference
system, the fewer are generated by the search strategy. The more amenable
the search space to the application of intelligent heuristic methods, the more
intelligent is the resulting proof procedure.

Outline of the Paper

"Ihe paper is divided into three main parts. The first defines linear, t-linear
and SL-derivations and search spaces. Th~ discussion of t-linear resolution
is included primarily to clarify the definition of SL-resolution and to simplify

• the comparison with other linear resolution systems. The formal definition
of SL-resoh~tion uses the chain format employed by Loveland for model
elimination.
Artificial Intelligence 2 (1971), 227-260

LINEAR RESOLUTION WITH SELECTION FUNCTION 22 9

Where the first part of the paper compares the successive reduction of
branching rates at nodes of the search trees for refinements of linear resolution,
the second part uses minimal derivations to compare the complexities of the sim-
plest refutations obtainable by these refinements. Proofs that no system admits
simpler refutations than minimal and s-linear resolution and that there exist
SL-refutations as simple as minimal refutations are included in the appendix.

The last main part of the paper deals with the application of heuristics
to the determination of search spaces and search strategies for SL-resolution.
The search spaces can take the form either of search trees labelled by deriva-
tions or of and/or trees labelled by goals and subgoals. Efficient search
strategies which search for simplest proofs can be constructed, employing heu-
ristic functions and diagonal search. Further improvements can be obtained
by using lemmas and by employing deletion rules for subsumed chains.

More detailed investigation of search strategies for SL-resolution is
contained in Kuehner's thesis [10]. The theory of efficiency which underlies
our arguments for SL-resolution is investigated in Kowalski's thesis [8]
and outlined further in Meltzer's lectures [17].

This paper is a revised and shortened version of an earlier one [11]. It differs
from the original primarily by the incorporation of more examples, by the
substitution of proof outlines in the appendix for detailed proofs in the
text, and by an altered emphasis which reflects the results of further investiga-
tions. Certain shortcomings in the earlier treatment of t-linear resolution and
lemma generation were called to our attention by Michael Gordon and
Donald Loveland respectively. These faults have now been corrected.

Since the completion of the original paper, we have learned of the related
investigations of Donald Loveland [14] and Raymond Reiter [19]. Loveland
investigates in detail the relationship between model elimination and linear
resolution, and includes an interesting comparison of these systems with the
Prawitz matrix reduction method [18]. Reiter investigates two ordering
restrictions and establishes their compatibility with linear resolution and the
merging restriction [2]. Reiter'~ second ordering restriction coincides with
the selection function restriction for ground derivations.

In SL-resolution, we have attempted to construct the best inference system
possible and have borrowed freely from what seems, to us, the best in other
systems. The resulting system can be regarded as a form of either model
elimination or linear resolution. When compared with the systems investigated
by Loveland and Reiter, it bears the greatest resemblance to model
elimination.

2. Linear Resolution

Linear resolution was independently discovered by Loveland [13],
Luckham [15] and Zamov and Sharonov [23]. It is a refinement of unrestricted

Artificial Intelligence 2 (1971), 227-260

230 ROBERT KOWALSKI AND DONALD KUEHNER

resolution which significantly reduces the number of redundancies derivable.
For certain measures of complexity (rm-size, Section 5), linear resolution is as
powerful as unrestricted resolution, in the sense that no resolution system
admits refutations which are simpler than the simplest derivable by linear
resolution. This latter property is shared by other refinements (notably
minimal resolution, Section 5). Among the most powerful refinements of
unrestricted resolution, linear resolution offers exceptional opportunities
for the application of heuristic search by virtue of the relative uncomplicated
structure of its search spaces.

Linear Derivations

A linear derivation D, from a set of clauses S, is a sequence of clauses
(Ca, ..., C,) such that C~ 6 S and each Ct+t is a resolvent of C~ (the near
parent of C~+1) and B, where either

(1) B is in S (the input parent of C~+t), or

(2) B is some ancestor Cj of Cl, j < i, (the far parent of Cj+l).

Ct is the top clause of D and C, is the clause derived by D. In case (1), CI+1
is obtained by input resolution and, in case (2), by ancestor resolution. If D
derives the null clause from S, then D is a linear refutation of S.

The sequence D = (PQ, Q, R, S, i~T, T, P, D) is a linear refutation of
S - {PQ, P, ~R, RS, RST, PT}. (For examples, we omit the set theoretical
brackets and commas employed in the representation of clauses as sets of

' literals.) Notice that only near parents of resolvents are displayed in linear
derivations. The other parent of a resolvent can be regarded as an operator.
Notice, too, that, in the preceding example, C6 is obtained by resolving the
near parent Cs with its ancestor Ca. All other resolYents are obtained by
input resolution. An example of a general-level linear derivation is the
refutation

(P(x)P(a), R(a), Q(y), .~(y), I'1) of

{ P(x)P(a), P(x)R(a), R(x)Q(y), Q.(y)R(.v)}.

Search Trees

For linear derivations from S with a common top clause Ct, it is useful to
organise the search space as a search tree T = T(C~):

(1) The linear derivation (C1) is the root ofT.

(2) If D = (C~,..., C~) belongs to T then all linear derivations (C~, ..., C,,
C,+~) from S belong to T and are immediate descendants of D.

The complete linear resolution search space for S consists of all the search
Artificial Intelligence 2 (1971), 227-260

LINEAR RESOLUTION WITH SELECTION FUNCTION 23 i

l i t

m
o

I % , / r"i

[]

ra

o
m

I-I

' O

Q

•//•, .~ ~

J

Artificial Intelligence 2 (1971), 227-260

232 ROBERT KOWALSK! AND DONALD KUEHNER

trees T(Cx) for each clause C1 in the input set $. For the purpose of displaying
a search tree T, each node is labelled by the clause derived by that node.

The search tree shown in Fig. 1 illustrates the great number of redundant
derivations admitted by linear resolution. In general, the efficiency of proof
procedures is improved by eliminating redundancies from the search space
and by not significantly increasing the complexity of simplest proofs. It is
to this end that we investigate refinements of linear resolution.

Refmements of Linear Resolution

It is possible to impose on linear resolution the restricticns that no resolvent
is a tautology and that the top clause belongs to a given support set of the
input set S. (A subset T of S is a support set of S if $ - T is satisfiable,
Wos et al. [21].) Both restrictions eliminate unnecessary derivations without
decreasing the power of linear resolution.

The support set ~ ~striction is especially useful because it limits the number
of search trees which need to be investigated in the course of searching for a
refutation. The easily recognisable support subsets of S include the set of all
positive clauses, the set of all negative clauses, and the set of all clauses which
come from the r~gation of the conclusion of the theorem (when the axioms
and special hypothe~s in S are satisfiable). For the example of Fig. 1, the
top clause is the only clause in the support set of positive clauses. All of the
refinements of linear resolution discussed in this paper are compatible with
both the support set and no-tautologies restrictions.

Other restrictions which have been investigated for linear resolution include
the s-linear restriction (Loveland [13] and Zamov and Sharanov [23]) and
merging restrictions (Anderson and Bledsoe [1], Yates et. al. [22], and Kie-
burtz and Luckham [6]). The t-linear and SL-resolution systems investigated
in this paper are both refinements of s-linear resolution with the support set
and no-tautologies restrictions. The merging restriction does not seem to be a
useful one and we have not investigated it in connection with SL-resolution.
The following table compares, for various refinements, the size of a simplest
proof and the number of derivations of the same or smaller size for the input
set and top clause of the example of Fig. 1. The combination of linear
resolution and the merging restriction defined in [1] is denoted by "m-linear";

i i i i

linear s-linear m-linear ms-linear t-linear SL(I) SL(2)

Size n of simplest
refutation 6 6

Number of derivations
of size ~n 193 171

i

Artificial Intelligence 2 (1971), 227-260

7 7 6 7 6

224 224 74 13 12
i

LINEAR RESOLUTION WITH SELECTION FUNCTION 233

and the combination of m-linear resolution and the s-linear restriction, by
"ms-linear." "SL(I)" and "SLy2)" denote SL-resolution with different
selection functions. (The selection function chooses and resolves upon the
alphabetically least atom for SL(I) and the alphabetically greatest atom for
SL(2).) The selection function for SL-resolution acts in much the same way
as the support set for set-of-support resolution: each specification of a
selection function determines a complete SDsearch space.

3. t-Linear Derivations
Definition

The three new restrictions incorporated in t-linear resolution are defined only
for ground derivations from input sets of ground clauses.

Let D = (C~,..., en) be a ground linear derivation from S. A literal L in
C~ descends from L in an ancestor Cj iffL occurs in every intermediate clause
Ck, j ~< k ~< i. An ancestor C~ of Cl is an A-ancestor of Cl iff C~+t has an
input parent and all literals in C~, except for the literal K resolved upon in
obtaining Cj+I, have descendants in C~. The literal K is called the A-literal
of C~ from the A-ancestor Cj.

In the derivation (PQ, Q, R, S, ~T, T) from the input set {PQ, P, O.R, ~S,
R,~T}, the derived clause, Cs, has A-ancestors Cz, C3 and C4 and A-literals
Q from Cz, R from C~ and S from C,. Cs is not an A-ancestor of Co, because
C6 is not obtained by input resolution.

FR

B

Fro. 2. Search tree for t-linear resolution (134 ~lodes).

A linear derivation D is t-linear if it satisfies the following three restrictions:
(1) If C~+1 is obtained by ancestor resolution3, then it is obtained by

resolution with an A-ancestor of C~.
Art~c[o~ Intelligence 2 (1971), 227-260

17

234 ROBERT KOWALSKI AND DONALD KUEHNER

(2) If C~ contains a literal complementary to one of its A-literals, then
C~+1 is obtained by ancestor resolution.

(3) A-literals of C~ from distinct A-ancestors have distinct atoms.

We have already remarked that the no-tautologies and support set restrictions
are compatible with t-linear resolution. Fig. 2 illustrates part of the t-linear
search space for the example of Fig. 1.

Renumrks

(1) Notice that the first condition implies that if C~ resolves with an A-ancestor
Cj then the literal resolved upon in Cj is the A-literal of Ci from Cj (for
otherwise C~ would be a tautology). Thus the resolvent C~+t is contained in
its near parent. (This last property is Loveland's s-Hnear restriction [13] and
Zamov and Sharonov's absorption restriction[23].) The second condition
states that ancestor resolution is compulsory in the sense that it must be
performed as soon as it can be performed.

(2) Clearly, for an efficient implementation of the t-linear restrictions, it
would seem desirable to find an efficient way of associating with each clause
Ct a list of its A-ancestors and A-literals. In fact, it is only necessary to
associate A-literals, since all the other literals in A-ancestors are already
contained in C~. Restrictions (1) and (2) can then be implemented by simply
deleting any literal in C~ which is complementary to an associated A-literal.
The implementation of (3) is equally simplified. In the next section, we shall
define a chain format for SL-derivations which provides just such a way of
associating A-literals with c~uses.

(3) It is instructive to compare ancestor resolution in t-linear derivations
with the implicit merging operation. A single merging operation occurs when
a literal in a resolvent occurs in both its parents. Thus the resolvent QR of
PQR and PQR is obtained from its parents.by resolution and two merging
operations. The merging operation is implicit in the representation of clauses
as sets of literals. If clauses were replace.d by sequences ofliterals, the merging
operation would need to be performed explicitly. So far, for t-linear resolution,
ancestor resolution resembles the merging operation in that both remove
a single literal from a clause and both are compulsory. For SL-resolution,
the resemblance is more marked and both operations are treated as special
cases of a single rule. For SL-derivations from sets of general clauses, ancestor
resolution resembles factoring.

4. SL-Derivafions

Informal Definition

SL-resolution is t-linear resolution with an additional restriction which calls
for a single literal to be selected from each clause C~ in an SL-derivation. The
Artificial Intelligence 2 (1971), 227-260

LINEAR RESOLUTION WITH SELECTION FUNCTION 235

selected literal is the only literal in C, which is ever resolved upon when C,
is used as near parent for input resolution. The choice of selected literal is
constrained by the condition that it be a literal most recently introduced into
the derivation of C~. Thus, in the derivation (PQ, PR) only R maybe selected
in C2, and therefore (PQ, PR, R) corresponds to no SL-derivation for any
legitimate way of selecting literals.

For each derivation D in an SL-search tree, there is only one literal in the
derived clause C, which is resolved upon in obtaining all immediate descend-
ants by input resolution. If the same derivation occurs in a t-linear search
tree then there are additional immediate descendants obtained by resolving
on all other literals in C. Thus, if C contains m-literals, then there are, on the
average, m times as many immediate descendants of D in the t-linear search
tree as there are in the SL-search tree. If m is the average number of
literals in clauses derived by t-linear derivations of size ~< n, then there are,
on the average, m n more t-linear derivations of size n than there are SL-
derivations of the same size.

Fig. 3 illustrates, for the example of Fig. 1 and 2, the entire search tree
for SL-resolution with the selection function which chooses the literal
having alphabetically greatest atom.

m

FI~T

.PT

O
Flo. 3. Search tree for SL-reso;ution (12 nodes).

e

N

n I'R

£3

Notice ~hat when a clause is used as near parent for ancestor resolution,
the literal resolved upon is already constrained by the compulsory ancestor
resolution restriction on t-linear derivations. Thus, in the clause PI~T in
Fig. 3, only the literal ~ may be resolved upon, even though bo th /] and T
are most recently introduced and T is alphabetically greater than R.

Artificial Isuelligence 2 (1971), 227-260

236 ROBERT KOWALSKI AND DONALD KUEHNER

In the formal definition of SL-derivations, clauses are replaced by sequences
of literals, called chains. When a near parent resolves with an input parent,
the resolvent is obtained by concatenating literals from the near parent to
the left of literals from the input parent. Between these two subsequences of
literals we insert the selected literal resolved upon in the near parent. This
literal is *.he A-literal of the resolvent from its near parent. More generally,
each resolvent chain contains all of its A-literals. A-literals are deleted when
they no longer belong to A-ancestors. Those literals in a chain which are not
A-literals are called B-literals.

Fig. 4 illustrates in chain format the SL-search tree of Fig. 3. A-literals
are enclosed in boxes. Merging operations are displayed explicitly. Of two
idemical literais in a chain, the rightmost is deleted. We underline literals
resolved upon and also literals removed by the merging operation. The
operation of deleting A-literals is not displayed, although defined explicitly
in the formal definition.

@g

_P

r3

F!o. 4. Search tree for SL-resolution in chain format.
Q

For the efficient.implementation of the general resolution rule, it is useful
to treat this single operation as a sequence of two suboperations: factoring
of clauses and resolution of factors. If C is a clause and E a unifiable partition
of the literals in C, having most general unifier (mgu) 0, then CO is a factor
Artificial Intelligence 2 ~1971), 227-260

LINEAR R ~ L U T I O N WITH SELECTION FUNCTION 237

of C. If exactly one component of E contains two literals and every other
component exactly one, then C is a basic focwr. If ~L} O/~ and {K} O B
are factors and the literals L and K are unifiable with mgu 0, then (d u B)O
is a resolvent. (~., denotes the union of disjoint sets.)

The definition of SL-resolution treats chains in the same way that separate
and explicit rules for factoring and resolution of factors treat clauses.
Altogether there are three operations which can be applied in order to obtain
chains in SL-derivations. The extension operation is input resolution of
factored chains. The reduction operation incorporates, as special cases,
both basic factoring and ancestor resolution of factored chains. The trunca-
tion operation is a bookkeeping device for eliminating A-literals.

Formal Definition

Let $ be a given input set of clauses. For each factor C of a clause in S and
for each literal L in C, choose exactly one sequence C* consisting of all
literals in C, with L leftmost in C*. C* is an input chain. (Only the leftmost
literal in C* is resolved upon when C* is input parent for an extension
operation.) For the input set of clauses

{ P(x)P(a), e(x)R(a), (x)QCv), O.Cv) Cv) },
there is only one corresponding set of 9 input chains. For

$ - {PQ, P, O~R, RS, RST, PT},

each corresponding set of input chains contains exactly 12 members. Each
such set contains exactly one of .~ST and .~T~, one of SRT and ,~T~, and
one of T/~,~ and TSR. For the purposes of SL-resolution, it is of no import-
ance which one of these sets is chosen to specify the set of input chains.

In general, a chain is any sequence of !iterals, each of which is assigned
the status of either A- or B-literal. All literals in input chains arc B-literals.
Two B-literals in a chain belong to the same cell if they are not separated by
an A-literaL Thus the chain P ~ S T has two cells: one containing only the
B-literal P and the other, the rightmost cell, containing the B-literals S and
T. The literal T is the rightmost fiteral in the chain.

Let ~ be a function defined on non-empty chains, having chains as values.
is a selection function iff O(C*) is C* or can be obtained ~'rom C* by i,ter-

changing the rightmost B-literal in C* with another B-fiteral in the rightmost
celL Thus if C* is P~_[~STthen O(C*)is P ~ i ~ T ~ or C* itself. The rightmost
fiteral in O(C*) is the selected literal in C*. (The extension operation applied
to C* resolves O(C*) on its rightmost B-literal with an input chain on its
leftmost literal.) We require further that equivalent chains have the same
selected literais.

ArtiJicial Intelligence 2 (1971), 22/-260

238 ROBERT KOWALSKI AND DONALD KUEHNER

For a given set of clauses S, support set So and selection function ~, an SL-
derivation from S is a sequence of chains D* - (C~, ..., C~) satisfying (1)-(3).

(1) C~ is an input chain from So.
(2) Each C~j+I is obtained from C~i by one of extension, reduction or

truncation.
(3) Unless C*+ 1 is obtained from C* by reduction, then no two literals

occurring at distinct positions in C~ have the same atom (admissibility
restriction).

C*+ I is obtained from Cf by truncation iff (a) and (b):
(a) The rightmost literal in C~ is an A-literal.
(b) C~'+ 1 is the longest initial subsequence of C~ whose rightmost literal

is a B-literal. The status of a literal in C~'+ t is the same as its status in Cf.
C*÷ 1 is obtained from C~' by reduction iff (a)--(e);

(a) The rightmost literal in C~' is a B-literal.
(b) C~' is not obtained from C*_ l by truncation.
(c) The rightmost cell of Cf contains a B-literal L and either

(i) C~ contains a B-literal K, which is not in the rightmost cell of Cr,
(basic factoring) or

(ii) C* contains an A-literal I~, which is not the rightmost A-literal o f
C~', (ancestor resolution).

(d) L ~nd K are unifiable with mgu 0.
(e) Let C~* be obtainedL by deleting the given occurrence of L in CTi.

Then C*+ ~ - C~'* 0. The status of a literal in C]'~+ i is the same as
the status of the literal from which it descends in CT~.

C*+ ~ is obtained from C* by extension with an input chain B* iff(a)--(d):
(a) The rightmost literal in Cf is a B-literal.
(b) Cf and B* share no variables.
(c) The selected literal L in C~' and the complement K of the leftmost

literal/~ in B* are unifiable with mgu 0.
(d) Let B** be obtained by deleting the leftmost literal K from B*. Then

C~+ 1 is the chain (O(Cf)B**)O obtained by applying 0 to the result o f
concatenating O(C~) and B** in that order. The literal L 0 in C~+ 1,
descending from the rightmost literal in O(C*) is axt A-literal in C~+ l-
Every other literal in C~'+ 1 has the same status as t!le literal from which
it descends in C* or B**.

Remar~

(1) It is not difficult to verify that the admissibility restriction, together with.
(b) in the definition of reduction, incorporates the three restrictions on
t-linear derivations as well as the compulsory merging and no-tautologies
restriction. The effect of (b) is to guarantee that if a literal can be removed
by reduction, then this is done before any extension operations are performed..
Artiftcial Intelligence 2 (1971), 227-260

LINEAR ~ L U T I O N WITH SELECTION FUNCTION 239

(2) The restrictions (c) (i) and (c) (ii) on reduction are both concerned with
restrictions on the factoring operation. If reduction is performed with a
B-literal K in the rightmost cell, then the effect of this factoring operation is
to generate a chain already derivable by choosing a different factor for the
input chain of the last extension operation. Similarly, if reduction is per-
formed with the rightmost A-literal K, then a variant chain can be derived
without this reduction operation by using a different factor for the most
recent input chain.

The factoring restrictions incorporated in the reduction operation corre-
spond to restrictions which can be imposed on arbitrary resolution systems.
The factoring method involved (called m-factoring [8]) imposes no con-
straints on the generation of factors of input clauses but allows only those
factors of resolvents which do not involve the merging of literals which
descend from the same parent. It is easy to show that m-factoring is the
least redundaet factoring method which generates short clauses as soon as
possible and does not increase the corrplexity of derivations.

(3) The truncation operation can be eliminated and incorporated into
more complicated definitions of extension and reduction. Nevertheless there
is a good reason for treating it as a separate operation: The admissibility
restriction applies to the parents of chains obtained by truncation.

(4) Case (ii) of the reduction operation does not, in fact, completely corre-
spond to ancestor resolution in linear resolution systems. It corresponds,
rather, to resolution with an instance of an ancestor. In linear resolution a
clause C~ resolves with an ancestor Cj which is standardised apart to share no
variables. The corresponding case of reduction in SL-resolution can be
interpreted as resolving C~' with C* 0 where 0 is the result of composing all
mgu's generated in obtaining the sequence of chains C~'+ t to C*. Moreover,
the resolvent C~'+ t is obtained without renaming the variables which occur in
its parents. This way of defining ancestor resolution can be applied to linear
resolution systems in general and can be justified by resolution theoretic
arguments. In the context of SL-resolution, it has several noteworthy
advantages: it provides the most efficient and restrictive way of implementing
ancestor resolution in SL-derivations, without in any way complicating
simplest refutations. Moreover, it reflects on the general level the relation-
ship between ancestor resolution and factoring which is the analogue of the
relationship between ancestor resolution and n'lerging for SL-derivation
from sets of ground clauses.

Model Eiimhtation

SL-resolution is more closely related to Loveland's model elimination
.system [12] than it is to other resolution systems. In particular, chain format,

Arti~cial Intelligence 2 (1971), 227-260

240 ROBERT KGWALSKI AND DONALD KUEHNER

A- and B-literals, extension, ancestor resolution reduction, and truncation
all derive from model elimination. (We have used Loveland's terminology,
except for "contraction" which we have renamed "truncation" in order to
distinguish it more easily from "reduztion".)

SL-resolution differs from model elimination primarily in that, for ground
derivations, model elimination has no merging operw:ion. At the general
level, a limited amount of factoring is obtained in model elimination by
allowing ancestor resolution with rightmost A-literals. For these reasons,
only a weakened version of the admissibility restriction holds for model
elimination.

Although not explicitly incorporated in Loveland's original definition,
it is ea.~y to verify that compulsory ancestor resolution is compatible with
model elimination. For certain restricted selection functions, resolution with
selected literals is already incorporated in model elimination. (The selected
literal is the rightmost literal in a chain and is determined, therefore, by the
initial choice of input chains.) The compatibility of the more liberal employ-
ment of selection functions can be established for model elimination by the
same method used for SL-resolution.

It is not difficult to show that, in most cases, SL-resolution yields simpler
refutations and fewer unnecessary derivations than model elimination. (The
anomalous case arises when a simplest SL-refutation involves no basic
factoring reduction operations and these operations are performed in
unnecessarily generated SL-derivations.)

In the next section, we compare the power of SL--esolution with that of
other resolution systems. Comparison of these systems with model elimination
will not be investigated beyond that which is implied by the preceding
comparison of SL-resolution with model elimin=tion. The preliminary
investigations reported in this paper suggest that the study and implementa-
tion of model elimination procedures have been unprofitably neglected in
favour of less efficient resolution procedures.

5. Complexity

In order to investigate the complexity of linear and SL-refutations, we
shall compare them with minimal refutations. Minimal refutations include
the simplest obtainable by any resolution system. Moreover, every minimal
refutation (whether simplest or not) can be regarded as reasonably simple
for the theorem it proves. We show that for every minimal refutation there
exists an s-linear refutation of the same complexity for the same set of clauses;
and for every unsatisfiable set of clauses there exists an SL-refutation a~
simple as some minimal refutation. Proof outlines for'the t~ee theorems~
which establish these results, are included in the appendix.
Artificial Intelligence 2 (1971), 227-260

LINEAR RESOLUTION WITH SELECTION FUNCTIOlq 241

Minimal Derivations

A non-linear derivation is a tree of nodes labelled by clauses, which are said
to be at the nodes. Clauses from the input set are at the tips and the derived
clause is at the root. Every node which is not a tip is labelled by a resolvent
of the clauses at the immediate predecessor nodes. A literal is resolved upon
at a node if it occurs in the clause at that node and is removed when obtaining
the resolvent at the immediate descendant node. ' .

A branch of a non-linear derivation is a set of nodes consisting of a single
tip and the immediate descendant of every node, except the root, which is
contained in the set. The number of nodes in a derivation, which are not
tips, is the size of the derivation. Its level is the number of non-tip nodes
contained in a largest branch.

A ground non-linear refutation is minimal if, for every branch, the literals
resolved upon at distinc~ nodes have distinct atoms. A ground non-refutation
is minimal if it can occur as a subderivation of a minimal ground refutation;
i.e., if it derives a non-tautology and, for every literal resolved upon at a
node, its atom does not occur in any clauses at a descendant node. A general
derivation is minimal if it lifts a minimal ground derivation; i.e. is tree-
isomorphic, the clause at any node has as an instance the clause at the
corresponding node, etc.

elm m I

[3 13

ao~-aaXaLmal

Fro. 5. Non-linear refutations of {PQ, P'Q, PQ, P-Q}. - -

~n£ma3.

Fig. 5 illustrates minimal and non-minimal refutations of the same input
set. The minimal refutation has 4 branches, size 3 and level 2; the non-
minimal refutations, 5 branches, size 4 and level 3. The literal Q is resolved
upon twice in the leftmost branch of the non-minimal derivation.

If a ground set S of clauses contains exactly n distinct atoms, then there
are only finitely many m;nimal derivations from S, none of which has level
greater than n or size greater than 2n-1. Under quite general conditions on
S (which apply, in particular to the example of Fig. 5) there are infinitely
many non-minimal derivations and refutations of unbounded level and size.

Artificial Intelh'gence 2 (1971), 227-260

242 ROBERT KOWALSK! AND DONALD KUEHNER

(The conditions are that some minimally unsatisfiable subset of $ contains
at least two clauses containing a literal L and two other clauses containing E.)

The notion of minimal derivations was introduced by Loveland [13] and
investigated independently by Kowalski [8] in conjunction with Pat Hayes.
Minimal derivations are just those derivations which can be obtained by the
construction of semantic trees (Hayes and Kowalski [4]). Loveland defines a
ground derivation to be minimal if it cannot be "pruned". The two definitions
are not equivalent. Every unprunable derivation is minimal in our s~ese,
but not conversely. It follows from Loveland's Corollary 2 that there ex~t
minimal refutations as simple as the simplest obtainable by any resolution
system (Theorem 1 below).

tin-size

Ancestor resolution in linear derivations resembles the factoring (and merg-
ing) operation more closely than it does the resolution operation. For this
reason, the size of derivations is not entirely appropriate for comparing the
complexities of linear with non-linear derivations.

We define the tin-size of a non-linear derivation to be the pair (r,m) where
m is the number of basic factoring (and merging) operations performed in the
derivation and r the number of resolution (of factors) operations, t For a
linear derivation, the rm-size is (r, rn) where r is the number of input resolution
operations and m the number of both ancestor resolution and basic factoring
(and merging) operations. (For an SL-derivation, r is just the number of
extension operations and m the number of reduction operations.) In Fig. 5,
the minimal derivation has tin-size (3,2) aitd the non-minimal derivation
tin-size (4,2). In Fig. 4, both SL-refutations have rrn-size (5,2)

For both linear and non-linear derivations, we do not include in m the
number of initial factoring operations applied to input clauses. For linear
(but not SL-) derivations, the definition of tin-size is deliberately ambiguous
when a near parent resolves with a top clause, which can be treated as either
an input or far parent.

Simplest Refutations
If complexity is defined as any function of r and m then two derivations
(linear and (or) non-linear) have the same complexity if they have the same
tin-size. In order to compare the complexities of derivations having different
tin-sizes, we shall assume only that complexity is non-decreasing with increas-
ing r and m and that an increase in m does not increase complexity more than
the same increase in r. More precisely, if (r~,ml) <~ (r2,mz) means that no
derivation of tin-size (rt,ml) is more complex than one of tin-size (rz,m2)
then the assumptions are that

I i.e., the number of non-tip nodes in the derivation.

Artificial Intelligence 2 (1971), 227-260

LINEAR RESOLUTION "WITH SELECTION FUNCTION 243

rl ~< re and m~ ~< m2 imply (rl,ml) <~ (r,,m,), and
(r,m) <~ (r + n, m - n).

h ~ we were to assume that (r,m) < (r+n, m - n) then Theorem 1 could be
strengthened to assert that every simplest non-linear refutation is minimal.

THEOnEM I. For every unsatisfiable set of clauses there exists a simplest
refutation which is also minimal.

TH~OR~ 2. For any unsatisfiable set S and support subset So there exists
an s-linear refutation of $ with top clause in So such that no non-linear refuta-
tion of $ is simpler.

(To prove Theorem 2, it is necessary to verify that any ground s-linear
refutation can be lifted to a general s-linear refutation of the same rm-size.
This verification fails unless ancestor resolution is defined for linear deriva-
tions in a manner similar to that for SL-derivations and mentioned in
Remark (4) of the preceding section. The effect of such a definition is to
yield a lower value for m in the calculation of rm-size.)

Complexity of SL-Refutations

The simplest SL-refutation of a set of clauses may be more complex than
a refutation obtainable in some other resolution system. Theorem 3 establishes
that the complexity of a most complex minimal refutation is a bound on the
complexity of a simplest SL-refutation.

THV.OIt~ 3. For every unsatisfiable set S, support subset So and selection
function ~, there exists an SL-refutation of S which has the same rm-size as
some minimal refutation of $.

Better bounds can be obtained for special cases. We conjecture that an
improved bound can also be established for the general case. It is easy to
verify that, for every unsatisfiable set of two-literal ground clauses 8, no
SL-refutation has tin-size worse than (2n - 1,2) where n is the number of
distinct atoms occurring in 5'. On the other hand, for each n there exists an
unsatisfiable set of two literal clauses $ and a minimal refutation of S with
tin-size (2"- 1,2).

We have only found one example of a set $ such that to selection function
or support set yields an SL-refutat;on as simple as can be obtained by un-
restricted, minimal or s-linear resolution" For

$ = {LM, EP, LQ, Ei~, NMQ, NPR, NT, T}

a simplest refutation has rm-size (7,3). The simplest SL-refutation obtainable
has rm-size (9,2), (10,4), (11,3), (12,3), (14,2) or (15,1) depending on the
specification of selection function and support set.

Artificial Intelligence 2 {1971), 227-260

244 ROBERT KOWALSKI AND DONALD KUEHNER

We have not found any examples where SL-resolution significantly increases
the complexity of a simplest proof. For a number of other systems it is
easy to construct refutations which are the simplest obtainable by those
systems and which exceed in complexity the bound established for SL-
refutations. In particular, for S = {PQ, P~, PQ, P~}, PI - deduction
yields as simplest proof no refutation of rm-size better than (4,2). All minimal
and SL-refutations of S have tin-size 0,2). For the same set of clauses,
resolution with any singleton set of support also yields simplest proofs
more complex than minimal refutations. It is an open question whether the
complexity of simplest proofs obtainable by m-linear resolution exceed the
bound of the complexity of minimal refutations. Our analysis of the complete-
ness proofs for m-linear resolution yields bounds on complexity which are
worse than have been established for SL-resolution.

Proof Procedures for SU.Resolution

Heuristic considerations can be used for the construction of the search
spaces and search strategies involved in SL-resolution proof procedures.
Heuristics for choosing selection functions and support sets apply both to
the determination of SL-search trees and to the and/or tree search spaces
obtained by the generation of goals and subgoals. For both representations
of search spaces, efficient search strategies can be constructed by employing
length-of-chain as a;heuristic, by employing strategies for the deletion of
subsumed chains and by generating lemmas.

The Specification of Support Sets n d Selection Functions

For a given input set, the search space for SL-resolution is determined I=y the
specification of a support subset and a selection function. Heuristic criteria
can be applied in both these cases with the goal of reducing the branching
rate at nodes of the SL-search trees. Since the choice of support set and
selection function does not affect the bound on the complexity of simplest
SL-refutations, consistent reduction of branching rates results in an overall
reduction of the size of the subspace which needs to be generated before
finding a first refutation. (This assumes that the search strategy itself favours
the generation of simplest refutations in preference to more complex ones.
The same assumption is necessary for proofs of increased effgiency in other
cases which have been investigated ([8]).)

In general, support sets containing a small number of clauses are pre-
ferable to those containing more. The choice of small support sets improves
efficiency by reducing the number of search trees which have to be examined
by the search strategy.

The choice of selected literals (and therefore of selection function) need
Artificial Intelligence 2 (1971), 227-260

LINEAR RESOLUTION WITH SELECTION FUNCTION 245

not be fixed in advance of the generation of chains by the search strategy.
This choice can be made dynamically and be deferred until the search strategy
first considers using a chain as near parent for application of the extension
operation. At that time, the heuristic selects a literal in the chain which can
be resolved upon with the least number of input chains. Good estimates of
this number can be calculated quickly for each B-literal in the rightmost cell
of the chain by employing a classification of input chains, arranged in th~
form of a classification tree.

Classification Trees

For each literal which can be encountered in a chain, there corresponds
exactly one branch of a classification tree. With the tip of this branch is
associated all those input chains which might resolve with a literal corre-
sponding to the branch.

P

,, " , , ,<

1 1 2 1 1 2 1 1 4 4 5 4 4 5 4 4 5

2 2 2 2 5 6 7 5 6 5 6 7

3 ~ 5 ~ 6 7 6 6 7

7 7
Fro. 6. An operator classification tree.

The classification tree of Fig. 6 classifies input chains for the unsatisfiable
set of clauses

S - {P(x,a)P(a,x) , P (x ,a)P(x , f (x)) , P (x ,a)P(f (x) , x) } .

The corresponding set of input chains has 7 mem~rs
BT - P(x ,a)P(a,x) , B'~ - P(a,x)P(x,a) , B'~ - P(a,a),

- p (x , a) e (x , f (x)) , n ' ; - p (x , f (x)) l " (x , a) ,

- e (x , a) e O ' (x) , x) , - - e f f (x) , x) e (x , a) .

The two arcs branching from the root test, from left to right, whether a
literal is positive or ~egative. The three arcs branching from the nodes
irranediately below the root test whether the first argument place contains
a variable, the constant a, or a term beginning with the function symbol f.
The three arcs branck;ng from the nodes just above the tips test whether the

Artificial Intelligence 2 (1971), 227-260

2 4 6 ROBERT KOWALSKI AND DONALD KUEHNER

second argument place contains a variable, the constant a, or a term beginning
wi thf The column of numbers at the tip of a branch contains the subscripts
of just those input chains which can resolve (on their leftmost literal) with
some literal which passes the tests for all arcs along the branch. Thus, for
instance, only the input chains B~s and B~ could possibly be used for extension
with a selected literal of the form POr(s),f(t)). No input chain resolves with a
literal of the form P(f(s),f(t)).

The complete SL-search tree, with the top chain ~ and for the selection
function determined by the classification tree of Fig. 6, is shown in Fig. 7.
Above each B-literal in a rightmost cell is written the number of input chains
associated in the classification tree with the branch corresponding to the
literal. The selected literal is the one having the smallest number written
above it, and is underlined. If the other literal were selected in the top clause
then the corresponding complete SL-search tree would contain 17 nodes
instead of 9.

~. ~B •

P(-,,O

P(a,8) IK-a.~(a))| R ~ aL,O_

13

o

• . . 0

_

Flo. 7. Selecting literals, using Fig. 6.

The notion of classification tree can be usefully extended in a number of
directions. Our experience with these trees encourages us to believe that they
will become an essential and increasingly important part of SL-resolution
proof procedures.

Search Strategi~

All of the search strategies which have been investigated for resolution
systems can be regarded as based on a merit ordering of derivations in the
Artificial Intelligence 2 (1970), 227-260

LINEAR RESOLtrI'ION WITH SELECTION FUNCTION 247

search space. At any given step, the search strategy generates from among all
derivations, which are candidates for generation, a derivation of best merit.
A derivation is a candidate for generation if it has not been generated but its
immediate subderivations have. Two search strategies based on the same merit
ordering differ only with respect to tie-breaking rules, which choose a single
derivation for generation out of a number of equally meritorious candidates.
For a given ordering to be a merit ordering, we insist only that, for any two
derivations, it can be decided whether they have equal merit or whether one
has better merit than the other.

A search strategy is exhaustive if it potentially (if left to continue without
termination) generates all derivations in the search space. A merit ordering
is 6-finite if, for every derivation in the search space, only finitely many
derivations have better or equal merit. Any search strategy based on a
6-finite merit ordering is exhaustive [7].

If, fo~ a given measure of complexity, merit is defined so that one derivatio,
has better merit than another iff it is simpler, than a search strategy basea
on such a merit ordering is called a complexity saturation strategy. Most
measures of complexity determine 6-finite merit orderings and therefore
determine complexity saturation strategies which are exhaustive. Provided
only that no derivation is simpler than any of its subderivations, then every
such complexity saturation ~trategy always generates a first refutation which
is simplest in the search space.

It is interesting to note that the three basic proof procedures, outlined by
Loveland[12], for model elimination, all employ some form of J-finite
complexity saturation search. The first procedure is saturation for the com-
plexity of a derivation measured by the number of extension operations
performed in it; the second, for complexity measured by the largest number
of A-literals occurring in any chain in the derivation; the third is identical
to the second, except that lemmas can be constructed and used as input
chains for extension. The use of lemmas with SL-resolution will be discussed
briefly at the end of this section.

The efficiency of complexity saturation can be significantly improved by
diagonal search, which is an extension of the Hart-Nilsson-Raphael algorithm
for path-finding in graphs ([3] and [7]). For a given complexity measure g
and heuristic function h (both non-negative real-valued functions defined on
derivations), a diagonal search strategy (called upwards diagonal in [7]) is
any search strategy based on the merit ordering:

D has better merit than D' iff
g(D) + h(D) < g(D') + h(D'), or
g(D)+h(D) - g(D')+h(D') and h(D)<h(D').

The value h(D) of the heuristic function is intended to be an estimate of the
Artificial Intelligence 2 (1971), 227-260

248 ROBERT KOWALSKi AND DONALD KUEHNER

additional complexity On addition to g(D)) of a simplest refutation containing
D as a sub-derivation.

Suppose that the complexity of an Sl.,derivation D* of tin-size (r,m) is
defined as a weighted sum ar+bm, where a~b. Suppose that the derived
chain has 11 +/2 B-literals, lz of which belong to the rightmost cell. Let
hOD*) = all + bl2. Then h(D*) is a lower bound on the additional complexity
(in addition to g(D*)) of a simplest SL-refutation containing D*. (Thus, for
example, if D* has rm-size (r,m) and derives PQ~[S~]UV, then no SL-
refutation which extends D* can have rm-size less than (r+ 3, m + 2).) It can
easily be shown (as in [7]) that diagonal search is easily implemented, that it
always generates a first refutation which is simplest in the search space, and
that it does so by generating significantly fewer unnecessary derivations
than are generated by complexity saturation. The following table compares
the numbers of derivations generated by complexity saturation and diagonal
search, for the example and refinements in the table of section 2. For both
strategies, complexity is defined by r + m.

linear s-linear m-linear ms-linear t-linear SL(I) SL(2)

Complexity Saturation 282 224 357 357 95 13 14
Diagonal Search 42 42 171 171 40 11 12

A useful rule, for helping to decide between the generation of candidate
derivations of equal best merit, can be applied in diagonal search following a
suggestion of Loveland for model elimination: Generate a derivation of
best merit whose derived chain contains the greatest number of A-literals.
Such a derivation offers the greatest possibilities for eliminating B-literals
by reduction and therefore for eliminating B-literals in the course of genera-
ting an empty chain.

Deletion of Subsumed Chains

Among the me~hods most often used in resolution proof procedures are
strategies for the deletion of subsumed clauses. Corresponding methods can
be applied in SL-resolution for the deletion of subsumed chains. Deletion
strategies need to be defined carefully in order to preserve completeness and
even then cannot always be guaranteed to increase efficiency.

Two chains are said to be equivalent if either can be obtained from the
other by permuting the order of B-literals in cells. (Thus PQ~SF~UV is
equivalent to a total of four distinct chains which include, for instance, both
itself and QP~S~IVU. It is not equivalent to PSIR__IQJ~UV.) A chain C*

Artificial Intelligence 2 (1971), 227-260

LINEAR RESOLU'EION WITH SELECTION FUNCTION 249

subsumes another C'* if some instance C*~ is an initial subchain of a chain
equivalent to C'*. (Thus IP(x)ifd(x) subsumes both [P(a)[Q(a)R(a) and

i~(a)iR(a)Q(a) but not Q(a)Ip(a![R(a).)
Let E by any search strategy for SL-resolution, 2; can be modified to obtain

a new strategy 27 which step by step generates the same derivations as 2~,
in the same order, but deletes derivations of subsumed chains and does not
generate derivations which extend previously deleted derivations:

(1) Both search strategies generate the same first SL-derivation.
(2) If 2; generates a derivation, then 27 generates the same derivation

provided that its immediate subderivation has been generated by g'
and has not been previously deleted.

(3) If ~' generates a derivation D* of a chain C* then
(a) D* is deleted if C* is subsumed by the chain derived by some

previously generated and undeleted derivation,
(b) otherwise every previously generated and undeleted derivation

of a chain, subsumed by C*, is deleted.
The search strategy g ' is complete, relative to g, i.e., 2;' eventually generates
a refutation if g does.

Deletion of subsumed clauses can be defined for other resolution systems
in a manner analogous to the preceding definition for SL-resolution. In the
case of Pl-deduction, for instance, an incomplete deletion strategy is obtained
by interchanging the analogues of steps (3a) and (3b). In general, if step (3b),
or its analogue, is omitted, then increased efficiency can be guaranteed for
any search strategy 2; wh:¢h generates a first refutation which is simplest for
its search space. The inclusion of(3b) is a possible source of decreased e~ciency.
Although deletion of subsumed chains and clauses seems to be a desirable
addition to proof procedures, we have not found good modifications of (3b)
or restrictions on I~ which always guarantee the increased efficiency of
incorporating such deletion rules. A more thorough investigation of these
problems for non-linear resolution systems is contained in [8].

Generation of Subgoab and Lemmas

Possibilities for the generation of subgoals and for the processing of their
solutions in the form of lemmas are unique to SL-resolution and model
elimination. To avoid various complications, we shaJl discuss in detail only
• the case of ground SL-resolution.

Suppose that a derivation of a chain C* has been generated and that no
truncation or reduction operation can be applied to C*. It is easy to verify
that if ~(C*)= C*L then C* must ocxur as a descendant of C* in any
SL-refutation containing C*. Thus the goal (C*--,I-]) of deriving the null
chain from C* can be decomposed into the immediate subgoal (C~L-~C~)of

Artificial Intelligence 2 (1971), 227-260

18

250 ROBERT KOWALSKI AND DONALD KUEHNER

deriving C~ from C* and the further goal (C~-,l'-i) of deriving the null
chain from C~. The solution of the immediate subgoal determines a lemma
which can be reused to solve analogous immediate subgoals of the form
(C~*L-,C~*).

For example, the goal (Ni~[QR-,[:]) can be completely decomposed to

obtain the immediate subgoals (N!~QR-,NIP[Q), (N~_IQ-,N~_[) and
(N--,I-1). The derivation

is a solution to the immediate subgoal (NI~[QR-~N~[Q). Having solved such
a subgoal, the fact can be recorded and applied later for solving analogous
immediate subgoals such as S~_[R-, S~[). In particular, we may generate the
lemma ~ which can be used as input chain for extension. If the solution to
(NIP[QR~N~IQ) were

then the corresponding lemma would be .~P and could be restricted in
application to those analogous subgoals (C~R~C~) where C~o contains P as
A-literal or P as B-literal.

The preceding examples of lemma construction are easy to generalize (see,
for instance, Loveland [12]). The restricted use of such lemmas can be shown
to increase efficiency by always leading to the generation of fewer unnecessary
derivations before the generation of a first refutation.

And/or Tree Search Space

The consistent application of subgoal generation leads to an and/or tree
representation of the search space for SL-resolution.

(1) The top chain C* at the root of an SL-search tree is replaced by the
goal (C*--,I-i) at the and-node which is the root of the corresponding
and/or tree.

(2) Each and-node, labelled by a goal of the form (C*-,C'*) has as many
immediate descendant or-nodes as there are B-literals in C*-C'*.
These or-nodes are labelled by the immediate subgoals obtained by
complete decomposition of (C*--,C'*).

(3) Each or-node, labelled by an immediate subgoal (C~L-~C~), has as
many immediate descendant and-nodes as there are ways of applying
extension to C~L with input chains of the form EBb. Each such and-
node is labelled by the corresponding goal (C~[Mo-~C~).

The precise details for dealing with truncation and reduction can be form-
ulated without great difficulty.
Artificial Intelligence 2 (1971), 227-260

LINEAR RESOLUTION WITH SELECTION FUNCTION 251

Problems arise with the implementation of and/or trees for general sets of
input clauses, because the solution of subgoals cannot be accomplished
independently. This complication can be dealt with and search strategies can
be designed for searching and/or trees. Such strategies can synthesise the use
of heuristics for estimating branching rates at and-nodes and or-nodes. In
addition, the use of lemmas and classification trees can be incorporated with
other methods in order to obtain search strategies which employ look-ahead
and learning to estimate the difficulty of solving goals and subgoals. Such
estimates can be improved by straightforward methods for comparing
estimated with actual difficulty.

Search strategies sugge.~ted by the and]or tree representation can be
translated to SL-search trees. The general topic of synthesising the advantages
of the several methods remarked upon in this section is a promising area
for further improving the efficiency of S[:-resolution.

Conclusions

In this paper, we have attempted to support our belief that SL-resolution
offers a substantial contribution to the more efficient mechanisation of first
order logic. We have argued that SL-resolution achieves a significant reduc-
tion in the generation of unnecessary derivations without intolerably compli-
cating simplest proofs. Moreover, the amenability of SL-resolution to the
application of heuristic methods suggests that, on these grounds alone, it is
at least competitive with theorem-proving procedures designed solely from
heuristic considerations.

Arguments for SL-resolution can be extracted from a broader basis.
Regarded as either a model elimination or linear resolution system, it seeks
to incorporate the best features of both systems in a way which improves
upon the original. Still other proof procedures, such as the inverse method
(Maslov [16]) can be compared with resolution (Kuehner [9]) to obtain a
further comparison in the favour of SL-resolution. Other argmnents for
resolution systems in general (Kowalski [8]) apply to SL-resolution in
particular.

It is interesting to note that none of the preceding arguments for SL-
resolution appeal direct!y to its completeness and that some of the more
convincing ones rely upon its heuristic attraction.

We do not pretend that SL-resolution solves the problems of automatic
theorem-proving. The intelligent performance of deductive activity involves
numerous sub-activities. These sub-activities include learning theorems and
proofs, formulating worthwhile conjectures, searching for proofs and counter-
examples, correcting faulty theorems, proofs and counter-examples, and
improving successful ones. These sub-activities so depend upon one another

Artiftcial Intelligence 2 (1971), 227-260

252 ROBERT KOWALSKI AND DONALD KUEHNER

that we do not expect efficient theorem-proving to be realised in isolatio,,~
from the remainder of intelligent activity.

Despite its present shortcomings, we remain optimistic for the continuing
progress of theorem-proving based upon SL, resolution. The applicability
of classification trees and of subgoai and lemma generation were largely
unanticipated in our early investigations and have not yet beer, fully exploited.
Our continuing optimism seems to be justified by past experience and by
more recent developments which have not yet been formulated in enough
detail to include in this paper.

ACKNOWLEDGMENTS

We are grateful for the advice and encouragement of our colleague, Pat Hayes and
Bernard Meltzer, of the Metamathematics Unit. We are indebted also to the postgraduate
students, in the Department of Machine Intelligence and Perception, who directly or
indirectly suggested improvements or discovered errors in our earlier presentation. In these
respects, we owe special thanks to Michael Gordon, Gordon Plotkin and Ed Wilson. We
thank Donald Loveland, Ntis Nilsson and Ed Wilson for reading the earlier draft of this
paper and for making observations which eventually led to this revision.

During the course of this research, Robert Kowalski was supported by a Science Research
Council grant to the Metamathematics Unit. During 1970171, Donald Kuehner was sup-
ported by an IBM fellowship awarded by Imperial College.

REFERENCES

1. Anderson, R., and Blodsoe, W. W. A linear format for resolution with merging and a
new technique for establishing completeness. J. ACM 17 (July 1970), 525-534.

2, Andrews, P. B. Resolution with merging, J. A C M 15 (1968) 367-381.
3. Hart, P. E., Nilsson, N. J. and Raphael, R. A formal basis for the heuristic determina-

tion of minimum cost paths. LE.E.E. Transactions on System Sciences and Cybernetics
(July 1968).

4. Hayes, P. J. and Kowalski, R. A. Semantic trees in automatic theorem proving.
Machine lntellioence 4, Edinburgh University Press, 1969, pp. 87--101.

5. Hayes, P. J. and Kowalski, R. A. Lecture notes on automatic theorem-proving, Meta-
mathematics Unit Memo. 40, University of Edinburgh (March 1971).

6. Kieburtz, R. and Luckham, D. Compatibility of Refinements of the Rcsolution
Principle (1969).

7. Kowalski, R. A. Search strategies for theorem-proving. Machine IntelligenceS, Edin-
burgh University Press, 1970, pp. 181-201.

8. Kowalski, R. A. Studies in the completeness and efficiency of theorem-proving by
resolution. Ph.D. Thesis, University of Edinburgh, 1970.

9. Kuehner, D. G. A note on the relation between resolution and Maslov's inverse
method. Machine Intelligence 6, Edinburgh University Press, 1971, pp. 73-76.

10. Kuehner, D. G. Strategies for improving the efficiency of automatic :heorem-proving.
Ph.D. Thesis, University c,f Edinburgh, 1971.

11. Kowaiski, R. A. and Kuehner, D. G. Linear resolution with selection function.
Metamathematics Unit iv[emo 34, University of Edinburgh, (October 1970).

12. Loveland, D. W. A sirr~plified format for the model-elimination theorem-proving
procedure. J. A C M 16, (July 1969), 349-363.

Artificial Intelligence 2 (1971)~r 227-260

BNEAR RESOLUTION WITH SELECTION FUNCTION 253

13. Loveland, D. W ~, linear format for resolution. Symposium on Automatic Demonstra-
tion, Lecture Notes in Mathematics, 125. Springer-Verlag, Berlin and New York,
1970, pp. 147-163.

14. Loveland, D. W. Some linear Herbrand proof procedures: an analysis. Department of
Computer Science, Carnegie-Mellon University (December 1970).

15. Luckham, D., Refinement theorems in resolution theory. Symposium on Automatic
Demonstration, Lecture Notes in Mathematics 125. Springer-Verlag, Berlin and New
York, 1970, pp. 163-191.

16. Maslov, S. J. Proof-search strategies for methods of the resolution type. Machine
Intelligence 4. Edinburgh University Press, 1971, pp. 77-90.

17. Meltzcr, B. Prolegomena to a theory of efficiency of proof procedures. Proceedings of
the NATO Advanced Study Institute on Artificial lnte~Tigenee and Heuristic Programming,
Edinburgh University Press, 1971, pp. 15-33.

18. Prawitz, D. Advances and problems in mechanical proof procedures. Machine lntelli.
gence 4. Edinburgh University Press, 1969, pp. 59-71.

19. Reiter, R. Two results on ordering for resolution with merging and linear format.
D~l~artment of Computer Science, University of British Columbia (July 1970).

20. Robinson, J. A. A review of automatic theorem-proving. Proceedings of Symposia in
Applied Alathematics 19, (1967), 1-18.

21. Wos, L. T., Carson, D. F. and Robinson, G. A. Eti~iciency and completeness of the
set of support strategy in theorem-proving, J. ACM 12, (1965), 687-697.

22. Yatcs, R. A., Raphael, B. and Hart, J. P. Resolution Graphs. Artificial Intelligence 1
(I 970), 257-289.

23. Zamov, N. K. and Sharanov, V. I. On a class of strategies which can be used to establish
decidability by the resolution principle. (In Russian.) Issled, po konstruktivnoye mate-
matikye i matematicheskoie Iogikye III, 16 (1969), 54-64. (National Lending Library,
Russian Translating Program 5857, Boston Spa, Yorkshire.)

Appendix

All of the Lemmas and Theorems proved in this appendix are stated for
refutations of unsatisfiable sets of clauses. Most of these propositions can be
stated in a more gener~,l form which applies to derivations from arbitrary
sets of clauses. In each case, we have chosen the simplest formulation which
is adequate for establishing the main theorem stated in section 5.

LE.,~A 1. Let D" be a non-linear ground refutation of a set of ground instances
of clauses in S. Then there exists a refutation D of S which lifts D' and has the
same rm-size.

The proof is not difficult and is similar to that of Theorem 4.7.1 in [8].

LEMMA 2. For any unsatisfiable set of clauses, there exists a simplest non-
linear refutation which lifts, and has the same rm-size as, a simplest ground
refutation of a set of ground instances of clauses in S.

Proof Outline. Let D be a simplest non-linear refutation of S and assume
it lifts a ground refutation D'. Note that D cannot be simpler than D'. By
using l,emma I and the Pact that D is simplest and lifts D', it is easy to verify
that D and D' have the same rm-siz¢. It follows from a second application

Artificial Intelligence 2 (1971), 227-260

254 ROBERT KOWALSKI AND DONALD KUEHNER

of Lemma 1 that D' is a simplest ground refutation of a set of instances of
clauses in S.

If D is a simplest non-linear refutation which lifts no ground refutation,
then it is necessary to show that there exists axiother simplest refutation which
does. This can be done by first constructing a ground "pseudo-derivation"
isomorphic to and having same rm-size as D. (The pseudo-derivation fails
to be a derivation because certain compulsory merging operations are not
performed.) The pseudo-derivation, in turn, can be "' contracted" to obtain
a ground derivation from instances of clauses in $. The contracted derivation
has fewer resolution operations and, at worst, has no more merging operations
than it has fewer resolution operations. Therefore it is at least as simple as
the pseudo-derivation. By Lemma 1, the contracted derivation can be lifted
to a refutation of S which has the same -:,~-size This derivation is obviously
at least as simple as D and is therefore a simplest refutation of 5.

(The definition of pseudo.derivation is given in [5] and' the contraction
Operation for pseudo-derivations is the analo~,ue of the contraction operat:'on
for derivations studied in [5] and [8].)

LEMMA 3. For every unsatisfiable set of ground clauses, there exists a simplest
ground refutation which is also minimal.

Proof Outline. Let D be a simplest ground refutation of the set, S. By
Loveland's Corollary 2 [13], if D is not minimal then it can be "pruned"
to obtain a minimal refutation D' of $. The pruning operation removes
resolution operations and introduces no more merging operations than the
resolution operations it removes. Therefore D' is a simplest refutation of S.

THEOREM 1. For every unsatisfiable set of clauses, there exists a simplest
refiltation which is also minimal.

ProoJ. By Lemma 2, there is a simplest refutation of the set S which lifts
and has the same rm-size as a simplest refutation D' of a set S' of instances
of clauses in S. By Lemma 3, there is a minimal refutation D" of S' which is
as simple as D'. By Lemma 1, there is a refutation D of S, which lifts D" and
has the saint, rm-size as D'. Therefore D is a minimal and simplest refutation
of S.

LEMMA 4. Let D be a minimal ground refutation of a set S of ground clauses.
For any clause C~ at a tip of D, there is an s-linear refutation of S with top
clause C~ and having the same rm-size as D.

Proof Outline (illustrated in Fig. 8). The proof is by induction on the size
n of D. If n = 0, then the desired refutation is just the one clause s-linear
derivation of I-l. Suppose n > 0.

Let the two immediate subderivations of D derive the unit clauses {L}
and {E}. Because D is minimal, if we delete from all clauses at nodes of D
Artificial Intelligence 2 (1971), 227-260

LINEAP RESOLUTION WITH SELECTION FUNCTION 255

the literals L and E, we obtain minimal refutations D, of S,, and D 2 o f $2,
tree-isomorphic respectively to the subderivations of {L} and {E}. Suppose
that C,- {L} occurs at a tip of D~ and B - { L } (where [,e B and B s S)
at a tip of D2.

%-ILl c,-iLJ

| ,,

inEt:c~ion j
~7oothesis +

I

=~pla~c L~

delete
L

I

C 1 C' f B |
. .

de~et_

12
h~o khesis

c-f~J
/

/
d

C i

repl~,:e L

%
%

IL!

\
/

C 1

fLJ /o
s

/
/

J
%

!~ .o ~

C ,o
/

/

i~
i "° lr'l]

FIG. 8. Outline of the proof of 1.emma 4. (A broken line, here and in Fig. 9, connects a
resolvent with its input or far parent.)

By the induction hypothesis, there exists s-linear refutations D~ of S, with
top clause C , - { L } , and D[of $2 with top clause B - { L } . DI and Dr have
the same rm-size.

Artificial Intelligence 2 (1971), 227-260

256 ROBERT KOWALSKI AND DONALD KUEHNER

Let D'~ be the s-linear derivation of {L} from S, isomorphic to D~, with
top clause C~, obtained by replacing L in all input parents from which L was
deleted i~ obtaining $1. (L is inserted into all resolvents of such parents and
into all descendants of such resolvents.)

Let D~ be obtained from D~ by first inserting {L} as new top clause
before B - { E~ and by next inserting immediately before any resolvent C~ with
input parent of the form C - (E}, where C ¢ S and E e C, the clause C~ u {E}.
It is easy to check that D'~ is an s-linear refutation of $ u ({L} } where {L)
occurs only as top clause. ((L} is treated as far parent for resolvents Ci in
D~ with near parents C~ u {E}.)

The desired s-linear refutation D' of S is obtained by appending D~ to
D~ and deleting the duplicated occurrence of (L}. It is straightforward to
verify that D and D' can be constructed so that they have the same tin.size.

LEMMA 5. Let D be an s-linear ground refutation of a set of ground instances
of clauses in $. Then there exists an s-linear refutation of $ which lifts D and
has the same tin-size.

The proof of l.emma 5 is similar to, but much simpler than, the proof of
Lemma 7.

THEOREM 2. For any unsatisfiable set S and support subset So, there exists
an s-linear refutation of S with top clause in So such that no non-linear re-
futation of S is simpler.

Proof. As in the proof of Theorem 1, there is a simplest non-linear refutation
D of S which lifts and. has the same tin-size, as a simplest minimal refutation
D' of a set of ground instances S" of clauses in S. Some tip of D' is labelled
by a clause C~ which is an instance of some clause in So. By Lemma 4, there
is an s-linear refutation D r of S' with top clause C~ and having the same
tin-size as D'. By Lemma 5, there exists an s-linear refutation of $, with top
clause C1 in So, which has the same tin-size as D r and therefore is as simple
as a simplest non-linear refutation of S.

LEMMA 6. For every unsatisfiable set S of ground clauses, support set
So and selection function 0, there exists an SL-refutation of S which has the
same tin-size as some minimal ground refutation of $.

Proof Outline (illustrated in figure 9). The proof is by induction on the
number n of distinct atoms in S. If n - 0 then the desired SL-refutation
contains just the null chain and has tin-size (0,0). Suppose n>0.

It suffices to consider the case where S is minimally unsatisfiable and So
contains just one c|ause C~. Choose as top chain any input chain C~ formed
from this clause. The selection function ~ determines a unique order in which
literals descending from those in C* are resolved upon in any SL-derivation
with top chain C~. In particular, ~ determines a literal L ~n C* whose
,4rtificial Intelligence 2 (1971), 227-260

LINEAR RESOLUTION WITH SELECTION FUNCTION 257

descendants are the last to be resolved upon, among all descendants of literals
in C*.

It is easy to verify that the set of clauses obtained from S by deleting all
occurrences of L and ignoring clauses containing E is unsatisfiable and con-
tains therefore a minimally uns~tisfiable subset S:. Obtain the corresponding

el-ILl

delel;e I, f f A ~ dele%e

S

| , i , 4 _

s S S S

, n ~O

roplace L ~e~lace L

C~

I p ; ,*T B
LC i ~ L ~----~---7

i L r" ,©c[

O ~0

i t

C 1

FIG. 9. Outline of the proof of Lemma 6.

set of chains S~ from the input chains S* by deleting L, ignoring chains
containing E and, of the remaining chains, choosing those which correspond

Artificial Intelligence 2 (1971), 227-260

258 ROBERT KOWALSKI AND DONALD KUEHNER

to clauses in St. It is easy to check that the chain C * - L , obtained by deleting
L from C*, belongs to S~.

Similarly, there exists a minimally unsatisfiable set of clauses Sz and a
corresponding set of chains S], obtained by deleting E from clauses in S and
chains in S* ignoring clauses and chains containing L. S* contains a chain
B * - E, obtained by deleting E from some chain B* ¢ S* which contains/:.

We shall apply the induction hypothesis to the sets of clauses St and $2
with respective support sets {Ct - {L}} and {B - {E}}. For this purpose,
we define selection functions Ot for St and ~2 for $2. Suppose that C* is
any chain obtainable by an SL-deriv~io= from S with top chain C* for the
selection function ~. Let C** be C* with all occurrences of L and E deleted.
If L occurs in C* only as a B-literal in the leftmost cell then Or(C**) ffi O(C*).
If L occurs in C* only as the leftmost A-literal, then ~2(C**) ffi O(C*). The
values of 0t and 0 , for other chains may be defined arbitrarily.

By the induction hypothesis, there exist minimal refutations Dt of St
and D2 of $2 and SL-refutations D* of St for O t with top chain C* - L and
D~ of Sz for 02 with top chain B* - E. D~ and DI' have the same rm-size.

The de::ited SL-refutation D* of S can now be obtained from D~t and D*
as in the similar construction of the s-linear refutation of 1.emma 4: Intro-
duce L as new B-literal in the leftmost cell of all chains in D~. Introduce L as
new top chain and as a new A-literal to the left of all literals in chains of
D~ and insert C~E immediately before any chain C* obtained by extension
in D~ with a chain C* - I_, ¢ S~ where E ¢ C* a~d C* ¢ S*. D* isthen obtained
by appending the second derivation to the first, deleting the duplicated
occurrence of the chain L. It is not difficult to verify that D* is an SL-
refutation of S* for the selection function ~ with top chain C*.

The minimal refutation D of S, with sarae tin-size as D*, is obtained from
Dt and D 2 : To each clause C - {L} at a tip of Dr, where L ¢ C and C ¢ S,
add the literal L. Also add L to the clauses at all nodes in Dt which descend
from such tips. The resulting derivation is a minimal derivation of {L} from
S. In a similar manner obtain from D2 a minimal derivation of {L,} from
S. D is then the minimal refutation of S, having these two minimal derivations
as immediate subderivations. It is quite straightforward to check that D*
and D can be constructed so that they have the same tin-size.

LEMMA 7. For every unsatisfiable set S, support set So and selection function
~, there exists a set of ground instances S' of cla~es in S, support subset S~
of S' and selection function Jp'; such that, for every ground SL-refutation of
S', for S~ and ~', there exists an SL-refutation of S, for So and ~, which has
the same rm-size.

Proof Outline. For simplicity, we may assume that S is minimally un-
satisfiable and that So consists of a single clause Ct. Let S' be any minimally
Artificial Intelligence 2 (I971), 227-260

LINEAR RESOLUTION WITH SELECTION FUNCTION 259

unsatisfiable set of ground instances of clauses in S. S' contains some instance
Ci of C1. Let S* be a set of input chains corresponding to S, let S'* be the
corresponding set of input chains for S' and let CT by any chain (in S*)
corresponding to C1 and C~* be any chain (in S'*) corresponding to Ci.

We construct a tree T, each node of which is labelled both by an SL-
derivation D* from S* for ~ with top chain C~ and by a ground SL-derivation
D'* from S'* with top chain C~*. Both derivations have the same tin-size
and D'* derives an instance of the chain derived by D*. The root of T is
labelled by the SL-derivations (C*)and (C~*). Suppose that a node N and
the SL-derivations D * - (C~, ..., C*) and D'* - (C~*, ..., C~*) at N have
been constructed and verified to have the desired properties. We need to
specify the immediate descendant nodes and the SL-derivations labelling
them.

If D'* violates the admissibility restriction then N has no immediate
descendants. If truncation can be performed on C~* then it can be performed
on C* and N has one immediat.e descendant obtained by adding to D* and
D'* the chains which result from truncation.

If reduction needs to be performed on Cfi* then one way of doing reduction
is chosen and performed in order to obtain the single node which is the
immediate descendant of N. The new node is labelled by adding to D'* the
chain which results from reduction. A similar reduction operation can be
performed on C* and the result is added to D* and also labels the new node.

Let L be the selected literal in C* and let L' in C~* be the corresponding
instance of L. Treat L' as the selected literal in C~*. If.the preceding cases do
not apply and no extension operation with a chain B'* from S'* can be
performed on Cfi* then N has no immediate descendants. Otherwise, N has
immediate descendants for each such B'*. Each new node is labelled by
adding to D'* the chain which results from extension. A similar extension
operation can be performed on C* with a chain B* from S*. The SL-derivation
which results from the performance of this extension operation also labels
the new node.

In each of the preceding cases, it is straightforward to verify that all new
nodes have the desired properties.

T labelled by its ground derivations may fail to be an SL-search tree for
some selection function ~'. There may be distinct nodes N and N' labelled
by ground derivations of the same ground chain C'*, but by general deriva-
tions of distinct general chains. The selected literals in the general chains
correspond to differen t. literals in C'*. In such a case, a single such node N
can be selected and all subtrees of Trooted at nodes N' can be replaced by the
subtree rooted at N. It can now be verified that the modified tree, together
with the ground SL-derivations labelling its nodes, constitutes an SL-search
tree T for some selection function ~', for the top chain C'* and for the

Artificial Intelligence 2 (1971), 227-260

260 ROBERT KOWALSKI AND DONALD KUEHNER

input set S'. It follows that, for every ground SL-refutation D'* of $' for ~',
there is an SL-refutation of S for ~ with top chain C~, having same tin-size
as D'*.

THr.OaEM 3. For every unsatisfiable set $, support set So and selection
function dp, there exist~ an SL-refutation o f S which has the same rm-size as
some minimal refutation o f S.

Proof Let S', $~ and ~' be as stated in Lemma 7. By Lemma 6, there exist~
an SL-refutation D'* of S' for ~' with top chain in $6", and D'* has the same
tin-size as some minimal refutation D' of $'. But, by I.emma 2, there is a
minimal refutation D of S which has the same rm-size as D' and, by Lemma 7,
there is an SL-refutation D* of $ for ~ with top chain in ~oo which has the same
rm-size as D'*. Therefore, the SL-refutation D* has the same rm-size as the
minimal refutation D.

Artificial Intelligence 2 (1971), 227-260

