
Towards a uni�ed agent architecture thatcombines rationality with reactivityRobert Kowalski and Fariba SadriDepartment of Computing, Imperial College180 Queen's Gate, London SW7 2BZ, UKrak,fs@doc.ic.ac.ukJune 12, 1996AbstractIn this paper we analyse the di�erences between rational and reac-tive agent architectures, and propose a uniform agent architecture thataims to capture both as special cases. For this purpose we employ aproof procedure, to control the agent's behaviour, which combines de�ni-tions with integrity constraints. The proof procedure is general, and hasbeen shown elsewhere to unify abductive logic programming, constraintlogic programming and semantic query optimisation. We also employ aresource-bounded formalisation of the proof procedure which allows theagent's reasoning to be interrupted and resumed, so that observations andactions can be performed.1 IntroductionThe traditional notion of a rational agent in Arti�cial Intelligence focuses onthe agent's thinking process and downplays or ignores its interaction with theenvironment. This notion has been challenged in recent years by the contrarynotion of a reactive agent that focuses on the agent's timely interaction withthe environment and downplays or denies the role of thinking.In this paper we propose an agent architecture that reconciles rationalitywith reactivity. Rationality is achieved by means of a proof procedure thatemploys de�nitions in a knowledge base to reduce goals to subgoals. Reactivityis achieved by employing appropriate integrity constraints in the proof procedureand by formulating the proof procedure in such a way that it can be interruptedto make observations and perform actions.The rest of the paper is structured as follows. Sections 2 and 3 discussthe notions of rational and reactive agents, respectively, and section 4 analyses1

their di�erences. Sections 5-9 develop the uniform architecture and the proofprocedure that captures both types of agents as special cases.2 From knowledge based systems to rationalagentsA traditional knowledge based system in Arti�cial Intelligence contains knowl-edge in symbolic (often logical) form, which can be both updated and queried.The only action such a system can perform is to return answers to queries.Moreover, it might expend an unlimited amount of resources to compute suchanswers.Knowledge based systems di�er from conventional database systems pri-marily in the richer forms of knowledge representation they employ. However,deductive databases, which represent knowledge in the form of both facts andrules, can be understood both as database systems and as knowledge basedsystems.Traditional databases have many limitations. An important step towards re-moving these and towards enhancing their functionality is the extension to activedatabases e.g. [14, 15], which perform actions independently of users' queries.These actions are performed in response to events which occur externally inthe environment or internally in the database. The actions serve a number ofpurposes, including view and integrity maintenance and communication withthe environment.Active databases typically achieve their added functionality through the useof a form of condition-action rules. We argue in this paper that such condition-action rules can be regarded as integrity constraints.Databases which are both deductive and active can be understood as agents.The actions they perform can be understood as goals. These action goals ariseeither from higher level goals as the result of a goal-reduction process or fromcondition-action rules.Example 2.1 The externally performed action raise the alarm might resultfrom the higher-level internal goal maintain security by means of a rulemaintain security if whenever there is an intruder raise the alarmwhich is \triggered" when an intruder is detected (by means of an update/obser-vation/input to the knowledge base). <Rational agents have both beliefs (or knowledge) and goals. Goals includeactions which are output to the environment as well as higher-level goals whichguide the agent's behaviour.The behaviour of a rational agent can be speci�ed (and implemented) bymeans of an abstract procedure which de�nes the agent's observation-thought-action cycle: 2

to cycle at time T ,i) observe any input at time T ,ii) record any such input,iii) (optionally) check inputs for satisfaction of integrity constraints,iv) solve (or re-solve) goals by constructing a plan, employing resources R,v) select a plan from among the alternatives,vi) execute any requisite atomic action (in the selected plan), at time T+R+1,vii) cycle at time T +R+ 2.The amount of resources R a traditional agent might expend on checkinginputs and solving goals is unbounded. Traditionally, such an agent constructs aplan, consisting of an appropriate structure of atomic actions which completelyand provably solves its higher-level goals. Only after having generated a com-plete plan, does the agent begin to execute it. Any observations made on lateriterations of cycle which violate the agent's expectations require the agent toreplan its earlier solution to its goals.Critics (e.g. [1, 2]) of the traditional knowledge based approach argue thatthe lack of a bound on the resources R renders the rational agent architectureunfeasible. They argue that rationality interferes with an agent's ability toreact appropriately and in real time to changes that occur unpredictably in itsenvironment.3 (Generalised) Reactive agentsA reactive agent need have neither an explicit set of beliefs, stored in a knowledgebase, nor an explicit representation of any goals. Reactivity can be achievedsimply by means of an appropriate collection of stimulus-response, input-outputor condition-action rules.Example 3.1 The ruleif there is an intruder then raise the alarmis triggered by an input observation of an intruder and immediately generatesthe action of raising an alarm as output to the environment. Such a rule needsno representation of its purpose, the goal towards which it is directed. In thisexample, there is no need for a representation of the world or even the internalstate of the agent. <Example 3.2 The rulesif clear ahead then move forwardif obstacle ahead then turn rightsimilarly require no knowledge base, nor goal representation. Employed togetheras a pair, they achieve the implicit goals of movement and obstacle avoidance.3

Such rules, possibly sensitive to the contents of an updatable local state, aretypical of the stimulus-response rules of Brook's subsumption architecture [1, 2].<Example 3.3 The ruleif Agent requests do(self; Act; T2) at time T1and Agent is friendlyand can do(self; Act; T2)and T1 < T2then do(self; Act; T2)requires more powerful resources. It is triggered by an input request occurringat (transaction) time T1, but its remaining conditions are veri�ed by consultinga knowledge base (or simply by looking up the value of variables in an internalstate). However, the action itself cannot be performed immediately, but needsto become a commitment, which is executed later when the transaction timebecomes equal to the domain time T2 of the action which is requested. Suchcondition-action rules are typical of the rules which govern the behaviour ofagents in Shoham's AgentO architecture [12]. <Condition-action rules can also be formulated in a modal language such asMETATEM [6], which exploits Gabbay's separation theorem [5], stating thatany temporal logic formula can be rewritten in a logically equivalent form:if formula about past then formula about future.Example 3.4 The execution of a METATEM rule, such asif yesterday Agent requests Act then sometime in the future do(Act)is similarly a process of matching conditions against information in an updatableknowledge base and of creating commitments from the conclusions of the rule.<At an abstract level, all of these examples can be accommodated within asingle condition-action rule production system interpreter:to cycle at time T ,i) observe any input at time T ,ii) (optionally) record any such input,iii) match conditions of condition-action rules against inputs,iv) (optionally) verify any remaining conditions of the rules using facts in theknowledge base,v) select an action to execute from the conclusions of competing rules (all ofwhose conditions are satis�ed),vi) execute any such action at time T + n+ 1,4

vii) cycle at time T + n+ 2.Reactivity is achieved by limiting the amount of resources employed in steps(iii) and (iv) to some �xed small amount of time n. This is easy in cases,like examples 3.1 and 3.2, where there is no knowledge base and conditions areveri�ed simply by matching them with the input. It is more di�cult in cases,like example 3.3, where reasoning is needed to verify some of the conditions.One practical solution, employed in systems such as AgentO, is to restrict theform of the sentences in the knowledge base, so that conditions can be veri�ede�ciently, within the restricted available time, n.4 How to reconcile rationality with reactivityIn our characterisations of them, there are two main di�erences between rationaland reactive agents:� the form in which \knowledge" and \goals" are represented� the amount of resources that may be consumed within a single cycle.In a rational agent, goals are represented explicitly and knowledge is representedas goal reduction rules. Such goal reduction rules typically have the form con-clusion if conditions, associated both with logic programs and with deductionrules in deductive databases. Backward reasoning is used to match goals toconclusions of rules, reducing them to subgoals which are the conditions of therules. Actions are atomic goals to which no reduction rules apply.In the traditional agent architecture, top-level goals are fully reduced tocomplete plans, consisting of atomic subgoals, before they are executed. Thiscan take an unbounded amount of time.In reactive agents, goals are achieved implicitly by condition-action rules,and e�ciency is obtained by avoiding the overheads associated with goal reduc-tion. By appropriate restrictions on the form of the knowledge base, if there isone, conditions can be veri�ed e�ciently, and a single iteration of the agent'scycle can be completed within a �xed, small amount of time, n.To reconcile the di�erences between these two kinds of agent, we need there-fore1) to understand better the relationships between goals, goal-reduction rulesand condition-action rules, and2) to organise goal-reduction so that it can be interrupted after a �xed amountof time, n, to execute actions and to perform observations, and so that it canbe resumed correctly on the next cycle.For the �rst problem we will argue that condition-action rules can be inter-preted as integrity constraints, and that there is a simple relationship betweenintegrity constraints and goal-reduction rules, which facilitates employing themtogether in a single proof procedure. 5

For the second problem we will argue that the simple de�nition of the prov-ability predicate demo, used in logic programming, can be extended to de�ne anenhanced demo predicate which performs goal-reduction in the required manner.5 Goals, integrity constraints and generalisedlogic programsDatabase systems distinguish between two kinds of sentences: sentences whichde�ne the data and, accordingly belong to the database, and sentences (integrityconstraints) which constrain the data and are not actually part of it. Typically,sentences that de�ne the data have a simple syntax { variable-free atomic sen-tences in the case of relational databases; positive Horn clauses, usually withoutfunction symbols, in the case of deductive databases. However, sentences thatconstrain the data generally have a much richer syntax. In both relational anddeductive databases, integrity constraints can be unrestricted sentences of �rst-order logic. In this respect, integrity constraints are like database queries, whichcan also be sentences of �rst-order logic.The similarity between integrity constraints and queries is more than syn-tactic. It can be argued that they have the same semantics. However, manydi�erent semantics have been proposed for integrity constraints. These includeproposals that they be consistent with the database (or the completion of thedatabase), that they be theorems of the database (or its completion), or thatthey be epistemic (or metalevel) statements that \hold" of the database.Recently, we have developed a proof procedure [3, 4, 9, 10, 13] for abductivelogic programs with integrity constraints, in which we have found it useful totreat integrity constraints and queries identically. This requires that they havethe same semantics. To a �rst approximation, the semantics we employ can bethought of as requiring that queries and integrity constraints be theorems of thecompletion of the knowledge base (i.e. database or program)1.The proof procedure, in standard logic programming fashion, uses de�nitionsto reduce atomic goals to subgoals. These subgoals can themselves be formulaeof full �rst-order logic. Subgoals, therefore, have the same syntax as queries andintegrity constraints. This syntax is the key to the relationship between goals,goal-reduction rules and condition-action rules that we are looking for.Example 5.1 Consider the (generalised) logic programmaintain-security 8T [intruder at time T ! do(self; raise-alarm; T)].Given the top-level goal (or integrity constraint)maintain-security1More precisely, we require that they be true in all intended models of the knowledge base[10]. 6

the program reduces this to the (generalised) subgoal (or integrity constraint)8T [intruder at time T ! do(self; raise-alarm; T) <This example illustrates a general phenomenon: Given a set of goals G andgoal-reduction rules Kb, we can, in many cases, replace them by an equivalentset of condition-action rules R. The latter are equivalent to the former in thesense that the rules R implicitly accomplish the goalsG in the manner prescribedby Kb. The condition-action rules R can be viewed as a compiled form of Gand Kb. The process of generating R from G and Kb, called partial evaluation[11], is a powerful, but standard logic programming technique.Not every knowledge base and initial set of goals can be reduced to a set ofcondition-action rules. The goals must be de�ned non-recursively, in particular.We do not claim that every set of condition-action rules is the result ofpartially evaluating an explicit goal-reduction representation. It is quite possiblethat an agent might learn its condition-action rules directly, as the result of itsinteractions with the environment, without the mediation of any goal-reductionrepresentation.But if we accept that condition-action rules are just a special kind of in-tegrity constraint (or generalised goal) and if an agent can reason with bothgoal-reduction rules and integrity constraints, then there is no reason to requirethat condition-action rules be derived from \higher-level" explicit goal-reductionrepresentations. Condition-action rules can join other (generalised) goals in thetraditional rational agent architecture that recognises beliefs and goals as thetwo main components of an agent's state.6 The proof procedureWe now outline a proof procedure based on [3, 4, 9, 10, 13], which reasons withtwo kinds of sentences:i) De�nitions in if-and-only-if form:G$ D1 _ :::_Dn n � 0:These are used for goal reduction. If n = 0 the disjunction is equivalent tofalse.ii) Integrity constraints in clausal form:A1 _ :::_An B1 ^ :::^Bm m;n � 0:If m = 0 the conjunction is equivalent to true. If n = 0 the disjunction isequivalent to false.The disjuncts Di of a de�nition are conjunctionsC1 ^ :::^Cm m � 17

where each conjunct is either an atom (possibly true) or an implication withsyntactic form (ii) identical to that of an integrity constraint. The Ai and Bi,in the conclusion and conditions of implications (ii) are atomic formulae. As inN-Prolog [7], negative literals :A are written as implications of the formfalse A:For simplicity, in this part of the paper, we ignore variables and quanti�ers,restricting ourselves to the propositional case. A more complete account ofsimilar proof procedures can be found in [3, 4, 9, 10, 13].The inference rules of the proof procedure transform a goal statement whichhas the syntax D1 _ :::_Dnof the body of a de�nition into another goal statement, which has the same form.All integrity constraints are conjoined to every goal statement. By distributingdisjunction over conjunction they become a conjunct of every disjunct of everygoal statement. Thus, integrity constraints are treated as goals which are alwayspresent.Goal statements have a procedural interpretation as an or-and tree. Theycan also be written in a logically equivalent and-or tree form (i.e. as a conjunc-tion of disjunctions). In particular they can be put into a form where integrityconstraints are written only once, conjoined to every goal statement.Atomic subgoals of the formdo(self; Act; T)are \solved" by executing them in step (vi)2 of the agent cycle when the domaintime T becomes the current transaction time.The proof procedure has four main inference rules:i) Goal reduction uses a de�nitionG$ D1 _ :::_Dncase 1: to replace a goal statement of the form3(G ^G0) _D by((D1 _ :::_Dn) ^G0) _Dcase 2: to replace a goal statement of the form((D0 G ^G0) ^G00) _D by((D0 D1 ^G0) ^ :::^ (D0 Dn ^G0) ^G00) _D:2Note that the rational and reactive agents cycles di�er primarily in steps (iii), (iv), (v).3Here and elsewhere, we assume the commutativity and associativity of conjunction anddisjunction. In particular, when we write a goal statement in the form (G^G0)_D, we intendthat G ^ G0 may be any disjunct in the goal statement and that G may be any conjunct inthe disjunct. 8

The second form of goal-reduction implicitly uses the equivalenceA (B _C) $ (A B) ^ (A C):ii) Splitting explicitly distributes _ over ^, replacing a formula of the form(D _D0) ^G by(D ^G) _ (D0 ^G):iii) Propagation replaces a goal statement of the form(G ^ (D0 G ^G0) ^G00) _D by(G ^ (D0 G0) ^G00) _D:When the implication D0 G ^ G0 is an integrity constraint or an implica-tion derived from an integrity constraint, propagation contributes to integrityveri�cation4.iv) Logical equivalence replaces a formula by another formula which is bothlogically equivalent and more suitable for manipulation by the other inferencerules. These include the following equivalences used as rewrite rules:G ^ true $ GG ^ false $ falseD _ true $ trueD _ false $ D:The proof procedure was developed initially in an attempt to unify abductivelogic programming, constraint logic programming and semantic query optimi-sation. For this purpose, de�nitions are used only for completely de�ned pred-icates. Incompletely de�ned predicates, such as abducibles, have to be treateddi�erently. Technically the simplest, and most elegant way to deal with them isto approximate their de�nitions by means of integrity constraints, which are in-cluded conceptually, therefore, in every disjunct of every goal statement. Theseintegrity constraints, in the simplest case, consist only of atoms or the negationof atoms.Incompletely de�ned predicates include all input predicates, which describeobservations, and all output predicates, which record the result of actions at-tempted by the agent. By recording observations in goal statements, the prop-agation inference rule implements the triggering of condition-action rules bythe input as a special case. The veri�cation of the remaining conditions of thecondition-action rules is performed by other propagation steps or by case 2 ofthe goal-reduction rule.We will see in section 8 that by recording the results of attempted actions ingoal statements, propagation also eliminates any disjuncts of a goal statementwhich are incompatible with the results of the action.4In the propositional case, the implication D0 G ^G0 is not needed in the derived goalstatement, because it is \subsumed" by the derived implicationD0 G0. In the more generalcase, it needs to be retained when it is not subsumed.9

7 Resource-bounded reasoningThe proof procedure just described combines the goal-reduction rules of a ra-tional agent with the condition-action rules of a reactive agent. It combinesthem, moreover, as a special case of a general proof procedure which combinesgoal-directed, backward reasoning using de�nitions, with data-driven, forwardreasoning using integrity constraints. This proof procedure provides us with asolution to the �rst of the two subproblems which we identi�ed in section 4, ofthe problem of reconciling rationality with reactivity.We still need a solution to the second subproblem, which is to control thereasoning process so that it functions correctly with bounded resources. Forthis purpose we employ a simple enhancement of the standard demo predicate.We intend the enhanced demo predicate to be invoked by the agent in place ofsteps (iii) and (iv) of the agent cycle.The standard demo predicate for a propositional Horn clause language hasa simple de�nition by means of a metalogic program:demo(KB;G) demo(KB;G G0) ^ demo(KB;G0)demo(KB;G ^G0) demo(KB;G) ^ demo(KB;G0)demo(KB; true)Here the same symbols, and ^, are used for object level and metalevel impli-cation and conjunction, respectively. KB names a \knowledge base" of propo-sitional Horn clauses, G0 names a conjunction of atoms and G names an atom.The �rst rule reduces G to the subgoals G0, the second reduces the conjunctionof goals G^G0 to separate subgoals G;G0, and the third asserts that an emptyset of goals is trivially solvable.The simple demo predicate above assumes that an unbounded amount ofresources is available for goal-reduction. Moreover, it returns no output. Itsimply holds (at the metalevel) whenever the knowledge base solves the goal (atthe object level). Furthermore, it is restricted to goals which are conjunctions ofatoms. We need to remove all of these restrictions to obtain an enhanced demopredicate that can be used to control the reasoning component of a resource-bounded agent's cycle.The following metalogic program de�nes the top-level of the enhanced demopredicate we require. The new predicate demo(KB;S; S0; R) holds when thegoal statement S can be reduced to the goal statement S0 in R inference stepsof the proof procedure outlined in section 6.demo(KB;S; S0; R) step(KB;S; S00) ^ demo(KB;S00; S0; R� 1)demo(KB;S; S; 0)Here step(KB;S; S00) holds when S can be reduced to S00 in one inference step.For example, the following two rules deal with case 1 of goal reduction and with10

splitting, respectively:step(KB; (G ^G0) _D; (D0 ^G0) _D) (G$ D0) 2 KBstep(KB; ((D _D0) ^G) _D00; (D ^G) _ (D0 ^G) _D00)8 The cycle of an agent that combines ratio-nality with reactivityWe can now reformulate the agent cycle in a uniform manner that includes boththe rational agent and the reactive agent as special cases:to cycle at time T ,i) observe any input at time T ,ii) record any such inputs,iii) resume the proof procedure by �rst propagating the inputs,iv) continue applying the proof procedure for a total of n inference steps,v) select, from among the alternatives, an atomic action whose domain timeis compatible with the transaction time T + n+ 1,vi) execute any such action and record the results (success or failure),vii) cycle at time T + n+ 2.As mentioned in section 6, recording inputs and results of attempted actionsis performed by adding to the current goal statement, atoms (in the case ofobservations and successful actions), or negations of atoms in the formfalse do(self; act; t+ n+ 1)(in the case of an action that fails at time t+ n+ 1).The proof procedure is resumed at time t in step (iii) by calling the enhanceddemo predicate with argumentsdemo(kb; s; s0; n)where kb names the knowledge base, s names the goal statement at time t, ands0 names the resulting goal statement at time t + n. For simplicity, we ignorethe time taken to observe and record the input.The goal statement s0 may contain one or more alternative actions that canbe performed at time t + n + 1. This is the case whenever the goal statementhas the form (do(self; act; T) ^G) _Dwhere T = t + n + 1 is compatible with any constraints on T in G. In step (v)the cycle commits to one of these actions (or more, if simultaneous execution ofatomic actions is possible). Recording the result of any such attempted actionby adding it to the goal statement s0 makes the result available for propagationon the next cycle. Such propagation will have the e�ect, if the action failed, of11

adding the implication false T = t+n+ 1, i.e. T 6= t+ n+1 to the selecteddisjunct do(self; act; T) ^G:If the action succeeded it will have the e�ect of adding the implication false T 0 = t+n+1, i.e. T 0 6= t+n+1 to any other disjunct which contains an actiondo(self; act0; T 0)which is incompatible with act because of an integrity constraint such as8T [false do(self; act; T) ^ do(self; act0; T)]:9 Partial plans and schedulingThe feasibility of our proposed agent architecture depends in large measure onthe form of the agent's goal-reduction rules and integrity constraints. The goal-reduction rules, in particular, need to construct partial plans in an incrementalmanner, so that execution can commence before all the atomic actions havebeen generated.For this purpose, the goal-reduction rules have to provide greater detailabout the beginning of a plan than they do about the end. This is illustratedby the following example of a rule which reduces the goal of moving from oneplace, A, to another place, B, to the subgoals of �rst taking a single step to anext location, C, and then moving from C to B:Example 9.1 do(Agent;move(A;B); [T1; T2]) next(A;C) ^ clear(C; T)^ T1 � T � T2 ^do(Agent; step(A;C); T) ^do(Agent;move(C;B); [T; T2])Here T1 and T2 are the earliest start time and the latest �nish time for theaction, move(A;B), respectively.Execution of actions generated by the rule above can commence at sometime T � T1, after the �rst two conditions have been eliminated by goal reduc-tion. The time T for the execution of step(A;C) must be early enough for theremainder of the partial plan, move(C;B), to be completed before time T2.We assume that such scheduling of actions is performed by a separate controllayer which decides how to implement the non-determinism of the proof proce-dure and the selection step (v) of the agent cycle. The control layer will needto decide, therefore, not only when to attempt the atomic action step(A;C),but also which location, C, from among the alternative next locations, to select.The control layer can use the same evaluation function both to guide the searchstrategy of the proof procedure and to select among alternative disjuncts of thecurrent goal statement when commitments to actions need to be made. <12

10 ConclusionIn this paper we have outlined an attempt to reconcile the traditional notionof a rational agent with the contrary notion of a reactive agent. This workextends an earlier paper [8] with the same objectives. It also builds on recentdevelopments of a proof procedure [3, 4, 9, 10, 13] which combines reasoningwith both de�nitions and integrity constraints. De�nitions are used to reducegoals to subgoals, in the manner of a rational agent. Integrity constraints areused to generate actions in response to updates from the environment, in themanner of a reactive agent.A further key feature of the agent architecture is the resource-bounded for-malisation of the proof procedure, which allows the agent's reasoning to beinterrupted and resumed between one cycle and the next.Future work includes further development of the temporal component ofthe object language, as well as applications of the single agent architecture tomulti-agent systems.AcknowledgementsThe authors are grateful to Tze Ho Fung, Jacinto Davila, Francesca Toni andGerhard Wetzel for discussions and their contributions to this work.References[1] Rodney A. Brooks. A robust layered control system for a mobile robot.IEEE Journal of Robotics and Automation, 2(1):14{23, 1986.[2] Rodney A. Brooks. Intelligence without reason. In J. Mylopolous andR. Reiter, editors, Proceedings of IJCAI 91, pages 569{595. Morgan Kauf-mann Publishers, 1991.[3] Tze Ho Fung. A modi�ed abductive framework. In N. Fuchs and G. Gott-lob, editors, Proceedings of Logic Programming Workshop, 1994.[4] Tze Ho Fung. Abduction by deduction. PhD thesis, Imperial College, Uni-versity of London, 1996.[5] Dov Gabbay. The declarative past and imperative future. In HowardBarringer, editor, Proccedings of the Colloquium on Temporal Logic andSpeci�cations, LNCS, Vol. 398, pages 409{448. Springer-Verlag, 1989.[6] Dov Gabbay, Howard Barringer, Michael Fisher, Graham Gough, andRichard P. Owens. MetateM: A framework for programming in temporallogic. In REX Workshop on Stepwise Re�nement of Distributed Systems:Models, Formalisms, Correctness. Mook, Netherlands. LNCS Vol. 430,pages 94{129. Springer-Verlag, 1989.13

[7] Dov Gabbay and Uwe Reyle. N-prolog: An extension of prolog with hypo-thetical implications I. Journal of Logic Programming, 1:319{355, 1984.[8] Robert A. Kowalski. Using meta-logic to reconcile reactive with rationalagents. In K. Apt and F. Turini, editors, Meta-Logic and Logic Program-ming, pages 227{242. MIT Press, 1995.[9] Robert A. Kowalski, Francesca Toni, and Gerhard Wetzel. Towards adeclarative and e�cient glass-box clp language. In N. Fuchs and G. Gottlob,editors, Proceedings of Logic Programming Workshop (WLP'94), 1994.[10] Robert A. Kowalski, Gerhard Wetzel, and Francesca Toni. A unifyingframework for alp, clp and sqo. Technical report, Department of Comput-ing, Imperial College, London, April 1996.[11] John W. Lloyd and John C. Shepherdson. Partial evaluation in logic pro-gramming. Journal of Logic Programming, 11:217{242, 1991.[12] Yoav Shoham. Agent-oriented programming. AI Journal, 60(1), pages51{92, 1993.[13] Gerhard Wetzel, Robert A. Kowalski, and Francesca Toni. A theorem-proving approach to clp. In Geske U., Krall A., (eds), Workshop LogischeProgrammierung, volume 270 of GMD-Studien, pages 63{72. Bonn, Ger-many, 1995.[14] Jennifer Widom. Deductive and active databases: two paradigms or endsof a spectrum. In N.W. Paton and H. Williams, editors, Rules in DatabaseSystems: Proceedings of the 1st International Workshop, pages 306{315.Springer-Verlag, 1994.[15] Carlo Zaniolo. A uni�ed semantics for active and deductive databases.In N.W. Paton and H. Williams, editors, Rules in Database Systems: Pro-ceedings of the 1st International Workshop, pages 271{287. Springer-Verlag,1994.
14

