
University of London
Imperial College London
Department of Computing

Predictable Dynamic Plugin Architectures

Robert Chatley

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, February 2005

Abstract

Modern software systems are often assembled from collections of components.

Ideally it should be possible to construct correctly functioning systems by simply

deploying sets of independent components. It should also be straightforward to effect

upgrades or reconfigurations after the application has been deployed. The notion of

a self-organising system aims to remove as much of the configuration management

effort as possible from the user or developer when working with such systems,

passing the responsibility to the system itself. Unfortunately systems without explicitly

defined architectures, and those subject to evolution, are prone to behaving in a

surprising manner, as components from different sources are combined in different

configurations. It is desirable to be confident that the system realised as the result of

an upgrade or reconfiguration will behave correctly before a change is made.

We present an approach to dynamically extending applications based on plugin com-

ponents. Plugins are optional components which can be used to enable the dynamic

construction of flexible and complex systems. We present a model of plugin systems

and a prototype implementation of a framework for managing them. We show how our

model integrates closely with an object-oriented programming language, and requires

minimal effort on behalf of the developer to create components that will work with the

plugin framework.

In order to ensure the correctness of dynamic systems, some techniques for mod-

elling and analysis are required. We generate models combining the structural and

behavioural aspects of prospective system configurations and use model checking to

discard those configurations that violate desired behavioural properties. In this way

behavioural concerns can be used in choosing between potential configurations. By

integrating our modelling and analysis techniques into the reconfiguration process, we

can use the analysis that our technique provides to guide self-organisation and produce

systems that behave in a predictable way.

i

ii

Preface

This thesis represents the culmination of three years of work undertaken by the

author at Imperial College London. During this time, several different aspects of

the work have appeared in various publications. The model of plugin systems was

presented in at the SAVCBS 2003 workshop [12] and an extended version of that

paper, including the mapping of the model onto programming language constructs,

was invited to be submitted for inclusion in a special edition of the journal Formal

Aspects of Computing. The techniques for generating and checking models of plugin

systems were first described in a paper published at FASE 2004 [14]. Details of the

software platform developed in order to support these techniques were presented in

a paper at Component Deployment 2004 [13]. The contributions of this thesis will

form a chapter in a book on Plugin-Based Software Development, to be published by

Springer Verlag. In all cases, this thesis should be taken to be the definitive reference

for this work.

Work on this thesis has been undertaken concurrently and conjointly with work on

a number of other research projects, which have provided an application for the work

presented here, and also produced results in different areas of Software Engineering

research. The case study presented in this thesis involves applying our techniques

to provide tool support, by developing extensions for the LTSA [51] tool, for a

number of different Software Engineering techniques and approaches. Our dynamic

component architecture was applied to the tool and a number of different plugins were

developed. The results of the different projects were published in papers accepted at the

workshop Bridging the Gaps Between Software Engineering and Human-Computer

Interaction [15], Visual Methods for Software Engineering 2003 [16], FSE 2004 [76],

ICSE 2005 [17] and RE 2004 [75] (with an extended version of the RE 2004 paper

being invited as a submission to the Requirements Engineering journal).

iii

iv

Acknowledgements

I would like to thank my supervisors Susan Eisenbach and Jeff Magee for their

help and guidance during the course of this work, and for finding me a position in the

department when my attempt at riding the dotcom wave took a turn for the worse, and

then convincing me to work towards a Ph.D.

I am also very grateful to Jeff Kramer and Sebastian Uchitel for their help and

advice. Discussions with them led to a clearer understanding of problems discussed in

this work - and sometimes solutions. Being part of their research group has provided

the opportunity to work on some interesting problems - and to visit some nice places!

Thanks to the SLURP group for their time and entertaining discussions. Sophia

Drossopoulou was the inspiration for the goldfish example. Matthew Smith helped

greatly in the production of some of the diagrams in this thesis during his time as a

drawing tool. Thanks to Johnny Knottenbelt and William Lee for their sound technical

advice.

I have had the opportunity to meet and work with some great people from other

parts of the world. Thanks to my colleagues in the STATUS project, especially Natalia

Juristo, Ana Moreno, Xavier Ferre and Dimitris Tsirikos. I am also indebted to

Jamieson Cobleigh and Dimitra Giannakopoulou at NASA, my foremost testers and

bug reporters.

Thanks to my friends from the department for all of the discussions that we have

had and for making me want to come in to work every day (well, most days): Chris

A, Matthew, Johnny, Will, Ashok, Nick, Gulden, Xiang, Alex A, Alex B and everyone

else.

For helping take my mind off work when not in the office, to Paul, Marcus, Richard

and all at ICSO; Sarah, Lev and all at RO (and lots of other people) “thankyou for the

music”. Lastly, a big thankyou must go to Jane for all her support.

For financial support, I would like to acknowledge the European Union for funding

under grant STATUS (IST-2001-32298), without which this work would not have been

possible.

v

vi

Contents

1. Introduction 1

1.1. Plugin Architectures . 2

1.2. Predicting Behaviour . 5

1.3. Using Analysis to Drive Self-Organisation 6

1.4. Thesis Structure . 8

2. Background 9

2.1. Component Technologies . 9

2.1.1. Java and JavaBeans . 9

2.1.2. ActiveX . 10

2.1.3. .NET and the CLI . 11

2.2. Service-oriented component models 12

2.2.1. OSGi . 12

2.2.2. Avalon . 13

2.3. Web Browser plugins . 14

2.3.1. Internet Explorer . 15

2.3.2. Netscape Communicator . 16

2.3.3. Firefox and XUL . 17

2.4. Dynamic Extension Mechanisms . 17

2.4.1. Java Applets . 17

2.4.2. Lightweight Application Development 18

2.4.3. PluggableComponent . 18

vii

viii Contents

2.4.4. Gravity . 19

2.4.5. Eclipse . 20

2.5. Unanticipated Software Evolution 21

2.5.1. Dynamic Linking . 21

2.5.2. DejaVU, DejaVU.NET and DJVCS 22

2.5.3. HotSwapping classes in the JVM 23

2.5.4. DRASTIC and GRUMPS 24

2.6. Self-Organising Systems . 25

2.6.1. Constraint-based Self-Organising systems 26

2.6.2. Analysing Executing Systems 26

2.6.3. Reflection . 27

2.7. Modelling structure and behaviour 28

2.8. Deploying Specification with Components 30

2.8.1. AsmL . 30

2.8.2. Proof Carrying Code . 30

2.9. Summary . 31

3. Modelling 35

3.1. An Analogy . 35

3.2. A Formal Model . 40

3.2.1. A basic model . 40

3.2.2. Binding Policies . 43

3.2.3. Plugin Addition . 44

3.2.4. Extending the Model with Cardinality Constraints 46

3.2.5. Binding under Cardinality Constraints 50

3.2.6. Plugin Removal . 51

3.2.7. Plugin Replacement . 52

3.2.8. Developing the Model . 53

3.3. Summary . 55

4. Programming with Plugins 57

4.1. Components . 57

Contents ix

4.2. Provisions . 58

4.3. Requirements . 59

4.3.1. Accepting multiple plugins 62

4.3.2. More complex configurations 63

4.3.3. Null Objects . 66

4.4. Plugin Removal . 67

4.5. Replacement . 69

4.6. Summary . 69

5. Constraining and Analysing Plugin Systems 72

5.1. Deployment . 72

5.2. Structure . 74

5.2.1. Representing static architectures 75

5.2.2. Introduction to Darwin . 76

5.2.3. Specifying structural constraints 78

5.2.4. Darwini . 79

5.3. Behaviour . 80

5.3.1. Introduction to FSP . 81

5.3.2. Specifying behavioural constraints 81

5.4. Matching plugin concepts with Darwin concepts 82

5.5. Analysing Behaviour . 86

5.5.1. Composing the system . 88

5.5.2. Changes of configuration . 91

5.5.3. Verifying models . 92

5.6. Predicting behaviour . 92

5.6.1. The Source component . 93

5.6.2. Filter components . 93

5.6.3. The GZip component . 94

5.6.4. The Adapter component . 95

5.6.5. The complete system . 96

5.6.6. A different Adapter . 97

x Contents

5.7. Summary . 98

6. Implementation 100

6.1. Requirements . 100

6.2. Implementing Plugin Addition . 102

6.3. Plugin Removal . 104

6.4. Plugin Replacement . 106

6.5. Constraint checking . 108

6.5.1. Building the Structural Model 108

6.5.2. Building the Behavioural Model 109

6.5.3. Specifying Properties . 110

6.5.4. Checking the Model . 111

6.6. Technical Innovations . 112

6.6.1. BackDatedObserver . 112

6.6.2. Distinguishing components 113

6.6.3. Multi-methods . 114

6.6.4. Proxying . 115

6.7. Summary . 116

7. Case study: Extensible LTSA 118

7.1. MSC Editor . 120

7.2. Darwin compiler . 122

7.3. Web Animator . 123

7.4. NASA Assume-Guarantee Reasoning plugin 124

7.5. Other plugins . 125

7.6. Constraints for LTSA plugins . 126

7.7. Discussion . 129

7.8. Summary . 131

8. Conclusions 132

8.1. Contributions . 132

8.2. Evaluation . 134

Contents xi

8.2.1. Encapsulation . 134

8.2.2. Supporting Framework . 135

8.2.3. Simplicity . 136

8.2.4. Re-use . 137

8.2.5. Dynamism . 138

8.2.6. Predictability . 140

8.3. Future Work . 142

8.3.1. Automatic Discovery of Behavioural Descriptions 142

8.3.2. Use of Assume-Guarantee Reasoning 142

8.3.3. Distribution . 143

8.3.4. Hierarchical Composition 143

8.3.5. Translation to Other Platforms 144

8.4. Closing Remarks . 144

Bibliography 145

A. The Model in Alloy 156

B. Implementing a NullObject factory 158

C. Full Compressing Proxy Model 160

D. Full LTSA Model 163

E. HotSwap Experiments 165

E.1. A framework for testing . 165

E.2. Tests . 166

E.2.1. Changing a method body . 166

E.2.2. Adding a method . 166

E.2.3. Adding a field . 167

E.2.4. Changing the order of methods 168

E.2.5. Changing the order of fields 169

E.2.6. Changing the order of methods in a superclass 170

xii Contents

E.2.7. Calling a method in a new class 171

E.2.8. Calling a method in a new class that is missing. 172

List of Figures

3.1. Plugins extending the main application 36

3.2. Plugins extending plugins to form a chain 37

3.3. Plugins connecting to multiple components 37

3.4. Forming a Pipeline . 38

3.5. One component added . 45

3.6. Chaining with cardinality constraints 46

3.7. Several components forming a system 47

3.8. Constructing a pipeline under 1-1 binding 50

3.9. Constructing a pipeline under 1-n binding 52

4.1. The Virtual Fish Tank application 63

4.2. Alloy diagram representing fish tank application 65

4.3. Adding a Predator to the fish tank 66

5.1. Constructing a pipeline under 1-n binding 74

5.2. Chain of two BasicFilters . 85

5.3. Client provides FSPDefinition to the plugin framework 87

5.4. LTS for Client-Server system . 89

5.5. Arrangement of components in pipeline with gzip 95

5.6. Screenshot from LTSA showing trace to deadlock 99

6.1. Platform architecture managing a two component application 101

6.2. Proxy objects are used to mediate between components. 106

xiii

xiv List of Figures

7.1. The default LTSA with no plugins added. 119

7.2. The LTSA running with the MSC plugin added. 121

7.3. A UML style diagram showing the structure of plugin LTSA. 123

7.4. The LTSA running with the Web Animation plugin. 125

1. Introduction

Almost all software will need to go through some form of evolution over the course of

its lifetime, to keep pace with changes in requirements and to fix bugs and problems

as they are discovered. This evolution frequently involves extension of the software,

as additional functionality is required.

Traditionally, performing upgrades, fixes or reconfigurations of a software system

has required either recompilation of the source code or at least stopping and restarting

the system. As systems are constructed from off-the-shelf components, upgrading

becomes the remit of the deployment engineer rather than the developers of the

constituent components. In many cases it is inconvenient or costly to stop and restart

an application in order to perform a change in configuration. High availability and

safety critical systems have high costs and risks associated with shutting them down

for any period of time [62]. In other situations, where continuous availability may not

be safety or business critical, it is simply inconvenient to interrupt the execution of a

piece of software in order to perform an upgrade.

It is therefore important to cater for the evolution of systems in response to changes

in requirements that were not known at the initial design time (i.e. unanticipated

software evolution). There have been a number of attempts at solving these problems

at the levels of evolving methods and classes [24, 8], components [46, 27] and

services [63, 64, 2]. Updating the implementation of specific methods or classes may

allow for small bugs to be fixed, but larger scale changes cannot be made this way.

Evolution of components and services offer a coarser granularity of change, but often

require a great deal of effort in order to support and manage change. Also, the results

of performing an upgrade are often unpredictable.

In many cases, in addition to the need for dynamic evolution, there is also a need

1

2 Chapter 1. Introduction

for confidence that any changes made to the system will not adversely affect its

behaviour [61, 23]. Before installing a new component to upgrade the software on,

for example, a space probe, engineers will want to be confident that the resulting

combination of components will not cause the spacecraft to malfunction. In this

thesis we consider an approach to software evolution at the architectural level, in

terms of plugin components. Dashofy et al agree that the architectural level offers

the most flexibility for reconfiguration in systems, as component boundaries are the

most loosely coupled connection points in a software system [23]. By using a plugin

architecture we can construct systems from combinations of components, with the

architecture changing dynamically over time.

There are a number of types of system where it may be more appropriate to fix an

architecture at the outset and to only allow evolution within this architectural style.

However, there is a large class of systems where it is useful to allow evolution on a

more ad hoc basis. These systems form the topic of this thesis in which we address

two main questions. Firstly, how can we produce a programming model that allows

developers to easily create components that can be combined at deployment time to

form a software system? Secondly, how can we predict behaviour so as to be confident

that a system assembled in such a way will work as expected?

1.1. Plugin Architectures

Szyperski describes components as units of composition that may be subject to

composition by third parties [71]. Plugin architectures fit this description well. Plugins

are components that can optionally be added to an existing system at runtime to extend

its functionality. In order to support runtime assembly, some form of infrastructure is

required to manage the dynamic installation of these components.

An important difference between plugin based architectures and other component

based architectures is that plugins are optional rather than mandatory components.

The system should run equally well regardless of whether or not plugin components

have been added. Although fewer features will be available if no plugins have been

added, the core of the application should still execute without problems. Another key

1.1. Plugin Architectures 3

idea behind plugin components is to minimise the effort involved in configuring and

administering such a system. It should be easy to tailor the configuration of a system

as required at each deployment site, by simply adding the relevant components, and to

update the configuration over time.

Oreizy et al [62] identify three types of architectural change that are desirable at

runtime: component addition, component removal and component replacement. It is

possible to engineer a generalised and flexible plugin architecture that will allow all of

these changes to be made at runtime.

Each plugin may expose certain interfaces that it provides and requires [50]. By

matching provisions to requirements, we can identify components that can be con-

nected. By dynamically creating bindings between these components, calls can be

made from a component requiring a service to another component that provides that

service.

Plugins provide the possibility of easily adding components to a working system,

adding extra functionality as it is required. Plugins can be used to address the following

issues:

• the need to extend the functionality of a system,

• the decomposition of large systems so that only the software required in a

particular situation is loaded,

• the upgrading of long-running applications without restarting,

• the incorporation of extensions developed by third parties.

Plugins have previously been used to address each of these different situations

individually, but the architectures designed have generally been specifically targeted

and therefore limited. Either there are constraints on what changes can be made to the

system over time, or creating components to work with the plugin system requires a

lot of work on the behalf of the developer, writing architecture definitions that describe

how components can be combined [60]. We have developed a generalised framework

that permits flexible applications to be developed easily, and deals with all of the above

issues.

4 Chapter 1. Introduction

Extending functionality It is not possible to know all of the requirements for a

system when it is initially developed [84, 59], therefore it is often necessary to be able

to extend the functionality at a later date. For instance, consider the development of

a web browser. Over time new media types will be developed and people will want

to use them on the web. In order to view these new media types (for instance new

video formats, or document types like Scalable Vector Graphics [79]), extra code will

have to be added to the browser. It is not possible to know all of the future media

types when the browser is initially developed, but it is undesirable to have to release

a new version of the entire browser every time that support for a new media type

is added. By providing a mechanism for plugging in extra functionality, the browser

can be incrementally upgraded as new features are developed. Macromedia’s set of

plugins [49], which allow their Shockwave Flash animations to be displayed in popular

web browsers, are an example of this.

Decomposition With large systems, different users may require different subsets

of the total available functionality. If everyone has to have all of the functionality,

this may lead to unnecessary use of memory and other hardware. Alternatively, if an

application must run within limited resources, perhaps on a portable or embedded

device, this may constrain the total functionality that can be provided. If the program

can be modularised and the modules combined in configurations tailored to each

individual user, then resource wastage can be minimised. Also, users will be exposed

to interfaces tailored to their needs, and the software vendor can sell different elements

of functionality separately. Plugins can allow for this.

An example of such modularisation is the Eclipse Integrated Development Envi-

ronment [60]. Eclipse supports development in numerous different programming

languages by means of a plugin for each language. Different developers can choose

to install only the tools for the languages that they require, rather than having to install

support for the full set. Creating a customised version of the application becomes a

deployment time, rather than development time, activity.

1.2. Predicting Behaviour 5

Upgrades Upgrading long running applications is often a problem [62]. Using

traditional software, or even component based software, it is not normally possible to

change the configuration of a system (especially in terms of adding new functionality)

without halting execution and restarting the application. Plugins can allow for the

possibility of adding code modules to reconfigure a system without having to restart.

Third party products Extensions to applications are often developed by special-

ist third party companies. For instance, companies specialising in computer vision

technology may write extensions to major video and film processing software. The

developers of the main applications are unlikely to release their proprietary source

code to third party developers, yet they may want to allow their applications to be

extended. Providing a plugin extension mechanism caters for this, as extensions can

be purchased and added to the system separately. If a third party component is leased

or licensed rather than being purchased outright, it will be desirable to remove that

component from the system at a time when it is no longer needed in order to avoid

unnecessary costs.

1.2. Predicting Behaviour

Confidence in the correctness of running systems is hard to attain. Harder still is to

have confidence in applications that are evolved through incremental addition and

removal of components. A group of components may be interacting correctly, but

introducing a new component to the system may cause problems. We would like to

ensure that undesirable behaviour will not occur, and that configurations that might

violate certain properties are not realised. Examples of such properties might be

freedom from deadlock, or ensuring that components adhere to an expected protocol

when interacting with other components.

The approach to achieving this certainty presented in this thesis is to build and check

a model of a software system that contains both structural and behavioural information.

The structural information consists of interfaces and bindings, which define sets of

shared actions through which components can interact. Structural models can be

6 Chapter 1. Introduction

generated automatically at runtime. However, they do not provide any information

about the order in which available actions will be performed. Although we may be

able to reason about the structure of systems of components based on this information,

we are unable to reason in any way about their behaviour.

The behavioural information comes from the developer of a component, who can

supply a specification of the way that component behaves (it is impossible to ascertain

the programmer’s intentions automatically). However, as components from different

vendors can be combined in any number of different possible configurations, there is

no way of writing a definitive model of how all different combinations will behave.

To produce a model of the behaviour of the complete system requires composing the

behavioural models for all of the components in a particular configuration in parallel,

and ensuring that components are correctly synchronised where their interfaces are

bound together. In this thesis we show how such a model can be constructed, in order

to facilitate the analysis of the system’s behaviour.

As systems of plugin components can have components dynamically added (and

removed) over time, and especially as the overall architecture may be evolved in an ad

hoc rather than a predetermined manner, it is desirable that system models be generated

and tested automatically. Responsibility for management of the configuration should

be passed as much as possible to the system itself. We show how our structural

and behavioural specification techniques can be used for this, and how our tools can

generate and analyse models automatically.

1.3. Using Analysis to Drive Self-Organisation

The systems that we consider comprise sets of components, each of which may

provide or require services through interfaces of different types. These interfaces may

be bound together by the component framework in order for some components to

provide services to others that require them. In a self-organising system [36], this

binding process should be carried out automatically, without human intervention.

At a basic level, the framework must match required and provided interfaces, and

bind the components together appropriately. However, there may be multiple possible

1.3. Using Analysis to Drive Self-Organisation 7

configurations that meet these interface compatibility constraints. There may, for

example, be a number of possible providers that could fulfil a particular requirement,

in which case there would be some ambiguity as to which should be chosen. A strategy

is required for selecting which configuration to realise.

Depending on the expertise of the deployer, different degrees of human intervention

may be desirable in the deployment process. A home user installing an extension to

a web browser or another desktop application will likely want as much automation as

possible in the installation and coordination of components. Performing an upgrade

when evolution is required should be a trivial task. To as great an extent as possible the

system should be self-organising. The user should not need to know what is going on

behind the scenes. When dealing with a more complex system, perhaps a large system

being configured by a skilled deployment engineer, it may be appropriate for the

deployer to have more explicit control. They may have particular constraints that they

require the system to meet. If evolving the system will cause any of these constraints

to be violated then the deployer will want to be informed and given the option to abort

the reconfiguration before it takes effect.

There has been some previous work on using structural constraints to ensure that a

particular architectural style, for example a pipeline, is followed in self-organising or

self-healing systems [37, 35]. Structures that do not adhere to the selected style will

not be created. We present an alternative approach, which could be used together with

an approach based on structural constraints, which assesses candidate configurations

of components for adherence to behavioural properties. By using the techniques intro-

duced above, to generate models combining the structural and behavioural aspects of

prospective configurations, model checking can be used to discard those configurations

that violate desired behavioural properties. In this way behavioural concerns can be

used in choosing between potential configurations. By integrating our modelling and

analysis techniques into the reconfiguration process, we can use the analysis that our

technique provides to guide self-organisation and produce systems that behave in a

predictable way.

8 Chapter 1. Introduction

1.4. Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 presents a survey of

existing work in the area of dynamic component-based Software Engineering and

sets out the aims of this thesis. In Chapter 3 we develop a specification of a plugin

architecture and present a formal specification of it. Then, in Chapter 4 we discuss

how the concepts presented in the formal model can be expressed and used in a

popular object-oriented programming language, in this case Java. Chapter 5 describes

how models can be generated from running applications and analysed to predict the

effects of a particular reconfiguration before that reconfiguration is carried out, and

how this can be used to preserve properties of systems as they evolve over time.

Chapter 6 gives details of how the ideas and techniques discussed in the previous

chapters were implemented in a framework for plugin components called MagicBeans.

Chapter 7 presents a case study, using the MagicBeans framework to underpin the

development of an extensible tool suite for software design and analysis. Finally,

Chapter 8 summarises the contributions of this work and gives some suggestions for

possible future extensions.

2. Background

This chapter presents a survey of existing work in the area of extensible and dynamic

component-based systems, both in commercial and research projects.

2.1. Component Technologies

This section discusses existing component technologies that aid the development of

extensible software systems.

2.1.1. Java and JavaBeans

Java [39] is a programming language from Sun that has been adopted widely in

industry and academia since the late 1990s. Java is an object-oriented language. There

is some support for using components and dynamically adding to applications in the

existing Java platform. Java classes can be compiled and deployed separately, either

as individual class files, or bundled together in Jar archives, which are essentially zip

files. The Java virtual machine loads classes dynamically as they are required (when

their names are first encountered in the execution of the program).

This means that it is perfectly possible to start an application running without a

certain class being present, and that classes can be downloaded (or even written) later

on and loaded when they are needed. However, there is no mechanism within the Java

virtual machine for detecting whether or not a particular class is available, loading

it if it is, but continuing or doing something else if it is not. The nearest that can

be achieved to this using the standard Java language is to place an instantiation of

a class inside a try/catch block, and to catch a ClassNotFoundException. The

9

10 Chapter 2. Background

exception will be thrown if the class cannot be found in the virtual machine’s classpath

and the programmer can then opt to do something else. This is a messy solution, and

leaves the management of classes to the application programmer.

JavaBeans [44] is Sun’s original component technology for Java. Beans are formed

by packaging classes and other resources into Jar files, but the focus is on combining

and customising Beans to create an application using a graphical builder tool. They

are commonly used for combining user interface components to create a complete

GUI. However, JavaBeans do not provide an automated mechanism for coordinating

components. Supporting assembly of applications by the deployment engineer, rather

than the programmer, requires the mechanics of how applications are constructed to

be as transparent as possible, and to be performed in a way that is reactive to the other

components that have already been deployed in the system. The addition of Beans to

an application tends to be a development time rather than a runtime activity.

2.1.2. ActiveX

ActiveX is a technology developed by Microsoft in the 1990s. ActiveX controls are

reusable software components that can add specialised functionality to web sites,

desktop applications, and development tools [55]. They are primarily designed for

creating user-interface elements that can be added to container applications. Every

ActiveX component, or control, must be hosted by a container.

ActiveX is built on top of the Component Object Model (COM [54]). COM is a

Microsoft component technology allowing components to be deployed as binary units

and used in combination to form larger software systems. COM components, and

hence ActiveX controls, are required to implement the IUnknown interface. Through

this interface, the container can call the method queryInterface() on the control,

to find out whether it implements a particular interface, and if so to obtain a reference

to that interface.

The use of this method of querying components for interfaces follows the principles

of first-party binding [66]. The container is responsible for querying the control to

find out whether it provides an implementation of the interface that it requires, and

2.1. Component Technologies 11

if so, requests a reference. There is no real runtime support provided by COM. The

developer must take care of every detail of the runtime operation, and take care to

adhere to particular protocols in order for components to interoperate correctly.

There is no standard mechanism for establishing peer-to-peer connections between

ActiveX components, only between the container and the control. This limits flexibility

in terms of the different configurations that can be created. In order to use a service

provided by another control, the requiring control must be a container for the providing

control.

2.1.3. .NET and the CLI

The .NET Framework is a new software platform from Microsoft. It is designed to

allow components written in many different source languages to interoperate in one

software system. This is supported by the Common Language Infrastructure (CLI).

According to Abrams [81], the .NET Framework is “a component model for the

Internet”.

.NET components take the form of units called assemblies, which contain one or

more modules of code, and an assembly manifest which is a set of metadata describing

the assembly. The manifest describes all of the types provided by the assembly.

Assemblies are dynamically loaded by the .NET runtime, in much the same way that

classes are dynamically loaded by the Java virtual machine.

The .NET component model is intended to supersede COM [54], although it

is possible to use existing COM components from within .NET programs. There

is no particular runtime support for component management (in terms of binding,

configuration or dynamic replacement) under the default .NET runtime.

The assembly as a unit of deployment is largely equivalent to the Jar file in the

Java platform. It groups classes and other resources into a deployable unit, but is not

something that can be referenced programmatically. Where with Java classes can be

deployed separately, in .NET all classes must be deployed as part of an assembly. The

metadata present in each assembly gives information about the types present and the

interfaces implemented by a particular component.

12 Chapter 2. Background

2.2. Service-oriented component models

Some component technologies of particular interest are those that have a service-

oriented model, where service providers can be interchanged, enabling the construc-

tion of dynamic systems.

2.2.1. OSGi

The Open Services Gateway initiative (OSGi) [64] Service Platform is a specification

for a framework that supports the dynamic composition of services. An implemen-

tation of this specification can be integrated into applications to provide a plugin or

extension mechanism. OSGi compliant applications work by managing “bundles” that

are registered with a platform.

OSGi follows a service-oriented component model, where components may be

dependent on services provided by other components, but not on any named com-

ponent in particular. Dependencies are on the services, or interfaces, provided by other

components, which allows for run-time assembly of systems. In a purely service-

oriented system, the medium through which services are implemented and provided

is unspecified. OSGi combines service-oriented ideas with a component model, so all

services are provided by a component (or a number of different components).

Service-oriented architectures follow a pattern of having three different types of

participants: service providers, service requesters, and a service registry. Providers

register their service with the registry when they become available. Clients can query

the OSGi registry for components that provide a certain service, and obtain a reference

through which to access the service.

Bundles are OSGi’s components, and they comprise Jar files containing Java code,

libraries, other resources and an XML manifest describing, amongst other things,

services that the bundle requires and provides.

The Service Binder [10] is a project to provide support for the dynamic availability

of services, and to manage dependencies between services. It is was developed on

top of Oscar [41], an implementation of the OSGi framework. OSGi does not itself

provide support for service dependency management. Bundles to be used with the

2.2. Service-oriented component models 13

Service Binder and OSGi must contain an XML instance descriptor containing various

meta-data about component instances to be created, cardinalities and the service’s

dependencies.

Dependencies can be defined as being static or dynamic. With a static dependency,

the Service Binder guarantees that a required service is present for the whole time that

the service requiring it is valid (i.e. available for use through the Service Binder). This

condition is not guaranteed for dynamic dependencies. Dynamic dependency is more

akin to the idea of plugins that may be added or removed from the system at runtime.

Programming extensible applications on top of the OSGi framework alone requires

a lot of code to be included in the application components to register with the OSGi

registry, to request services and deal with notification events from the framework.

Using the Service Binder, a lot of this management is dealt with, which simplifies

the programmer’s task. In the XML instance descriptor for a bundle that requires a

service, method names can be given to specify which methods should be called when

services become available or unavailable.

2.2.2. Avalon

Avalon [2] is a service oriented component framework from the Apache foundation. It

allows classes (which it calls components) to be packaged together into composite

components (which it calls blocks) for deployment. Various metadata are required

at both the class and the block level. A variation on the Javadoc style of comments

is used to give names, version numbers etc. to classes in the source code. Special

build techniques translate these into an XML type descriptor which is generated and

included in the block. Dependencies on services to be provided by other components

can also be specified using this Javadoc style syntax.

Avalon is supported by the Merlin runtime system. This has several features,

including managing context and configuration information, and providing the target

application with mechanisms for accessing this. This makes it easy for different

deployments of the same components to easily be configured with, for instance,

different database locations or authentication details.

14 Chapter 2. Background

Merlin also manages the availability of services for components that require them.

Components can implement the Serviceable interface, which allows the Merlin

framework to call a method service(ServiceManager sm), passing a ref-

erence to the service manager. Components can then request from the service manager

references to objects that provide the services that they require. An example of this is

as follows (taken from the Avalon tutorial):

* Servicing of the component by the container during

* which service dependencies declared under the component

* can be resolved using the supplied service manager.

*

* @param manager the service manager

* @avalon.dependency type="tutorial.RandomGenerator:1.0" key="random"

* @avalon.dependency type="tutorial.Identifiable"

*/

public void service(ServiceManager manager) throws ServiceException {

m_random = (RandomGenerator)manager.lookup("random");

m_identifiable =

(Identifiable) manager.lookup(Identifiable.class.getName());

}

This code excerpt shows how the developer must use a string name to look up the

service that they require, which cannot be checked for correctness by the compiler, and

must cast the result of their request to the type that they require, another point where

the program could fail at runtime.

Merlin will not instantiate a component until its dependencies can be fulfilled, but

does not deal with the dynamic availability/unavailability of services, or dynamic

reconfiguration of systems.

2.3. Web Browser plugins

Modern web browsers are intended to allow the user to view many different media

types, as many different types of content are now published on the web, for example:

bitmap images, vector graphics, audio, video footage, or PDF documents. Code to

render many of the more popular standards is included in the core of browsers

such as Microsoft’s Internet Explorer, Netscape Communicator and Mozilla’s Firefox.

However, support for proprietary standards such as MacroMedia’s Flash animations

2.3. Web Browser plugins 15

or Adobe’s PDF documents requires external support available from the particular

vendor.

Also, as the web browser has become one of the most prevalent tools used on

desktop PCs, the ability to extend them to perform extra tasks has become sought

after. In this section we discuss mechanisms for providing extensions to a selection

of popular web browsers. We note that none of these make use of a generalised

mechanism for extending applications that could be factored out and used to build

other extensible applications. None of them allow plugins to be extended with further

plugins; only one level of extension is possible, with each plugin connecting only to

the central browser component.

2.3.1. Internet Explorer

Internet Explorer is a Microsoft application, which is built from a number of COM

components, one of which is the web browser, one of which is the HTML renderer etc.

In addition, it is possible to add new COM or ActiveX components to deal with

new MIME types. ActiveX components are identified using a GUID (Global Unique

ID), which is a large hexadecimal number. They are registered in the Windows registry

so that applications that want to use the components can find them. Internet Explorer

also uses the registry to find each of the components that support different MIME

types. Internet Explorer searches the Windows registry on startup to find registered

extensions, and the MIME types they support.

An example of this is, if an Internet Explorer user has Adobe’s Acrobat Reader

installed, they can install an ActiveX plugin that allows Internet Explorer to open

PDF files within the browser window. All ActiveX components must be hosted by

an ActiveX container. Therefore, in order to allow chaining of plugins, each accepting

plugin must itself be an ActiveX container and search for registered extensions in the

registry. The common code is not factored out into a reusable framework.

16 Chapter 2. Background

2.3.2. Netscape Communicator

A Netscape Communicator user can use Netscape’s extension mechanism to install

extensions, in the form of plugins, that allow their browser to deal with new MIME

types.

“A plug-in is a separate code module that behaves as though it is part of the

Netscape Communicator browser. You can use the Plug-in API to create

plug-ins that extend Communicator with a wide range of interactive and

multimedia capabilities, and that handle one or more data (MIME) types.”

- Netscape Plugin Development Documentation [58].

When the Communicator application starts up, it examines the contents of a par-

ticular directory to find the installed plugins. The directory differs depending on the

platform. Plugins for Communicator are modules written in C or C++, compiled

to native code, that are dynamically loaded. They take the form of Dynamic Link

Libraries (DLLs) on Windows and Shared Object files (.SO) on UNIX.

All Communicator plugins are written starting from the template given in the plugin

software development kit. This defines a set of plugin methods, which are methods

that the core of Communicator will call on the plugin. These include methods to

perform life-cycle management, like NPP Initialize and NPP Shutdown, as

well as methods to interrogate the plugin for information (for example the MIME

types that it supports), and notify it of events.

Another set of netscape methods defines the methods that the plugin can call of the

main Communicator application. These include methods to send data to the application

to display, e.g. NPN Status, or to get or send to a particular URL, e.g. NPN GetURL

or NPN PostURL.

As there is no runtime type checking in C++, failing to implement the interface

properly will cause Communicator to crash when it tries to call a method that has

not been implemented correctly. As with Internet Explorer, this is not a generalised

extension mechanism. It is not possible to create plugins that extend other plugins

without including a separate discovery and dynamic loading mechanism inside each

plugin to be extended.

2.4. Dynamic Extension Mechanisms 17

2.3.3. Firefox and XUL

Firefox [73] is the latest web browser from Mozilla. One of its design goals was to be

highly extensible. This is achieved by providing an extension mechanism based on the

language XUL (XML User-interface Language).

Extensions are formed as compressed packages of XUL, script files, CSS and

images. Whether these conform to Szyperski’s definition of components [71] is debat-

able, as the packages are binary due to compression, but not due to compilation.

However, they can be integrated into any application that allows for extension via

the XUL language.

Extension packages can be downloaded and hooked into the browser using a feature

called overlays. The user interface of the main Firefox browser is written in XUL, and

the use of an overlay allows the XUL for the main interface and each of the extensions

to be combined. Overlays can be added to overlays as all of the XUL documents loaded

at any one time are merged and aligned where XML element names match. However,

XUL is not a generalised extension mechanism as it is not a full programming language

and only deals with the description of user interfaces.

2.4. Dynamic Extension Mechanisms

Some mechanisms have been developed to allow particular applications or types of

application to be extended, or assembled from sets of components that are decided on

at runtime. Some of these are described in this section.

2.4.1. Java Applets

Java applets [70] allow modules of code to be dynamically downloaded and run inside

a web browser. The dynamic linking and loading of classes that is possible with Java

allows extra code that extends the functionality available to the user to be loaded at

any time.

A Java program can be made into an applet by making the main class extend a class

from the standard Java API, called java.applet.Applet, and following a few

18 Chapter 2. Background

conventions. The name of this main class and the location from where the code is to

be loaded are included in the HTML of a web page. A Java enabled browser can then

load and instantiate this class.

The applet concept has proved useful in the relatively constrained environment of a

web browser, but it does not provide a generalised mechanism for creating extensible

applications. As all applets must extend the provided Applet class, it is not possible to

have an applet which has any other class as its parent (due to Java’s single inheritance

model).

2.4.2. Lightweight Application Development

In [52] Mayer et al present the plugin concept as a design pattern (in the style of

Gamma et al [31]) and give an example implementation in Java. The architecture

includes a plugin manager that loads classes and identifies those that implement an

interface known to the main application using reflection [40].

Their work allows one application to be extended with multiple plugins, possibly

with differing interfaces, but makes no mention of adding plugins to other plugins.

The plugin mechanism is described in terms of finding individual classes to add to

the system, where we are more concerned with adding larger elements of functionality

encapsulated in components. Although components may contain sets of classes (along

with other resources such as graphics), managing deployment at the level of compo-

nents rather than classes would provide more flexibility, as the component boundary is

typically the mostly loosely coupled connection in a software system.

2.4.3. PluggableComponent

PluggableComponent is a pattern that provides an infrastructure or architecture for

exchanging components at runtime [78]. The architecture features a registry to manage

the different types of PluggableComponent. The registry is used by a configuration tool

to provide a list of available components that administrators can use to configure their

applications, so configuration is human driven. This relies on the human performing

the configuration having total knowledge of the system.

2.4. Dynamic Extension Mechanisms 19

All PluggableComponents are derived from the PluggableComponent base class. As

with applets, this reduces the flexibility of systems that can be built as any class that

is derived from a class other than PluggableComponent cannot be used as a plugin.

This also means that the requirement for using plugins must be incorporated in the

design from early on in order to prevent the need for expensive refactoring of the

inheritance hierarchy. The ability to use PluggableComponent with a system cannot

easily be retrofitted.

PluggableComponent has been used in an application where administrators can

configure their own “shops” in an e-commerce system by choosing a particular

configuration of components to specialise various aspects of the shop. The system

comprises two applications, the shop system (implemented as a Java servlet), which

runs all of the different shops, and a separate configuration tool which administrators

use to create and configure shops in the system. The configuration tool is a GUI

application, and administrators are assumed to be non-programmers. The management

of the configuration is performed by a human.

An interesting feature of PluggableComponent is the provision of a mechanism for

storing and transferring configured PluggableComponents based on Java serialization.

PluggableComponents can be loaded from and saved to disk (or other persistent

storage) by serializing the components. This allows the components to be stored

already configured, so that when they are reloaded, the previous configuration will

remain. However, the way that this works means that different instances of the same

plugin with different configurations will be stored as separate objects in the store,

rather than as a class and different configurations.

2.4.4. Gravity

Gravity [11] is an application that uses Oscar [41], an implementation of OSGi (see

Section 2.2.1), to allow applications to be built dynamically from components that may

vary in their availability.

Gravity is an execution environment, targeted towards user-oriented, interactive,

applications, that uses a service-oriented component model to allow applications to be

20 Chapter 2. Background

constructed as an abstract composition of components. This composition may evolve

and adapt over time as services become available and unavailable, and also as the user

decides to integrate new components/services into the application.

Cervantes and Hall [11] identify two main challenges in creating such a service-

oriented component model; these are dealing with ambiguity and dynamic availability.

The Gravity environment, together with the Service Binder that runs on top of OSGi,

deals well with dynamic availability, allowing applications to be reconfigured by

selecting different components from a list. However, Gravity does not deal with

ambiguity. There can often be multiple candidates for providing a service, or multiple

possible configurations for combining sets of components. Gravity does not provide

the user with any guidance in resolving such ambiguities.

2.4.5. Eclipse

The Eclipse Platform [60] is designed for building integrated development environ-

ments. It is built on a mechanism for discovering, integrating and running modules

which it calls plugins.

Any plugin is free to define new extension points and to provide new APIs for

other plugins to use. Plugins can extend the functionality of other plugins as well as

extending the kernel. This provides flexibility to create more complex configurations.

It is not possible to place restrictions on the number of any type of plugin added in this

architecture. This may be important where resources are limited.

Each plugin has to include a manifest file (XML) providing a detailed description

of its interconnections with other plugins. The developer needs to know the names

of the extension points present in other plugins in order to create a connection with

them. With the Lightweight Application Development technology described above,

the actual Java interfaces implemented by classes in plugins are interrogated using

reflection, and this information is used to organise and connect components. This

reduces the effort required from the developer. If such techniques could be used in

a more flexible plugin framework then perhaps a truly self organising system could be

developed.

2.5. Unanticipated Software Evolution 21

On start-up, the Eclipse Platform Runtime discovers the set of available plugins,

reads their manifests and builds an in-memory plugin registry. Plugins cannot be added

after start-up. This is a limitation as it is often desirable to add functionality to a

running program without having to stop and restart it.

A plugin declares any number of named extension points and any number of

extensions to one or more extension points in other plugins. The manifest provides

quite a detailed description of the plugin and how it fits with other plugins. In this

respect it is a form of Architecture Description Language. Is it mandatory for the

plugin programmer to include this information.

Once activated, a plugin remains active until the platform shuts down. This means

that plugins cannot be individually shut down, even if their functionality is no longer

required.

In version 3.0 of Eclipse, the plugin mechanism has been made OSGi compliant

(see Section 2.2.1). This affords more flexibility in the dynamic reconfiguration of

the application. For example, plugins can be added without restarting the whole

application.

2.5. Unanticipated Software Evolution

This section presents an overview of work on Unanticipated Software Evolution,

where changes can be made to software after it has been deployed and often while

it is running.

2.5.1. Dynamic Linking

With software written in languages such as C and C++, all the code for a piece of

software is linked together at compile time. This means that if the code for one class

or module is changed, then everything must be recompiled and relinked in order for

the system to work. Languages with dynamic linking (such as Java and C#) leave the

linking activity until runtime. This allows separate compilation of classes and modules,

so that a new version of a certain class can be used in conjunction with old versions of

22 Chapter 2. Background

other classes without recompiling everything (as long as the change made is a binary-

compatible change [25]).

The advent of dynamic linking systems means that it is now much easier to

make small incremental changes to software systems, rather than having to replace

a complete deployed system every time that an upgrade is required. Combined with

Java’s reflection system [40], dynamic linking allows us to write programs that use

classes the name of which is not known at compile time. It is clear that having such a

capability will be important in the creation of systems that are dynamically extensible

through plugin components.

2.5.2. DejaVU, DejaVU.NET and DJVCS

Current trends in software development are such that third party components are often

used to provide library functions to support common features in applications. Ideally,

such a library would only have to be installed once on each machine, and several

applications could share it, re-using code and saving on hardware resources.

However, different applications are often built to work with particular versions

of libraries. When two applications are installed on the same machine that require

different versions of the same library, which are not necessarily compatible, problems

can arise. On the Windows platform this situation is commonly referred to as “DLL

Hell”.

If a new version of a library is backwards compatible with an old version, i.e. all

programs that work with the old version will work with the new one, then it is

desirable to replace the old with the new. However, if at any stage the old application is

reinstalled, it may write over the new version with the old version, causing the second

application to break. If two versions of a library are incompatible, then it may be

required to install both versions side by side, and have each application use the version

that is right for it.

To manage this situation in the general case is a difficult problem. Several tools and

techniques have been developed for assessing the compatibility of different versions

of components, both for Java and .NET. DejaVu [27, 26] and DJVCS [6] are examples

2.5. Unanticipated Software Evolution 23

of these. They help to find the most recent version of a component that will work in

conjunction with another. By this means they attempt to maintain the smallest possible

working set of components in any situation.

2.5.3. HotSwapping classes in the JVM

Reloading classes into the Java Virtual Machine is something that is generally difficult

to do. The default behaviour of the virtual machine is that it loads a class the first time

that an instance of that class is required, or a static member of that class is accessed.

This is done by means of a classloader, which reads the class file from the filesystem

(or network) and loads it into the virtual machine’s memory. The next time that a new

object of this type is required, the class is not reloaded (even if it has changed on disk)

as it is already in memory, and this cached class is used to create the new instance.

Hence, it is difficult to change the definition of a class once it has been loaded into the

JVM.

It is possible to write custom classloaders which override the behaviour of the

default classloader. Using this technique one can write a classloader that does not keep

a cached copy of the class in memory once it has created an object, and so every time

that a new object is required (or a static member accessed) the class is reloaded from

disk. This works, but is not particularly efficient and leads to less readable programs

as classloaders have to be instantiated explicitly and used to create objects. Doing

this for all object creations in a sizable program will lead to a fair amount of extra

code, and likely a substantial decrease in performance. Another problem with this

approach is that objects that are created with an old version of the class may persist

and exist alongside objects created from a newer version of the class. As it is only the

class definition that is replaced, existing objects are not transformed. This may lead to

unpredictable behaviour, and may mean that it is difficult to make upgrades to classes

which are initialised early, for instance the one that contains the application’s main

method.

In his web pages [24], Mikhail Dmitriev describes a technique for overcoming some

of these problems. By using features provided by Sun’s HotSpot virtual machine, it is

24 Chapter 2. Background

possible to redefine a class and have objects of that class which exist within the virtual

machine transformed in alignment with the new class definition. This is subject to

some restrictions, which are discussed in detail in Dmitriev’s techical report [24], but

certainly provides a big step towards being able to update class definitions in a running

virtual machine.

The HotSwap mechanism can be accessed through the JPDA debugging API [69].

In essence this allows us to run a Java program in one virtual machine, and to

run a debugger or other managing application in another virtual machine, which

can attach to the first. The debugger/manager can then perform operations such as

suspending/resuming execution of the target application, getting a list of the currently

loaded classes, and most interestingly, submitting a set of class definitions to redefine

classes currently loaded. The HotSwap mechanism built in to the target VM can then

transform any objects to be of the new class (there are certain restrictions on what sorts

of changes can be made to classes, see Appendix E for the results of our experiments

investigating this).

Experimentation has shown that it is in fact possible to make the target and man-

aging VMs the same VM, so that it is possible to have an application managing and

upgrading itself, rather than having to run two separate applications. This is beneficial

as an application can have much more information about itself than what it can glean

about an application running on a different VM through the debugging interface.

2.5.4. DRASTIC and GRUMPS

DRASTIC and GRUMPS are two different architectures supporting evolution of

software systems at runtime [29]. DRASTIC supports large but infrequent changes.

In contrast, GRUMPS is targeted towards smaller changes, but assumes that these will

occur frequently.

Both of the approaches assume that the initial developers of an application will be

involved in performing the evolution. They rely on the fact that the configuration of

the system is known by a human who can guide or adapt the evolution depending on

the system’s current configuration, and any previous evolutions that have occurred,

2.6. Self-Organising Systems 25

possibly by developing special filter components to adapt data formats, or to mediate

between different components or services.

In a system composed of components that may be developed by various different

parties and assembled into different systems by different system administrators, it will

not be possible to characterise all possible configurations of components that may exist

prior to evolution, and so a more generalised mechanism is necessary.

2.6. Self-Organising Systems

There is growing interest in the area of self-organising software systems. According

to Georgiadis et al [37], “a self-organising architecture is one in which components

automatically configure their interaction in a way that is compatible with an overall

architecture specification.” The self-organising nature of a system means that it aims

to minimise the amount of effort required by a human administrator or manager during

configuration and subsequent reconfiguration of the system.

A closely related category is those systems that are self-healing. Self-healing (or

self-adaptive) systems monitor their runtime behaviour to detect deficiencies in areas

such as performance, and instigate a reorganisation of the system architecture to try

and overcome the problem.

In their IEEE Intelligent Systems article [61], Oreizy et al discuss a number of

issues relating to self-adaptive software systems. They identify the importance of an

approach that “maintains system consistency and integrity by examining each change

and vetoing any changes that render the system inconsistent or unsafe.”

Bringing these ideas together, we identify the requirement for an infrastructure that

allows the explicit management of a system to be minimised while ensuring that the

consistency and safety of the system is not breached by any proposed reconfiguration.

Dashofy et al [23] describe an approach to self-healing systems involving recon-

figuration at the architectural level. They also note that “many systems will want to

delay a repair until there is confidence that the result of a repair will not violate

[certain] constraints.” Their approach is based on the use of design critics [68] for

architectural analysis that can be used as part of their tool suite ArchStudio 3. Each

26 Chapter 2. Background

critic monitors a certain constraint or property each time that a change is proposed

to the configuration. Changes are described as architectural differences between two

specifications described in the xADL 2.0 language. It is not clear what the scope of

the analysis that can be performed using design critics is, or whether they can be used

effectively in a continuous deployment situation, or only in the context of a design

tool.

2.6.1. Constraint-based Self-Organising systems

Georgiadis [36] describes a system where applications configure themselves automat-

ically, in line with a set of architectural (structural) constraints. In that work, com-

ponents are taken to perform the configuration activity themselves, without recourse

to an overall system manager. The components behave autonomously. This can place

an overhead on each of the components, which could be factored out into a more

traditional component management framework.

Georgiadis presents a system where a set of architectural constraints are imposed

in order to ensure that the architectural specification of the system is preserved before

and after reconfiguration. These constraints take the form of formulae in the modelling

language Alloy[42]. Reconfiguration is carried out through the evaluation of selector

functions which are derived from the Alloy specifications. This is a manual step, rather

than an automatic process.

This work only deals with structural constraints, as a way of enforcing particular

architectural styles. It is possible to reconfigure the system within the bounds of a

particular style, but not to change the style of the architecture dynamically. No account

is taken of the possibility of preserving behavioural properties during reconfigurations.

2.6.2. Analysing Executing Systems

Oreizy et al [61] recognise the need for an analysis phase in each adaptation cycle.

They state that: “Ongoing adaptation continuously threatens system safety, reliability,

and correctness. Therefore, facilities for guiding and checking modifications are an

integral part of [an] adaptation infrastructure”.

2.6. Self-Organising Systems 27

A number of approaches to analysing the behaviour of an executing system rely

on the insertion of monitors or probes into various parts of the systems. These may

return information on performance. In order to analyse a system, a model needs to

be constructed. Garlan and Schmerl [35] describe an approach to system adaptation

in which execution of the target application is monitored and this information is

abstracted to yield a model of the system. The model can then be analysed for

conformance to various properties in terms of performance etc.

This approach is in a sense post hoc, as probes and monitors detect the behaviour of

the executing system, and are used to decide whether further adaptation is desirable or

necessary. In order to analyse the results of a system reconfiguration, that reconfigura-

tion must be effected, and the resulting system measured. It is preferable to be able to

predict the behaviour of the resulting system before effecting the reconfiguration, so

that if the results are unsatisfactory, that particular configuration is never realised.

Dashofy et al [23] describe a method where before effecting a change to the

architecture of the system, that change is made to a model of the architecture, in their

case described in the architecture description language xADL 2.0. A set of design

critics [68] is used to monitor changes in the model to ensure that they are valid

according to a set of constraints relevant to the desired architectural style. This work

currently supports only checking of structural constraints.

2.6.3. Reflection

Reflection is a technique that allows a program to talk about parts of a program.

The Java reflection [40] mechanism can be used to “look inside” classes to see what

interfaces and methods they provide and (to an extent) require. The use of such

reflection can means that components do not have to provide explicit descriptions of

themselves in the form of meta-data. The code of the component itself can be examined

at runtime. Blair et al discuss two styles of reflection [9], structural reflection and

behavioural reflection.

Structural reflection involves observing the system at the interface level, i.e. what

interfaces are exposed by each component. It may also involve architectural reflection

28 Chapter 2. Background

where the reflection technique permits the programmer to observe and manipulate

the system at the level of components and connectors. Component interfaces may

be inspected to determine the services that they provide and require. Configuration

information regarding which components are connected, and the current structure of

the system may also be available.

Behavioural reflection is more concerned with observing events that occur in a

system. These events may be the invocation of services through interfaces, perhaps

through the calling of methods or the sending of messages, or at a higher level, events

corresponding to changes in the configuration of the system. This can be implemented

by means of interceptors, effectively proxies, that can be used to monitor when a

particular method or service is accessed. In the reflective middleware described by

Blair et al [9], operation is monitored using such interceptors, and this information

is used in order to decide when to effect a reconfiguration of the system. In contrast

to this, in the previous subsection we identified the need to predict behaviour rather

than observing it. This would enable us to prevent undesirable behaviour rather than

observing it and trying to cure it after the event.

2.7. Modelling structure and behaviour

There is a general movement towards the idea that the specification of a component

should include information about its behaviour as well as its interface [5]. Several

ADLs have been extended or complemented with languages for describing behaviour.

C2SADEL is a language developed by Medvidovic, Rosenblum and Taylor to

support architectural evolution. They use the language to describe structural and

behavioural aspects of architectures in the C2 style [53]. Structure is described in terms

of components and connectors. In the C2 style systems are constructed as layers of

components joined by connectors. Behaviour is described in terms of invariants, which

must always hold for a particular component, and logical pre and post-conditions for

sets of operations provided and required by the component. However, the use of logical

pre and post-conditions for behaviour specification means that interaction protocols

cannot be specified or analysed.

2.7. Modelling structure and behaviour 29

Wright [32], and PADL [7] are examples of architecture description languages that

allow behavioural aspects of components (or connectors) to be specified. They use

process calculus style notation to specify the behaviour of particular architectural

entities, which allows greater scope for the specification of interaction protocols.

However, while these languages allow for both structural and behavioural aspects of

an architecture to be described, they do not support the separation of these concerns.

They are single languages that allow an overall description to be written.

Structure and behaviour are fundamentally different aspects of a software architec-

ture. It is often necessary to alter one independently from the other. The same set of

components, each individually exhibiting a particular behaviour, may be combined to

form a number of different structures. Alternatively, within a fixed structure, individual

components may be replaced with upgraded versions which behave differently. In the

situations considered in this thesis, the structure of the system is determined by the

deployer or automatically by the runtime system. The behaviour of each component is

due to the developer of that particular component, who may not know the situations in

which their component will end up being used. To have a system that is flexible enough

to allow these two concerns to be combined to create a full model, but to be specified

and altered independently, we require a language that supports these separately.

Darwin [50], is a sufficiently abstract representation of software architecture that it

supports different views, one of which is the behavioural view. Behavioural descrip-

tions are given in the FSP process calculus. This is not a part of the Darwin language;

the Darwin syntax concentrates on structural aspects. There is however provision in the

tools that we have developed for processing Darwin to combine the Darwin and FSP

specifications into one model. The two concerns can be kept separate and combined at

the compilation and analysis stage. This is particularly useful in the work described in

this thesis, as the two parts of the model come from different sources, to be combined

each time that analysis is performed.

30 Chapter 2. Background

2.8. Deploying Specification with Components

The notion of delivering a component packaged together with a specification of the

way it behaves has been considered by various researchers. Such specifications may

take various forms, and may be used for varying purposes, but most notably involve

checking the correctness of systems.

2.8.1. AsmL

The idea of incorporating a specification within a component is supported by Microsoft’s

AsmL [4], developed by Barnett, Schulte et al . AsmL is the Abstract State Machine

Language. It is an executable specification language. Abstract specifications written

in AsmL can be compiled into .NET intermediate language and executed in the same

way as any other .NET program.

AsmL specifications can be used alongside full implementations of the component

in question to allow for runtime conformance checking. Barnett has also said [3] that

a good use of the specification would be to allow a client to inspect it (either manually,

or using some automated tests) to decide whether or not to use the corresponding

implementation. However, no framework for doing this currently exists.

2.8.2. Proof Carrying Code

Another angle on including within a component a way to check that it meets some

property is the use of proof-carrying code [57]. Components can be provided along

with a proof that they fulfil some property. The system on which they are intended

to run can verify these proofs using a proof checker. Checking the proof is a much

faster operation than generating it in the first place, and so can be carried out by the

consumer before using the component.

Rather than providing a specification of what the component can do so that the

consumer can check that it does what it wants, the producer is deployed with a proof

that it does a particular thing. This means that if a component is to be used in different

environments that require different properties, then it will have to provide different

2.9. Summary 31

proofs, and in order to have full flexibility, all properties will have to be predicted

before the component is deployed.

In order to provide a proof of a safety property, the producer of the component needs

to know what the safety property is that the consumer requires. It is not possible for the

consumer to check arbitrary properties of the component, only those that the producer

has predicted and generated a proof for.

2.9. Summary

We have examined a number of different technologies aimed at enabling the extension

of software after its initial release. From this survey we have seen that despite

numerous attempts at addressing different aspects of the problem, no one system

currently provides mechanisms for evolving software dynamically while ensuring

the safety of a particular reconfiguration. We now consider the work discussed and

produce a set of requirements for a predictable dynamic plugin architecture.

Encapsulation Most of the technologies discussed in the survey involve the encap-

sulation of features to be added into modules or components, with only a few,

such as PluggableComponent, operating at the individual class level. This supports

the idea that the component level is the most appropriate level of granularity at

which to consider system reconfiguration. Technologies such as JavaBeans and .NET

assemblies allow program code to be modularised, and for functionality from different

modules to be accessed programmatically, but do not directly support configuration of

applications at deployment time. We require a system that will allow the creation of

applications to be managed by the deployment engineer. This requires the coordination

of components by a managing framework, without the deployer needing to write “glue

code” to mediate between components.

Supporting framework Components require a container or framework that man-

ages their execution and allows applications to be constructed. In some cases, notably

with plugins for different varieties of web browser, the managing framework is the core

32 Chapter 2. Background

of the application. This allows components to be added to that particular application

to extend its functionality, but does not provide a generalised mechanism for creating

extensible applications, or allowing plugins to be chained together.

Other systems, such as Eclipse, strive to provide a general mechanism for assem-

bling more complex configurations of components. This is done by having each

component detail its provided and required interfaces in an XML metadata file. Version

2 of Eclipse does not allow dynamic modification of the configuration, new plugins

are only detected and loaded at startup. The latest version of Eclipse has moved to

using the OSGi framework, which has greater support for dynamic reconfiguration,

but still requires clients to programmatically query a central registry to obtain access

to services. We require a framework for plugin components that will support the

construction of extensible applications in a generalised and reusable way.

Dynamism We discussed approaches to reconfiguring or upgrading systems at

different levels of abstraction. The HotSwap mechanism allows individual methods

within a class to be replaced in a running Java virtual machine. This is a much lower

level of change than that concerning the deployment engineer. While it may be useful

for debugging, it is unlikely to be useful in performing larger scale system upgrades.

Most of the technologies examined deal with the addition of functionality, but

most do not address the problems of removing or replacing components identified

by Oreizy et al [62]. The approaches that do most to accommodate these types of

reconfigurations are the service oriented architectures exemplified by OSGi, which

can deal with the dynamic availability of services. We require a generalised dynamic

architecture that will permit these three types of change: dynamic addition, removal

and replacement of components.

Simplicity With a number of the systems examined, considerable effort on the

behalf of the developer is required in order to create a plugin component, or an

application that can accept plugins. This often involves creating meta-data documents

that describe interfaces and extension points (e.g. Eclipse), or using a special type

of comment structure in the source code to specify dependencies (e.g. Avalon). The

2.9. Summary 33

overhead of learning these different approaches may prohibit a developer from using

a particular extension system. To make the use of an extension system attractive

to developers, a simple mechanism for programming with plugins is needed, which

conforms to the concepts that they are familiar with, reducing the learning curve. We

require integration with a familiar programming language, following its idioms, to

make the use of a plugin system intuitive for the developer. This will also allow more

use to be made of the compiler for static checking of component code.

Re-use If, as with ActiveX, every component that can accept another component

as an extension has to be a container for that component, and provide discovery and

registration services, this will lead to a lot of replicated code. If this management code

can be factored out into a common framework to be used by all components, this will

lead to the code of individual components being shorter and clearer. Rather than each

application, or even each component, incorporating its own extension management

mechanism, a generalised system could be created that could support many different

applications. We require that component management code should be factored into

a reusable framework that is not tied to any particular application. It should not be

necessary to duplicate component management code in multiple components.

Predictability Correctness of software systems is a desirable property. We exam-

ined some systems that monitor the behaviour of running systems, e.g. the work of

Garlan and Schmerl, that will instigate a reconfiguration on detecting a drop in some

aspect of the system’s performance. Such systems are reactive rather than predictive.

On detecting a problem with the system they aim to cure it. It is often said that

prevention is better than cure, and so a better technique would involve predicting the

behaviour of a particular configuration before realising it. In this way, systems that do

not perform as expected should never be created.

While some of the techniques examined will perform some sort of analysis before

installing a new component, for example managing dependencies and not loading a

new component until its requirements are fulfilled, none of them provide any support

for checking that a reconfiguration will result in a correctly behaving system. We

34 Chapter 2. Background

discussed some techniques for specifying structural and behavioural characteristics

of systems and for analysing them.

In the event that a reconfiguration is proposed, and analysis reveals that it will result

in a violation of one of the desired system properties, it should be possible to abort the

change. In this way, if a new component is introduced that will cause a malfunction,

the deployer should be informed and given the option to back out of the change.

We require that a proposed configuration can be analysed for desired properties

before it is realised, so that the deployer can gain confidence that the proposed

reconfiguration will result in a correctly functioning system. It must be possible to

abort the change if the result will violate system properties.

The approach presented in this thesis combines a generalised dynamic component

system with automated modelling and analysis to produce a system that gives the

deployer freedom to reconfigure a system in the confidence that the results will behave

in the way that they expect.

3. Modelling

This chapter discusses the design of a generalised system of plugin components,

addressing the issues identified in the previous chapters as being important in creating

dynamically evolvable software configurable at the component level. We present our

design decisions in the form of a model for how plugin components may be combined

to create flexible software systems1. The model is first introduced through a familiar

analogy, and then developed in terms of a formal specification.

3.1. An Analogy

“A component is a unit of ... program structure that encapsulates its

implementation behind a strict interface comprised of services provided

by the component to other components in the system and services required

by the component and implemented elsewhere.” - S. Crane [66]

The notion of plugin components is one of separate units of software that are

designed to be easily connected together. We think of the way that components fit

together in a plugin architecture as being similar to the way that pieces of a jigsaw

puzzle fit together. As long as a jigsaw piece has the right shaped peg, it can connect

to another piece that has a corresponding hole.

This analogy sits well with the definition above. The pegs represent the imple-

mentation of a particular service by a component, which it can provide to other

components. The holes represent an interface known to one component through which

1Some of the material presented in this chapter was presented at the Specification and Verification

of Component Based Systems (SAVCBS) workshop at ESEC/FSE 2003 [12]. It has also been

submitted for inclusion in a special edition of Formal Aspects of Computing.

35

36 Chapter 3. Modelling

Figure 3.1.: Plugins extending the main application

it could interact with others. We will use the term requirement to refer to this use

of services provided by other components to be consistent with previous work on

software components [50], but it should be noted that plugins are optional components,

so it is not mandatory that a requirement is fulfilled in order to have a working system.

In this context requirements are extension points through which extra components can

be accepted into a system when and if they are needed and available.

The core component of an application extensible through plugins may feature a

number of “holes”, into which components providing extra functionality can plug. If

an application has an interface that allows other components to extend it, and a plugin

contains an implementation of this interface, a connection can be made between them.

The peg will fit into the hole. This situation, the addition of components to a central

application, is shown in Figure 3.1.

Thinking about plugins in this way, it becomes clear that some other, more sophis-

ticated, configurations would be possible if plugin components are allowed to have

holes as well as pegs, i.e. if plugins are allowed to extend other plugins rather than

only allowing them to extend the main application. Chains of plugins can then be

formed, as shown in Figure 3.2. For an example of this situation, consider the main

application being a word processor, extended by plugging in a graphics editor, and this

graphics editor in turn extended by plugging in a new drawing tool.

It is possible that a component has several holes and pegs of different shapes

(probably the most common situation in traditional jigsaw puzzles). This can lead to

3.1. An Analogy 37

Figure 3.2.: Plugins extending plugins to form a chain

Figure 3.3.: Plugins connecting to multiple components

more complicated configurations of components, such as those shown in Figure 3.3.

Such a configuration might be useful in a situation where the main application is an

integrated development environment, the first plugin is a help browser, and the second

a debugging tool. The debugging tool plugs into the the main application, but also into

the help browser so that it can contribute help relevant to debugging. In this way the

help browser can display help provided by all of the different tools in the IDE, with

the help being stored locally in each of the separate tools.

As well as being able to add new components to a system, it is desirable to be

able to remove components that are no longer needed. It may be the case that a

component consumes a resource that has limited availability. To release this resource,

either because it is no longer needed, or because it is needed by a different component,

may require a component to be removed. It should be the case that a plugin component

can simply be unplugged, in much the same way that a jigsaw piece may be removed.

38 Chapter 3. Modelling

Figure 3.4.: Forming a Pipeline

In Figure 3.2, removing one of the plugins would free up a hole for another to be

connected.

However, removing the middle plugin in Figure 3.2 would also cause the plugin

at the end of the chain to become disconnected. In this case, considering the example

given before, where the main component was a word processor extended with graphics

facilities, removing the graphics editor would disconnect the tool that was plugged in

to it, as no components would be using it. The question that arises is whether the

component that is now disconnected should be removed from the system.

The application of a garbage collection policy would mean that such orphaned

components would be removed from the system when their chain of connection to the

core of the system became broken. Otherwise, orphaned components would remain in

the system, but would not be able to interact with any other components. However,

if later a new component was added to which they could connect, then they could

function usefully again. For example, if the middle component in Figure 3.2 were

removed, and the rightmost, now orphaned, component held in abeyance, then if later

the central component (or a different component providing and requiring the same

services) was reintroduced, then the binding to the rightmost component could be

recreated.

This is the design decision that we have taken. This means that in the case shown in

Figure 3.4, if the central component is removed from the chain, instead of removing

the last component in the chain when it becomes disconnected, it can be reconnected

where the removed component has freed up a hole, reconnecting the chain. Another

reason for not garbage collecting orphaned components is that it makes the assembly

3.1. An Analogy 39

of systems of components more flexible, as, for example, chains of components as in

Figure 3.2 can be built without necessarily loading the components in the correct order.

If the user knows that an orphaned component will not be needed in future, it can be

explicitly removed using the same removal procedure.

The third type of reconfiguration that is desirable in plugin systems is the replace-

ment of specific components. Such an operation might be performed in order to effect

an upgrade from an older version of a component to a newer one. A replacement is

more than simply a removal followed by an addition; there is an extra stage. Before

removing a component, it is important to ensure that replacing it with a particular

component will not cause linkage errors. In order for the upgrade to be safe, the new

component must be able to provide all of the services that were being provided by the

old one. If this condition is met then the old component can be removed and replaced

with the new one.

It is our aim to provide the described plugin architectures in self-organising sys-

tems [34]. It should be possible to introduce new components over time. For each

additional component, the system should make connections to join it to the existing

system in accordance with its accepted and provided interfaces. The removal and

replacement of components should be managed automatically, so that the system is

automatically configured with the correct set of connections between components

at any point. It should not be necessary for the user or developer to provide extra

information about how or where the component should be connected, as they may

not have total information about the current configuration, or they may just want to

delegate responsibility for managing the configuration to the system itself. Control

over what structures are formed can be exercised by applying different binding

policies, and later chapters will describe how further constraints can be applied to

manage what systems are constructed if more explicit control is required.

As the notion of a component is largely concerned with encapsulating implemen-

tation details behind well specified interfaces, we tested our ideas by providing an

implementation in the strongly typed object-oriented programming language, Java.

The components that will be considered are bundles of classes and interfaces (and also

graphics, text or other data files). In practice, the component would be an archive (Jar)

40 Chapter 3. Modelling

file containing the binary files for the classes and interfaces as produced by the Java

compiler.

3.2. A Formal Model

This section presents our model of plugin systems, developed in first-order logic.

We represent formally the way in which systems can be composed from plugin

components, the conditions under which a new component may be added to the system,

when an existing component can be removed, and when one may be replaced. There

are various constraints as to what constitutes a component, and how components can

be connected together.

3.2.1. A basic model

The artifacts modelled here could be created by a compiler for an object-oriented

language with name equivalence, i.e. decisions regarding whether two objects have

compatible types are resolved by comparing their names. These sorts of artifacts could

be created by a Java or C# compiler.

Classes are defined in terms of the interfaces they implement and carry information

about whether or not they are abstract. The type interface I is atomic.2 A class may

or may not be abstract. P(I) denotes the power set of I. As they have already been

successfully compiled, we know that classes must implement the interfaces they are

declared as implementing.

Definition 1 A class cl : CL is defined as:

cl = {implements : P(I), abstract : Boolean}

Components C are just sets of classes and sets of interfaces. The classes constitute

what the component provides, and the interfaces are what the component can accept.3

2For a declared type T , t ∈ T and t : T will be used interchangeably.
3In the implementation of this model, components also include sets of resources, but these would add

nothing to the model so they have been omitted.

3.2. A Formal Model 41

There may also be classes and interfaces that are used only internally to the component,

rather than being exposed to other components. However, these internal entities are not

relevant to this model, as it is concerned only with the interaction between different

components.

Definition 2 A component c : C is defined as:

c = {pegs : P(CL), holes : P(I)}

Components need to be connected or bound together. Bindings B connect compo-

nents by linking interfaces with corresponding implementing classes (we sustain the

pegs and holes metaphor). The components that form the two ends of the binding (the

to and the from) must be different, so that components cannot plug in to themselves.

Definition 3 A binding b : B is defined as:

b = {to : C, peg : CL, from : C, hole : I}

such that:

(to 6= from) ∧ (peg ∈ to.pegs) ∧ (hole ∈ from.holes)

This definition places no restrictions on the types of the class and interface that feature

in a particular binding. The function bind given in Definition 7 makes use of the

function canBind as given in Definition 5 to ensure that in assembling a system of

plugin components, only bindings where the class and interface have compatible types

are constructed.

A System S consists of a set of components, a set of bindings between interfaces

and classes of the components and a special component, designated start, where

execution begins. Throughout this section we discuss systems being made up from

collections of components. In fact, when a component is added to a system, the

classes that implement its provided interfaces are instantiated (in turn instantiating

any other classes as used by these classes) creating a component instance. For brevity

we will continue to refer to these constituent parts of a system as components. The

start component must have at least one hole (interface) or there would be no way of

42 Chapter 3. Modelling

ever extending a system containing it as the first component. All other components

must contain some classes in order that they can provide some extra functionality to

the system. An interface cannot be bound to a given class more than once (the same

named class in a different component is taken to be a different class), i.e. duplicate

bindings are not allowed.

Definition 4 A system s : S is defined as:

s = {comps : P(C), bindings : P(B), start : C}

such that:

start ∈ comps

¬∃i : I.(i ∈ start.holes) =⇒ B = ∅

∀c ∈ comps.(c.pegs 6= ∅ ∨ c = start)

∀b1, b2 : B.(((b1.from = b2.from) ∧ (b1.hole = b2.hole)∧

(b1.to = b2.to) ∧ (b1.peg = b2.peg)) ⇒ (b1 = b2))

Classes and interfaces cannot exist in isolation. Every class and every interface are

considered to be deployed as part of a component. Similarly, bindings are always

associated with systems, and cannot exist outside. These constraints were not thought

about explicitly before we started modelling our proposed systems. Without them

the model describes systems that we do not wish to consider, for example those

where classes are deployed individually without an enclosing component. These

constraints are encoded in the NO ORPHANS property. This property has to be built

into any framework that implements our model to ensure that it accurately predicts the

behaviour of systems.

Property 1 (No orphans in any s : S)

∀i : I.∃c : C.(i ∈ c.holes)

∀cl : CL.∃c : C.(cl ∈ c.pegs)

∀b : B.∃s : S.(b ∈ s.bindings)

3.2. A Formal Model 43

3.2.2. Binding Policies

There are a number of possible binding policies that could be adopted in a plugin

system. Which policy is chosen affects the bindings that are made between sets of

components, and the structures that result. Different policies may be applicable in

different situations. It should therefore be possible to select from a set of different

policies. Here we discuss two different policies, and provide definitions in the form of

properties. It is down to the engineer performing the deployment at a particular site to

choose which property is desirable for that particular system. The plugin management

framework should be able to enforce whichever policy is selected.

1-1 binding

With 1-1 binding, each provision is bound to at most one requirement. This follows

the jigsaw analogy closely, as each peg on a jigsaw piece can fill only one hole at any

one time. It is not possible for one peg to fill two holes simultaneously. The following

property specifies that there cannot exist two bindings in a system which connect to

the same peg on the same component.

Property 2 (1-1 binding in a system s : S)

∀b1, b2.(b1 ∈ s.bindings ∧ b2 ∈ s.bindings

∧(b1.to = b2.to) ∧ (b1.peg = b2.peg) ⇒ (b1 = b2))

However, it is not possible to create some common structures under this policy.

For example, it is not possible for one server component to provide the same service

to multiple client components, a situation that is often desirable. There are many

occasions when it would not be efficient to have to create a new instance of a server

for each client that requires a service.

Also, there may often be circumstances where there are multiple candidate binding

targets available; two (or more) different components may accept the same type of

plugin. In such a situation, with a 1-1 binding policy, a decision needs to be made

regarding to which of the available requirements a provision should be bound.

44 Chapter 3. Modelling

1-n binding

With 1-n binding on the other hand, each provision is bound to all matching require-

ments at the time of binding (but at most one per component). Plugins can provide

the same service to more than one other component, so if there are multiple possible

requirements that a provision could fill, it will be bound to all of them 4. In the case

where a server may be shared by a number of client components, this configuration will

automatically be generated by using this policy. This means that it is never necessary

to pick the “best” target from a set of possible requirements, as connections will be

made to all of them.

Property 3 (1-n binding in a system s : S)

∀b1, b2.(b1 ∈ s.bindings ∧ b2 ∈ s.bindings

∧(b1 6= b2) ∧ (b1.to = b2.to) ∧ (b1.peg = b2.peg) ⇒ (b1.from 6= b2.from))

In the model specified so far, there is nothing to limit the number of pegs of a

particular type that may be connected to a particular hole. A component that can accept

plugins of a particular type can accept as many of these as are available. Referring to

the jigsaw analogy, binding multiple times to one hole effectively creates copies of that

hole, so that there is always a space for another plugin to be connected. Placing limits

on the number of plugins that can be accepted is discussed in Section 3.2.4.

3.2.3. Plugin Addition

The addition of a plugin component to an existing system needs to be modelled.

A component can only be bound if it contains a class that is not abstract, and that

implements an interface accepted by a component in the existing system. But before

looking at a function to add a new component to a system, it is necessary to test whether

two components with an associated interface and class can be bound at all.

4Unfortunately this is not something that it is possible to describe using the jigsaw analogy, as it is

akin to putting one peg in more than one hole at the same time.

3.2. A Formal Model 45

App

Interface

holes

System
start: App

Plugin

Binding
to: Plugin
from: App

Class
pegs

implements

hole

peg

Figure 3.5.: One component added

Definition 5 (canBind)

canBind ⊆ CL × C × I × C

canBind (cl, c′, i, c) ⇐⇒ (i ∈ c.holes) ∧ (cl ∈ c′.pegs.)∧

(c′ 6= c) ∧ ¬cl.abstract ∧ i ∈ cl.implements

It is assumed that the set cl.implements contains all of the interfaces that the class is

declared as implementing, plus all of the superinterfaces of each of these interfaces (if

a class implements interface i, it automatically implements all of the superinterfaces

of i).

If a component can be bound to another component in a system, then it can be

added to that system and interact with the other components. If it cannot be bound

(because none of the components currently in the system have compatible interfaces),

then it can be added in a dormant state. None of its code will execute until the system

configuration changes so that it can be bound.

The following three functions define how a component is added to the system. It

is first loaded, i.e. added to the set of components that comprise the system, and then

bindings are created between compatible pegs and holes. One of the binding policies

should be applied so that either 1-1 binding or 1-n binding is followed as desired.

Definition 6 (load)

load : (S, C) −→ S

load(s, c) = s′ ⇒ s′ = {s.comps ∪ {c}, s.bindings, s.start}

Definition 7 (bind)

bind : S −→ S

bind(s) = s′ ⇒ s′ = {s.comps, b, s.start} ⇒ b = s.bindings ∪ B(s)

46 Chapter 3. Modelling

1
 1
 1

Figure 3.6.: Chaining with cardinality constraints

such that:

B(s) = {(cl, c, i, c′)|(c, cl) ∈ P (s) ∧ (c′, i) ∈ H(s)

∧ canBind(c, cl, c′, i)

∧ ¬∃i′ : I.(i′ ∈ comps.holes ∧ canBind(cl, c, i, c′) ∧ i′ ⊆ i)}

P (s) = {(c, cl)|c ∈ s.comps ∧ cl ∈ c.pegs}

H(s) = {(c′, i)|c′ ∈ s.comps ∧ i ∈ c′.holes}

where i′ ⊆ i indicates i′ being a subtype of i

Definition 8 (addition function)

add : (S, C) −→ S

add(s, c) = bind(load(s, c))

Figure 3.5 shows a system with an application and a single plugin5. In this system

the starting component is App, which has a single hole whose type is defined by the

Interface. Plugin is added and a binding is formed from App to Plugin because Plugin

contains Class, which implements Interface.

3.2.4. Extending the Model with Cardinality Constraints

In the model described so far, the number of plugins that can be bound to a particular

interface (of a particular component) simultaneously is not prescribed. A given inter-

face in a component’s holes set may have any number of classes bound to it. This is

5This figure was generated using the Alloy visualiser tool, see Section 3.2.8 for more details.

3.2. A Formal Model 47

Ext2

Intf2
n: T

holesClass2

pegs

Ext1

holes Class1

pegs

App

Intf1
n: 0

holes

System
start: App

Binding2
to: Ext2
from: Ext1

Binding1
to: Ext1
from: App

implementsimplements

hole

peg

hole

peg

Figure 3.7.: Several components forming a system

not always what is required. Sometimes the number of classes that can be bound to

an interface is limited. Returning to the first case discussed, (Figure 3.1), it should be

possible to add any number of plugins to the application as long as they implement

the correct interface. However, there might be cases where it is desirable to put limits

on the numbers of plugins that can be attached. This might be the case when each

plugin that is added consumes a resource held by the main application, of which a

limited quantity is available. Alternatively there might be multiple possible provisions

available, only one of which is required. In this case one of the available provisions

should be selected, either randomly or in accordance with further constraints (as

detailed in Chapter 5).

Revisiting the chaining patterns discussed earlier (see the example in Figure 3.2),

but restricting cardinalities, a number of different components of the same type can be

chained together, by having each provide and accept one peg of the same shape (see

Figure 3.6). This is similar to a Decorator pattern [31] for components. A decorator

conforms to the interface of the component it decorates so that it adds functionality,

but its presence is transparent to the component’s clients. Such a situation might be

useful when chaining together video filters, each of which took a video stream as an

input and provided another stream as an output. Each filter could perform a different

transformation (e.g. converting the image to black and white, or inverting it) but the

48 Chapter 3. Modelling

components could be combined in any order, regardless of the number in the chain.

Plugins would allow this configuration to be changed dynamically over time.

The effect of restricting the cardinality of a hole is to allow it to become full after

a certain number of plugins are bound to it. After this, no more plugins can be bound

to this interface until such time as one or more of the existing bindings are removed.

In theory, the cardinality of a hole could be set as any of the natural numbers, or left

unlimited. However, it is more practical to restrict the possible values for cardinalities

to 0, 1 and infinity (where infinity denotes no limitation). These values are sufficient

for the cases where no more components may be bound (i.e. the hole is full), where

one more may be bound, and where there is no limit on how many more may be

bound. This relates nicely to the notions of scalar values and lists. In the case that it

is necessary to be able to accept precisely two plugins of a particular type, this can be

achieved using two scalar holes (each with cardinality 1).

To incorporate this into the model, interfaces need to be extended so that they also

model the number of bindings in which they can participate at any one time. A set of

numbers to be used for possible cardinality values is defined as discussed above.

Definition 9 The numbers N are defined as:

N = {0, 1,>}

such that:

>− 1 = > + 1 = >

0 + 1 = 1

1 − 1 = 0

Definition 10 A numInterface ni : NI is defined as:

ni = {i : I, n : N}

NumInterfaces need to replace interfaces throughout the definitions and properties.

More importantly, the definitions of canBind and bind need to be changed to take

the numbering into account. In addition to the checks regarding subtyping that were

3.2. A Formal Model 49

present in the previous version of canBind, a peg can only be bound to a hole if the

number associated with that hole is not zero (so the hole is not full). Secondly, when a

new component is bound, the number associated with the relevant interface should be

decremented, so that it will become zero when the hole becomes full.

Definition 11 (dec)

dec : (C,NI) −→ C

dec(c, (i, n)) =











































{ c.pegs,

{c.holes \ (i, n)

∪(i, n − 1)}

} if n 6= 0

c if n = 0

Definition 12 (canBind (revised))

canBind ⊆ CL × C ×NI × C

canBind (cl, c′, (i, n), c) ⇐⇒ (i ∈ c.holes) ∧ (cl ∈ c′.pegs.) ∧ n 6= 0

∧ (c′ 6= c) ∧ ¬cl.abstract ∧ i ∈ cl.implements

Definition 13 (bind (revised))

bind : S −→ S

bind(s) = s′ ⇒ s′ = {n, b, s.start} ⇒ n = D(s.comps, B(s)) ∧ b = s.bindings ∪ B(s)

such that:

B(s) = {(c, cl, c′, i)|(c, cl) ∈ P (s) ∧ (c′, i) ∈ H(s)

∧ canBind(c, cl, c′, i) ∧ ¬∃i′.canBind(cl, c, i, c′) ∧ i′ ⊆ i}

P (s) = {(c, cl)|c ∈ s.comps ∧ cl ∈ c.pegs}

H(s) = {(c′, i)|c′ ∈ s.comps ∧ i ∈ c′.holes}

D(cs, bs) = {k|k ∈ cs ∧ ¬∃j.j ∈ bs ∧ j.from = k}

∪ {dec(k, i)|k ∈ cs ∧ ∃j.j ∈ bs ∧ j.from = k ∧ i = j.hole}

50 Chapter 3. Modelling

Figure 3.8.: Constructing a pipeline under 1-1 binding

The bind function creates a new system with all of the original bindings, plus

new bindings as created by the function B(s). The components of the new system

are the same as those of the old, but with the numbers of holes available for newly

bound NumInterfaces decremented. B(s) constructs a set of new bindings between

compatible pegs and holes in the system. Where there are multiple possible candidate

bindings, they are generated in a random order and the first is selected.

3.2.5. Binding under Cardinality Constraints

A pipeline architecture can be formed by plugging together a set of components each

of which provides and accepts the same service. To have a linear configuration, rather

than a pipeline that may fork, requires restricting cardinalities so that each component

can accept only one plugin (that will form part of the pipeline). With the application

of a 1-1 binding policy, the pipeline is constructed as expected. Each component in the

pipeline is connected to one upstream and one downstream component forming a linear

chain. Figure 3.8 shows the pipeline (with the source on the left) growing as a third

component is added. In this figure a Darwin [50] style notation has been used. White

circles represent required (acceptable) services, and black circles provided services. In

the Darwin language these are referred to as required and provided ports. Lines joining

provided ports to required ports signify bindings.

However, somewhat unexpectedly, the intended structure does not result if the 1-

n binding policy is applied instead. In this case binding may proceed as pictured in

3.2. A Formal Model 51

Figure 3.9. The first addition has the same effect as with 1-1 binding, but with the next

addition, the second the hole at the new end of the chain may be filled by the provision

of the second component. The structure that results is: a) not the linear pipeline that

was intended, b) unable to be extended with further plugins as all the requirements are

bound - all the holes are full.

In order to guarantee that the desired structure is produced, another global constraint

on the structure can be introduced. In this case it would state that there should be no

cyclical paths between components6. Again, whether this constraint is imposed is a

choice to be made by the deployer of a particular system.

Property 4 (No cycles in any s : S)

p ⊆ C × C

p = {(c1, c2)|∃b : B.b = (c1, , c2,) ∧ b ∈ s.bindings}

∀c : C.(c, c) 6∈ p∗

3.2.6. Plugin Removal

The capability to model the removal of components is also required. In contrast to the

addition function, it is not necessary to test whether a component has any particular

ports before removing it. Any component that has previously been added can be

removed. However, as well as removing the component in question, any bindings in

which it was involved must also be removed. Once these bindings have been removed,

the binding algorithm is re-applied so that bindings are formed between any pairs

of components that may be now bound. Any components left isolated remain in the

system, and may be reconnected the next time that the system is reconfigured.

Definition 14 (remove)

remove : (S, C) −→ S

remove(s, c) = bind(s′) ⇒ c ∈ s.comps ⇒ s′ = { s.c \ {c},

s.bindings \ {x},

s.start}

where x = {(c′, cl, c′′, i)|(c = c′ ∨ c = c′′) ∧ (c′, cl, c′′, i) ∈ s.bindings}

6The superscript ∗ in the definition of the property represents transitive closure

52 Chapter 3. Modelling

Figure 3.9.: Constructing a pipeline under 1-n binding

3.2.7. Plugin Replacement

It is desirable to be able to replace a component in a running application with a new

one, possibly to perform maintenance by changing to an improved version of that

component. Before replacing one component with another, it is important to check

that the proposed replacement contains the functionality of the existing component.

A safe upgrade is one in which no functionality that was available before the upgrade

is unavailable afterwards. In terms of provided and required services, the necessary

condition is that the proposed replacement component provides at least the services

that the one it is replacing does. However, it may be the case that not all of a plugin’s

provisions are being used in a particular system configuration. In this case, the check

can be restricted to the provided services that are bound in the current configuration.

In plugin systems it is only the provisions that need to be considered, as require-

ments are always optional. The following predicate can be used to check whether a

proposed replacement component has a provided service for every provided service of

an existing component involved in a binding in the current configuration. If this is the

case then the new component can safely replace the old one.

3.2. A Formal Model 53

Definition 15 (canReplace)

canReplace ⊆ C × C × S

canReplace(c, c′, s) ⇐⇒ (c ∈ s.comps) ∧ (c′/∈s.comps)∧

∀b.(b ∈ s.bindings ∧ b.to = c) ⇒

∃p : CL.(p ∈ c′.comps ∧ c ⊆ b.from)

If the canReplace predicate holds, the replacement can proceed by removing the old

component from the system, adding the new component into the set of components,

and substituting the new one for the old one in any bindings where the old component

was providing a service. As the new component may provide or accept more services

than the old one, the binding function is applied again to create any new bindings that

are now possible.

Definition 16 (doReplace)

doReplace : C, C,S −→ S

doReplace(c, c′, s) = {s.comps \ {c} ∪ {c′}, b′, s.start}

such that

b′ = {b1|b1 ∈ s.bindings ∧ b1.to 6= c}∪

{swapTo(b1, c
′)|b1 ∈ s.bindings ∧ b1.to = c}

swapTo((t, p, f, h), c′) = (c′, p, f, h)

Definition 17 (replace)

replace : (C, C,S) −→ S

replace(c, c′, s) =







bind(doReplace(c, c′, s)) if canReplace(c, c′, s)

s otherwise

3.2.8. Developing the Model

The development of this model was aided by the use of the Alloy modelling and visual-

isation tools [42]. Part of the Alloy model appears in Appendix A. The Alloy analyser

was used to verify that the specification does not contain inconsistent constraints.

54 Chapter 3. Modelling

Alloy is a lightweight notation that supports the description of systems that have

relational structures. The systems that are described by this model are concerned

with sets of linked components, so Alloy is a particularly appropriate language.

The notation allows any first-order logical expression plus transitive closure to be

written. In addition to providing language constructs that fit the domain, Alloy has

the advantage that specifications can be analysed automatically. Analysis is supported

by the Alloy Constraint Analyser (ACA) [43].

Given a specification, a system of constraints, the Alloy tool uses a SAT solver to

try and find an example system that satisfies the constraints. In the case of inconsistent

constraints, the analyser will report that it could not generate an example that satisfies

the constraints specified. This indicates that it would not be possible to construct a

system corresponding to this model. For example, initially we stated that there should

be no components in the system that were not bound to other components, so that no

“orphan” components could exist, but as a result of analysis realised that this meant

that systems with only one component were not valid. This made it impossible to

construct systems by plugging new components into an initial core component, as the

system with just the core component would never be valid. The constraints therefore

had to be relaxed to allow this case.

Where the constraints can be satisfied, Alloy generates a witness, which can be

examined textually or graphically. This can lead to example situations (configurations

of components etc.) that may not previously have been considered, being generated.

For example, with early models we quickly found that witnesses often featured

components bound to themselves, fulfilling their own requirements. This was not a

desirable situation and so constraints had to be added in order to prohibit it.

The ACA tool provides a visualiser that will display example structures graphically.

This representation is easy to interpret. We can see how the components have been

joined together to form a system. The figures in this chapter were generated by this

visualisation tool (with minor hand editing of labels to make the examples easier to

understand). The visualisation tool is quite flexible, allowing parts of the model to be

omitted if desired, and showing labels either within an object or with an arrow from

the object. In Figure 3.5 both techniques have been used, to add clarity.

3.3. Summary 55

Figure 3.7 was produced from the Alloy version of the model including numbers7.

The figure shows an application extended by a chain of components, as in the second

example in Figure 3.1. Where n : 0 appears in the diagram it means that no more classes

can be bound to this interface and n : T indicates an infinite (unlimited) cardinality, so

any number of classes can still be bound to this interface.

The model presented is a general representation of all possible configurations of

components that we wish to consider as plugin systems. It includes the concepts

of interfaces and classes implementing those interfaces, but does not mention any

particular classes. If it were possible to create a more specific model, for a particular

configuration of components, it might be possible to use Alloy’s SAT solver engine

to generate possible new configurations when a new component is added. However,

with the current technology available, it is very difficult to provide Alloy with an

exact situation from which the constraint solving algorithm should start. As we have

seen, the constraints tend to talk about the world as a whole. It is difficult to specify

that there are, for instance, four components that have particular interfaces and are

bound in a particular way. An interesting future avenue of work might be trying to

generate suitable sets of constraints that represent a particular configuration, while

still allowing the constraint solver the flexibility to find possible alternatives for new

bindings. However, this has not been pursued in this thesis.

3.3. Summary

By creating a formal model of plugin systems, we have defined precisely what we

consider plugin systems to be and how they can be configured and assembled. The

model was presented in the form of a set of logical definitions and constraints. Various

design decisions were discussed, including what we consider must be true for all

plugin systems, for example that all classes must be deployed as part of an enclosing

component, and what may be altered by the deployment engineer dependent on the

particular situation in which plugins are being deployed, for example the particular

7In a finite Alloy model a natural number larger than the scope for which the model is analysed has

the same effect on binding as an infinite number would.

56 Chapter 3. Modelling

binding policy that is selected. The model forms the basis for the work presented in the

next chapters on programming using systems of plugins (Chapter 4), and implementing

a platform that supports the use of plugin components (Chapter 6).

4. Programming with Plugins

In Chapter 3 we defined an abstract model of plugin systems, describing components

and how they can be combined to form systems. In this chapter we explain a devel-

oper’s view of our plugin model, as realised in a practical programming language.

Examples are given showing how the concepts of plugin components, provisions and

requirements presented in the previous chapter may be expressed in an object-oriented

programming language. We show how the features of an object-oriented language

may be used to organise software into sets of components that may be assembled

in accordance with the model. The examples presented here are in Java. We are not

concerned in this chapter with the implementation of the runtime framework that will

support the management of plugins, this is discussed in Chapter 6, only with what

concerns a programmer using plugins to develop software.

4.1. Components

In the previous chapter, a component was presented as being a unit of encapsulation

and composition, a bundle of resources (code and data) that together may provide

certain functionality. It is the code inside the component that provides its functionality,

the component itself is just a container, a mechanism for packaging together sets of

resources. The standard mechanism for packaging Java classes and other resources

together into a deployable unit is to form a Jar archive. This is a compressed file that

can aggregate a number of resources, and may be read (and decompressed) by the

standard Java runtime system.

In some component models, components are provided as completely black boxes,

57

58 Chapter 4. Programming with Plugins

but come together with a set of meta-data that describe the interfaces through which

the component may interact with other components.

In order to try and minimise the programmer effort required, the approach taken here

is not to provide a meta-data description, but to allow the contents of the component

to be inspected by the component framework. The provisions and requirements will

be deduced from the code within the component. The manner in which provided and

required interfaces manifest themselves in code is explained in the following sections.

Also aiming to minimise the extra effort required by the developer using the plugin

architecture, as much of the management and infrastructure code as possible has been

factored into the plugin framework. To reduce the components’ dependence on their

environment (and hence attempting to increase their possible re-use), the third-party

binding model is used [66]. Components do not try to discover and bind to other

components. All connections between components are established by a third party,

the plugin framework.

4.2. Provisions

A plugin is considered to provide a particular service if it contains a class that

provides an implementation of that service. In Java a class signifies that it provides an

implementation of a service by declaring that it implements a particular Java interface.

The example in Listing 4.1 shows a class and interface declaration. Compiling the

interface and the class and packaging them into a Jar archive would form a component

that might be added as an extension to any application where it is desirable that certain

events are logged. From here on this component will be called Logger.

Making such functionality a plugin means that it is easy to switch logging on and

off, or to switch between different types of logging dynamically at runtime without

interrupting execution of the application. The logging example is often used by the

Aspect-Oriented Programming [21] community. Using aspects, code can be woven

into a program to execute before or after a particular method; for example, after every

database query, code is run to log that query. This means that the need for logging

need not necessarily be anticipated at design time. However, in order to add or remove

4.3. Requirements 59

an aspect such as logging, the source code of the system needs to be recompiled,

and execution stopped and restarted. Even using plugins logging cannot be introduced

dynamically if the need for it was never anticipated. A call to the logger must be

present in the code of the requiring component so that it may be executed when an

appropriate provider is present. However, whether or not logging is performed, or

which component performs it can be changed dynamically during execution.

The name of a component is represented as the name of the Jar file, and is therefore

not mentioned in the source code of any of the classes. The FileLogger class

implements the Log interface. In the write() method it timestamps each log

message and records it by writing it out to a file. The modifier public is used for

both the interface and class declarations, as these entities are intended to be used by

other components. The Logger component can be plugged in to any application that

can accept a Log as a plugin.

public interface Log {

public void write(String msg);

public void close();

}

public class FileLogger implements Log {

FileOutputStream logfile;

...

public void write(String msg) {

logfile.println(currentTime() + msg);

}

...

}

Listing 4.1: Definition and Implementation of Log interface

4.3. Requirements

A component that can accept a plugin has a slightly more complex design than one that

only provides services. Here we show how part of a typical e-commerce application

might be written so that it can accept a Log and use it to record the occurrence of

events.

60 Chapter 4. Programming with Plugins

class BookShopServer {

Log systemLog;

BookShopServer() {

PluginManager.getInstance().addObserver(this);

}

void pluginAdded(Log plugin) {

systemLog = plugin;

}

...

void placeOrder(Book b) {

...

database.execute(‘‘INSERT INTO orders ’’ + getDetails(b));

if (systemLog != null) {

systemLog.write(‘‘Order placed for ’’ + b);

}

...

}

}

Listing 4.2: Simple server that can accept a Log plugin

For a component to use the services provided by a plugin, it must obtain a reference

to an object from the plugin. As a third-party binding mechanism is being used, i.e. all

bindings are created by the plugin framework, this is achieved through a notification

mechanism, based on the Observer design pattern [31]. Any object can register with

the platform to be notified when a new binding is made that is relevant to it.

An object calls the following method in the PluginManager class, which is part

of the framework, to register as an observer. This is shown in context in Listing 4.2.

PluginManager.getInstance().addObserver(this);

This only registers that an object is interested in new plugins, but does not specify

the plugin type. An object signifies that it can accept a plugin of a certain type by

declaring a method pluginAdded(...) that takes a parameter of that type, in

this case Log. Classes can define multiple pluginAdded() methods with different

parameter types, so that they can accept several different plugins of different types.

When the Logger plugin is added, observing objects with a pluginAdded()

method that can take a Log as their parameter are called by the framework, passing a

reference to the newly available Log object, through which methods can be called.

4.3. Requirements 61

public interface GraphicsTool {

public Icon getIcon();

public void draw(int x, int y, Canvas c);

}

public class AirBrush implements GraphicsTool {

...

public void draw(int x, int y, Canvas c) {

//implement drawing code here

}

public Icon getIcon() {

return icon;

}

}

Listing 4.3: Definition and Implementation of GraphicsTool interface

The parameter will no longer be in scope after the end of the pluginAdded()

method, so in order to maintain a reference to this object, as is normal object-

oriented programming practice, this reference is assigned to a field of the object.

Calls to the plugin object are enclosed in a conditional block with the condition if

(systemLog != null), as the field will be null until the plugin is added, and

calling a method on a field that is null will cause an exception to be thrown.

Here the class BookShopServer has a field systemLog of type Log. It also

has a pluginAdded() method that takes a Log as a parameter. Inside this method

the parameter is assigned to the field. In the placeOrder() method, if a value has

been assigned to the systemLog field then the plugin is called, recording the order.

It is the presence of a field in a class, together with a pluginAdded()method that

assigns to that field, that is used to signify a requirement. If the presence of a suitable

method alone were used, it would not be possible to determine how many times that

method could be called before all of the requirements were fulfilled. The assignment

to a scalar field indicates that this is a hole with a cardinality of one. Once the method

has been called and the assignment made, the hole is full.

It will be noted that it is much more difficult to extract information about the

required services from a component than the provided services. It is necessary to look

for names of fields, or examine the body of the pluginAdded() method, rather

62 Chapter 4. Programming with Plugins

than simply finding the type of the class. A trait of object-oriented programming is

that objects typically declare the methods that they provide (and may exhibit these

through a type), but not those that they use from other objects.

4.3.1. Accepting multiple plugins

An application is likely to use only one logging source, but there are times when

multiple plugins would be useful. Consider a component that can accept many plugins

of a particular type, as specified in our model in the previous chapter, for example

a simple paint program that can be extended by plugging in a number of different

drawing tools. A Brush component might comprise the following class and interface.

The GraphicsTool interface states that all GraphicsTools must be able to

provide an icon, and be able to draw on a given canvas (see Listing 4.3).

The paint program that uses this plugin keeps a list of all the currently available

tools. Whenever a new tool is added, it is added to the list. Whenever the window is

redrawn, the program iterates through all of the available tools to draw their toolbar

buttons (see Listing 4.4).

class PaintProgram {

List tools;

GraphicsTool current;

PaintProgram() {

tools = new ArrayList();

PluginManager.getInstance().addObserver(this);

}

void pluginAdded(GraphicsTool plugin) {

tools.add(plugin);

}

void redrawWindow() {

...

for (Iterator i = tools.iterator() ; i.hasNext();) {

GraphicsTool gt = (GraphicsTool)i.next();

drawButton(gt.getIcon());

}

}

...

}

Listing 4.4: Simple paint program that can accept multiple GraphicsTools

4.3. Requirements 63

Figure 4.1.: The Virtual Fish Tank application

In this case, the reference to the plugin that is added is not assigned to a scalar field,

but is added to a List (one of the Java Collection classes). Calling the pluginAdded()

method repeatedly with different objects will therefore not overwrite the previous

plugin object that was added, but record the addition in the list. In this way a

hole has been created that has no cardinality constraint upon it. New plugins of the

GraphicsTool type can always be added.

4.3.2. More complex configurations

The Virtual Fish Tank is an example application demonstrating the use of plugins. The

basic application displays an uninhabited fish tank on the user’s screen. Over time,

different inhabitants can be added to the tank (see Figure 4.1). These inhabitants are

supplied in the form of plugin components.

Initially, the system starts off with only the Tank component. In order to be added

to the tank, a prospective inhabitant must have a class that implements the following

interface (in terms of the jigsaw analogy, Tank has a hole with a shape defined by this

interface):

public interface Inhabitant {

public void move();

public void draw();

}

64 Chapter 4. Programming with Plugins

All Inhabitants can therefore be asked to move themselves, and be asked to

draw themselves on the screen. Figure 4.2 shows a picture of an example configu-

ration of components in the Virtual Fish Tank, produced using the Alloy Constraint

Analyser’s visualiser (with some editing of labels for clarity).

It is possible to add a Weed to the tank. A Weed component comprises only one

class (but it is still enclosed in a Jar file), which knows how to draw a weed, and

when asked to move will do nothing. This class provides the peg that allows the Weed

component to connect to the Tank. It also provides an implementation of the Food

interface, meaning that possible consumers can gain sustenance by eating the weed.

public interface Food {

public void eat();

}

public class Weed implements Inhabitant, Food {

public void move() { /* do nothing */ }

public void draw() { /* draw weed */ }

public void eat() { /* get smaller */ }

}

Listing 4.5: Code for the Weed component

Another possible inhabitant for the tank is the Goldfish. Goldfish is a component

comprising two classes:

class Fish {

void draw() { ... }

}

public class GoldFish extends Fish

implements Inhabitant, Food {

Color getColor() { ... }

public void move() { ... }

public void eat() { ... }

}

Listing 4.6: Code for the Goldfish component

This component is implemented according to the template method pattern [31].

Behaviour common to all types of fish is defined in the superclass, with the subclass

4.3. Requirements 65

Tank

Inhabitant

holes

System_0 start: Tank

Goldfish

Weed

Binding_0
to: Weed
from: Tank

Binding_1
to: Goldfish
from: Tank

GoldFish

pegs

Weed

pegs

hole

peg

hole

peg

Figure 4.2.: Alloy diagram representing fish tank application

providing the detail specific to Goldfish about its colour and how it moves. The

GoldFish class provides the peg to fit in an Inhabitant hole, and also provides

an implementation of Food, as it is possible that the fish may also be eaten.

The last type of component that will be considered is a predator. The Hungryfish

is implemented in a similar way to the Goldfish (it has a different colour, and moves

slightly faster than the Goldfish). The Hungryfish can also maintain a reference (in a

scalar field) to the Food that is its prey at a particular time. In fact, the Fish class

in both the Hungryfish and Goldfish components is identical (the differences occur

in the subclasses), however it is still necessary to include Fish in both components.

It is not known which of the two will be added first (if they are added at all) and so

each component must independently provide all of the resources it needs in order to

function.

Figure 4.3 shows a situation in which a Hungryfish, which is both an Inhabitant

and can accept Food is about to be added to the Tank. The Hungryfish will be bound

to the Tank by its Inhabitant interface. It will also be bound to one of the other

inhabitants, which it sees as food, by its Food interface. In the situation shown, which

inhabitant the Hungryfish will be bound to is not clear. There are two possibilities, the

Hungryfish can eat either the Weed or the Goldfish.

Which binding is made could be decided by making a random selection. However,

66 Chapter 4. Programming with Plugins

Tank

Goldfish

Weed

Hungry

Fish

Figure 4.3.: Adding a Predator to the fish tank

it may be desirable to use a more sophisticated mechanism to make the choice. The

next chapter will examine how constraints may be defined that inform or govern the

binding behaviour.

4.3.3. Null Objects

Returning to the logging example, at the part of the program where the service

provided by the plugin is actually called, the following line is present:

if (systemLog != null) {

systemLog.write(‘‘Order placed for ’’ + b);

}

The test for null is there to ensure that a method is not called on a null reference

(which in Java would result in a NullPointerException being thrown at runtime).

Having to include this code is a side-effect of using the third-party binding mechanism.

A technique for avoiding this is to use a NullObject to act as a placeholder. A

NullObject provides an empty implementation of an interface. The methods can be

called but will do nothing. Hence the BookShopServer’s code could be updated to that

shown in Listing 4.3.3:

Here the empty implementation of the GraphicsTool interface is included in the

component. Rather than leaving this as a somewhat tiresome task for the developer,

4.4. Plugin Removal 67

class BookShopServer {

Log systemLog;

BookShopServer() {

systemLog = new NullLog();

PluginManager.getInstance().addObserver(this);

}

void pluginAdded(Log systemLog) {

systemLog = plugin;

}

...

void placeOrder(Book b) {

...

database.execute(‘‘INSERT INTO orders ’’ + getDetails(b));

systemLog.write(‘‘Order placed for ’’ + b);

...

}

}

class NullLog implements Log {

public void write(String msg) {}

}

Listing 4.7: BookShopServer with NullLog

NullObjects can be generated dynamically for a given interface. Details of how this

may be achieved are given in Appendix B.

4.4. Plugin Removal

It is not possible for a component to free up a hole just by discarding its reference

to a plugin. As it is the plugin framework that creates bindings, it must also be the

framework that removes bindings, in order that the framework always maintains an

accurate set of the connections in the system. If a component nullifies a field, releasing

a reference to a plugin, then although that component can no longer access that plugin,

from the point of view of the framework, the configuration has not changed. In order to

effect a change in the configuration, it must be the framework that initiates the breaking

of the connection between two components.

Components are notified of the imminent removal of a plugin using the same

68 Chapter 4. Programming with Plugins

Observer mechanism as is used during plugin addition. The framework will call a

pluginRemoved()method that has the appropriate parameter type in an observing

object. It will pass a reference to the object that is about to be removed as a parameter.

On notification, the component should clean up any references that it holds to this

object. For instance, in the Logging example:

class BookShopServer {

Log systemLog;

...

void pluginAdded(Log plugin) {

systemLog = plugin;

}

void pluginRemoved(Log plugin) {

systemLog = new NullLog();

}

}

Here the systemLog field is nullified in the pluginRemoved() method. After

this method completes, the framework can remove the plugin. The programmer can

assume that the plugin will still be available during the execution of the body of the

pluginRemoved()method, and so can, and should, call any methods on the plugin

that are required to clean up before it is removed. For example it might be desirable to

close the log, or even log the fact that the log is being removed. In the paint program

example the pluginRemoved() methods would simply call tools.remove(

plugin) to remove the tool from the list of currently available tools. After the

relevant pluginRemoved() method has been called, a scalar hole is considered to

be empty again.

class BookShopServer {

Log systemLog;

...

void pluginRemoved(Log plugin) {

systemLog.write(‘‘Log plugin removed.’’)

systemLog.close();

systemLog = null;

}

...

}

4.5. Replacement 69

4.5. Replacement

The replacement of plugins is something that the programmer should not have to

consider. If the BookShopServer is using a Logger component, and that component

is upgraded to a newer version, or switched for a logging component that will send

log messages by email rather than writing to a file, then this should not affect the

server. As all logging plugins implement the same Log interface, which particular

implementation is being used at any time is not important to the server, and it should

be possible to interchange the different logging plugins transparently.

Because of this, the fact that it is desirable to be able to replace plugins with different

versions dynamically should not manifest itself in the source code written by the

developer using the plugin framework. Details of how replacement can be performed

are discussed in Chapter 6, but as these should not affect anyone developing with

plugins, they will not be discussed further here.

4.6. Summary

This chapter has given several concrete examples of programs that have been designed

to use plugin components. The examples given are in the Java programming language

and follow the model presented in the previous chapter. These examples show how

a system of plugin components can be used by a developer to create a dynamically

extensible or reconfigurable system.

The main contribution of the approach to programming with plugins presented here

is that the notions of provided and required (or accepted) services have been mapped

to idioms familiar to object-oriented programmers, namely interface implementation

and callback method parameters. This is in contrast to approaches such as those taken

by Avalon [2] or Eclipse [60] where the provided and required interfaces are defined

by various meta-data. We do not need to introduce these different data formats as all

the information is expressed in the source code itself. The programmer does not need

to swap between different data representations.

A trait of object-oriented programming is that it easy for classes to express the

70 Chapter 4. Programming with Plugins

services that they provide, through their public methods and interfaces. It is however

much more difficult to determine the services that a component requires, as these are

not typically exhibited through types. We have used the types of parameters in callback

methods to specify required interfaces. This is in contrast to approaches such as those

used by OSGi [64] or Avalon where a string is used to name the services that a client

requires.

In OSGi, and similarly with ActiveX [55], each plugin component must implement

a particular interface in order to be called back by the plugin framework. While this

does provide some static assurance of compatibility between user components and

the supporting framework, in order for the implemented interfaces to work with any

component, they must be very general. This commonly means that any reference

received from the supporting framework must have a very general type (Object in

Java) and be cast to a more specific subtype before it is used.

We use a reflective mechanism to allow method declarations to be typed more

specifically. We do not require the implementation of a specific interface, but rather

the adoption of a convention. The runtime framework uses reflection to dynamically

detect which methods it should call by matching parameter types. This allows the

programmer to write callback methods whose parameter types match the types that

they wish to use in their program. This removes the need for ugly casting. The

parameter types of callback methods then also indicate the services required from

other components. By using Java types rather than strings to identify interface names

and types the code is cleaner and remains within the standard Java programming style.

The Java compiler can also use the type information to give greater assurance of the

correctness of programs statically.

In the case that plugins must extend a particular class, e.g. in the PluggableCompo-

nent system [78], the use of a plugin mechanism cannot be introduced to a class that is

already part of an inheritance hierarchy (in a single inheritance model at least). Also,

any class that provides a service as a plugin cannot be used in an environment that does

not involve the plugin framework, as in order to load the class, all of its superclasses

and interfaces must also be loaded. We avoid these restrictions by allowing any class

to be used as a plugin that provides a service. We do not require that it forms part of

4.6. Summary 71

the plugin framework’s type hierarchy.

We showed the programming idioms to which developers need to adhere to create

plugin systems according to our model. Mechanisms were described for the addition

and removal of components. The additional code that a developer has to write in order

to use our plugin system is minimal: one line to register an interest with the plugin

platform, and one short callback method for each type of plugin that can be accepted

by the current component. Replacement of components should not have an effect on

the source code of the application, as it should occur transparently. Considering the

replacement of components should be the responsibility of the deployment engineer,

not the developer of individual components.

The style of programming shown in the examples in this chapter uses a third-party

binding paradigm. This means that the client does not explicitly ask for a component

that will provide it with a service, rather, when one becomes available, the client will

be notified of this by a third-party, the runtime framework. One consequence of this is

that the client programmer does not have explicit control over when components are

connected or disconnected. It is not possible for user code to trigger a reconfiguration

of the system. Although this may seem to be a limitation in some cases, for example

if the application is monitoring its own performance in some way, we believe that

encapsulating coordination and reconfiguration functionality in a lower layer of the

system makes user level code cleaner and more maintainable. Organising the system

this way reduces duplication of common code, for example that used to query a service

registry, among components.

In order to support the development of plugin systems in the style presented, some

sort of runtime plugin framework is required. We require that the framework can

inspect the code of components to detect which interfaces they implement, i.e. which

services they provide, and to detect the occurrence of pluginAdded() methods,

extracting their parameter types to identify required services. The framework must be

able to match provided and required services and create and manage bindings between

components when appropriate pairs are found. The implementation of such a plugin

framework is discussed fully in Chapter 6.

5. Constraining and Analysing

Plugin Systems

The model that we have presented for writing and assembling software systems based

around plugin components allows the formation of many different systems, either by

combining different sets of components, or, for a given set of components, binding

them together in different ways to form different configurations. Having such a large

set of possibilities can lead to systems being formed that do not behave in a desirable

way. In order to prevent this, constraints need to be placed upon the systems assembled.

In this chapter we discuss the sorts of constraints that may be desirable to place on

systems, and how they might be specified and enforced1.

5.1. Deployment

Systems created from plugin components may be deployed in stages, adding function-

ality as and when it becomes needed and available, by adding or replacing components

over time. Components may be acquired from many different developers or vendors.

The plugin model makes it possible for system administrators to add components to

a system without their developers having to write additional code, and so the issue

of configuration is out of the hands of the software developer. This also means that

a developer, in writing a new component or a new version of an existing one, cannot

know the set of components that it will be interacting with. He also cannot know the

1Some of the material presented in this chapter formed the core of a paper published at the

Fundamental Approaches to Software Engineering (FASE) 2004 conference [14].

72

5.1. Deployment 73

configuration in which his component will be deployed, as different sites may provide

very different environments.

This could easily lead to incorrect operation of a component or set of components.

A component could be bound or called in a way not intended by the developer, and

therefore cause malfunction in the system. If a system is started with a configuration

that causes problems, then it may not be viable to put it into service. A more significant

problem would be if a plugin were added dynamically to a running system, perhaps

performing a critical service, and caused it to malfunction.

When deploying a software system, engineers desire a degree of assurance that it

will function correctly. In some critical cases, having confidence that the system will

work correctly is of the utmost importance. One way of obtaining this confidence

would be to perform a trial deployment. Experiments can then be performed to test

whether the system behaves as expected. This approach has a number of problems. In

order to be sure that the software will operate correctly in the environment in which

it will finally be deployed, the trial deployment must be done in an environment that

simulates the final deployment environment exactly. With large systems and distributed

deployment environments this is difficult to achieve. In cases where there is an existing

system that is to be upgraded without halting execution, the trial must be run alongside

the original, meaning that significant hardware and software resources need to be

duplicated. This may be costly.

An alternative is to build a model of the proposed system and test that instead. As

it does not incur the cost of constructing the full system, modelling should provide

a more pragmatic solution. Building and testing models before performing the final

deployment is common in other engineering disciplines. There is a large body of

research work dealing with formal modelling and analysis of systems. However,

formal methods are generally considered to be “hard”, and so modelling of software

systems is a specialist activity. We propose techniques for automatically constructing

and analysing models of plugin systems.

While discovering that a system does not behave as expected is informative, what

is really needed is a way of using desired properties as a way of guiding the assembly

of correctly functioning systems. In this sense, properties that are required to hold

74 Chapter 5. Constraining and Analysing Plugin Systems

Figure 5.1.: Constructing a pipeline under 1-n binding

are used as constraints on a system, and only systems that meet the constraints may

be assembled. There are two different types of constraints that may be considered.

Structural constraints deal with the configuration of the system, how components are

bound together and the shapes that result. The imposition of a particular architectural

style can be seen as a structural constraint. Behavioural constraints deal with the

actions that can occur in a system. They can enforce a particular protocol, or ensure

that a particular sequence of actions is never executed. Enforcing either of these types

of constraints requires a formal description of both the constraint and system to which

it is applied. In this chapter we will discuss techniques for applying both structural and

behavioural constraints to plugin systems.

5.2. Structure

In the plugin model presented in Chapter 3, the binding process matches only the types

of interfaces that are discovered to be provided or required by each of the components

added to the system. If a provided port is present with the same interface type as a

required port (and they do not both belong to the same component) then a binding can

be created between them.

This leaves considerable scope for different configurations to be formed. We may

want to enforce compliance with a particular architectural style (for example a pipeline,

5.2. Structure 75

or a client-server configuration). To do this we need to be able to constrain the structure

in some way.

In Chapter 3 we discussed two different binding policies, 1-1 and 1-n, the appli-

cation of which resulted in different systems being formed from the same sets of

components. Under one of these policies, the system formed was not what was desired.

The intention was to construct an extensible pipeline, but employing the 1-n binding

policy, a non-linear, non-extensible system resulted, as shown in Figure 5.1. To cure

this, a further property was defined, specifying that there should be no cycles in the

bindings formed.

These binding policies and properties can be generalised into sets of constraints

on the structure of systems. When a reconfiguration is to be applied to a system,

through the addition, removal or replacement of a component and any subsequent

rebinding, candidate configurations can be checked against the set of constraints

currently imposed, to see if the configuration is allowable. If not, then an alternative

configuration can be generated and checked. Only when a configuration has been

found that meets the specified constraints should changes in binding actually be carried

out.

5.2.1. Representing static architectures

At any point during the evolution of a dynamic component based system, the system

will have a particular configuration. In order to check whether particular constraints are

satisfied, we need a way of representing the current configuration, or the configuration

that would be present after a proposed reconfiguration is carried out. The representa-

tion needs to be capable of capturing all of the concepts presented so far in the plugin

model: components, provided and required services and bindings between them. There

are many languages that could be used to specify particular configurations of plugin

components expressed in terms of these concepts, for example C2 [72], Darwin [50],

Rapide [48] and Wright [1]. We have chosen to use the Darwin architecture description

language, developed at Imperial, as it is the language with which we are most familiar,

and it has relevant tool support which can be adapted as necessary. Darwin will be

76 Chapter 5. Constraining and Analysing Plugin Systems

used from here on to describe the structural aspects of component configurations. We

will describe how our plugin concepts map to Darwin and discuss possibilities for

specifying structural constraints.

5.2.2. Introduction to Darwin

The Darwin architecture description language [50] can be used for specifying the

structure of component based and distributed systems. Darwin describes a system

in terms of components that manage the implementation of services. Components

provide services to and require services from other components through ports. The

structure of composite components and systems is specified through bindings between

the services required and provided by different component instances. Darwin has both

a textual and a complementary graphical form, with appropriate tool support.

Darwin structural descriptions can be used as a framework for behavioural analysis.

Darwin has been designed to be sufficiently abstract as to support multiple views, two

of which are the behavioural view (for behavioural analysis) and the service view (for

construction). Each view is an elaboration of the basic structural view: the skeleton

upon which we hang the flesh of behavioural specification or service implementation.

Components

The basic building block for systems described in Darwin is the component. Compo-

nents may provide and require particular services through their exposed interfaces,

and may also compose instances of other components to create larger composite

components. A component description is similar to the notion of a class in object-

oriented programming, in that it can be instantiated to create several instances of the

same component.

Ports

Components can expose particular interfaces through which they can provide and

require services. Ports are declared as having a particular interface type (defining the

services that can be accessed through that port) and as being either provided ports or

5.2. Structure 77

required ports. Ports can be named so that they may be referenced in other parts of

the architecture description (for example in bindings). Portals are ports that are not

specified as being either provided or required. These are typically used for forwarding

ports from inner components of a composite component to expose them as ports of the

composite component. As well as simple scalar ports, arrays of ports of a certain type

may be defined. These are referenced using a name and an integer index.

Interfaces

Interfaces are used to define types for ports. They define sets of actions which may be

accessed through a particular port. To this extent, an interface is simply a set of action

names. The interface itself is given a name so that it may be referenced elsewhere in

the description.

Bindings

Two instances of components may be bound together by a particular pair of ports. This

is achieved by specifying a binding. All bindings must be specified inside a component

definition, so it is usual to create one large component that composes instances of

all of the other components in the system. Bindings may be specified either between

explicitly named ports (from required to provided), or just to a particular port type if

this is sufficient to distinguish the port (i.e. if the component in question has only one

port of a particular type).

In the example shown in Listing 5.1, the component Server provides a service Shop,

through which the three actions login, pay and download may be performed as given

in the definition of the Shop interface. The component Client uses the Shop service

through a required port named serv. The System comprises one instance of both Server

and Client (s and c respectively), with a binding between the provided port of s and

the required port of c.

All of the systems of plugin components discussed so far can be described using the

Darwin language.

78 Chapter 5. Constraining and Analysing Plugin Systems

interface Shop { login; pay; download; }

component Server {

provide Shop;

}

component Client {

require serv:Shop;

}

component System {

inst s:Server;

c:Client;

bind c.serv -- s.Shop;

}

Listing 5.1: Darwin representation of client-server system

5.2.3. Specifying structural constraints

Once we have a representation of a particular configuration of components, we

would like to check whether that particular configuration meets certain constraints.

Georgiadis [36] uses the Alloy [42] language2 to specify structural constraints for

self-organising component systems. For example, in specifying that the pipeline

architectural style should be followed, the following constraints are given:

• all c:Comp | (one c.prov) && (one c.req)

Every component c in the pipeline has one provision and one requirement.

• all c:Comp | sole c.prov.provBind

Cardinality constraint: each provided port has at most one required port bound

to it and vice-versa.

• some c:Comp | c.*connected = Comp

The set of components reachable (transitively through bindings) from each

component is the set of all components, i.e. all components form a single chain,

not several disjoint chains.

2Georgiadis uses the version of Alloy that was current in 2002. The syntax has changed markedly

since then, but the ideas behind the language remain the same.

5.2. Structure 79

• some leftEnd:Comp | no (leftEnd.prov.bind.˜port & Comp)

The pipeline does not form a ring, i.e. the provided port of the left end of the

pipeline should not be connected to any component of the pipeline chain. The

left end can be unbound.

This defines a “closed” architecture, where all of the components in the system must

be part of the same pipeline, and must all have exactly one provided and one required

port. A more useful concept is that of an “open” architecture, which Georgiadis goes

on to explain, where components that are to be used in the pipeline must have at least

one provided and one required port (to allow them to be connected into the pipeline)

but may have other ports, allowing components to have ports not concerned with

pipeline communication, and to connect to components that are not part of the pipeline.

Open architectures also permit multiple different architectural styles, and associated

constraints, to co-exist within one system, so a pipeline may contain one component

that is also part of a ring architecture. The system of constraints reproduced above is

made more sophisticated to allow for open architectures.

The Alloy specifications needed to enforce these structural constraints are quite

detailed and complex. Constraints must be specified in terms of an Alloy model of

Darwin, rather than directly in terms of Darwin constructs. A higher level constraint

language would be more expressive and more conducive to writing structural con-

straints pertaining to component systems. Work on the language Darwini is aiming to

address this.

5.2.4. Darwini

Darwini [80] is a language for specifying structural constraints for different styles

of architecture in terms of the Darwin language. “The Darwini specification is not a

specification of a specific ‘snapshot’ of the running system, but it is a specification

of an architectural pattern or style, describing component types and the allowable

interconnections of their instances.”[80].

80 Chapter 5. Constraining and Analysing Plugin Systems

The fourth Alloy constraint reproduced above, stating that in a pipeline architecture

the components may not form a ring, can be written in Darwini in the following way.

forall f in Filter { !bind f.p ˜˜ f.r; }

This constraint states that it is not permitted to be able to follow bindings transitively

from a provided port of a certain component instance in the pipeline (where all

components in the pipeline are taken to be of type Filter) and eventually reach a

required port on the same component instance.

There are currently some limitations with the Darwini language. In the above

example, Filter is defined as a particular component type, with one provided and

one required port of the same type. It cannot be parameterised, or used as a supertype

for other components that have additional ports to those that are required to make it a

filter. This means that it is currently not possible to describe open architectures with

Darwini. Also, tool support for the language is only now being developed. Hopefully,

when this work is completed it will be possible to use the Darwini language to specify

and impose structural constraints on our plugin systems.

5.3. Behaviour

We have discussed ways of constraining the structure of component systems so that

they adhere to certain architectural styles. However, this is not necessarily sufficient to

ensure that assemblies of components will behave in a desirable fashion.

A consequence of taking the view that two ports having the same interface type is

sufficient for binding them together is that types define a set of actions or methods that

must be available, but not what should happen when those methods are called, or in

which order they are supposed to be called.

This means that two components may be bound that expose the same interface, but

expect a different protocol. Therefore, components with compatible interfaces may

not in fact be compatible in terms of their behaviour. To ensure correct operation, it is

necessary to be able to specify behavioural constraints as well as structural constraints.

5.3. Behaviour 81

Again, in order to impose constraints on a system’s behaviour, it is necessary to

be able to represent that behaviour in some sort of model. Darwin’s structural view

can be enriched with a behavioural specification for each component. Focussing on

the behavioural view, we can use a simple process algebra - Finite State Processes

(FSP) [51] - to specify behaviour. A complete system specification can be written by

using the same action names in the behavioural specification as in the Darwin service

descriptions (the actions named in the interface definitions). These specifications can

be translated into Labelled Transition Systems (LTS) for analysis purposes. Analysis

is supported by the Labelled Transition System Analyser (LTSA) tool.

5.3.1. Introduction to FSP

As described in Kramer and Magee’s book [51], FSP stands for Finite State Processes.

It is a simple process calculus. FSP specifications generate finite Labelled Transition

Systems. The syntax and semantics owe much to both Hoare’s CSP and Milner’s

CCS. FSP behaviour specifications contain two sorts of process definitions: primitive

processes and composite processes. Safety properties are specified using property

automata and liveness properties using Buchi automata.

5.3.2. Specifying behavioural constraints

Behavioural constraints can be specified in terms of sequences of actions that are

desirable or undesirable. Here we use the FSP process calculus to specify such

properties.

In the client-server system that was introduced with the previous example, the server

might have behaviour that could be modelled in the following way:

Server = ({ login , pay , download } -> Server).

This indicates that any of the three actions (search, pay or download) may be

performed at any time. After the completion of any of these actions the server returns

to its initial state. The client’s behaviour could be modelled similarly:

Client = (login -> download -> pay -> Client).

82 Chapter 5. Constraining and Analysing Plugin Systems

This expresses the sequence of actions that the client will call. Its behaviour is to

log in, download an item, and then pay for it when successfully downloaded.

These two components could be plugged together to form a system, as they have

matching interfaces, but it may be the case that the operator of the server does not

want it to be possible to form a system that behaves this way. They may want to ensure

that payment is made before a download is initiated, as although the client above will

eventually settle its debts, it could quite easily be replaced with a less honest client that

just logs in, downloads and never pays. Therefore, the server administrator wants to

ensure that payment is made up front. We can specify this by means of the following

FSP property:

property MoneyUpFront = (pay -> download -> MoneyUpFront).

Composing this property together with the models of the Client and the Server, a

model checker can be used to exhaustively check the model for possible behaviours

that violate the property. In this case, performing this check would reveal that the trace

login -> download violates the property.

The system administrator would wish to check that the desired property holds before

installing this client plugin to work with this server plugin. The client might work

perfectly well with other servers that expected a cash-on-delivery protocol rather than

a money-up-front protocol. Therefore, a model for this particular configuration needs

to be generated and tested before the new plugin is bound to the server and begins

operating. The following sections discuss in detail how such a model may be generated

automatically for any configuration of components.

5.4. Matching plugin concepts with Darwin

concepts

The plugin components being considered comprise collections of (Java) classes and

interfaces bundled together in a Jar file (which may also contain other resources such

as graphics or data files). The Java code for a basic filter plugin and the corresponding

5.4. Matching plugin concepts with Darwin concepts 83

Darwin description which is generated from it are shown in Listings 5.2 and 5.3. The

Java code follows the outline introduced in Chapter 4 to provide a service and use a

service provided by another component. The code for the class and interface would be

compiled and packed into a Jar file, forming the plugin component.

For each Jar file loaded as a plugin, a corresponding component construct in

Darwin is generated. The name of the component is generated from the name of the

Jar file. In this case the name of the Jar file is BasicFilter.jar .

The Jar file may contain a number of class files representing interfaces. These are

collections of methods that define types. These are equated with Darwin interface def-

initions. Darwin components communicate through ports, either provided or required.

A Darwin interface definition defines a type that may be assigned to a port. Interfaces

are defined in terms of sets of actions.

public interface Filter { public void data(String x); }

public class FilterImpl implements Filter {

Filter next;

// constructor

public FilterImpl() {

PluginManager.getInstance().addObserver(this);

}

// implementation of Filter interface

public void data(String x) {

if (next != null) { next.data(x); }

}

public void pluginAdded(Filter f) { next = f; }

}

Listing 5.2: Java code for Filter implementation

interface Filter { data; }

component BasicFilter {

require next:Filter;

provide Filter;

}

Listing 5.3: Equivalent Darwin

Some of the classes in the Jar file may be declared as implementing certain

public interfaces. These are classes that provide services that can be used by other

components. The inclusion of such a class in a plugin is equivalent to declaring a

84 Chapter 5. Constraining and Analysing Plugin Systems

Darwin component to have a provided port with the type named by the interface. Such

a class may be instantiated several times, by a third party, to produce objects that

provide this service. These objects, therefore, do not have explicit names, and so in the

Darwin model provided ports are declared with only the type of the service provided.

Components can use services provided by other components. When a new plugin

is added to a system, any component that accepts it needs to be able to call methods

provided by that plugin in order to use it. In Darwin this corresponds to a required port.

In Java, in order to be able to call methods on an object of a certain type, a reference

to that object is required. The mechanism by which such a reference is acquired in the

plugin system is as follows.

An object registers as an observer by calling the method addObserver() in

the PluginManager class, which is part of the plugin platform. To be notified of new

plugins, the object can define a number of pluginAdded() methods with different

parameter types. When a new plugin is connected, the platform picks the relevant

method and calls it, passing a reference to the object from the new component that

provides the service. In the body of the pluginAdded() method this reference is

assigned to a field of the appropriate type.

In the case of scalar requirements, where only one plugin of a certain type is to be

accepted by a particular component at any one time, assignment of the reference to a

scalar field is sufficient. In the case that multiple plugins of a certain type are to be

accepted, some sort of data structure is required to record the references, such as a

list or a set. We detect assignment to scalar fields and addition of references to data

structures (anything that is a subtype of java.util.Collection) by reading and

analysing the byte-code in the relevant component. In the Darwin description, either a

scalar or an array port of the correct type is inserted accordingly.

In the example above, a name is included for the required port. It corresponds to

the name of the field declared in the class, next in this case. This is necessary as it

is possible for a component to have more than one required port of the same type, a

component may accept multiple plugins of the same type. These could be assigned to

different fields in the class, or added to an array. For example, a forking filter would

forward data to two different downstream components, and so would accept, and keep

5.4. Matching plugin concepts with Darwin concepts 85

f1:BasicFilter
 f2:BasicFilter

Figure 5.2.: Chain of two BasicFilters

references to, two plugins with the same interface. To find the names of fields from the

compiled code of components, again the byte-code is analysed.

When constructing a system, configuration is performed at the level of components.

A new Jar file is loaded to add a component. Any provided ports in the new component

that match required ports in other components, or vice versa, are identified. The class

that provides the service is instantiated by the plugin platform and any observers in the

component requiring the service are notified, passing a reference to this new object.

This process creates a binding between the two components. In Darwin terms, the

complete system is modelled as a composite component, inside which are included

instances of all the components involved in bindings. These instances are assigned

arbitrary, but unique, names. A binding between each relevant pair of ports and

components is also added. The following would be generated for a chain of two

BasicFilters:

component System {

inst f1:BasicFilter;

f2:BasicFilter;

bind f1.next -- f2.Filter;

}

The inst keyword begins the declaration of the two instances of type BasicFilter,

f1 and f2. The bind keyword begins a line stating that f1’s required port next is

bound to f2’s provided port of type Filter. The equivalent graphical view is shown

in Figure 5.2.

86 Chapter 5. Constraining and Analysing Plugin Systems

5.5. Analysing Behaviour

A simple example (introduced earlier) showing how these concepts might be extended

to include behaviour is a client that is connected to an e-commerce server allowing it

to purchase and download items. The Client component contains an interface Shop,

declaring the methods login(), pay() and download(), and when notified of

an object of this type will call these methods. The Server component contains a class

that implements the Shop interface. The plugin framework can create a description

of the interface and the two components in Darwin. Provided and required ports are

declared with the appropriate types. In the example, the system as a whole comprises

one instance each of the Client and Server components, with the two ports connected

by a binding.

interface Shop { login; pay; download; }

component Server {

provide Shop;

}

component Client {

require serv:Shop;

}

component System {

inst s:Server;

c:Client;

bind c.serv -- s.Shop;

}

The information in the Darwin description is purely structural. To analyse behavioural

aspects of a plugin system requires a behavioural specification for each component.

These can then be combined, in accordance with the given structure, to give a full

system model.

We require component developers to provide an abstract description of the behaviour

of their components. This could be provided separately from the component, however

one of the ideas underpinning plugin technologies is that plugins should be deployed

as single entities. It is therefore desirable not to have to provide the behavioural

model separately from the component, but to include it within. Plugins can then form

deployable units that include everything they need in order to be used.

5.5. Analysing Behaviour 87

Client
 Server

Framework

Figure 5.3.: Client provides FSPDefinition to the plugin framework

The approach taken here is to allow each component to provide a description of its

own behaviour. The behaviour is described textually in the FSP process calculus [51].

When the framework generates a Darwin description of the current state of the system,

it requests the FSP from any components that provide it, and includes this in the model.

This is achieved by allowing the plugin to provide another service which binds

directly to the plugin framework (which is itself a component that can be connected in

the same way that any other in the system can), see Figure 5.3. The technicalities of

this are discussed in Section 6.5.2.

The following behavioural description for the Client could be written in FSP and

included in the Client component:

Client = (serv.login -> serv.pay ->

serv.download -> Client).

This behavioural description shows an ordering of actions called through the serv

port. The process is called Client matching the component name. The actions that

it performs are logging in, then downloading an item, then completing payment. After

completing this sequence the process repeats. This ordering of events cannot be derived

from the interface descriptions alone.

When the framework generates the system description, it requests the FSP descrip-

tion from the Client and includes it inside the definition of the Client component (inside

a special type of comment /% ... %/) in the Darwin specification, as below.

88 Chapter 5. Constraining and Analysing Plugin Systems

In the case that a component does not provide an FSP description of its behaviour, as

with the Server component in this example, a process can be generated that allows any

of the actions from the component’s provided interfaces to be performed in any order.

If no further detail is given, it is assumed that there is no interdependence between the

methods exposed in the component’s public interface, and that they may be called in

any order. This may lead to over optimistic analysis, but without further behavioural

specification for the component, no more accurate checks can be performed.

interface Shop { login; pay; download; }

component Client {

require serv:Shop;

/% Client = (serv.login -> serv.pay

-> serv.download -> Client). %/

}

component Server {

provide Shop;

/% Server = ({ login, pay, download } -> Server). %/

}

component System {

inst s:Server;

c:Client;

bind c.serv -- s.Shop;

}

5.5.1. Composing the system

The Darwin compiler constructs a parallel composition of the behaviours of each of the

separate components, employing an appropriate relabelling such that components that

are bound together are synchronised. This relabelling is determined by the binding

statements that are given in the Darwin description. For every pair of ports that are

bound, providesport.action is relabelled to requiresport.action. In

this way, any server action called by a client is relabelled so that it has the same

name as the associated client action. The behaviour of the two components is therefore

synchronised through the occurrence of shared actions. In order for one component to

perform a shared action, all other components sharing it must perform it at the same

time.

5.5. Analysing Behaviour 89

Figure 5.4.: LTS for Client-Server system

The above Darwin description for the simple client-server system is compiled to the

following parallel composition in FSP.

set Shop = { login, pay, download }

Client = (serv.login -> serv.pay

-> serv.download -> Client).

Server = ({ login, pay, download } -> Server).

||System =

(s:Server || c:Client)

/{c.serv/s

}.

The set Shop is generated from the interface definition present in the Darwin

description. For each of the components, Client and Server, the behavioural descrip-

tions are extracted from the Darwin. For the composite component System a parallel

composition expression is generated. System is defined as the parallel composition

of the two instances that it composes, s:Server || c:Client. The next line

applies a relabelling to this composition. The binding in the Darwin description states

that the required port c.serv is bound to the provided port s.Shop. In the FSP,

wherever s appears as an action prefix in the process description, it is to be replaced

by c.serv.

90 Chapter 5. Constraining and Analysing Plugin Systems

Compiling this FSP description produces the labelled transition systems shown in

Figure 5.4. The effect of the relabelling is observed, as the only actions that appear

in the composite LTS are those in the alphabet of the client. As all of the client and

server actions are synchronised, the behaviour of the system as a whole must proceed

according to the behaviour of the client.

A problem with the synchronisation of the two components is observed if their

behaviours are changed slightly. The same structure is now considered with the

behaviours for the client and server changed to be following:

Server = (login -> pay -> download -> Server).

Client = (serv.login -> serv.download -> Client).

In this scenario, the server expects a protocol where a login and a payment action

must occur before the download is allowed. The client however is looking to download

without paying. In its process it does not perform the action serv.pay. It might be

expected that when these two components are combined, the interaction would not be

able to proceed as they do not agree on the protocol. However, due to the relabelling

and the parallel composition, when the compilation process is applied, the resultant

composite LTS for the system is still that of Figure 5.4. The reason for this is that as

the pay action does not feature in the Client process, it is not shared, and so the

only restrictions on its occurrence are those imposed by the Server process. This

merely states that pay must happen after login and before download. Therefore,

in the composite process, after login has been performed, pay (which is relabelled

to serv.pay in the composite) is free to occur in the Server process, and so will

occur, even though it is not performed by the client.

This is not the desired behaviour. The server should not spontaneously perform an

action if it is not called by the client. To prevent this, serv.pay must be made an

action on which the two processes synchronise (so that each can only perform it if the

other does so at the same time) even though serv.pay is not performed by the client.

This is done by using alphabet extension to introduce the action into the alphabet of

Client.

5.5. Analysing Behaviour 91

The specification of Client is now:

Client = (serv.login -> serv.download -> Client)

+ { serv.pay }.

This is generalised, so that for all components with required ports, their alphabets

are extended with all of the actions available to be called through those required ports.

This is done by extending the alphabet with the set of actions included in the interface

definition, prefixed by the name of each required port. So Client becomes:

Client = (serv.login -> serv.download -> Client)

+ { serv.Shop }.

where

set Shop = { login, pay, download }

When this definition of Client is composed with Server, a deadlock can be

detected in the composite LTS, as the server is waiting for the client to perform an

action that it never will.

5.5.2. Changes of configuration

As the configuration of a piece of software constructed from plugin components

changes over time, the way that particular components behave may also change. Com-

ponents may behave differently depending on whether they have other components

connected to their required ports.

When a plugin is connected to the system, other components need to change their

behaviour to take advantage of the new services provided. Existing components need

to be notified that a new component has been connected. To achieve this, components

register with the plugin framework as observers, to be notified when a change in

configuration occurs that is relevant to them.

The framework calls the observer back through the pluginAdded() method. In

the FSP we can use the corresponding action pluginAdded as a signal to change

from one mode of operation to another. If a component implemented a basic matrix

92 Chapter 5. Constraining and Analysing Plugin Systems

analysis algorithm, but allowed a plugin to be connected that provided a more efficient

implementation of this algorithm, the component might perform the calculation itself

while its requires port is unbound. If and when it is notified that a plugin has been

added (the port has been bound), the component will change its behaviour so that from

then on the call is delegated to the plugin. This could be described in Darwin/FSP as

follows:

component MatrixSolver {

require fast:Algorithm;

/%

MatrixSolver = (input -> calculate -> output -> MatrixSolver

| pluginAdded -> FastSolve),

FastSolve = (input -> fast.solve -> output -> FastSolve).

%/

}

5.5.3. Verifying models

A risk in taking the approach described above is that the behavioural specification

written by the developer does not match the actual behaviour of the implemented

component. Possible approaches to overcome this include attempting to extract the

behavioural model directly from the program code (see Section 8.3.1 for further details

on this approach), or using a tracing technique to step through the execution of the

program in parallel with stepping through corresponding actions in the model. These

are both interesting approaches, but neither has been developed further in this thesis.

5.6. Predicting behaviour

To give a larger example of how the described techniques can be used to predict

the behaviour of configurations of plugins, we consider an example based loosely on

the Compressing Proxy Problem [33]. This is a problem originally from Garlan and

Wing that provides a classic example of architectural mismatch, where components

that appear to be compatible from their interfaces do not work together correctly in

practice. This is precisely the sort of situation that the modelling techniques described

here aim to detect and hence avoid.

5.6. Predicting behaviour 93

A set of components are chained together to form a pipeline through which data

can flow. Further components can be plugged in to the end of the pipeline increasing

the length of the chain over time. The basic premise of the problem is that in order

to increase the efficiency of data transfer along the pipeline, a compression module is

introduced at either end, compressing the datastream at the source and decompressing

it again at the sink.

In the original Compressing Proxy Problem, the pipeline comprises a set of filters

which all run in a single UNIX process. Integrating a compression module that uses

the gzip utility with this system requires some thought, as gzip uses a one pass

algorithm, and runs in a separate process. An adapter is therefore used to coordinate

the components.

5.6.1. The Source component

Each component is implemented as a set of Java classes and interfaces packaged into

a Jar file. The plugin framework is started, with a Source as the component that forms

the core of the system. The Source can accept a plugin forming the next element of the

pipeline through the port next which has type Filter. The source generates data

and sends it down stream if further components are connected, see Figure 5.5. The

component includes an FSP description of its behaviour. The combined Darwin/FSP

description of the Source component is as follows:

interface Filter { data; }

component Source {

require next:Filter;

/%

Source = (next.data -> Source).

%/

}

5.6.2. Filter components

Each of the other components contains a similar behavioural description. A BasicFilter

can be added to the pipeline. The BasicFilter simply reads data from upstream

and passes it on downstream. As seen previously, the component contains a class

94 Chapter 5. Constraining and Analysing Plugin Systems

FilterImpl which implements the Filter interface, and has a field of type

Filter for a reference to the next component in the pipeline. FilterImpl’s

data() method just calls the next component’s data() method. The Darwin/FSP

for this component is given below:

component BasicFilter {

require next:Filter;

provide Filter;

/%

BasicFilter = (data -> next.data -> BasicFilter).

%/

}

5.6.3. The GZip component

The GZip component has two ports, one for input data and one for output. It takes in

packets and writes them into a buffer. Once the end of the input data is signalled, the

gzip algorithm is applied to the data in the buffer, and a (hopefully smaller) number of

packets is sent out of the output port until all of the compressed data has been output.

In the behavioural description given below, the GZip2 process describes the input

and output behaviour, and it is composed with a bounded buffer with capacity two. It

is the composite process ||GZip that represents the behaviour of the component as a

whole.

interface Proc { packet; end; }

component GZip {

require out:Proc;

provide Proc;

/%

GZip2 = (packet -> put -> In),

In = (packet -> put -> In | end -> Zip),

Zip = (zip -> Out),

Out = (get -> out.packet -> Out | out.end -> GZip2).

Buffer(N=2) = Count[0],

Count[i:0..N] = (when (i<N) put -> Count[i+1]

| when (i>0) get -> Count[i-1]

| when (i==0) out.end -> Count[i]).

||GZip = (GZip2 || Buffer).

%/

}

5.6. Predicting behaviour 95

Source
 Filter
 Adapter
 Filter

GZip

Figure 5.5.: Arrangement of components in pipeline with gzip

5.6.4. The Adapter component

The gzip compressor cannot be placed directly into the pipeline, and so needs an

adapter component to pass data to it. The GZip component then plugs in to the adapter.

When there is no gzip processor present, the adapter should behave like a plain filter.

When in adapting mode, the adapter sends packets out to the processor and reads the

processor’s output back in before sending the processed packets on downstream. The

pluginAdded.proc action corresponds to the calling of the pluginAdded()

method with a parameter of type Proc. This triggers the transition from plain filter to

adapting behaviour.

interface Proc { packet; end; }

component Adapter {

require next:Filter;

out:Proc;

provide Filter;

Proc;

/%

Adapter = BasicFilter,

BasicFilter = (data -> next.data -> BasicFilter

| pluginAdded.proc -> Adapt

),

Adapt = (data -> out.packet -> ToProc),

ToProc = (out.packet -> ToProc | out.end -> FromProc),

FromProc = (packet -> FromProc | end -> next.data -> Adapt).

%/

}

96 Chapter 5. Constraining and Analysing Plugin Systems

5.6.5. The complete system

The basic system may be constructed by assembling the chain of components from left

to right (see Figure 5.5) without the GZip component. Before each new component is

bound in to the system, a Darwin/FSP model is generated.

The Darwin compiler can be used to translate this specification to FSP, which can

then be compiled into an LTS model. A model checker can then be used to determine

whether particular properties hold for that configuration. In this case the property of

interest is freedom from deadlock.

Without the GZip component, the system comprises four component instances, and

three bindings.

component System {

inst s:Source

b:BasicFilter

a:Adapter;

b2:BasicFilter;

bind b.Filter -- s.next;

a.Filter -- b.next;

b2.Filter -- a.next;

}

As the GZip component is not included, no bindings are present to the adapter’s

required port that has type Proc. This means that the adapter should not enter its

adapting mode. Currently the model is free to perform the action pluginAdded.proc

as it is not synchronised with anything. In order to prevent this, the system model

is composed in parallel with a process modelling the framework that synchronises

on a.pluginAdded.proc but never performs this action. Such a process can be

defined as STOP with an alphabet extension to include the a.pluginAdded.proc

action. Such a process can be generated to include an alphabet extension for any

required port of any component instance that is not bound, i.e. the framework process

describes all of the actions that it will not perform.

Framework = STOP + {a.pluginAdded.proc}.

||CompleteSystem = (System || Framework).

If the CompleteSystem process is built and checked, the model checker reports

that it is deadlock free. If the GZip component is added, it will be bound to the

5.6. Predicting behaviour 97

two Proc ports of the Adapter. Now the Adapter’s required ports are all bound, and

so pluginAdded.proc can occur. Rebuilding the model and running the model

checker again, the following trace is detected as leading to deadlock (the output from

the LTSA model checker is shown in Figure 5.6):

Trace to DEADLOCK:

b.data, a.pluginAdded.proc, a.data, b.data, g.packet,

g.put, g.packet, g.put, g.packet

This indicates that adding the gzip processor can lead to a deadlock if too many

packets are put into GZip’s buffer (causing it to become full) before the compression

algorithm is applied and data is output. By detecting the possibility of this problem

occurring in the model, before the system is assembled, a decision can be made not to

bind this component with this adapter. The complete Darwin and FSP specifications

are given in Appendix C.

5.6.6. A different Adapter

To solve the problem, and include the gzip processor successfully, a different adapter

component can be used. The PacketAdapter described below passes data to the

compressor one packet at a time and waits to read the compressors output before

sending the next input packet. Because of this, the compressor’s buffer never becomes

full, and the system will not deadlock.

If the PacketAdapter is proposed as a replacement for the Adapter previously in

the system, then a new model can be constructed. All bindings in which the old

Adapter participated are adjusted so that they bind to the PacketAdapter instead. The

GZip component is also bound to the PacketAdapter. Compiling the model for this

configuration and invoking the model checker reveals an absence of deadlock. As this

is the desired property, the old adapter can safely be replaced with the PacketAdapter,

and the GZip component bound in.

98 Chapter 5. Constraining and Analysing Plugin Systems

component PacketAdapter {

require next:Filter;

out:Proc;

provide Filter;

Proc;

/%

PacketAdapter = BasicFilter,

BasicFilter = (data -> next.data -> BasicFilter

| pluginAdded -> Adapt

),

Adapt = (data -> out.packet -> out.end ->

packet -> end -> next.data -> Adapt).

%/

}

5.7. Summary

This chapter has presented a technique for automatically generating a description of the

structure and behaviour of an application that has been composed dynamically from

plugin components. Using tools this description can be compiled into an LTS model,

which can be tested, using a model checker, to determine whether various desirable

system properties hold.

The structural description can be generated automatically by the plugin middleware,

based on the interfaces exported by each of the plugins and the bindings made between

them. Behavioural information for each plugin must be provided by the programmer

in the form of a description in the FSP process calculus which is included in the

component. By combining the behavioural information about each component with

the description of the system structure, a model of the behaviour of the system as a

whole can be generated.

The model can be compiled to the form of an LTS which can be analysed automat-

ically, using a model checker, for adherence to desired system properties. Performing

such analysis before a new plugin is added to the system allows us to predict whether

the addition of this new component would cause the system to behave in an undesirable

way.

The rationale that we advocate is one in which a reconfiguration to a running system

is proposed, but before any change is actually effected, a model is generated that can

5.7. Summary 99

Figure 5.6.: Screenshot from LTSA showing trace to deadlock

be analysed. The deployer can then ensure that the configuration that will result from

performing the upgrade preserves any properties that they require from the system. The

model gives them the opportunity to experiment before making what may be a critical

change. If they are happy with the results of the analysis, the middleware system can

proceed in effecting the change, so that the system is updated in line with the model.

The degree of interactivity that is required varies in different situations. With a

home user who does not have a great deal of understanding about the architecture

of the system they are using, a fully automated cycle of modelling, analysis and

reconfiguration is desirable. The user is unlikely to have enough knowledge of the

software system to make an informed decision about a reconfiguration, and would

prefer upgrades to proceed as automatically as possible, without being exposed to the

details of what is going on behind the scenes. If the reconfiguration is being overseen

by a deployment engineer with a higher level of skill and knowledge, we have found it

useful for them to be allowed to manually approve or rehect the reconfiguration after

seeing the results of the analysis phase. This allows them to strengthen or weaken

properties in response to the output from the model checker in order to ensure that

the system’s behaviour will meet their expectations. In our implementation we have

allowed either of these modes of operation to be selected.

6. Implementation

In this chapter, we describe the implementation of a platform for managing plugin-

based applications, which we call MagicBeans. The requirements and details of the

implementation are discussed and some technical issues of particular interest are

highlighted1.

6.1. Requirements

To enable the evolution of software systems through the dynamic addition and coordi-

nation of plugin components at runtime, we require some kind of runtime framework

to be built. Examining the different cases we considered in terms of the models in the

previous chapters, we have a number of functional requirements for the system.

The framework should form a platform on top of which an application can run. The

platform should launch the application, and from then on manage the configuration of

plugin components.

Plugins should be installed and configured as automatically as possible. The right

interfaces and classes from each component should be detected, loaded and bound by

the framework without the developer having to do any extra work. The matching of

components should be taken care of by the framework.

It should be possible to plug components together in chains and other configurations

as seen in Figures 3.1, 3.2 and 3.3. The configuration should be managed entirely by

the platform.

Other plugin frameworks, e.g. that used by Eclipse [60], require a large amount

1A version of the material presented in this chapter was published in the proceedings of the Component

Deployment 2004 conference [13].

100

6.1. Requirements 101

Application Plugin

MagicBeans platform

Adder

Figure 6.1.: Platform architecture managing a two component application

of metadata for each component in order to coordinate components and assemble

systems. We propose that a large amount of this metadata is unnecessary, as the

relevant information, especially regarding provided and required interfaces, may be

recovered from the code of the component itself.

Using the plugin platform should have minimal impact on the developer or the user

(or system administrator). The developer should not be forced to design their software

in a particular way, to make extensive calls to an API, or to write complex descriptions

of their components in any form of architecture description language. There should

be no particular installation procedure that needs to be gone through in order to add

a component, simply allowing the platform to become aware of the new component’s

location should be enough.

The mechanism by which new components are introduced to the system should not

be prescribed by the platform. It should be possible to easily adapt the framework

to allow components to be added in new ways, for instance: located by a user, or

discovered in the filesystem or network etc.

As discussed in Chapter 5, there are various types of constraints that we may want

to apply to the assembly of plugin systems, both structural and behavioural.

In order to successfully deal with resource management, it should be possible to

102 Chapter 6. Implementation

specify whether a certain component can accept one or many of a particular type of plu-

gin, to be connected to a certain interface. The managing framework should ensure that

such cardinality constraints are enforced. More general structural constraints might be

specified in a language like Darwini [80]. When work on Darwini is completed, it will

hopefully be possible to integrate it with the MagicBeans platform.

In order to ensure that the behaviour of assembled systems conforms to certain

desired properties, it should be possible to construct and analyse a model of the system,

in accordance with the techniques described in Chapter 5. Runtime support for this

should allow the effects of potential upgrades to be assessed, to ensure that properties

will be preserved, before a system of components is dynamically evolved.

6.2. Implementing Plugin Addition

MagicBeans is implemented in Java, and allows a system to be composed from a set

of components, each of which is comprised of a set of Java classes and other resources

(such as graphics files) stored in a Jar archive.

When a new plugin is added to the system, the platform searches through the classes

and interfaces present in the new component’s Jar file to determine what services are

provided and required by the new component, and how it can be connected to the

components currently in the system.

A class signifies that it provides a service by declaring that it implements an

interface. In the example in Section 4.3.1, we showed an AirBrush component that

might be added as an extension to a paint program. The AirBrush class implements

the GraphicsTool interface. It can be added to any application that can accept a

GraphicsTool as a plugin.

The paint program that can accept and use our GraphicsTool plugin has a

slightly more complex design. For a component to use the services provided by a

plugin, it must obtain a reference to an object from the plugin. This is achieved through

a notification mechanism. The mechanism is based on the Observer pattern [31]. Any

object can register with the platform to be notified when a new binding is made which

is relevant to it.

6.2. Implementing Plugin Addition 103

This registers that an object is interested in new plugins, but does not specify the

plugin type. An object signifies that it can accept a plugin of a certain type by declaring

a method pluginAdded(...) that takes a parameter of that type, in this case

GraphicsTool.

When the AirBrush plugin is added, observing objects with a pluginAdded()

method that can take a GraphicsTool as their parameter are notified. This is done

by the plugin manager calling the pluginAdded() method, passing a reference

to the new GraphicsTool object, through which methods can be called. It is

normal to assign this reference to a field of the object or add it to a collection within

pluginAdded() so that the reference is maintained. In the paint program example,

the new tool is added to a list of all the available tools. Classes can define multiple

pluginAdded() methods with different parameter types, so that they can accept

several different plugins of different types.

For each component, the plugin manager iterates through all of the classes con-

tained inside the Jar file, checking each for implemented interfaces (provisions) and

pluginAdded() methods, and finding all the pairs that are compatible. For a class

to be compatible with an interface, it must be a non-abstract subtype of that interface.

The matching process is performed using Java’s reflection [40], custom loading [47]

and dynamic linking features, which allow classes to be inspected at runtime. If a

match is found, a binding between the two components is added to the system. The

class in question is instantiated (if it has not been already), and the notification process

is triggered.

There are various mechanisms through which plugins could be introduced to the

system, and which is chosen depends on the developer and the application. Possibilities

include that the user initiates the loading of plugins by selecting them from a menu,

or locating them in the filesystem, that the application monitors a certain filesystem

location for new plugins, or that there is some sort of network discovery mechanism

that triggers events, in the manner of Sun’s Jini [45]. MagicBeans does not prescribe

the use of any of these. It uses a known filesystem location as a bootstrap, but

components that discover new plugins can be added to the platform in the form of

plugin components themselves (the platform manages its own configuration as well

104 Chapter 6. Implementation

as that of the target application) which implement the Adder interface. Figure 6.1

shows an example of the platform running, managing an application extended with

one plugin, with an Adder component plugged in to the platform itself. Each Adder is

run in its own thread, so different types can operate concurrently. Whenever an Adder

becomes aware of a new plugin, it informs the platform and the platform carries out

the binding process. We have written example applications that load plugins from a

known filesystem location, and that allow the user to load plugins manually using a

standard “open file” dialog box.

6.3. Plugin Removal

As well as adding new plugins to add to the functionality of a system over time, it may

be desirable to remove components (to reclaim resources when certain functionality is

no longer needed) or to upgrade components by replacing them with a newer version.

Together these form the three types of evolution identified by Oreizy et al [62].

Removal is not as straightforward as addition. In order to allow for the removal of

components, we need to address the issue of how to revoke the bindings that were made

when a component was added. The platform could remove any bindings involving

the component concerned from its representation of what is bound to what, but when

the component was added and bound, the classes implementing the relevant interfaces

were instantiated, and references to them passed to the components to which they were

connected. These components will retain these references and may continue to call

methods on the objects after the platform has removed the bindings. It is not possible

to force all of the objects in the system to release their references. If the motivation for

class PaintProgram {

...

void pluginRemoved(GraphicsTool gt) {

tools.remove(gt);

}

}

Listing 6.1: The pluginRemoved() method

6.3. Plugin Removal 105

removing the plugin was to release resources then this objective will not be met.

We can have the platform inform any components concerned when a plugin is about

to be removed. This is done using the same observer notification mechanism as we use

when a component is added, but calling a different method pluginRemoved(). Any

references to the plugin or resources the component provides should then be released.

This can be seen in Listing 6.1.

When all of the notifications have been performed, the bindings can be removed.

However, this technique relies on the cooperation of the plugins. We cannot force

references to be released, only request that components release them. Components

could be programmed simply to ignore notifications (or may not even register to be

notified) and in this case will continue to retain their references after a binding is

removed.

As a solution to this problem, in addition to using the notification mechanism,

when classes providing services are initially instantiated, instead of providing another

component with a reference directly to that object, the reference passed is to a proxy

(see Figure 6.2). All the references to the objects from the plugin are then under the

control of the platform, as the platform maintains a reference to each proxy. When a

component is removed, the reference from each proxy to the object that provides its

implementation can be nullified, or pointed at a dummy implementation. In this way

we can force that resources are released. In the event that a component does try to

access a plugin that has been removed, we can throw a suitable exception.

In order to provide this level of indirection, we use Java’s Proxy class (from the

standard API) to create a proxy object for each binding created. The Proxy class

allows us to create an object dynamically that implements a given interface (or inter-

faces), but which, when a method is called, delegates to a givenInvocationHandler

which actually implements the method or passes the call on to another object. Using

this mechanism, the implementation of the method can be switched or removed at

runtime simply by reassigning object references. This gives us exactly what we need.

When a plugin is removed, the reference to the delegate can be nullified. When a

method is called we check for the presence of a delegate, and if it has been removed

throw a suitable exception back to the caller.

106 Chapter 6. Implementation

Subsystem name
Subsystem name

Requiring

Class

Providing

Class

Proxy for

Provider

MagicBeans platform

Figure 6.2.: Proxy objects are used to mediate between components.

Another major concern is deciding when it is safe to remove a component. For

instance, it will be very difficult to replace a component if the system is currently

executing a method from a class belonging to that component. In order to remove a

component it must be in a quiescent state, i.e. not currently servicing any requests from

other components. This problem is solved by synchronising the methods in the proxy

object.

As Java’s synchronisation model uses object level locks, if code from one synchro-

nised method is executing, no other synchronised method in the same object can be

executed concurrently. The methods in the InvocationHandler that change and

remove the delegate, and also the invoke method, have been declared synchronized.

As all calls to the delegate are passed through the invoke method, this mechanism

ensures that a delegate cannot be removed or replaced during a call to a method that it

provides. When a call is made to a provided service, the invocation is always carried

out through a proxy object. As only one synchronised method of an object may be

entered at any one time, a call to the proxy object to remove the implementing service

will block until the service invocation is completed, and a quiescent state is reached.

6.4. Plugin Replacement

Plugin replacement can be performed in order to effect an upgrade of a system.

However, before removing the old component, checks must be made to ensure that

6.4. Plugin Replacement 107

the new version is compatible.

A safe criterion for compatibility of components might be that the new one must

provide at least the services that the one it is replacing provides, and must not require

more from the rest of the system [28]. In this way we can compare two components in

isolation to decide whether one is a suitable substitute for the other.

However, in the case of plugin systems, there are a few more subtleties to be

considered. With plugin systems, components that are used by other components

are not strictly required but optional extensions that may be accepted. Therefore, in

comparing components for compatibility we do not need to consider the case of what

the components require, only what they provide. It is only this that is critical to the

success of the upgrade.

Also, as we are performing upgrades at runtime, during system operation, we have

more information than we would have if we just had the components in isolation. At

any point the MagicBeans platform knows the current structure of the system, and so

knows which of the interfaces that a plugin provides are actually being used (those for

which a binding has been created during the addition process). It is therefore possible

to say that new component is safe to replace another if it provides at least the same

services as those that are provided by the old one, and are currently being used.

For example, we might have a component Brush which contains classes that imple-

ment GraphicsTool and Help. This plugin can be used with a graphics application

as was shown previously, which will use the GraphicsTool interface. We could

also use it with an application that allowed help to be browsed, or an application that

combined both of these features. However, let us consider the case where we are using

the Brush with our simple paint application. In this case, only the GraphicsTool

interface will be used.

We may now write or purchase a new tool, say a SuperBrush. We want to upgrade

the system to use this instead of the Brush. The SuperBrush does not provide the

Help interface, but its implementation of GraphicsTool is far superior. If we

use our first criterion for deciding compatibility, then we will not be able to upgrade

from a Brush to a SuperBrush, as SuperBrush does not provide all the services that

Brush does. However, if we use the second criterion, then in the context of the simple

108 Chapter 6. Implementation

paint application, SuperBrush provides all the services that are being used from Brush,

(i.e. just GraphicsTool) and so we can perform the upgrade.

Replacement could be done by first removing the old component, and subsequently

adding the new one, using the mechanisms as described above. However, due to

the presence of the proxy objects which allow us to manage the references between

plugins, we can swap the object that implements a service, without having to notify

the client that is using it. In this way it is possible to effect a seamless upgrade.

6.5. Constraint checking

As discussed in Chapter 5, in addition to conforming to the typing information

provided by interfaces, there may be other constraints that should be considered when

constructing configurations of components.

In order to check particular configurations against sets of constraints, models need to

be generated which have both a structural part and a behavioural part. Here we describe

how the two parts of the model are generated from the running system, combined and

then analysed.

6.5.1. Building the Structural Model

Each plugin that the MagicBeans platform uses is loaded as a Jar file containing

Java class files, which contains Java byte-code, and any other resources needed by

the plugin, but not (necessarily) the source code. To identify the services provided

and accepted by a new plugin, a custom classloader is used to load each class in

turn from the component. For each class, a list of the interfaces implemented by

that class is determined using reflection. To find the information about accepted or

required interfaces requires a more in depth analysis than is possible through the

functionality provided by Java reflection alone. We need to determine the names of

fields assigned to within particular methods. To do this, the bytecode of each class is

analysed directly using the Byte Code Engineering library (BCEL) [22]. This library

permits the byte-code for specific methods to be examined. It is possible to extract

6.5. Constraint checking 109

artifacts like identifiers for variables and fields. These are used as port names, as

described in Section 5.4.

The MagicBeans platform has all the information about the current configuration

of the running application at runtime, as all bindings are created and revoked by the

platform. It holds a data structure that records the current set of bindings between ports

and components which is used to generate the Darwin description of the complete

system, including the instances of components and the bindings between them. The

resultant model is stored in an internal data structure that can easily be converted to a

textual representation for output.

6.5.2. Building the Behavioural Model

The behaviour of a specific component needs to be specified, in terms of an FSP model,

by that component’s developer. In order to be able to deploy the component with the

specification, the specification needs to be included in the component in some way.

However this needs to be done in such a way that the specification is accessible to the

plugin framework.

In the MagicBeans implementation, the way that a component provides its specifi-

cation to the framework is by providing access to it through a plugin interface. Each

component provides a port with the FSPSource interface.

public interface FSPSource {

public String getFSP();

}

The framework can accept plugins of this type. During the generation of the model,

for each plugin that is bound to the platform through this interface, the platform

calls the getFSP() method, which should return a string representation of the FSP

description of the component’s behaviour. This is then included (wrapped in special

comment symbols) with the Darwin specification for each component as it is output

textually.

The MagicBeans platform manages its own configuration, as well as that of the

application that is running on top of it. It uses exactly the same mechanisms for binding

110 Chapter 6. Implementation

to the FSPSource port provided by plugins as is used to create bindings between

components in the target application.

In order to make it easier for the developer to create the class that implements the

FSPSource interface to include in their component, we have created a tool that

allows this class to be generated automatically and included in the component, so

that the developer only has to provide the textual process description. This is helpful

as the inclusion of long strings in Java source code is error prone, due to having to

escape particular characters etc. , and also removes the need for developer to know

about the FSPSource interface, which is part of the MagicBeans framework rather

than the target application. The tool also analyses the interfaces provided and required

by a particular component to provide an alphabet of actions for the developer to

use in writing their process description, based on the information used to generate

the structural model. This helps to ensure the correct correspondence between the

behavioural and structural models.

6.5.3. Specifying Properties

Properties are also specified textually in FSP. The most useful types of properties in

practice have been found to be those that are specified as assertions in linear temporal

logic (LTL).

Properties can be included within a particular component by providing a class that

implements the FSPSource interface. This allows a specification to be given for

things that a component requires of its environment. In all cases that this component is

used in conjunction with other components that particular property must hold for the

interaction between them.

System wide properties are specified separately from any particular component,

written by the deployment or configuration manager rather than the developer of a

particular component. These properties are used to guide assembly of the overall

system at a particular site. They can be added to the system as separate components,

just containing a class that implements the FSPSource interface, that will be bound

to the component framework. Alternatively, if the deployer is using the analysis tools

6.5. Constraint checking 111

in a more interactive mode, they can enter properties directly into the model checker’s

edit window.

6.5.4. Checking the Model

The generated model can be compiled into FSP and then to a labelled transition system

by the Labelled Transition System Analyser tool (LTSA) [51] as discussed previously.

In order to achieve this, we extended the existing Darwin compiler and integrated it

(as a plugin, see Chapter 7) into LTSA.

To allow models to be processed and analysed automatically, we built a further

extension, allowing LTSA to receive Darwin/FSP models (in a textual format) over the

network. The LTSA then forms a server which the MagicBeans platform can contact

when it needs to perform any analysis. On receipt of a model, the LTSA converts from

Darwin/FSP to pure FSP, and then to LTS. It then performs a model-check to analyse

whether the model conforms to given properties.

Depending on the result of the analysis, a notification is returned to the MagicBeans

platform over the network. If the notification indicates that the proposed configuration

preserves the desired properties then the reconfiguration may proceed. If the analysis

has revealed that a particular property will be violated, a different configuration of the

same components, if one is possible, may be tried. Alternatively the reconfiguration

may be aborted and operation allowed to continue in the previous configuration.

Properties can be included along with the code and specification of a particular com-

ponent, or independently. Properties that are included within a component typically

place a constraint on the environment within which it will operate. They may specify

a behavioural requirement of the services provided to them by other components, in

addition to the interface requirements that are expressed as types in the component’s

code. These will normally be written by the developer of the component in question.

Global system properties will be specified independently of any particular compo-

nent, as they refer to the operation of the system as a whole. They will most likely

be specified by the deployment engineer at a particular site. They are interested in

ensuring the correct operation of the integrated system, but may have particular, site

112 Chapter 6. Implementation

specific, requirements. Such global properties can be packaged into components that

contain no other code and deployed into the plugin system. They will be bound directly

to the plugin platform, and can be included in the analysis phase.

6.6. Technical Innovations

During the design and implementation of the MagicBeans platform, some interesting

technical issues arose. These are discussed in the following sections.

6.6.1. BackDatedObserver

There are some cases in which the notification system described in previous sections

has limitations. If, on adding a new plugin, multiple bindings are formed, it may be the

case that bindings are created before the objects that will observe the creation of these

bindings have been initialised and registered as observers.

For example, consider the case where we have two components, each providing one

service to and accepting one service from the other. If component A is already part

of the system, and component B is added, a binding may be formed connecting B’s

requirement with A’s provision. Currently no observers from B have registered, and so

none are informed of the new binding.

A second binding is then formed between B’s provision and A’s requirement. At

this point, a class from B is instantiated. A reference to this object is passed to any

observers in A. During the creation of the object from B, the constructor is run, and

the object registers as an observer with the PluginManager. As the registration is too

late, although the PluginManager matched two pairs of interfaces to create bindings,

the situation that results is that A holds a reference to B, but not the other way around.

To solve this problem, we introduce the notion of a BackDatedObserver. This is an

observer that, on registering, has the opportunity to catch up on previous events that

occurred before it registered, but which are relevant to it. In the last example, having

the observers register as BackDatedObservers would mean that the observer from B

6.6. Technical Innovations 113

would be passed a reference to the object from A as soon as it registers, and it would

be possible to call methods in both directions.

Implementing this variation on the traditional observer pattern requires that the

participant that performs the notification keeps a history of past events, so that it can

forward them to new observers when they register.

6.6.2. Distinguishing components

In order to be able to tell which observers need to be notified about which new

bindings, it is necessary to maintain a record of which objects come from (or belong

to) which components. That is to say, which component contains the class from which

the object was created. This could be done by requiring the developer to create objects

by calling a special factory method that would create objects and update the relevant

data structures. However, such a scheme would impinge greatly on the natural style of

programming. It would be necessary for the programmer to write something like:

A myA = (A)ObjectFactory.create(‘‘A’’);

instead of the usual

A myA = new A();

There are a number of problems with this. Firstly, it is a lot more cumbersome to

write. Secondly, it removes static type safety. Thirdly, we cannot force programmers

to use this mechanism, and no information will be recorded about any objects created

in the normal style.

In a language that allows operator overloading (for example C++), we could imple-

ment a new operator that performs the appropriate record keeping, allowing object

creation using the normal syntax. However, operator overloading is not available in

Java.

The solution to this problem that has been adopted utilises the fact that in Java every

object created holds a reference to its class, and every class in turn to its class loader.

By associating a separate class loader with each plugin component, we can group

114 Chapter 6. Implementation

objects into components on the basis of their class loaders. In fact, we made the class

Component, which manages all of the information relevant to a particular plugin, a

subclass of java.lang.ClassLoader, so that for any object, calling

getClass().getClassLoader()

will return a reference to its Component.

6.6.3. Multi-methods

As all of the objects that come from plugin components may be of types that are

unknown to the MagicBeans platform, objects are created using reflection, and the

references that are used to point to them have the static type Object, which is the

ultimate superclass of all classes in Java.

If the PluginManager were to attempt to call one of the pluginAdded()methods

in a component, it would pass a parameter with static type Object and the Java

runtime would require that the method being called took a parameter of type Object,

even if the dynamic type of the parameter was something more specific.

In fact, during the compilation of the plugin component, the Java compiler will

complain that there is no method pluginAdded(Object o). If the developer

adds this method, then this is the one that will be called at runtime, regardless of the

dynamic type of the parameter passed. The reason for this is that methods in Java are

only dispatched dynamically on the type of the receiver, not that of the parameters [39].

This causes a problem as we wish to use pluginAdded()methods with different

parameter types to specify the types of plugin that a component can accept.

In the implementation of MagicBeans we have overcome this problem by using

reflection to dispatch certain methods dynamically on the parameter types as well as

the receiver. This is often called “double-dispatch” or “multi-methods” [18].

We created a class MultiMethodwhich has a static method dispatch()which

takes as parameters the intended receiver, the name of the method and the parameter.

MultiMethod.dispatch(receiver , ‘‘pluginAdded’’ , parameter);

6.6. Technical Innovations 115

Reflection is used to search through the methods of the given receiver to find one

with the given name and a formal parameter type that matches that of the parameter

passed as closely as possible. This method is then invoked, again using the reflection

mechanism. Calling methods in this way does remove a degree of type safety from

the language, as the calls cannot be checked by the compiler. However, the semantics

that we have defined is that if there is no method in the target object that matches, no

method is called. Therefore it is never possible to have the wrong method called, the

worst that can happen is that nothing happens.

Double dispatch is only used when calling the methods pluginAdded() and

pluginRemoved(), not for any subsequent calls between components. This means

that the performance penalty incurred by calling methods in this way is kept to a

minimum.

6.6.4. Proxying

To give the plugin platform the ability to manage references between components,

when a binding is created, what is passed to the accepting component is not a reference

directly to an object from the providing component, but rather to a proxy for that

object. This allows the plugin platform to maintain control over to which object the

proxy delegates calls, and therefore affords reconfiguration.

One complication is shown in the following scenario: a component A calls a method

on a proxy object which delegates the call to an object in component B. The method

executes and returns an object (which may contain a reference directly to an object

from B). The proxy passes this back to A. There can now be a reference (or chain of

references) directly from A to B without going through a proxy. This means that there

can be a connection from A to B that is not controlled by the plugin platform. It is now

impossible for the platform to disconnect all references to component B when it wants

to remove it.

A similar situation can occur if an object from component A calls a method on the

proxy, delegated to B, and passes a reference to an object as a parameter. This will

again allow a direct reference from one component to another to be held, which the

116 Chapter 6. Implementation

platform is unable to manage.

Our solution to this problem is to intercept any objects returned from methods called

on a proxy, or any objects passed as parameters to methods executed via a proxy. A

further proxy is then generated for each parameter to be passed, or the object to be

returned, provided that the object in question is not already a proxy object. The new

proxy is then used in the method call or return.

However, in general, use of this mechanism would entail generating proxies on the

fly for arbitrary objects, which is not supported by the standard Java Proxy class.

In order to use the Java Proxy API, the type of the object to be proxied must be an

interface type and not a class type. This means that it is not possible to create a proxy

for an object of a class that is not declared as implementing a particular interface.

It might be possible to overcome this problem by using byte-code manipulation

techniques to generate interfaces for all classes, and insert code into the classes to

declare them as implementing the interface at load time, but this solution seems messy.

A more pragmatic approach, and the one that we have taken, is to restrict the types

of all parameters, and the return values of any methods, that are to be passed across

component boundaries, to be interface types instead of class types. This does not seem

an overly problematic restriction, as the external interface to a component should be

declared in terms of interfaces rather than classes in line with the general principles of

encapsulation in object-oriented and component-oriented programming. This allows

the standard Java Proxy API to be used to create proxies for any objects that cross

component boundaries.

6.7. Summary

We have described the implementation in Java of MagicBeans, a platform to manage

the runtime behaviour of plugin components, which follows the component model set

out in Chapter 3. Various technical aspects and implementation details of loading plu-

gin components and determining their required and provided services were discussed,

along with details of how configurations of components are managed at runtime.

The details of how MagicBeans generates models of prospective configurations of

6.7. Summary 117

components and interacts with the LTSA model-checker in order to analyse properties

of these models were also discussed.

7. Case study: Extensible LTSA

The Labelled Transition System Analyser (LTSA) [51] is a Java application that

allows complex systems to be modelled as labelled transition systems. These models

can be mechanically checked for various properties, making sure that either nothing

bad happens (safety) or that eventually something good happens (liveness). The

core functionality of LTSA is to take textual input in the form of the FSP process

calculus [51], to compile this into state models, which can be displayed graphically

and animated, and to check properties of these models.

The tool was distributed to a large number of users for use in the modelling and

analysis of concurrent and distributed systems, both in academia and industry. With

time, scope for a variety of extensions to the tool was realised. However, not all of

the extensions would be useful to all users. A monolithic tool incorporating all of the

features would quickly become large, complicated and slow. Managing the continual

redeployment of the system to users as upgrades became available would likely be

problematic.

To avoid these problems, the core of LTSA was altered to use our MagicBeans

software platform to allow the various extensions to be implemented as plugins.

The aim of using the plugin architecture was that rather than having one monolithic

tool which combined all of the above functionality, the different extensions could be

encapsulated in separate modules, and only the modules that the user required would

be loaded. This selection of features should be able to be done in a dynamic way, so

that no changes to the source code need to be made in order to add or remove features.

By providing a standard interface for LTSA plugins, the core of the application can

use any extensions (plugins) that the user requires. Currently plugin components are

placed in a specific directory and discovered when the application starts up, but the

118

119

Figure 7.1.: The default LTSA with no plugins added.

mechanism could easily be altered to allow plugins to be added at any time during

execution, all that would be required would be the inclusion of a “discovery” plugin

for the platform that checked for the presence of new components periodically. The

LTSA core accepts any plugins with a particular interface. The application interrogates

each plugin in turn (by calling methods declared in the interface) to find out whether

it provides certain types of GUI features (menus, tool bar buttons etc.) that should

be added to main application’s user interface. The plugins then respond to the user

clicking on the buttons or menus by executing code from handler classes inside the

relevant extension component.

In order to allow the plugin to call methods in the core of LTSA, for example as

would be needed in order to invoke the FSP compiler or the model-checker, another

interface LTSAPlugin {

boolean addToolBarButtons();

List getToolBarButtons();

boolean addMenuItems();

Map getMenuItems();

...

void initialise();

}

Listing 7.1: Fragment of the LTSAPlugin interface

120 Chapter 7. Case study: Extensible LTSA

binding needs to be made in the opposite direction. In order to achieve this, the core

of LTSA was made to expose a particular interface, giving access to particular core

functions. Extension plugins can then accept a plugin of this type (and the appropriate

matching is performed by the MagicBeans platform). To ensure that the two-way

binding is constructed successfully, the BackDatedObserver pattern (see Section 6.6.1)

is used.

interface LTSA {

JEditorPane getEditorPane();

void parse();

void compile();

void composeCurrentState();

...

}

Listing 7.2: Fragment of the LTSA interface

Various extensions have been built, notably to allow more illustrative animations

of the behaviour of models, to allow FSP to be synthesised from graphical Message

Sequence Charts representing scenarios [74] so that properties of these scenarios can

be analysed, and to provide a facility for interacting with behaviour models by means

of clicking items on web pages served over the internet to a web browser [15]. These

are described in more detail in the following sections. More extensions for LTSA are

currently in development and the use of the plugin framework has made it very easy to

integrate new functionality with the tool.

7.1. MSC Editor

Message Sequence Charts (MSCs) are a graphical technique for describing the behaviour

of systems. They provide a specification in the form of examples of acceptable

behaviour, consisting of sequences of messages exchanged between the components

forming a system. MSCs also outline the high-level architecture of the system.

Several algorithms exist for synthesising labelled transition systems from MSCs

(notably the work of Whittle and Schumann [82]). Uchitel extends this work to analyse

7.1. MSC Editor 121

Figure 7.2.: The LTSA running with the MSC plugin added.

MSC specification for the presence of implied scenarios [77]. To automate this analysis

we developed an extension to the LTSA tool.

It was the development of this extension that first motivated the provision of a plugin

mechanism for providing extensions to LTSA. LTSA is already used by a large user

base, most of whom just write and analyse textual specifications. Only a small subset

of the users would (at least initially) be interested in the extra functionality provided

for working with MSC specifications.

The MSC plugin provides a graphical editor for MSCs so that MSC specifications

can be input and edited. It encapsulates the algorithm for converting the MSC specifi-

cations to FSP models, as well as an analysis algorithm for detecting implied scenarios

in the specification [74].

The plugin generates textual FSP from the MSC model, and passes this to the core of

the LTSA tool. This is done by calling the getInputPane() method in the LTSA

interface (see Figure 7.2), and appending the text to this pane. The plugin can then

invoke other methods through the same interface to parse, compile and safety check

the FSP specification. Counter example traces are read in by the plugin and displayed

graphically as MSCs.

Possible future work on this project involves providing pluggable algorithms for

implied scenario detection. This was proposed by Henry Muccini [56] (University of

122 Chapter 7. Case study: Extensible LTSA

L’Aquila, Italy). The plugin model could be used so that, if the algorithms could be

encapsulated in separate components, behind a common and well defined interface,

they could be interchanged freely without having to alter any of the source code.

7.2. Darwin compiler

Darwin [50] is a language for describing the structural elements of software archi-

tectures. The addition of structural information to behavioural specifications greatly

increases our ability to construct and analyse models of systems. Darwin can be

used to describe a system’s structure, and from this a composition expression can be

generated to compose processes describing the behaviour of individual components.

This technique was described in Chapter 5 in relation to generating and analysing

models of plugin systems.

Incorporating a Darwin to FSP compiler/translator as an extension to LTSA, allows

both aspects of a system to be easily modelled. In a similar way to the MSC plugin, an

extension was developed that adds an editor pane to the LTSA (a text based one this

time). The compiler for the Darwin specification is encapsulated inside the plugin, and

generates FSP as its output. This is written in to the editor pane as described before.

The combination of Darwin and FSP provides useful expressive power, but it was

realised that there was scope to do more if both the Darwin plugin and the MSC

plugin were used together. Rather than relying on the user writing FSP descriptions of

components’ behaviour by hand, behavioural descriptions could be taken from an MSC

specification if available. Certain generalisations are made to generate component

models from several instances, and to map action names on to ports. The techniques

for doing this are described in detail in a paper published in the proceedings of FSE

2004 [76].

The ability of the plugin mechanism to connect arbitrary pairs of components, rather

than all extensions being made to a central core, meant that communication could be

performed directly between the Darwin plugin and the MSC plugin. By exposing the

same interface in both of these components, the plugin platform will create a new

binding allowing them to communicate if both of them are present. In the case that

7.3. Web Animator 123

Figure 7.3.: A UML style diagram showing the structure of plugin LTSA.

one or both of the components are not present, this functionality is not available, but

this change of configuration requires no changes to the source code, and can be updated

dynamically by adding or removing components.

The diagram in Figure 7.3 shows how the various classes and interfaces within each

of the components realise the provided and required interfaces. The dashed arrows

denote interface implementation. The Darwin plugin can request behavioural infor-

mation about a particular component from the MSC plugin through the FSPSource

interface. The core of LTSA can accept any number of LTSAPlugins, denoted by

the star on the association, but the Darwin plugin only accepts one FSPSource at

any one time. The system as a whole comprises about 75,000 lines of Java code, with

most of the code being in the core component and each of the plugins consisting of a

few thousand lines of code.

7.3. Web Animator

Tools based on formal methods, such as the LTSA, are often seen as being difficult

to use. They are not particularly suited to validating designs with clients or end users

in the software development process, as they typically are not able to relate to the

124 Chapter 7. Case study: Extensible LTSA

concepts used in the model.

In order to more successfully use formal models at the design stage, and vali-

date designs with the user, animation techniques can be used. Animation allows the

behaviour of the model to be rendered in a fashion that is recognisable by the user.

The Web Animator extension to LTSA allows behaviour models to be animated

through a sequence of interactive web pages [15, 16, 17, 75]. We have carried out

several experiments modelling the user’s progression through the pages of web appli-

cations using labelled transition systems. By using a web-based animation technology,

the user can be shown the current state of the system in terms of a web page with

particular links or buttons that they can click on the trigger transitions in the LTS model

and move to a new state. As the animation is generated dynamically from the model

based on a declarative set of visualisation rules, changes in the model are immediately

reflected in the visualisation. If, during the interactive exploration of the model, the

user finds something that should be changed, such a change can often be incorporated

very quickly. This is in contrast to standard prototyping techniques, where making

changes in response to user comments and requests could take several days or even

weeks, depending on how much code needed to be written to implement the change.

7.4. NASA Assume-Guarantee Reasoning plugin

Work has been done by Cobleigh, Giannakopoulou and Pasareanu at the NASA

Ames research centre, to develop techniques to learn assumptions for use in assume-

guarantee reasoning [19].

They implemented their techniques as a plugin to LTSA. By programming against

a well defined interface, they were able to develop extensions for LTSA without

having to have access to the source code. In addition, they were able to integrate

their extensions without having to release their source code to anyone else (which

would have caused licensing problems). NASA can distribute their extension freely,

and anyone can install it into their version of LTSA, without having to upgrade to a new

version of the core. Meanwhile, development can continue on the core of the LTSA

tool, and this can be compiled separately as the decoupling of components means that

7.5. Other plugins 125

Figure 7.4.: The LTSA running with the Web Animation plugin.

no mention of specific classes from NASA is made in the source code of the core. This

is beneficial as the intention is to make the core of the tool open source, but not all of

the extensions will be open source.

7.5. Other plugins

Some students have used the plugin mechanism to develop extensions for LTSA as

part of research and project work. The modularity afforded by using plugins meant

that their development and experimentation could be carried out without affecting

development of the core of LTSA. It also meant that they could easily create their own

custom version of LTSA by installing their module, and pass it to anyone else who

wanted to try it (for example their supervisor), without having to send a customised

version of the whole tool.

BPEL to FSP translator The BPEL language can be used for specifying business

processes and workflows. A technique was developed by Howard Foster, a PhD student

at Imperial College London, to translate BPEL specifications into FSP models [30]. We

have implemented this as a further plugin to LTSA.

126 Chapter 7. Case study: Extensible LTSA

Petri nets to stochastic FSP Wallace Wong, an undergraduate student at Impe-

rial College London, built a plugin for LTSA to translate petri-net models into stochas-

tic FSP models [83].

7.6. Constraints for LTSA plugins

As different plugins for LTSA are developed by different parties, to ensure that

different configurations work together correctly, some behavioural constraints can be

imposed. Such constraints are used to ensure that only plugins that allow interaction

with the core component through the expected protocol will be added to the system.

The protocol that is required is that all plugins follow a particular sequence of actions

for initialisation, normal operation and cleanup.

We consider a scenario where the system as a whole comprises the core LTSA

component, the MSC plugin and the Darwin plugin. Both of the plugins provide an

implementation of the LTSAPlugin interface, and are bound to requirements of the

LTSA core. The Darwin description that would be generated as a snapshot of this

configuration is as follows:

interface LTSAPlugin { init; run; cleanup; }

component System {

inst core:LTSACore;

msc:MSCPlugin;

dwn:DarwinPlugin;

bind core.plugins[1] -- msc.LTSAPlugin;

core.plugins[2] -- dwn.LTSAPlugin;

}

The generated Darwin description for the core LTSA component features an array

port plugins, which is sized to be big enough to contain all of the bindings

connected to this port. The special constant PLUGINS MAX is generated, which

corresponds to the size of the plugins array. We use this in the specification of the

behaviour of the LTSACore component. Here we show the Darwin and FSP combined

so that the correspondence can clearly be seen.

7.6. Constraints for LTSA plugins 127

component LTSACore {

require plugins[2]:LTSAPlugin;

/%

LTSA_PLUGIN = (init -> run -> sync -> cleanup -> END).

||LTSACore = forall [i:1..PLUGINS_MAX]

plugins[i]:LTSA_PLUGIN/{sync/plugins[i].sync}.

%/

}

The parallel composition uses the forall operator to compose the behaviours of

all of the currently connected plugins. The relabelling at the end causes synchronisa-

tion of all of separate processes by relabelling any particular plugin’s sync action to

one common sync action.

The core of LTSA follows the following protocol, operating in two phases: all

currently available plugins are initialised and then run, later they are shut down. These

phases do not overlap; all plugins are initialised and run before any are shut down.

The property that we desire to hold for a particular possible configuration of LTSA

is that it is possible for each component to perform a cleanup action, so that the

system as a whole can be cleanly restarted.

assert ALLCLEANUP =

forall [j:1..PLUGINS_MAX] <>(core.plugins[j].cleanup)

This property, specified in linear temporal logic (LTL) [65], is parameterised by

the PLUGINS MAX constant, so that it can specify that for all installed plugins, it is

possible (specified using the diamond operator) for them to perform the cleanup

action.

The behavioural specification that we have written for the MSC plugin is, in FSP:

MSCPlugin = (init -> run -> cleanup -> MSCPlugin).

This indicates that the MSC plugin follows the protocol that we expect of each

plugin, and can cycle through these operations repeatedly. The Darwin plugin has a

very similar process description:

DarwinPlugin = (init -> run -> cleanup -> DarwinPlugin).

128 Chapter 7. Case study: Extensible LTSA

The complete Darwin/FSP description for this configuration can be compiled into

a labelled transition system as described in Chapter 5. The LTL property can then be

checked. In this case, no violations of the property are detected by the model checker,

and so this is a valid configuration.

We now consider the same configuration, but with the Darwin plugin replaced with

a proposed new version, which we will call DarwinPluginV2. This has the same

interfaces as the original version considered above, but a slightly different behavioural

specification. Notably this version does not expect to be asked to clean up before being

reinitialised.

DarwinPluginV2 = (init -> run -> DarwinPluginV2).

Including this component in the model and checking the property reveals a violation, as

it is not possible for all plugins to complete the cleanup operation that was specified.

The output trace from the tool is:

LTL Property Check...

-- States: 7 Transitions: 16 Memory used: 7615K

Finding trace to cycle...

Depth 6 -- States: 19 Transitions: 45 Memory used: 8055K

Finding trace in cycle...

Violation of LTL property: @ALLCLEANUP

Trace to terminal set of states:

core.plugins.1.init

core.plugins.1.run

core.plugins.2.init

core.plugins.2.run

core.sync

core.plugins.1.cleanup

Cycle in terminal set:

LTL Property Check in: 521ms

This property violation shows that the new version of the Darwin plugin is not suitable

to replace the old version in this configuration, as although it does expose the same

7.7. Discussion 129

interfaces, it does not expect the same calling protocol. This reconfiguration should

therefore not be carried out.

7.7. Discussion

Refactoring LTSA to use a plugin architecture based on MagicBeans has been a

successful exercise from a number of standpoints, but also uncovered a few difficulties

of working this way. Previously, any changes to the LTSA to support new research

projects, for example the Scenebeans animator [67] or the translator from LTL formu-

lae to Buchi automata [38], had involved changing the core of the LTSA code, creating

an experimental version. It was difficult to maintain consistency between versions and

to find one working version that contained all of the different extensions.

There was some initial overhead in refactoring the core of the application to take

advantage of the plugin system, but this time was paid back in the ease with which

further extensions could be created and integrated. The core of the system, which is

well tested, can still be used by itself as a teaching tool. The normal configuration

that is used in undergraduate laboratory exercises does not include any of the research

project extensions, and can be maintained separately.

Different researchers can now use the latest version of the core of the system along

with their own collection of extensions. If an upgrade is made to the core, just this

component can be distributed and used without affecting any of the work done on

extensions, as long as the exposed interfaces are kept the same.

We have found the ease of reconfiguration particularly useful when doing demon-

strations, as in order to focus the audience’s attention on the particular part of the

functionality of the tool that is being presented, a configuration can be constructed that

does not include any plugins that will not be used in the demonstration, removing any

unnecessary clutter from the interface.

Our collaborators at the NASA Ames laboratory were able to easily write and deploy

an extension to the tool given a set of interfaces to implement or use, a small example

plugin and some instructions showing how to use the plugin framework. This way of

working was beneficial to the NASA researchers as when they experienced a fault in

130 Chapter 7. Case study: Extensible LTSA

their program, they were able to look only within the relatively small scope of the code

of their plugin, as opposed to searching through the entire code of the core of the tool.

There have also been a number of extensions written by students at Imperial,

notably the work of Wallace Wong [83], where the plugin was developed entirely

independently of the core LTSA development. This shows that well defined interfaces

and an intuitive programming model make it easy for components to be developed by

independent teams and then integrated.

One difficulty experienced by the NASA team was that the exposed interface was

somewhat limiting. They did not necessarily have access to the the features of the core

that they required. In some situations, where there was no alternative, this caused them

to request a change in the interface to reveal extra functionality. This did not cause

too many problems as there were not very many users of the plugin version of LTSA

at that time, and the changes that were requested were able to be handled by adding

methods to the interface. Adding methods is a binary compatible change, and so should

not cause any problems with backward compatibility of the component. However, this

exercise did point out the issue that in providing an extension point allowing another

party to provide a component to work with a system, the developer must anticipate

the functions that the third party will want to call. With a large component this can be

difficult as a large amount of functionality may be available, but we want to present

clean and concise interfaces.

In other cases, rather than requesting a change in the interface, the NASA researchers

found a way to work around the problem by accessing the core in a different way.

For example, rather than passing objects representing LTSs backwards and forwards

between components, they passed textual representations, as this is the interface

presented by the core. This led to some performance problems as every time the textual

description was edited, it had to be reparsed and recompiled. This was an expensive

operation for large models. At the time of writing the textual representation is still

being used, but it is likely that the processing time will soon become prohibitive and

the interface will have to be changed. It should be noted that the performance problems

described were not caused by the overhead of the loading and binding mechanisms

used in the plugin framework, but owed to restrictions imposed by programming to

7.8. Summary 131

interfaces. There is a trade-off between the flexibility of deployment and ease of

development offered by the use of plugins, and the difficulties of not being able to

customise every part of the application in order to optimise performance.

7.8. Summary

This chapter described the use of the MagicBeans plugin technology to provide a

dynamic extension mechanism for the Labelled Transition System Analyser tool. A

number of different extensions that have been developed as plugins were described.

The plugin mechanism allowed third parties, for example the researchers at NASA,

to develop, test and deploy extensions to LTSA without having to have access to the

source code of other components, or provide others with access to their confidential

source code.

The fact that bindings can be made between any pairs of compatible components

was used to build plugins that can use features provided by other plugins directly, if

they are available, without having to communicate through the core of the application.

In order to ensure correct behaviour when different sets of plugins are combined,

behavioural constraints were employed, specifying the expected behaviour of compo-

nents.

8. Conclusions

In this final chapter we summarise and evaluate the contributions of this thesis, and

discuss some possibilities for future work in the area.

8.1. Contributions

It is well accepted that the requirements for software systems change over time.

Different users or customers may require specific customisations to create variations

on an application. In many situations different configurations of components may be

deployed at different sites to construct different software systems. If each custom solu-

tion is individually crafted by the software developer then this will lead to them having

a large number of different builds to support and maintain. This thesis has investigated

how software systems can be assembled by the end user or deployment engineer, rather

than the developer, by plugging together sets of compatible components, and how the

architecture of such a system can be allowed to evolve over time.

Two key questions have been addressed in this thesis. Firstly, what sort of program-

ming model can be used to support this sort of application assembly? Secondly, how

can the behaviour of such a system be predicted so that only systems that behave

correctly are assembled?

We have shown how using a plugin architecture can allow systems to be created

by the end user or deployment engineer by simply selecting sets of components and

plugging them together without writing any extra program code. Support for runtime

reconfiguration allows evolution of a system through the addition, removal or replace-

ment of components. Plugin architectures are commonly associated with applications

like web browsers. However, where these typically only allow extensions to a central

132

8.1. Contributions 133

core, we permit systems to be formed from complex graphs of components. We have

identified that the sort of evolution and reconfiguration that plugin architectures allow

is good for a number of different types of software system. A plugin architecture

is most effective where it is anticipated that there may be a need for some sort of

extension at some future time, but where the exact details and configurations of how

the architecture will evolve cannot be anticipated when the system is initially deployed.

We have presented a programming model for constructing plugin components

in a lightweight fashion, without some of the extra machinery required by other

component-based approaches. We have mapped concepts familiar from object-oriented

programming to the provision and requirement of services. Our middleware platform,

MagicBeans, supports programming in this model in the Java language. When new

components are loaded the platform examines the code of the component to determine

provided and required interfaces, matches these with the interfaces of other compo-

nents present in the system and creates bindings between relevant pairs.

In dynamically assembling and evolving a system using components from different

sources, it is difficult to know that the system will behave as expected after a reconfig-

uration. Adding a new component may cause a violation of a desired system property.

We want to check this before making the reconfiguration rather than experiencing the

results afterwards.

This thesis has presented techniques for automatically generating models of a

running system, and of proposed reconfigurations of that system, in a form that can

be analysed using model-checking. The automatic nature of the model generation

means that this analysis can be performed even in the situation where the deployment

agent is not skilled in formal modelling or analysis. We have presented techniques for

creating a model in the Darwin ADL describing the structure of a system, extracting

information from the code of the components and the runtime system. By combining

this with behavioural information for each of the components, in the FSP process

calculus, a model of the complete system can be formed that can be analysed using the

LTSA model checker. If the analysis succeeds and no property violations are uncovered

then the reconfiguration can proceed, otherwise it should be aborted.

134 Chapter 8. Conclusions

8.2. Evaluation

In Chapters 1 and 2 we identified a number of different problems that needed to be

solved in order to provide a technology that effectively allows systems to be composed

and evolved dynamically while maintaining confidence that those systems will behave

correctly. The main aims of the work presented in this thesis were to develop a system

that allowed applications to be dynamically reconfigured by adding, removing and

replacing modules, while maintaining a system that will preserve desired system

properties, and hence not malfunction. Concerns relating to the dynamic aspects of

software composition should be factored out into a reusable framework. Use of this

framework for the application programmer should be as simple as possible. We will

now consider how well the work addresses these issues. Each section is prefaced by

the associated requirements as set out in Chapter 2.

8.2.1. Encapsulation

We require a system that will allow the creation of applications to be managed by the

deployment engineer. This requires the coordination of components by a managing

framework, without the deployer needing to write “glue code” to mediate between

components.

As seen in Chapter 2, the problems of continually evolving software to update the

available functionality can be addressed by providing software modules, or compo-

nents, that can be added in to an existing software system. To make these modules

easy to install, it is desirable that components can be integrated with a system without

having to write any new code (commonly referred to as “glue code”) to mediate

between components. A component should encapsulate everything that it needs in

order to be used.

After our experiences working with extensible systems, we support the proposition

that the component level is the most appropriate level of granularity for adding

functionality and reconfiguring systems. Object-oriented programming focusses on the

class as its unit of encapsulation and modularity, but in general we have found that in

8.2. Evaluation 135

order to supply useful functionality, it is normally the case that sets of cooperating

classes are required. Working with Java, we have used Jar archive files as our units of

modularity, bundling together sets of classes to form deployable components. It should

be easy to adapt the techniques that we have described to work with other component

formats, for example .NET assemblies.

Using these deployable units as our components for constructing software systems

allows systems to be assembled by the deployment engineer. The notion of plugin

components allows modules to be added without the deployment engineer needing to

have access to the source code of components, or to write any code themselves.

To construct the models that we use for the analysis of systems requires a specifica-

tion of each component’s behaviour. By including the behavioural specification within

each component we maintain the possibility of deploying units that contain everything

that is required for them to be used with the system. The component encapsulates the

specification, which can be extracted by the runtime framework and combined with the

generated structural model to create a full model of the system, without the deployment

engineer needing to be aware of the details of how behaviour is specified.

The same mechanism is used to allow the framework to access a component’s

specification as is used for one component to access a service provided by another.

This requires including within the component a class that implements a particular

interface. This can mean that manipulating the specification is somewhat cumbersome

as source code needs to be altered. However, this is not seen as a great problem, as it is

expected that the specification will be written by the component’s developer, who will

be working with its source code anyway. Also, appropriate tool support can allow the

boiler plate code in the specification class to be generated automatically.

8.2.2. Supporting Framework

We require a framework for plugin components that will support the construction of

extensible applications in a generalised and reusable way.

We have implemented support for dynamism in plugin based systems in the Mag-

136 Chapter 8. Conclusions

icBeans framework. This forms a middleware platform on top of which applications

using plugin components can run.

The platform supports programming extensible applications using a third-party

binding paradigm. The identification of components and the matching of interfaces

is managed by the component framework, removing code for this concern from the

user components. When a component becomes available that provides a service that

a client can accept, the client will be notified of this by the runtime framework. One

consequence of this is that the client programmer does not have explicit control over

when components are connected or disconnected. It is not possible for user code to

trigger a reconfiguration of the system. Although this may seem to be a limitation in

some cases, for example if the application is monitoring its own performance in some

way, we believe that encapsulating coordination and reconfiguration functionality in a

lower layer of the system makes user level code cleaner and more maintainable.

8.2.3. Simplicity

We require integration with a familiar programming language, following its idioms, to

make the use of a plugin system intuitive for the developer. This will also allow more

use to be made of the compiler for static checking of component code.

We have aimed to make it easy for an application programmer to use the Mag-

icBeans framework to integrate plugin components into their application. The pro-

gramming examples in Chapter 4 show that the concepts from the plugin model

presented in Chapter 3 fit quite naturally with the concepts familiar to a programmer

using an object-oriented language. Service provision is expressed through interface

implementation. Service requirement is expressed by writing a callback method whose

parameter is of a type that indicates the service required. If, as in other approaches,

services are located by querying a registry using a service name that is just a string, it

is difficult to check type correctness statically. The use of language level types enables

more checking of the program to be done by the compiler. This gives greater assurance

of the correctness of code within a particular component.

All of the algorithms for matching provided and required services, creating bind-

8.2. Evaluation 137

ings and managing references between components are encapsulated in the plugin

framework. The developer does not need to manage components explicitly, only to

include methods to be executed on the arrival or departure of a required component.

The third-party binding paradigm that has been adopted means that all responsibility

for searching for components that may provide particular services is passed to the

framework. Components do not need to behave in an active fashion, they will be

informed of events relevant to them when they occur.

We do not prescribe the mechanism by which components are added to or removed

from the system. There are a number of different possibilities for this, from locating

plugins in a known file system location to using a dynamic network discovery ser-

vice such as Jini [45]. In applications where the user administers the application’s

configuration themselves, for example most desktop applications used on personal

computers, location of new plugins can be left to the user, who can provide the

location of the component that they wish to install, perhaps in the form of a URL.

Any mechanism that can detect the arrival or departure of a component can be used

with our plugin framework. Support for different mechanisms can be added by using

the plugin mechanism to extend the framework itself.

As our system requires inspection of a component’s bytecode to identify provided

and required interfaces, this can have an effect on the amount of time taken to load a

component. Large components containing many classes may take several seconds to

load. However, in practice we have not noticed any particularly detrimental effects

on the performance of applications. Typically we have observed that applications

composed from large components tend to be reconfigured less frequently than those

composed from small components. Because of this, the load time overhead has not

proved a problem. A few seconds delay is typically acceptable in a reconfiguration

that only occurs once every couple of weeks.

8.2.4. Re-use

We require that component management code should be factored into a reusable

framework that is not tied to any particular application. It should not be necessary

138 Chapter 8. Conclusions

to duplicate component management code in multiple components.

The MagicBeans system is sufficiently general to allow many different applica-

tions to be built using it as their extension mechanism. This is in contrast to the

technologies used to provide extension mechanisms for popular web browsers such

as Netscape Communicator, which use a specialised mechanism (see Section 2.3.2).

Internet Explorer uses Microsoft’s ActiveX technology to allow plugins to be written.

Although this is more general than Netscape’s approach, and ActiveX is used in

a number of different Microsoft products, in order to accept another component, a

component must be, i.e. it must include the code for, an ActiveX container. What

MagicBeans provides is a reusable platform that includes all of the code for matching

interfaces and creating and managing bindings between components.

In the earlier discussion of encapsulation (Section 8.2.1), it was stated that it was

desirable for a component to be a unit containing everything that that component

required in order to be used. The factoring of component and system management

code into a reusable layer seems to break this, as components cannot be completely

autonomous. However, there is another angle to the encapsulation issue. The platform

encapsulates the management code, meaning that code relating this concern does not

need to appear in each of the client components. If we had opted for a first-party

binding protocol, as seen in COM (see Section 2.1.2), then each component would

have had to manage binding to its collaborators.

8.2.5. Dynamism

We require a generalised dynamic architecture that will permit these three types of

change: dynamic addition, removal and replacement of components.

As discussed in Chapter 1, Oreizy et al identify three types of architectural change

that are desirable at runtime [62]: addition, removal and replacement of components.

The plugin model presented here, and its implementation in the MagicBeans frame-

work, supports all of these different forms of evolution.

Components in a software system are, ideally, loosely coupled. This makes it par-

ticularly appropriate to support dynamic reconfiguration at the architectural level [23].

8.2. Evaluation 139

In this work we have presented a system where the separation between components

is maintained by ensuring that all of the references across component boundaries

are managed by the runtime framework. This allows us to perform replacement of

components, as any binding or reference to a component that is to be replaced can be

severed and reconnected to the replacing component.

We can generate models of the application during execution. This means that in

deciding whether a component may safely replace another, we have knowledge beyond

the interfaces that it provides and requires. It is possible to determine which of the

component’s provided services are actually being used in the current configuration.

If components are considered in isolation, away from the system, then determining

if one may replace another is a matter of checking whether it provides at least the

services that are provided by the component it is to replace. With plugin architectures

we consider all requirements to be optional, so it is not necessary to check that the

requirements of the replacement are at most those of the component to be replaced, as

would be the case in other component architectures, where requirements indicate strict

dependencies. The use of runtime information allows us to be less conservative about

deciding whether a component can safely replace another, without loss of confidence.

The rules that we have defined for the operation of a plugin system, in terms of

which services are bound and how reconfiguration proceeds, are in a sense laisser-

faire. Existing bindings are never broken during the addition process. Consider the

situation where a system is running with two components. One requires a service and

the other provides it, and hence they are bound. When a new plugin is added to the

system, if that plugin provides the same service, the binding will not change. The

new component is not considered to be “better” than the old (if the new component is

intended to replace the old one, a replacement operation rather than an addition should

be triggered).

We have tried to adopt a level of dynamism that allows for evolution while maintain-

ing consistency, avoiding unnecessary change. Our experience in building applications

using plugin architectures has shown that this approach is effective in enabling the

development of applications that can be extended and reconfigured dynamically, while

remaining stable and consistent from a user perspective.

140 Chapter 8. Conclusions

Opting for a more aggressive reconfiguration strategy might allow existing bindings

to be broken when a new component is connected to the system. This would allow for

changes of configuration that we do not allow, for example inserting a component into

the middle of a pipeline. Performing this change would require breaking and recon-

necting the chain. At the present time we believe that allowing these more extensive

architectural changes to occur could lead to inconsistent behaviour. For example, if a

chain of components are passing data up and down, inserting a component into the

chain in the middle of a transaction could cause unexpected processing, or the lack

of expected processing. Perhaps in future the analysis techniques we have presented

could be extended and refined to be able to deal with such situations.

8.2.6. Predictability

We require that a proposed configuration can be analysed for desired properties

before it is realised, so that the deployer can gain confidence that the proposed

reconfiguration will result in a correctly functioning system. It must be possible to

abort the change if the result will violate system properties.

Assembling systems from sets of components with typed interfaces is akin to

assembling object-oriented programs from collections of objects, whose available

operations are expressed through types. We assemble applications from components by

connecting ports with matching types. This ensures that applications are well typed; no

action can be requested of an object that does not implement that action. This guarantee

is attained as each component is well typed in itself (given that the code compiles), and

the matching mechanism that is used in constructing plugin applications relies on the

underlying language (Java in the MagicBeans implementation) type system. Only well

typed applications will therefore be constructed.

However, having a program or application that is correctly typed does not guarantee

that the program will behave in the desired fashion. The agreement of types says

nothing about whether operations will in fact be invoked, or the ordering of those

invocations. It is often the case that components must interoperate in accordance with a

particular protocol in order for them to function correctly. To ensure correctness at this

8.2. Evaluation 141

level requires some further information and testing. We have demonstrated techniques

through which candidate configurations of components can be analysed by generating

models automatically at runtime. Structural information about the configuration of the

system, including bindings and port type information, is combined with behavioural

information for each component. This allows a behavioural model of the system as a

whole to be created. Using model-checking tools we can verify that the components

in the given configuration will fulfil required system properties. The LTSA tool allows

us to easily check for deadlock and liveness in models. Although actual deadlock,

experienced as an application freezing, is not very common in practice, the check

for deadlock can also reveal other problems. For example a finite capacity buffer

composed with a perpetual writer will eventually reach a deadlock as the buffer will

become full and the writer will not be able to proceed. In this way we can use the

deadlock check to detect possible buffer overruns.

Assessing the correctness of software is a difficult problem for programmers. Formal

analysis techniques require a higher level of specification to be written than the

program code. We have shown how some parts of a model can be generated auto-

matically by the runtime system, but we still rely on the developer of each component

providing a specification of that component’s behaviour. While process calculus is not

a widespread tool, and still considered “difficult” compared to programming in several

spheres, we have provided tool support to help developers to write specifications for

their components.

With larger models there can be significant computational overhead associated with

model-checking. It may take a long time to check a large state space. As model-

checking is a key part of our reconfiguration process this may mean that it is not

possible to quickly swap components in and out while maintaining confidence in the

system’s correctness. At this point an engineering compromise needs to be reached

concerning the importance of ensuring correctness versus the computational expense.

In some cases, the user may decide to forego the model-checking stage if they are

not overly concerned with maintaining behavioural properties. In other cases where

correctness is critical, e.g. business critical servers or software for space probes, the

cost of performing complex analysis is more likely to be deemed acceptable.

142 Chapter 8. Conclusions

8.3. Future Work

We will now consider some possible future research directions arising from the work

presented in this thesis.

8.3.1. Automatic Discovery of Behavioural Descriptions

The approach that we have presented extracts structural information from the code of

a set of components, but relies on a developer writing and including a specification for

their component in order to make use of behavioural information. Components that

do not provide a behavioural specification can still be used with the system, but we

are limited in the guarantees that can be made about the correctness of the resulting

system.

Manual construction of such a model is both time-consuming and error prone.

If it were possible to extract behavioural models automatically from the code of

components, all components would be able to be included in the behaviour model.

The Bandera project [20] aims to extract process models directly from Java code, so

that models can be built and checked directly, without human intervention.

Future work could involve using techniques from Bandera to build analysable

models directly from the code of components. The input to Bandera is Java source

code, where we would prefer to work with the executable Java byte code that is found

inside our components.

8.3.2. Use of Assume-Guarantee Reasoning

In the work that we have presented here, we combine the behavioural descriptions for

all components and then check for a property. It is clearly possible that as the number

of components in the system increases, the size of the model to be checked could

become very large.

A possible approach for dealing with this problem might be the use of assume-

guarantee reasoning. Work at NASA has produced techniques that can be used to

learn assumptions that must hold for a component being added to a system in order

8.3. Future Work 143

for a property to be preserved [19]. The component can then be checked against the

assumption separately from the system, reducing the size of the state space.

With plugin systems, we are often considering the addition of just one component

(rather than a complete reconfiguration of the system), so such a technique seems likely

to yield good results in some cases.

8.3.3. Distribution

The MagicBeans system as described in Chapter 6 currently works only in a single

address space. Many component based systems are designed to operate in a distributed

environment, where different components operate in different address spaces, possibly

distributed across a number of different hosts.

The model of plugin based systems that was described in Chapter 3 abstracts from

the physical location of the components, describing them only as being inside or

outside “the system”. Therefore, no changes would need to be made to the abstract

model in order to adapt the techniques described here to work in a truly distributed

environment. All that would need to be altered would be details of the implementation.

Some sort of messaging infrastructure would be required so that hosts could commu-

nicate in order to create a model of the complete system and make decisions about

reconfigurations. The binding mechanism would need to be made more complex, so

that calls could be made between components hosted on different machines. There are

several possible mechanisms for providing such a facility, for example Java RMI.

8.3.4. Hierarchical Composition

Currently it is only possible to construct systems by adding one component at a

time. There are situations where it would be preferable to be able to add a complete

subsystem consisting of a number of components which are already bound together.

The modelling system that we have presented already deals with the analysis of

composite components, the system as a whole is currently modelled as a composite

component, and so this could be extended to cater for varying levels of hierarchical

composition in different subsystems. Doing this would also allow the behaviour of

144 Chapter 8. Conclusions

subsystems to be analysed in isolation, which might be less computationally expensive

than analysing the complete system.

8.3.5. Translation to Other Platforms

Throughout this thesis, the examples and implementation details given have been

in the Java language. The plugin model presented could easily be translated to

other platforms, a particular candidate at the present time being Microsoft’s .NET

platform. From an implementation perspective, .NET assemblies (components) have

many similarities with Java’s Jar archives, e.g. there is facility for inspecting their

contents, and using reflection techniques to discover implemented interfaces. C# is

a very similar language to Java, and so it should clearly be possible to use plugin

concepts in C# programs as we demonstrated for Java in Chapter 4. However with

.NET, as all source languages are compiled to a common intermediate language, there

would also be the increased flexibility of being able to write plugin components in

different languages, as long as they were able to provide functions that the plugin

framework could call, and having them interoperate.

It might also be possible to use the analysis techniques developed in this thesis

to check the correctness of other systems of components. Component models such

as OSGi (see Section 2.2.1) are being adopted widely, and so if it were possible

to produce models from sets of OSGi components as well as sets of MagicBeans

components, then the range of systems that could be analysed would be greatly

increased.

8.4. Closing Remarks

We will never reach the stage where all the requirements for a software system can

be predicted at the outset of a project. There will always be changes in requirements

over time. Modern software systems are large and are responsible for many facets

of daily life. The costs associated with rebuilding them from scratch in response to

new requirements are high and often prohibitive. Provision for change is therefore a

8.4. Closing Remarks 145

fundamental requirement in the design of such systems. The need for software that is

adaptable and upgradeable, and for technologies to help manage change, is growing

day by day.

Adaptability in software can lead to every installation of an application being

slightly different. While this has the benefit of allowing systems to be tailored to a

particular user’s needs, it also moves control of the configuration out of the hands of

the software developer and further towards the user. This limits what use traditional

software engineering techniques can be in ensuring the correctness of applications, as

they are no longer built by experts in Software Engineering, but by system administra-

tors and end users.

The work presented in this thesis shows that the conflict between the goals of

adaptability and correctness can be surmounted by providing runtime support for the

modelling and analysis activities that more traditionally occur at design time.

Bibliography

[1] R. J. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie

Mellon University, 1997.

[2] F. Barbieri. Avalon Planet. Technical report, Apache Software Foundation,

http://avalon.apache.org/planet/components/index.html, 2004.

[3] M. Barnett. private communication, 2003.

[4] M. Barnett, W. Grieskamp, C. Kerer, W. Schulte, C. Szyperski, N. Tillmann,

and A. Watson. Serious specification for composing components. In 6th ICSE

Workshop on Component-Based Software Engineering: Automated Reasoning

and Prediction, 2003.

[5] M. Barnett and W. Schulte. The ABCs of specification: AsmL, behavior, and

components. Informatica, 25(4):517–526, Nov. 2001.

[6] M. Barr and S. Eisenbach. Safe Upgrading without Restarting. In IEEE

Conference on Software Maintenance (ICSM 2003). IEEE, Sept 2003.

[7] M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting families of software

systems with process algebras. ACM Transactions on Software Engineering and

Methodology (TOSEM), 11(4):386–426, 2002.

[8] G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalising dynamic

software updating. In Second International Workshop on Unanticipated Software

Evolution at ETAPS ’03, 2003.

146

Bibliography 147

[9] G. S. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace, R. Moreira, and

N. Parlavantzas. Reflection, self-awareness and self-healing in openorb. In

Proceedings of the first workshop on Self-healing systems, pages 9–14. ACM

Press, 2002.

[10] H. Cervantes and R. S. Hall. Automating service dependency management in a

service-oriented component model. In Proceedings of the 6th ICSE Workshop on

Component-Based Software Engineering, 2003.

[11] H. Cervantes and R. S. Hall. Autonomous adaptation to dynamic availability

using a service-oriented component model. In Proceedings of the 26th IEEE and

ACM SIGSOFT International Conference on Software Engineering (ICSE 2004),

Edinburgh, Scotland, may 2004.

[12] R. Chatley, S. Eisenbach, and J. Magee. Modelling a framework for plugins.

In M. Barnett, S. H. Edwards, D. Giannakopoulou, and G. T. Leavens, editors,

SAVCBS, volume #03-11 of Technical Report. Iowa State University, 2003.

http://www.cs.iastate.edu/∼leavens/SAVCBS/2003/papers/SAVCBS03.pdf.

[13] R. Chatley, S. Eisenbach, and J. Magee. MagicBeans: a Platform for Deploying

Plugin Components. In Second International Working Conference on Component

Deployment, May 2004.

[14] R. Chatley, S. Eisenbach, and J. Magee. Predictable Dynamic Plugin Systems. In

Proceedings of Fundamental Approaches to Software Engineering (FASE 2004),

Barcelona, Spain, March 2004.

[15] R. Chatley, J. Kramer, J. Magee, and S. Uchitel. Model-based Simulation of Web

Applications for Usability Assessment. In Bridging the Gaps Between Software

Engineering and Human-Computer Interaction, May 2003.

[16] R. Chatley, J. Kramer, J. Magee, and S. Uchitel. Visual methods for web

application design. In M. Burnett and J. Grundy, editors, Proceedings of 2003

IEEE Symposium on Visual and Multimedia Software Engineering October 28-

31 Auckland, New Zealand, 2003.

148 Bibliography

[17] R. Chatley, S. Uchitel, J. Kramer, and J. Magee. Fluent-based web animation:

Exploring goals for requirements validation. In Proceedings of the 27th IEEE

and ACM SIGSOFT International Conference on Software Engineering (ICSE

2005), St Louis, Missouri, USA, may 2005.

[18] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava:

Modular open classes and symmetric multiple dispatch for Java. In OOPSLA

2000 Conference on Object-Oriented Programming, Systems, Languages, and

Applications, Minneapolis, Minnesota, volume 35(10), pages 130–145, 2000.

[19] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu. Learning Assumptions for

Compostional Verification. In Proc. of TACAS 2003. LNCS, April 2003.

[20] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and

H. Zheng. Bandera: extracting finite-state models from java source code. In

International Conference on Software Engineering, pages 439–448, 2000.

[21] D. Crawford. Commun. ACM - Special issue on Aspect Oriented Programming.

ACM Press, October 2001.

[22] M. Dahm, J. van Zyl, and E. Haase. The Byte Code Engineering Library (BCEL).

Technical report, Apache, http://jakarta.apache.org/bcel/, 2002.

[23] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards architecture-

based self-healing systems. In Proceedings of the first workshop on Self-healing

systems, pages 21–26. ACM Press, 2002.

[24] M. Dmitriev. HotSwap Client Tool. Technical report, Sun Microsys-

tems, Inc., www.experimentalstuff.com/Technologies/ HotSwapTool/index.html,

2002-2003.

[25] S. Drossopoulou, D. Wragg, and S. Eisenbach. What is java binary

compatibility? In OOPSLA, pages 341–361, 1998.

[26] S. Eisenbach, V. Jurisic, and C. Sadler. Feeling the way through DLL Hell.

Bibliography 149

In The First Workshop on Unanticipated Software Evolution (USE 2002).

http://joint.org/use2002/, June 2002.

[27] S. Eisenbach, C. Sadler, and S. Shaikh. Evolution of Distributed Java Programs.

In IFIP/ACM Working Conference on Component Deployment (COCD 2002),

volume 2370 of LNCS. Springer-Verlag, June 2002.

[28] S. Eisenbach, C. Sadler, and S. Shaikh. Evolution of Distributed Java Programs.

In IFIP/ACM Working Conference on Component Deployment, volume 2370 of

LNCS. Springer-Verlag, June 2002.

[29] H. Evans. DRASTIC and GRUMPS: design and implementation of two run-time

evolution frameworks. IEE Proceedings - Software Engineeering, 151(02):30–

48, march 2004.

[30] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of

Web Service Compositions. In Proceedings of the 18th IEEE International

Conference on Automated Software Engineering (ASE 2003), Montral, Canada,

Nov. 2003. IEEE Computer Society Press.

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Pub Co, 1995.

[32] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design

environments. In Proceedings of the ACM SIGSOFT ’94 Symposium on the

Foundations of Software Engineering, pages 175–188, 1994.

[33] D. Garlan, D. Kindred, and J. Wing. Interoperability: Sample Problems and

Solutions. Technical report, Carnegie Mellon University, Pittsburgh, 1995.

[34] D. Garlan, J. Kramer, and A. Wolf, editors. Proc. of the First ACM SIFGOSFT

Workshop on Self-Healing Systems. ACM Press, November 2002.

[35] D. Garlan and B. Schmerl. Model-based adaptation for self-healing systems. In

Proceedings of the first workshop on Self-healing systems, pages 27–32. ACM

Press, 2002.

150 Bibliography

[36] I. Georgiadis. Self-Organising Distributed Component Software Architectures.

PhD thesis, Imperial College London, London, United Kingdom, Jan 2002.

[37] I. Georgiadis, J. Magee, and J. Kramer. Self-organising software architectures for

distributed systems. In Proceedings of the first workshop on Self-healing systems,

pages 33–38. ACM Press, 2002.

[38] D. Giannakopoulou and F. Lerda. From states to transitions: Improving

translation of LTL formulae to Bchi automata. In Proceedings of the 22nd

IFIP WG 6.1 International Conference on Formal Techniques for Networked and

Distributed Systems (FORTE’02), November 2002.

[39] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.

Addison Wesley, 2 edition, June 2000.

[40] D. Green. The Reflection API. Technical report, Sun Microsystems, Inc.,

http://java.sun.com/docs/books/tutorial/reflect/, 1997-2001.

[41] R. S. Hall. Oscar. Technical report, ungoverned.org, oscar-osgi.sourceforge.net,

2003.

[42] D. Jackson. Micromodels of Software: Lightweight Modelling and Analysis with

Alloy. Technical report, M.I.T., sdg.lcs.mit.edu/ dng/, February 2002.

[43] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy Constraint Analyzer.

In Proceedings of the 22nd Conference on Software Engineering (ICSE’2000),

pages 730–733, Limerick, Ireland, May 2000. ACM Press.

[44] Javabeans. The Only Component Architecture for Java Technology. Technical

report, Sun Microsystems, Inc., java.sun.com/products/javabeans/, 1997.

[45] JINI. DJ - Discovery and Join. Technical report, Sun Microsystems, Inc.,

wwws.sun.com/software/jini/specs/jini1.2html/discovery-spec.html, 1997-2001.

[46] J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change

management. IEEE TSE, 16(11):1293–1306, November 1990.

Bibliography 151

[47] S. Liang and G. Bracha. Dynamic class loading in the Java virtual machine.

In Conference on Object-oriented programming, systems, languages, and

applications (OOPSLA’98), pages 36–44, 1998.

[48] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.

Specification and analysis of system architecture using rapide. IEEE Trans.

Softw. Eng., 21(4):336–355, 1995.

[49] Macromedia. Macromedia Shockwave Player. Technical report, Macromedia,

Inc., www.macromedia.com/ software/shockwaveplayer/, 1995-2003.

[50] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed

Software Architectures. In Proceedings of the 5th European Conference on

Software Engineering, Sitges, Spain, 1995, pages 137–154. Springer Verlag,

1995.

[51] J. Magee and J. Kramer. Concurrency – State Models and Java Programs. John

Wiley & Sons, 1999.

[52] J. Mayer, I. Melzer, and F. Schweiggert. Lightweight plug-in-based application

development, 2002.

[53] N. Medvidovic, D. Rosenblum, and R. Taylor. A language and environment for

architecture-based software development and evolution. In ICSE ’99, 1999.

[54] Microsoft Corporation. The Component Object Model: A

Technical Overview. Technical report, Microsoft Developer

Network, http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dncomg/html/msdn-comppr.asp, 1994.

[55] Microsoft Corporation. How to Write and Use ActiveX Controls

for Windows CE 2.1. Technical report, Microsoft Developer

Network, http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnce21/html/activexce.asp, 1999.

152 Bibliography

[56] H. Muccini. Detecting Implied Scenarios analyzing non-local Branching

Choices. In Proc. of FASE 2003. LNCS, April 2003.

[57] G. C. Necula and P. Lee. Proof-carrying code. In Proceedings of the 24th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Langauges

(POPL ’97), pages 106–119, Paris, Jan. 1997.

[58] Netscape. Netscape Communicator Plug-in Guide. Technical report, Netscape,

http://developer.netscape.com/docs/manuals/communicator/plugin/index.htm,

1998.

[59] B. Nuseibeh. Weaving together requirements and architecture. IEEE Computer,

34(3):115–117, March 2001.

[60] Object Technology International, Inc. Eclipse Platform Technical Overview.

Technical report, IBM, www.eclipse.org/whitepapers/eclipse-overview.pdf, July

2001.

[61] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,

N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-

based approach to self-adaptive software. IEEE Intelligent Systems, 14(3):54–62,

1999.

[62] P. Oriezy, N. Medvidovic, and R. Taylor. Architecture-based runtime software

evolution. In ICSE ’98, 1998.

[63] M. Oriol. Luckyj: an asynchronous evolution platform for component-based

applications. In Second International Workshop on Unanticipated Software

Evolution at ETAPS ’03, 2003.

[64] OSGi. Open services gateway initiative specification. Technical report, OSGi,

http://www.osgi.org, 2001.

[65] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE

Symposium on the Foundations of Computer Science (FOCS-77), pages 46–57,

1977.

Bibliography 153

[66] N. Pryce and S. Crane. A model of interaction in concurrent and distributed

systems. Lecture Notes in Computer Science, 1429:57–??, 1998.

[67] N. Pryce and J. Magee. Scenebeans: A component-based animation framework

for java.

[68] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles. Using critics to analyze

evolving architectures. In Joint proceedings of the second international

software architecture workshop (ISAW-2) and international workshop on

multiple perspectives in software development (Viewpoints ’96) on SIGSOFT ’96

workshops, pages 90–93. ACM Press, 1996.

[69] Sun. Java platform debugger architecture. Product documentation, Sun

Microsystems, Inc., java.sun.com/j2se/1.4/docs/guide/jpda/index.html, 2002.

[70] Sun Microsystems, Inc. Applets. Technical report, Sun Microsystems, Inc.,

java.sun.com/applets/, 1995-2003.

[71] C. Szyperski. Component Software: Beyond Object-Oriented Programming.

Addison-Wesley Pub Co, 1997.

[72] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins,

K. A. Nies, P. Oreizy, and D. L. Dubrow. A component- and message-based

architectural style for GUI software. Software Engineering, 22(6):390–406,

1996.

[73] The Mozilla Organisation. Firefox - the browser, reloaded, 2004.

[74] S. Uchitel, R. Chatley, J. Kramer, and J. Magee. LTSA-MSC: Tool Support for

Behaviour Model Elaboration Using Implied Scenarios. In Proc. of TACAS 2003.

LNCS, April 2003.

[75] S. Uchitel, R. Chatley, J. Kramer, and J. Magee. Fluent-based animation:

Exploiting the relation between goals and scenarios. In Proceedings of the

IEEE International Conference on Requirements Engineering (RE 2004), Kyoto,

Japan, September 2004.

154 Bibliography

[76] S. Uchitel, R. Chatley, J. Kramer, and J. Magee. System architecture: the context

for scenario-based model synthesis. In Proceedings of the 12th ACM SIGSOFT

Symposium on the Foundations of Software Engineering (FSE 2004), Newport

Beach, CA, USA, November 2004.

[77] S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in message

sequence chart specifications. In Proceedings of the 8th European software

engineering conference held jointly with 9th ACM SIGSOFT international

symposium on Foundations of software engineering, pages 74–82. ACM Press,

2001.

[78] M. Völter. Pluggable Component - A Pattern for Interactive System

Configuration. In EuroPLoP ’99, 1999.

[79] W3C. Scalable Vector Graphics (SVG) 1.0 Specification. Technical report, W3C,

http://www.w3.org/TR/SVG/, 2001.

[80] P. Waesawangwong. A constraint architectural description approach to self-

organising component-based software systems. In Proceedings of the Doctoral

Symposium at the 26th IEEE and ACM SIGSOFT International Conference on

Software Engineering (ICSE 2004), Edinburgh, Scotland, May 2004.

[81] D. Watkins, M. Hammond, and B. Abrams. Programming in the .NET

Environment. Addison Wesley, April 2004.

[82] J. Whittle and J. Schumann. Generating statechart designs from scenarios. In

Proceedings of the 22nd international conference on Software engineering, pages

314–323. ACM Press, 2000.

[83] W. Wong. Analysing Clocked Process Algebras via Stochastic Petri Nets.

Technical report, Imperial College London, http://www.doc.ic.ac.uk/ ajf/Teach-

ing/Projects/Distinguished04/WallaceWong.pdf, 2004.

[84] D. Zowghi, A. Ghose, and P. Peppas. A Framework for Reasoning about

Requirement Evolution. In N. Y. Foo and R. Goebel, editors, Proceedings of

Bibliography 155

the 4th Pacific Rim International Conference on Artificial Intelligence, Cairns,

Australia, 1996, pages 157–168. Springer Verlag, 1996.

A. The Model in Alloy

module Plugins

open std/ord

sig String {}

sig Number {}

sig Interface{}

sig Class {

implements : set Interface,

abstract : option String

}

sig NumInterface extends Interface{

n : Number

}

sig Component {

pegs : set Class,

holes : set NumInterface

}

sig Binding {

hole : NumInterface,

from : Component,

peg : Class,

to : Component

}{

to != from

hole in from.holes

peg in to.pegs

}

sig System {

components : set Component,

bindings : set Binding,

start : Component

156

157

}{

one start

start in components

no start.holes => no bindings

all c in components { c != start => some c.pegs }

}

fact noOrphans {

all i : Interface | some c : Component { i in c.holes }

all cl : Class | some c : Component { cl in c.pegs }

all b : Binding | some s : System { b in s.bindings }

}

fun canBind(cl:Class, c1:Component, i:NumInterface, c2:Component) {

i in c2.holes && cl in c1.pegs && (c1 != c2) &&

no cl.abstract && i in cl.implements

}

fun 1-1-binding(s : System) {

all b1 , b2 : Binding { b1 in s.bindings && b2 in s.bindings &&

(b1.to = b2.to) && (b1.peg = b2.peg) => (b1 = b2) }

}

fun 1-n-binding(s : System) {

all b1 , b2 : Binding { b1 in s.bindings && b2 in s.bindings &&

(b1 != b2) && (b1.to = b2.to) &&

(b1.peg = b2.peg) => (b1.from != b2.from) }

}

fun load(s , s’ : System , c:Component) {

s’.start = s.start

s’.bindings = s.bindings

s’.comps = s.comps + c

}

B. Implementing a NullObject

factory

public class NullObjectFactory {

/**

* This class automatically generates null implementations of

* a given Java interface on the fly - implementing the

* NullObject pattern.

* Calling a method on the NullObject should either:

* - do nothing

* - return 0 or a similar value

* - return a NullObject representing the return type of

* the method

*/

public Object newNull(Class p_intf) {

/**

* Set up a proxy for the given interface, with method

* calls to be handled by a NullInvocationHandler

**/

InvocationHandler x_ih = new NullInvocationHandler();

return = Proxy.newProxyInstance(p_intf.getClassLoader() ,

new Class[] { p_intf } ,

x_handler);

}

}

class MyInvocationHandler {

/**

* Depending on the return type of the method, either

158

159

* do nothing, return a sentinel 0 or ’ ’ or similar,

* or, for reference types, reuse the factory to create

* a null implementation of the interface type, and return

* that.

**/

public Object invoke(Object p_proxy ,

Method p_meth ,

Object[] p_params) {

if (p_meth.getReturnType() == Void.TYPE) { return null; }

if (p_meth.getReturnType() == Integer.TYPE) { return new Integer(0); }

if (p_meth.getReturnType() == Double.TYPE) { return new Double(0.0); }

if (p_meth.getReturnType() == Float.TYPE) { return new Float(0.0); }

if (p_meth.getReturnType() == Short.TYPE) { return new Short(0); }

if (p_meth.getReturnType() == Long.TYPE) { return new Long(0.0); }

if (p_meth.getReturnType() == Byte.TYPE) { return new Byte(" "); }

if (p_meth.getReturnType() == Character.TYPE) { return new Character(’ ’); }

if (p_meth.getReturnType().isInterface()) {

return newNull(p_meth.getReturnType());

}

return null;

}

}

C. Full Compressing Proxy Model

interface Filter { data; }

interface Proc { packet; end; }

component Source {

require next:Filter;

/%

Source = (next.data -> Source).

%/

}

component BasicFilter {

require next:Filter;

provide Filter;

/%

BasicFilter = (data -> next.data -> BasicFilter).

%/

}

component Adapter {

require next:Filter;

out:Proc;

provide Filter;

Proc;

/%

Adapter = BasicFilter,

BasicFilter = (data -> next.data -> BasicFilter

| pluginAdded.proc -> Adapt

),

Adapt = (data -> out.packet -> ToProc),

ToProc = (out.packet -> ToProc | out.end -> FromProc),

FromProc = (packet -> FromProc | end -> next.data -> Adapt).

%/

160

161

}

component GZip {

require out:Proc;

provide Proc;

/%

GZip2 = (packet -> put -> In),

In = (packet -> put -> In | end -> Zip),

Zip = (zip -> Out),

Out = (get -> out.packet -> Out | out.end -> GZip2).

Buffer(N=2) = Count[0],

Count[i:0..N] = (when (i<N) put -> Count[i+1]

| when (i>0) get -> Count[i-1]

| when (i==0) out.end -> Count[i]).

||GZip = (GZip2 || Buffer).

%/

}

component PacketAdapter {

require next:Filter;

out:Proc;

provide Filter; Proc;

/%

PacketAdapter = (data -> out.packet -> out.end -> packet

-> end -> next.data -> PacketAdapter).

%/

}

\end{verbatim}

\clearpage

\begin{verbatim}

//system with deadlock

component System {

inst s:Source

b:BasicFilter

a:Adapter;

g:GZip;

b2:BasicFilter;

bind b.Filter -- s.next;

a.Filter -- b.next;

162 Appendix C. Full Compressing Proxy Model

b2.Filter -- a.next;

a.Proc -- g.out;

g.Proc -- a.out;

}

//working system

component System {

inst s:Source

b:BasicFilter

a:PacketAdapter;

g:GZip;

b2:BasicFilter;

bind b.Filter -- s.next;

a.Filter -- b.next;

b2.Filter -- a.next;

a.Proc -- g.out;

g.Proc -- a.out;

}

D. Full LTSA Model

interface LTSAPlugin { init; run; cleanup; }

/%

const PLUGINS_MAX = 2

%/

component LTSACore {

require plugins[2]:LTSAPlugin;

/%

LTSA_PLUGIN = (init -> run -> sync -> cleanup -> END).

||LTSACore = forall [i:1..PLUGINS_MAX] plugins[i]:LTSA_PLUGIN/{sync/plugins[i

].sync}.

%/

}

component MSCPlugin {

provide LTSAPlugin;

/%

MSCPlugin = (init -> run -> cleanup -> MSCPlugin) + LTSAPlugin.

%/

}

component DarwinPlugin {

provide LTSAPlugin;

/%

DarwinPlugin = (init -> run -> DarwinPlugin) + LTSAPlugin.

%/

}

component System {

inst core:LTSACore;

msc:MSCPlugin;

dwn:DarwinPlugin;

163

164 Appendix D. Full LTSA Model

bind core.plugins[1] -- msc.LTSAPlugin;

core.plugins[2] -- dwn.LTSAPlugin;

}

/%

assert ALLCLEANUP = forall [j:1..PLUGINS_MAX] <>(core.plugins[j].cleanup)

%/

E. HotSwap Experiments

Hotswapping is a technique for replacing class definitions inside a running Java Virtual

Machine. It was designed by Mikhail Dmitriev, and more information on using it is

available in Dmitriev’s technical report [24].

It is not possible to swap in a new definition for a class which has arbitrary

differences to the original version. Here we see what is possible, what is not, and

whether everything that is possible will work correctly.

E.1. A framework for testing

To make it easy to run different tests, we provide a managing application which does

the following:

• Loads a jar file old.jar containing a set of classes that form a program. One of

the classes must be called Main and have a method called run().

• Instantiates the Main class and runs the program by.

• Loads a jar file new.jar containing a set of classes (a subset of the classes in

old.jar) that should replace the original class definitions.

• Calls HotSwap to redefine the classes.

• Calls the run() method on the existing instance of Main.

165

166 Appendix E. HotSwap Experiments

E.2. Tests

For each experiment we present the source code for the old (already loaded) and new

(to be upgraded to) versions of the class, and the results of running the experiment,

showing whether or not such a change is a possible upgrade under the current (1.4.0)

Hotswap implementation.

E.2.1. Changing a method body

Old version:

class Main {

void run() {

System.out.println(‘‘old version’’);

}

}

New version:

class Main {

void run() {

System.out.println(‘‘new version’’);

}

}

Result:

old version

new version

Changing the implementation of a method body is a possible change.

E.2.2. Adding a method

Old version:

class Main {

void run() {

System.out.println(‘‘old version’’);

}

}

E.2. Tests 167

New version:

class Main {

void run() {

System.out.println(‘‘new version’’);

}

void m1() {}

}

Result:

old version

That upgrade is not supported

old version

Adding a method is not possible.

E.2.3. Adding a field

Old version:

class Main {

void run() {

System.out.println(‘‘old version’’);

}

}

New version:

class Main {

int i;

void run() {

System.out.println(‘‘new version’’);

}

}

Result:

old version

That upgrade is not supported.

old version

Adding a field is not a possible change.

168 Appendix E. HotSwap Experiments

E.2.4. Changing the order of methods

Old version:

class Main {

void run() {

System.out.println(‘‘old version’’);

m1();

m2();

}

void m1() { System.out.println(‘‘m1’’); }

void m2() { System.out.println(‘‘m2’’); }

}

New version:

class Main {

void run() {

System.out.println(‘‘new version’’);

m1();

m2();

}

void m2() { System.out.println(‘‘m2’’); }

void m1() { System.out.println(‘‘m1’’); }

}

Result:

old version

m1

m2

new version

m1

m2

Changing the order of the methods in a class is a possible change.

E.2. Tests 169

E.2.5. Changing the order of fields

Old version:

class Main {

int i;

int j;

void run() {

System.out.println(‘‘old version’’);

}

}

New version:

class Main {

int j;

int i;

void run() {

System.out.println(‘‘new version’’);

}

}

Result:

old version

That upgrade is not supported

old version

Changing the order of the fields in a class is not a possible change.

170 Appendix E. HotSwap Experiments

E.2.6. Changing the order of methods in a superclass

Old version:

public class Main {

A a;

public Main() { a = new B(); }

void run() {

System.out.println(‘‘old version’’);

a.m1();

}

}

public class A {

void go(){}

void m1(){ System.out.println(‘‘m1’’); }

void m2(){ System.out.println(‘‘m2’’); }

}

public class B extends A {

void go() { m1(); }

}

New version:

public class A {

void go(){}

void m2(){ System.out.println(‘‘m2’’); }

void m1(){ System.out.println(‘‘m1’’); }

}

Result:

old version

m1

old version

m1

Changing the order of the methods in a superclass still seems to work. (The result

prints “old version” twice because we only upgrade class A). We suspected this might

not work, but it does seem to...

E.2. Tests 171

E.2.7. Calling a method in a new class

Old version:

class Main {

void run() {

System.out.println(‘‘old version’’);

}

}

New version:

class Main {

void run() {

System.out.println(‘‘new version’’);

new AnotherClass().m1();

}

}

class AnotherClass {

public void m1() {

System.out.println(‘‘m1’’);

}

}

Result:

old version

new version

m1

The HotSwap succeeds, and if AnotherClass can be found on the classpath, then it is

loaded an m1() is called as required.

172 Appendix E. HotSwap Experiments

E.2.8. Calling a method in a new class that is missing.

Old version:

class Main {

void run() {

System.out.println(‘‘old version’’);

}

}

New version:

class Main {

void run() {

System.out.println(‘‘new version’’);

new AnotherClass().m1();

}

}

Result:

old version

new version

ClassDefNotFound : AnotherClass

The HotSwapping of the method proceeds ok, and the linking fails when AnotherClass

cannot be found. It is not possible to HotSwap in a class that does not already exist

inside the virtual machine.

