Identification of Usability Decomposition

(from literature survey and industrial experience)

	Authors:
	Alberto de Andrés (IHG)

	
	Robert Chatley (ICSTM)

	
	Xavier Ferré (UPM)

	
	Eelke Folmer (RuG)

	
	Natalia Juristo (UPM)

	
	Manuel Montejo (IHG)

	
	Menegos Stavros (LOGICDIS)

	
	

Version: 1.0

Table of Contents
41
Introduction

41.1
Task Goals

41.2
Document Structure

52
Basics on Usability

73
Sources for the Literature Survey

94
Literature Survey on Attribute Decomposition

94.1
Definition of Usability Attribute

104.2
Usability Attributes Proposals

104.3
Attributes Description

104.3.1
Learnability

124.3.2
Efficiency

124.3.3
Memorability

134.3.4
Error rate

134.3.5
Satisfaction

144.3.6
Effectiveness

144.3.7
Understandability

144.3.8
Flexibility

144.3.9
First impression

154.3.10
Advanced feature usage

154.3.11
Initial performance

154.3.12
Evolvability

165
Usability Decomposition from Industrial Experience

165.1
IHG Experience

165.1.1
Basic Usability Attributes

175.1.2
Other Aspects

185.2
LOGICDIS Experience

185.2.1
Consistency – Similarity

195.2.2
Flexibility

205.2.3
Simplicity

215.2.4
Errors

225.2.5
Completeness

236
Other Proposals

236.1
[Mayhew, 99]

236.2
[Crear, 98]

246.3
[Browne, 98]

246.4
[Rohlfs, 98]

246.5
[Constantine, 99]

257
Usability Decomposition for the STATUS Project

257.1
Usability Scope

267.2
Attributes Decomposition

31References

Introduction

1.1 Task Goals

This document presents the existing usability attribute decompositions in the literature, along with an attribute structure proposal that will allow the STATUS project partners to study the relations between usability and software architecture. This document is the outcome of Task 2.1: Identification of usability decomposition in literature and Task 2.2: Identification of usability decomposition in the industrial partners. This will be the basis for work on the selection of usability attributes affected by software architecture.

1.2 Document Structure

Some basic terms associated with usability are described in section 2. The chosen sources are briefly commented upon in section 3, and their different attribute decomposition proposals presented in section 4. Section 5 presents the industrial perspective of usability decomposition. Section 6 details some other incomplete or non-formalized proposals that may be of interest for our endeavour. Section 7 presents an attribute structure distilled from the existing proposals, which will be the basis for the STATUS project.

2. Basics on Usability

The ultimate evaluation of quality is fitness to purpose. Therefore, in order to measure software quality we have to understand the purpose for which the system is intended. This also means that quality is not a measure of software in isolation; it is a measure of the relationship between software and its application domain. The user is an essential part of such a domain, so usability is an important component of software quality. Although there is no agreed set of critical software quality attributes, several quality attribute classifications agree on the importance of considering usability as a quality attribute [IEEE1061, 98], [ISO9126, 91], [Boehm, 78]. Most quality attributes focus on characteristics that are desirable from the point of view of the software development organization. Usability, on the other side, is a quality attribute perceived directly by the client/user. One definition of usability is quality in use [ISO14598, 99].

The relationship between usability and the other quality aspects is a complex one. Usability can sometimes conflict with other quality attributes. For example, security is the attribute that most evidently conflicts with usability, as security procedures often get in the way of the user's task. Other attributes, such as reliability, often have a positive effect on usability: a software product that is not reliable can hardly support the user in his/her duty, and for this reason it cannot be seen as having a high level of usability. However, the reverse is not true. A software system that is highly reliable could be quite unusable. As will be shown in this document, defining the borders between usability and some of the other quality aspects (mainly functionality) is a difficult task; although necessary in order to define usability.

In simple terms, usability reflects how easy the software is to learn and use, how productively users will be able to work and how much support users will need. A system’s usability does not only deal with the user interface; it also relates closely to the software’s overall structure and to the concept on which the system is based. In order to understand the depth and scope of the usability of a system it is useful to make a distinction between the visible part of the user interface (buttons, pull-down menus, check-boxes, background colour, etc.) and the interaction part of the system. By interaction we mean the coordination of information exchange between the user and the system.

This interaction must be carefully designed and must be considered not just when designing the visible part of the user interface, but also when designing the rest of the system. For example, if we consider that our system will have to provide continuous feedback to the user for usability reasons, we will need to bear this in mind when designing time-consuming system operations. These have to be designed so as to allow information to be frequently sent to the user interface to keep the user informed about the current status of the operation. This information could be displayed to the user by means of a percentage-completed bar, as in some software installation programs. It is not unusual to find development teams thinking that they can design the system and then make it usable afterwards just by designing a nice set of controls, having the right colour combination and the right font. This approach is clearly wrong. The interaction with the user must be considered from the beginning of the development process in order to obtain a usable system. The development team’s understanding of the interaction will affect the usability level of the final product.

Usability is an issue we can approach from multiple angles. Many different disciplines, such as psychology, computer science, and sociology, are trying to tackle it. Unfortunately, this results in a lack of standards; a lot of terms are used to describe the development of usable software: usability engineering, usage-centered design, contextual design, participatory design, and goal-directed design. All these philosophies to some extent address the core issue of evaluating usability with real users from the first stages of development, and keeping a user-centered focus throughout the development effort.

A paradigm more widely accepted in software engineering in relation to usability is Usability Engineering. Usability engineering defines a target usability level in advance and ensures that the software developed reaches that level. The term was coined to reflect the engineering approach some usability specialists propose to take. Specifically, usability engineering is defined as “a process through which usability characteristics are specified, quantitatively and early in the development process, and measured throughout the process” [Hix, 93].

For a better understanding of the concept of usability, it is necessary to consider its attribute decomposition, which reflects the different aspects that must be taken into account. Sections 4 and below are mostly dedicated to this issue.

3. Sources for the Literature Survey

The goal for tasks 2.1 and 2.2 is to reach an agreement about the attributes into which usability can be decomposed. From there on, during Task 2.3, the relation between usability and software architecture will be studied.

The issue of usability attribute decomposition is addressed by different authors in usability literature. Before proposing our own decomposition we should review other authors’ proposals; however, for this review we will just focus on books. The reason for such a decision is that we want our starting point to be well established knowledge in the field, not novel and not-yet-accepted theories that are published in research papers.

Between the numerous usability and human computer interaction books we have chosen the ones most relevant and most profusely cited. A brief description of the six chosen books follows.

· Nielsen93 – "Usability Engineering". Jakob Nielsen.

This book has been for a long time the main reference book for the usability engineering sub-discipline. Nielsen offers an engineering-like approach to building usable software systems, that makes usability issues come closer to a Software Engineering view.

· Hix93 – "Developing User Interfaces: Ensuring Usability Through Product and Process" D. Hix and H. Hartson.

This book presents a very practical and hands-on approach to the issue of user interaction design. One of its objectives is to be a textbook for courses in user interface development with a strong usability focus.

· Wixon97 – "The Usability Engineering Framework for Product Design and Evaluation" D. Wixon and C. Wilson. In Handbook of Human-Computer Interaction, 2nd edition.
The Handbook contains articles that describe the diversity in HCI, both in research and practice. Wixon and Wilson's article gives a good overview of Usability Engineering. The authors belonged to the usability group at DEC that created the method Usability Engineering (as credited in [Gould, 88]).

· Constantine99 – "Software for Use". Larry L. Constantine, Lucy A.D. Lockwood.
Larry Constantine is one of the gurus of the Software Engineering discipline. He has shifted in the last decade to the issue of usable software development; and his and Lockwood's experience as usability consultants is described in this very practical work. The book presents the authors' own method for developing usable software.

· Shackel91 – "Usability – context, framework, design and evaluation". B. Shackel. In Human Factors for Informatics Usability.

Shackel is one of the first authors in the field to recognize the importance of usability engineering and the relativity of the concept of usability. His approach has been much used and modified.

· Preece94 – "Human-Computer Interaction". J. Preece, , Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey.

This book presents the variety of topics addressed by the HCI field. It has an encyclopaedic aim, with some theoretical prevalence. It has been one of the main textbooks for general HCI courses to the time of writing.

· Shneiderman98 – "Designing the User Interface". Ben Shneiderman.
Shneiderman is one of the most respected authors in the HCI field (he received last year the ACM-SIGCHI CHI Lifetime Achievement Award). All three editions of this book have been fundamental references in user interface design, because of their balanced coverage of both theoretical and development-oriented aspects of interaction.

· ISO9241_98
 – "ISO 9241-11 Ergonomic Requirements for Office Work with Visual Display Terminals – Part 11: Guidance on Usability". International Organization for Standardization.
The ISO organization has developed various usability-related standards over the last 15 years. This standard provides the definition of usability that is used in ergonomic standards. ISO standards on ergonomic requirements e.g. VDT workstation, hardware & environment have been widely adopted by industry.

· ISO 9126_001 – “ISO 9126-1 Software engineering – Product Quality – part 1: Quality Model”. International Organization for Standardization.

ISO9126 defines a quality model for Software Engineering. It is relevant for our study, because it includes usability among the six categories of software quality that are relevant during product development (functionality, reliability, usability, efficiency, maintainability and portability).
4. Literature Survey on Attribute Decomposition

4.1 Definition of Usability Attribute

What do we understand the term “usability attribute” to mean? Usability is an abstract concept that needs to be decomposed into measurable components; these components of usability are what we will refer to as attributes. Not everybody calls these components “usability attributes”: for the shake of clarity, table 1 shows the terms used by the authors we consider.
	Constantine99
	Hix93
	ISO9241_98
	ISO9126_00
	Nielsen93
	Preece94
	Shackel91
	Shneiderman98
	Wixon97

	Usability facets
	Usability attributes
	Dimensions of usability
	Usability attributes
	Usability attributes
	Components of usability
	Scales of usability
	Measurable human factors
	Usability attributes

Table 1 - Authors' terms used for the concept of Usability Attribute

The definition given by each author for the term is as follows:

· Usability facets are different aspects of a system and its user interface that contribute to usability [Constantine, 99].

· The usability attribute is the general usability characteristic to be measured for an interface [Hix, 93].

· Usability is evaluated not from a consumer product acceptance point of view but from a quality of work point of view. The Dimensions of usability consist of user performance view (effectiveness, efficiency) and a user view (satisfaction) [ISO9241, 98].

· Usability attributes: a set of attributes that bear on the effort needed for use, and on the individual assessment of such use, by a stated or implied set of users [ISO 9126,00] try to identify those attributes that influence “the effort needed for use” [ISO 9126,00].
· Nielsen does not give an explicit definition for usability attributes, but they are characterized as being precise and measurable components of the abstract concept of usability [Nielsen, 93].

· Components of usability. The authors don’t give an explicit definition, but they describe them as being operationalized so that they can be tested [Preece, 94].

· Usability Scales. Shackel suggests a set of operational criteria; for a system to be usable; it has to achieve defined levels on a set of scales [Shackel, 91].
· Measurable human factors: Precise measurable objectives that guide the designer, evaluator, purchaser or manager [Shneiderman, 98].

· Usability attributes are characteristics of a product that can be measured in some quantitative way [Wixon, 97].

As can be seen, most of the definitions focus on measurable attributes oriented to usability evaluation purposes. But, for our goal it is better to use a more general definition like the one given in [Constantine, 99]: Different aspects of a software that contribute to usability.

4.2 Usability Attributes Proposals

For each source considered we have extracted its usability attribute decomposition, to include it as a column in Table 2. We wanted to be able to compare easily the different decompositions, so we have grouped attributes that refer to the same concept in the same row. We have chosen to name each row (first column in the table) with the most general term, or the one that appears most amongst the different authors.

Where the author offers a second name for the same concept, it is detailed between brackets, for example ‘Efficiency (long-term performance)’ . For attributes not mentioned in the source, the cell contains a dash (‘-‘).

The first five attributes are the most mentioned by all authors in the field, so we have separated them by means of a double bar from the other five attributes considered.

4.3 Attributes Description

Different authors give different definitions for each attribute. In order to reach a consensus on each attribute’s meaning, we will review in the following sections each author’s definition, along with our own definition where necessary.

4.3.1 Learnability

Learnability has to do with how quickly and easily users can begin to do productive work with a system which is new for them. Ease of learning is another wording for this usability attribute, as it is mentioned by most sources ([Constantine, 99] [Hix, 93] [Nielsen, 93] [Shneiderman, 98]). [Shackel, 91] gives a slightly different definition for learnability: degree of learning to accomplish tasks. [ISO9241, 98] standard provides other slightly different definition, defining learnability as the capability of the software product to enable the user to learn its application.

Learnability is the most important attribute for novice users, as it defines how much time they will spend being novices before being considered as proficient in the use of the system (or at least expert enough so they can easily use the system) [Nielsen, 93][Hix, 93] [Preece, 94].

This attribute is linked to the speed of a user’s evolution from being a novice in his/her usage of the system to being an expert (or expert enough so a certain level of performance has been reached). This evolution can be accelerated by cutting down the available set of features offered to the novice user, and then revealing gradually the complexity of the system to the user as he or she advances in his/her knowledge of the system. A user interface based on user modes (novice, normal and advanced user modes, for example) can help to achieve a good level of learnability.

	Attribute\Source
	Constantine99
	Hix93
	ISO9241_98
	ISO 9126_00
	Nielsen93
	Preece94
	Shackel91
	Shneiderman98
	Wixon97

	Learnability (time to learn)
	Learnability
	Learnability
	-
	Learnability
	Learnability (ease of learning)
	Learnability (ease of learning)
	Learnability (time to learn)
	Time to learn
	Learnability (initial performance)

	Efficiency in use
	Efficiency in use
	Long-term performance
	Efficiency
	Operability (?)

	Efficiency of use
	Throughput
	Effectiveness (speed)
	Speed of performance
	Efficiency (long-term performance)

	Learnability (retention over time)
	Rememberability
	Retainability
	-
	--
	Memorability
	-
	Learnability (retention)
	Retention over time
	Memorability

	Reliability in use
	Reliability in use
	-
	-
	Operability (?)
	Errors
	Throughput
	Effectiveness (errors)
	Rate of errors by users
	Error rates

	Likability (long-term satisfaction)
	User satisfaction
	Long-term user satisfaction
	Satisfaction (comfort and acceptability of use)
	Attractiveness
	Satisfaction
	Attitude
	Attitude
	Subjective Satisfaction
	Satisfaction or likability

	Effectiveness
	-
	-
	Effectiveness
	-
	-
	-
	-
	-
	-

	Understandability
	
	
	-
	Understandability
	-
	-
	-
	-
	-

	Adaptability
	-
	-
	-
	-
	-
	Flexibility
	Flexibility
	-
	Flexibility

	First impression
	-
	First impression
	-
	-
	-
	-
	-
	-
	First impressions

	
Extra features
	-
	Advanced feature usage
	-
	-
	-
	-
	-
	-
	Advanced feature usage

	Initial efficiency
	-
	Initial performance
	-
	-
	-
	-
	-
	-
	Learnability (initial performance)

	Evolvability
	-
	-
	-
	-
	-
	-
	-
	-
	Evolvability

Table 2 - Decomposition Proposals for Usability Attributes

Despite being one of the attributes with most similarity amongst different authors' definitions, it is interesting to note that even in this attribute there are discrepancies. For example, [Wixon, 97] mentions learnability as being equivalent to initial performance (see discussion on this issue at 4.3.11 below).

To summarise, we will consider learnability as how quickly and easily users can reach a level of proficiency in using the system.

4.3.2 Efficiency

According to Nielsen [Nielsen, 93], efficiency refers to an expert user’s steady-state level of performance at the time when the learning curve flattens out. Nielsen relates this attribute to progress in the learning curve, establishing a link with the concept of learnability.

[Hix, 93] and [Wixon, 97] specify efficiency as long-term performance, therefore associating it somehow with expert users as well.

[Shackel, 91] describes effectiveness as performance in accomplishment of tasks, considering both speed and errors.

Efficiency is mentioned by [Constantine, 99] as the level of user productivity while using the system. These authors remark that this attribute does not relate to the efficiency of the computer on its own, but to the efficiency of the user-computer combination.

[Shneiderman, 98] restricts its application to a set of benchmark tasks.

[ISO9241, 98] refers to efficiency as the resources expended in relation to the accuracy and completeness with which users achieve goals. Compared to other authors, this is a more general definition, because resources can be a variety of things (whereas other authors only consider time/speed of performance).

Not clearly in this category, but somehow related, is the operability attribute. It is defined in [ISO9126, 00] as the capability of the software product to enable the user to operate and control it.

We can summarise efficiency as the number of tasks per unit of time that the user can perform using the system.

4.3.3 Memorability

Retention over time, rememberability or memorability refers to the ease of remembering the way a system must be operated.

[Nielsen, 93] describes this as the characteristic of a system that allows the user to return to the system after some period of not having used it, without having to learn everything all over again. [Hix, 93] [Shneiderman, 98] and [Wixon, 97] refer as well to a period of non-usage for the definition of this attribute.

[Shneiderman, 98] links closely user retention over time and learnability. We agree on this strong relationship between both attributes, that can be of interest for the definition of an attribute hierarchy. In this same direction, Shackel understands learnability as covering both time to learn and retention over time [Shackel, 91].

4.3.4 Error rate

Error rate refers to the errors made during the use of the system and how easy it is to recover from them [Nielsen, 93].

A system should have few and non-catastrophic errors, so good error handling is critical for the usability of a system [Shneiderman, 98].

According to Shneiderman and Nielsen, errors can have an impact on efficiency, by slowing down performance. [Preece, 94] goes in the same direction by defining a unique attribute named throughput, which considers together the accomplishment of tasks, the speed of task execution and the errors made. This kind of attribute grouping is of interest for the definition of an attribute hierarchy. A similar approach is taken by Shackel, connecting speed of performance to errors in his attribute called effectiveness [Shackel, 91],

[Constantine, 99] uses a term which is very commonly found between the aspects of software quality handled by Software Engineers: reliability. But the system considered by Constantine and Lockwood (as in section 4.3.2 above) is not just the hardware-software but also includes the user. So these authors use the term "Reliability in use", taking into account the error-prone nature of human users. Errors that were previously blamed on the user can be now regarded as possible consequences of usability failings. This way of considering usability issues is shared by other authors in the field, who prefer the term 'quality of use' [Bevan, 95].

Easy recovery from errors should be pursued by any software system [Nielsen, 93]. This kind of design principle can be a starting point for architectural decisions looking for an improvement in this usability attribute.

4.3.5 Satisfaction

Satisfaction is the subjective opinion that users form about the system (or about some parts of it).

Hix and Hartson distinguish between the first impression (see section 4.3.9 below) and long-term user satisfaction,. The latter refers to the opinion of the user after using the system for a longer period of time [Hix, 93]. This kind of distinction can be of use in the attribute hierarchy definition.

 [Constantine, 99] claims that satisfying software is likely to be used more often and used more effectively, therefore relating this attribute to efficiency as a core usability attribute.

Finally, [ISO9241, 98] includes comfort and acceptability of use in its definition of satisfaction. For instance, the degree to which the user finds the use of the product acceptable. [ISO9126,00] uses attractiveness: “the capability of the software product to be attractive to the user”.

Satisfaction is the most elusive usability attribute, as it is completely dependant on subjective opinion of users. For this reason, it seems to be the usability attribute less interesting a priori for the objective of the STATUS project.

4.3.6 Effectiveness

[ISO9241, 98] standard states that effectiveness is the extent to which the intended goals of use are achieved, e.g. the accuracy and completeness with which users achieve specified goals. To measure this we need an accurate description of the task and goals the user wants to achieve.

4.3.7 Understandability

[ISO9126,00] standard states that understandability is the capability of a software product to enable the user to understand whether the software is suitable, and how it can be used, for particular tasks and conditions of use. This attribute has more to do with provision of the right functionality; e.g. matching the software to the user’s needs.

4.3.8 Flexibility

 [Shackel, 91] defines this attribute as adaptation to variation in tasks. [Preece, 94] extends this definition by including changes in the environment; therefore, it defines flexibility as the extent to which the system can accommodate changes to the tasks and environments beyond those first specified. When the usability of a software system reaches an upper level, users can spontaneously begin to find new uses for the system. But this is rare and this characteristic cannot be easily tackled when developing the system.

[Wixon, 97] defines it as the extent to which the product can be applied to different kinds of tasks.

All three definitions are similar, but they can be understood diversely, so we will not try to extract a common definition.

4.3.9 First impression

First impression is a usability attribute that specifies the user's opinion on the system after being using it for a short period of time [Hix, 93]. It is an attribute as elusive as satisfaction for our purpose.

Nielsen mentions an approachability attribute that is the impression that gets the user about the system ease of use without having actually used it [Nielsen, 93]. This attribute is not exactly first impression, but it is closely related. It is the impression that the potential buyer gets even before having used the system for the first time.

4.3.10 Advanced feature usage

 A proper definition is not given in [Hix, 93] (the only considered source that mentions it). It is presented as an attribute that helps determine usability of more complicated functions of an interface.

It can be related with efficiency because its relationship with expert users.

4.3.11 Initial performance

Initial performance is a user’s performance during the very first use of an interface by a user [Hix, 93].

[Wixon, 97] narrows the definition of learnability to being initial performance. Undoubtedly, initial performance is closely related to learnability, but there is more to the ease of learning of a software system than the initial performance of a novice user. Anyway, it is true that initial performance can reveal learnability problems.

4.3.12 Evolvability

Evolvability is a kind of flexibility, but focused on the user. It deals with how well does the system adapt to changes in user expertise [Wixon, 97].

The transition from novice to expert users present in the definition of attributes like learnability and efficiency, is also the key concept for the evolvability attribute.

The use of different levels or modes of usage in the user interface can help to get the desired level of evolvability (see section 4.3.1 above).

5. Usability Decomposition from Industrial Experience

5.1 IHG Experience

The Information Highway Group (IHG) has acquired knowledge of usability in several departments (graphics design, technology and consultancy) while working on, among other things, corporate web sites, B2B platforms, financial applications and e-learning applications.

5.1.1 Basic Usability Attributes

Largely, industrial experience agrees with the descriptions of the usability attributes set out in the previous section, especially in the case of learnability, memorability, efficiency, satisfaction and error rate. However, there is another aspect of software that could be proposed as being part of usability. This aspect is predictability.

Predictability is related to learnability, but some subtle differences should be noted. Once a user has learned to use all of the functions of an application, they know what will happen as a result of each action. This is due to the learning experience. If an application is predictable, this means that the application will works as the user expects (they will be able to predict the result of an action) without having previously learned all of the application’s funcitons and behaviours.

Example:

Purchasing a book: The buying process consists of several steps (finding the book, agreeing the price, entering customer data, entering delivery data, final agreement…). The user expects that at the end of the process they will be presented with a final confirmation screen with a summary of the transaction before their credit card is charged. If the screen is not shown, the system would have, in some way, a lower degree of usability because it will not work as the user expected.

Another point of view is that an application must be predictable in the sense that all of the procedures work in consistent way. Therefore when the user uses a new feature, the results will be as they expected.

Example:

Imagine a complex application where the help information for each procedure is accessed and presented in a different way. This will be very confusing for the user. On the other hand, if the help is accessed from the same menu and icon and the help information is displayed using a particular look and feel, the user will understand it better even though the user has never used the procedure before.

5.1.2 Other Aspects

Apart from predictability, there are other aspects that industry would discuss if they are part of usability, although these aspects usually are not included in the typical decomposition of usability attributes.

5.1.2.1 Accessibility

This point is important when considering disabled users. An application must provide mechanisms to enable such users to use the system.

Another way of looking at accessibility is that using different methods or tools to access and interact with it might alter the general usability of an application.

Example:

If the application is a catalogue, the basic functionality is searching and looking at the items in the catalogue. The catalogue can be accessed using different tools, a web browser, a WAP phone, a particular application etc. The user will choose between the different tools depending on diverse factors (the hardware, the operating system, the bandwidth of the internet connection, …) but the functionality is the same for all tools.

Therefore, it could be said that the global usability of the system is better if there are several channels (tools) to access the functionality.

5.1.2.2 Target

The identification of the target group of users for an application can be used to improve the usability of that application.

Example:

In a commercial web site, if you identify that a group of users visit your site to compare your products with other vendors’ products, it is important to provide a shortcut to the products in the homepage for better use of the site.

The target group identification can be linked with Personalization topic. The interface can be adapted (personalized) to user profiles for better use.

Example:

In a complex financial graphic application, the application can ask for user confirmation to guide the beginner users and omit all confirmation questions for experienced users.

5.1.2.3 Information Screen Distribution

This is the way the information is distributed and displayed on the screen. This factor is very important in terms of usability. Additionally, the look and feel factors (font types and sizes, color schemes, …) are also essential.

5.1.2.4 Resistance to Change

This is the degree of resistance exhibited by users when faced with changes or evolution of functionality already adopted and learned.

Being a subjective sensation, this is difficult to measure, but can be translated into more concrete parameters such as cost of adoption, efficiency, etc.

5.2 LOGICDIS Experience

In the following section we identify a set of usability attributes and design guidelines that are of high importance in terms of the overall software quality from the user's point of view. These attributes are strongly related to software architecture and most of them are difficult to improve or support if the software was designed without taking them into account.

The attributes are divided in five main categories: Consistency - Similarity, Flexibility, Simplicity, Errors and Completeness.

5.2.1 Consistency – Similarity

5.2.1.1 Uniformity

Similar tasks (from user's point of view) must demand (whenever possible) the same user interaction style.

Example: A user may expect that the registration task of two (even completely different) products in a company's site must demand from him the same interaction.

5.2.1.2 Undo

After the "undoing" of a task, the state of the system (from user's perspective) must be the same as it was before this task.

Example: A user has added some products to a shopping basket and the system marks those products to show him that they are already chosen, so as not to need to view the basket contents all the time. If later the user decides to remove all the items of a product from the shopping basket, he expects to see this product unmarked as if he had never selected it. But, when the user removes only some items of a product, he expects to continue seeing this product as marked.

5.2.1.3 Access to functionality from different entry points

Regardless of the entry point to a task, the entire set of necessary steps to complete it must be always available to the user (novice or expert).

Example: Usually, on a website, there are many ways (menus, icon-buttons, links etc) for a user to reach the ordering task. The expert users may choose a shorter route (icon-button) than the novices (menu). The system, based on these preferences, may decide to hide some steps (different to each case) in order to skip advanced details that may be confusing for a novice users, or to hide unnecessary details from expert users in order to increase their performance.
In any case the total set of the steps for ordering must be available to all users regardless of the entry point to the ordering task.

5.2.1.4 Consistency between versions - Backwards compatibility

If the interaction required to complete a task varies from version to version of a piece of software, often users have difficulties accomplishing tasks they already knew how to do with a previous version of the system.

Example: When a frequently used website, such as one for obtaining stock exchange information, changed to a newer version, many users who had used it in the past had difficulties adapting to this change as the required interaction style differed from the previous one.

5.2.2 Flexibility

5.2.2.1 Personalization

How easily software can be configured to match the style and the preferences of the end user.

Example: Many web sites (e.g. “portals”) can support configuration of the contents that a user likes to see every time they log on to that web site, or they can arrange the website's look and feel according to their own needs and taste.

Example: Desktop applications may provide the option to customise toolbars or support shortcuts to frequently used tasks etc.

5.2.2.2 Memorability from the software's point of view - Adaptability

Although the term memorability is usually used to describe how easy it is for the user to use the software after a period of time, we believe that the software also should exhibit a certain degree of memorability which means that it should somehow remember a user’s personal preferences and style.

Example: The List of Recent tasks - processes (and recent documents mainly for desktop applications).

5.2.2.3 Addressability

This attribute is stronlgy related to the underlying software architecture and it has to do with how easy (and consistent) is to exploit the software's functionality from a wide range of "clients" i.e. from ta desktop PC, through the web, over WAP, through interactive TV, from a GPRS mobile, etc.

Example: Weather forecasts and stock exchange information are good examples of the kinds of information a user wants to access from different devices. E-commerce to mobile commerce is another issue that a system’s designers must take to account in order to maximise its usability.

5.2.2.4 Internationalisation - Multilingual

Often internationalisation, even for applications intended to domestic market, is a very useful capability and in some cases essential.

5.2.3 Simplicity

5.2.3.1 Self - explanatory / documented

If on screen labels are self-explanatory, users rarely need to search a user's guide in order to accomplish some tasks, so they help a user to feel the system is simple to use.

5.2.3.2 Less mandatory user interaction

The requirement for a large set of mandatory entries in order to accomplish a task often makes the user feel that the system is complicated. To prevent this, the designer must keep this set of mandatory interactions as small as possible

Example: Wizards with many steps must have a few mandatory first steps and then support something like a 'Finish' button to skip the other optional steps with some default values that can be changed later.

Example: Many web sites require, for one reason or another (marketing statistics etc), a large amount or information from users before letting them complete an action (download softweare etc). This sometimes leads to the loss some visitors because they think that the specific system needs too much effort from the user for the services it provides.

5.2.3.3 Fast access to common tasks

The tasks that are most commonly performed using a system will vary from user to user. The system has to be designed with short paths to the most common tasks for the majority of users.

The system then has to adapt to each user's set of common tasks and give the ability of shortening the paths to those tasks separately.

Example: If a site can log the most popular tasks, then it may notice for example that the sports news pages are more popular than stock exchange information. After that, it can shorten the route to sports news by adding link on the first page, improving the performance for the users who in the past had to search for it.

5.2.4 Errors

5.2.4.1 Error Handling

When an error state error is encountered, one safe option from a user perspective is to put the system into an earlier safe state as if error not be happened.

This state must not be very far from the point where the error was encountered in order to ensure no loss of the user's work.

Example: When a user is trying to accomplish a task and in the seventh step an error occurs, it is very helpful (and logical) for him to return to the previous step (and not to the first) and to continue from there trying again to avoid the error.

5.2.4.2 Meaningful and accurate messages

Error messages must be meaningful to user (and not only to software engineers only), so that users realise what has happened.

Example: The message "Please select another user name. This name is already used by another user" obviously better than the message "Unique key [K_12] constraint violation".

There should be suggestions to the user in order to help them overcome a system error. A lack of suggestions may well drive the user to a dead end.

5.2.4.3 User Errors

5.2.4.3.1 Incorrect data entries

Incorrect data entries are the most frequent type of user error. Often users feel that they own the data they have inserted into a system, so the system should let the user modify almost any of the data have entered at a later date.

5.2.4.3.2 Incorrect use of a task (ambiguity)

This type of error is not so prolific as the previous one but may be more destructive. The system has to provide the user with mechanisms like 'undo' or 'cancel' in order to make the user feel safe when trying new functions.

5.2.4.4 Field vs. Form vs. Process Validation

Error messages must be presented to users as soon as an error is encountered in order to avoid loss of further input.

Example: When a user fills a registration or ordering form and the input in one field is invalid, the best thing the system can do is to inform the user as soon as possible, i.e. as soon as the field is completed. Some systems have form validation instead of field validation, so the user will be informed about the problem after the form submitted. Even worse, the user be informed after the end of the whole process.

5.2.5 Completeness

5.2.5.1 Incomplete functionality

Often the functionality that supports some tasks is not implemented completely in a certain version of a piece of software, or is developed with diminished functionality. This may cause users to misjudge the system as a whole.

5.2.5.2 Incomplete update

Some systems have a complete infrastructure and functionality based on this infrastructure, but little, or poorly updated content data.

Example: A portal may have a very strong infrastructure to support live updates of the contents of every theme it covers. Among other things it can provide information about the clubs in a town, but there are no address for some of them or few registered clubs.
6. Other Proposals

Some usability bibliographical sources deal with the issue of usability attributes in a less formalized manner, or they have a different approach. Nevertheless, we consider that their view can be of interest, as it can enrich the attribute definitions discussed above. These additional proposals are presented in this section.

6.1 [Mayhew, 99]

[Mayhew, 99] presents the necessity of establishing measurable usability goals. These goals serve two purposes: To help focus user interface design efforts, and to serve as acceptance criteria during usability evaluation. The definition of usability goals is based in our concept of usability attributes, but the author does not define such kinds of attributes. Instead, she presents several different classifications of usability goals as follows:

· Qualitative use goals (not quantified) vs. Quantitative goals (objective and measurable).

· Ease-of-use goals (focus on the use of the product by experienced users who have been trained on how to use the product) vs. Ease-of-learning goals (focus on the use of the product by first-time users).

· Absolute (absolute quantification) vs. Relative (user’s experience on the product relative to previous experiences on some benchmark product).

· Performance goals (quantify actual user performance while using a product to perform a task) vs. Preference/Satisfaction goals (a user preference among alternative interfaces / the level of satisfaction with a particular interface).

6.2 [Crear, 98]

This work was not included in sections 3 and 4, because it has less relevance than the ones considered there. In short, this work takes the same approach to usability attributes as the majority of authors, with the particularity that, by presenting them in a particular order, they are easier to memorize by means of the acronym FLUMES. The attributes described are the following ones:

· Flexibility: Degree to which users can re-organize working and customize the interface.

· Learnability: Time and effort needed for learning the system.

· User satisfaction.

· Memorability: Re-learning or retention.

· Errors: Rate, type and recoverability.

· Speed: Of performance or productivity.

6.3 [Browne, 98]

While presenting a successful introduction of usability techniques in a software development project, these authors present the factors considered for measuring the product usability:

· Required training.

· Speed of accessing data.

· User satisfaction.

· Low error rates.

6.4 [Rohlfs, 98]

This work presents a particular solution for the problem of redesigning legacy systems. It does not include a detailed definition of usability attributes, but it mentions the targets for the most common usability performance objectives:

· Task-specific error rates.

· Task-specific use of online-help.

· Task-specific and/or overall satisfaction with ease of use or efficiency of use.

· Overall guessability (e.g. 80% of the icons guessed correctly the first time).

· Overall satisfaction with ease of use or efficiency of use.

6.5 [Constantine, 99]

Constantine defines five core usability criteria (as they appear in section 4). But he also mentions some additional usability criteria which often come into play, without giving much details on them. They are the following ones:

· Accuracy.

· Clarity of presentation.

· Comprehensibility.

· Flexibility of operation.

· Ease of navigation.

7. Usability Decomposition for the STATUS Project

7.1 Usability Scope

One of the unresolved questions concerning usability, which is intrinsically related to its decomposition into attributes, is the scope this software quality element is to be given. There appear to be two views of usability, which we could call narrow and broad. From the narrow viewpoint (in which we place Nielsen and Constantine, among others, and which appears to be shared by the majority), usability can be decomposed into five basic attributes (learnability, efficiency of use, memorability, errors and satisfaction). It is, therefore, perfectly delimited and separate from the other software quality elements (reliability, efficiency, functionality, maintainability and portability).

On the other hand, there is what we have termed the broad view of usability. In this broad view, which aims to consider all the software features that potentially have an influence on making software more or less usable, it is difficult to define the frontiers that separate it from some of the other quality elements (especially functionality). For example, suppose we have two text editors that have an identical usability level, one of which provides automatic indexing while the other does not (as was the case years ago). It is evident that the text editor with automatic indexing would be more usable. Note, however, that whether or not they have this feature is a detail directly related to the software quality element known as functionality.

The standards groups developing ISO9241-11 and ISO9126 and some other authors, who coined the term quality of use [Bevan, 95] to reflect this extended view of usability, fall within this broad view of usability. Quality in use is the result of the combined effects of the six categories of software quality when the product is in use. Therefore quality in use is defined as: "the extent to which a product used by specified users meets their needs to achieve specified goals with effectiveness, productivity and satisfaction in specified contexts of use" [ISO14598, 99].

Furthermore, note that the industrial partners also take a broad view of usability insofar as they mention software features that affect usability and are, however, not covered by the classical five attributes into which usability is decomposed in the traditional/narrow view.

Taking into account that the ultimate objective of the research we are conducting is to understand the relationships between software system usability and architecture, it appears that if we take a broad view of usability we will be able to study the usability/architecture relationship more comprehensively. In other words, our stance is that, in the absence of an understanding of the relationships between usability and architecture, let us consider usability as broadly as possible so that we do not close any potentially interesting doors in advance.

Taking this broad view of usability also means including not only the traditional five attributes into which usability is decomposed and about which there is widespread agreement (see top of Table 2), but also incorporating attributes that are not as widely accepted (see bottom of Table 2) into the decomposition of usability, as well as reformulating attributes suggested by industry. Such a large number of attributes need to be decomposed into more than one level, grouping the attributes into families. This decomposition is discussed in the following section.

7.2 Attributes Decomposition

The families that group the different usability attributes are presented in Figure 1. This decomposition is a draft; it is expected to be refined as a result of work in Task 2.3. For that purpose, some attributes have been highlighted in order to specify the details which are novel or not-yet fixed. The highlighting is explained in Table 3.

[image: image1.wmf]Usability

Attributes

User View

User

Performance

View

First Impression

Attractiveness

Long

-

term satisfaction

Ergonomic

View

Accomplishment

of Tasks View

System

-

User

Interaction View

Accesibility

Internationalisation

Interface View

Cognitive

/

Perceptual view

Interface Clarity

Learnability

Efficiency

Reliability

in use

Extra

feature usage

Time

to Learn

Retention over

time

Initial

In use

Adaptability

Understandability

Context

User

Experience level

Personalisation

System Memorability

Self

-

explanation

Guessability

Predictability

Ease of navigation

Disabilities

Acces methods

Figure 1 Usability Attribute Classification

	Learnability
	These attributes are considered basic in the field, and cited by most authors

	Cognitive / Perceptual View
	The names of these attributes are not well defined yet. They should be renamed with a term that better reflects the concept of attribute

	Ease of Navigation
	This attribute is mostly related to web development. It is not clear if it should be included in this general study

	First impression
	These attributes belong to the basic ones in the field, but they are classified differently.

Table 3 - Legend for Attribute Highlighting in Figure 1
The first classification for usability attributes divides them into the ones that affect user performance (User Performance View) and the ones that do not (User View). The latter includes attributes which are subjective, completely dependant on the user's opinions. We take the same approach as [Mayhew, 99], which differentiates performance vs. preference/satisfaction usability goals, and [ISO9241, 98], which evaluates usability in terms of user performance and satisfaction.

The User Performance View is divided into three categories: Ergonomic View, Accomplishment of Tasks View and Understandability.

The attributes belonging to the Ergonomic View deal with issues affected by the physical and cognitive characteristics of human beings, that come into play when interacting with a software system. They can be related to the access to the system (Accessibility), or generally applicable considerations on user interface elements (Interface view). Accessibility can be related to access by disabled users (Disabilities), to access by users from different cultures/languages (Internationalisation), or to access by no particular groups of users (Access methods). The Interface view can in turn either be related to the distribution of interface elements and its impact on interaction (Cognitive/Perceptual view), or to the concrete colours, fonts, etc. used in the interface (Interface clarity).

The Accomplishment of Tasks View gathers the attributes that directly affect the accomplishment of tasks by the user. They are related with the ability of the user to achieve a particular goal by using the system. This family of attributes is composed of four of them: Learnability (decomposed in Time to learn and Retention over time), Efficiency (with two aspects to consider: Initial efficiency, and Efficiency in use), Reliability in use and Extra feature usage.

Regarding Extra feature usage, it is necessary to distinguish this concept from the pointless proliferation of extra functionality. Any extra functionality covered by this attribute should be actually used. It should be of real interest for the user (like in the example of the text editor mentioned in section 7.1). We are not referring to complex and scarcely-used features, which are added to the application just for marketing purposes. Those kinds of features don't add to the usability of the system. Furthermore, they usually hinder the system’s usability, by adding confusion to a user already puzzled by a myriad of features.

Finally, we have considered in the System-Interaction View a family of attributes which cope with how the system-user interaction as a whole is conceived. There are two sub-families: Adaptability and Understandability. Adaptability deals either with the capacity of the system to go on satisfying the user’s needs when the context changes (Context) or the capacity of adapting to changes in the user (User). The latter is divided in turn into the capacity to adapt to changes in the user's level of experience (Experience level), the ability to provide certain personalised services (Personalisation) , and the capacity of the system for remembering past details of the user-system interaction (Memorability). Understandability represents the extent to which the concept of the interaction can be understood by the user, and it can be split into four different nuances: Self-explanation, Guessability, Ease of navigation and Predictability.

This attribute classification can be seen in Table 4. For each attribute, its definition is specified, along with the source from which it has been extracted.

	Usability Attribute
	Definition
	Source

	User View
	First impression
	The user opinion on the system after being using it for a short period of time
	[Hix, 93]

	
	Attractiveness
	The capability of the software product to be attractive to the user
	[ISO9126, 00]

	
	Long-term satisfaction
	The user opinion after using the system for a longer period of time
	[Hix, 93]

	User Performance View
	Ergonomic View
	Accessibility
	Disabilities
	The extent to which the system can be accessed by blind, deaf and other users with special needs.
	Known in the field (suggested by IHG)

	
	
	
	Access Methods
	The capability of using different methods or tools to access and interact with the system
	IHG

	
	
	
	Internationalisation
	The extent to which the system can be accessed by users from different cultures/countries
	Known in the field (suggested by LOGICDIS)

	
	
	Interface View
	Cognitive / Perceptual View
	The way the interface elements are distributed so that user actions are more efficient and easier
	IHG extended by UPM

	
	
	
	Interface Clarity
	The extent to which fonts, colours, and other characteristics of user interface elements contribute to clarity
	IHG extended by UPM

	
	Accomplishment of Tasks View
	Learnability
	Time to learn
	How quickly and easily users can reach a level of proficiency in using the system
	[Nielsen, 93] (adapted)

	
	
	
	Retention over time
	How well users remember how the system works after a period of non-usage
	[Nielsen, 93] (adapted)

	
	
	Efficiency
	Initial efficiency
	User performance during the very first use of an interface
	[Hix, 93] (called initial performance)

	
	
	
	Efficiency in use
	The level of user productivity while using the system
	[Constantine, 99]

	
	
	Reliability in use
	Errors made during the use of the system and how easy is to recover from them
	[Nielsen, 93] (called error rate)

	
	
	Extra features usage
	The extent to which the system offers extra features valuable to the user
	UPM based on [Hix, 93]

	
	System - User Interaction View
	Adaptability
	Context
	The extent to which the system can accommodate changes to the tasks and environments beyond those first specified
	[Preece, 94] (called flexibility)

	
	
	
	User
	Experience level
	How well does the system adapt to changes in user expertise
	[Wixon, 97] (called evolvability)

	
	
	
	
	Personalisation
	The ability to provide certain personalised services
	Known in the field (suggested by LOGICDIS)

	
	
	
	
	System Memorability
	The capacity of the system of remembering past details on the user-system interaction
	LOGICDIS

	
	
	Understandability
	Self-explanation
	The extent to which the system can be understood without help
	LOGICDIS

	
	
	
	Guessability
	The extent to which the purpose of interface elements can be guessed by the user
	[Rohlfs, 98]

	
	
	
	Ease of navigation
	The extent to which the system supports user navigation
	[Constantine, 99]

	
	
	
	Predictability
	The extent to which the response of the system to user actions can be predicted by the user
	IHG

Table 4 - Usability Attributes Decomposition with Definitions and Sources
References

	[Bevan, 01]
	N. Bevan. “International standards for HCI and usability”. International Journal of Human-Computer Studies, Vol. 55, No. 4, Oct 2001, pp. 533-552 . 2001.

	[Bevan, 95]
	N. Bevan. "Measuring Usability as Quality of Use". Proc. of the 6th International Conference on Human-Computer Interaction. July, 1995.

	[Boehm, 78]
	B. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. Macleod, M.J. Merritt. Characteristics of Software Quality. North Holland, 1978.

	[Browne, 98]
	D. Browne, J. Friend. “A Structured Approach to User Interface Design” in The Politics of Usability, edited by L. Trenner and Joanna Bawa. pp. 61-68. Springer, 1998.

	[Constantine, 99]
	L. L. Constantine, L. A. D. Lockwood. Software for Use: A Practical Guide to the Models and Methods of Usage-Centered Design. Addison-Wesley, New York, NY, 1999.

	[Crear, 98]
	A. Crear, D. Benyon. “Integrating Usability into Systems Development” in The Politics of Usability, edited by L. Trenner and Joanna Bawa. pp. 49-60. Springer, 1998.

	[Gould, 88]
	J. D. Gould. “How to Design Usable Systems” in Handbook of Human​-Computer Interaction, edited by M. Helander. Elsevier, 1988.

	[Hix, 93]
	D. Hix, H.R. Hartson. Developing User Interfaces: Ensuring Usability Through Product and Process. John Wiley and Sons, 1993.

	[IEEE1061, 98]
	IEEE. IEEE Std 1061: Standard for a Software Quality Metrics Methodology. IEEE, 1998.

	[ISO9126, 91]
	ISO. ISO 9126 Information Technology – Software quality characteristics and metrics. ISO, 1991

	[ISO9126, 00]
	ISO. ISO 9126-1 Software Engineering – product quality – part 1: Quality Model, 2000

	[ISO9241, 98]
	ISO. ISO 9241-11. Ergonomic Requirements for Office work with Visual Display Terminals. Part 11: Guidance on Usability. ISO, 1998.

	[ISO14598, 99]
	ISO/IEC. ISO/IEC 14598-1, Software Product Evaluation: General Overview. ISO/IEC , 1999.

	[Mayhew, 99]
	D. J. Mayhew. The Usability Engineering Lifecycle. Morgan Kaufmann, 1999.

	[Nielsen, 93]
	J. Nielsen. Usability Engineering. AP Professional, 1993.

	[Preece, 94]
	J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, T. Carey. Human-Computer Interaction. Addison Wesley, 1994.

	[Rohlfs, 98]
	S. Rohlfs. “Transforming User-Centered Analysis into User Inteface: The Redesign of Complex Legacy Systems” in User Interface Design. ed. by L. E. Wood. pp. 185-214. CRC Press, 1998.

	[Shackel, 91]
	B. Shackel. "Usability – context, framework, design and evaluation". In Human Factors for Informatics Usability. pp 21-38. Ed. by B. Shackel and S. Richardson. Cambridge University Press, 1991.

	[Shneiderman, 98]
	B. Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley, 1998.

	[Wixon, 97]
	D. Wixon, C. Wilson. “The usability Engineering Framework for Product Design and Evaluation”. In Handbook of Human-Computer Interaction. pp. 653-688. Ed. by M. G. Helander et al. Elsevier North-Holland, 1997.

� Both ISO standards definitions are taken from [Bevan, 01]

� This decomposition is a draft. It is expected to be refined as a result of work in Task 2.3.

� There are some considerations gathered from industrial experience that are not considered in the decomposition, because they are design guidelines more than attributes. For example, consistency. Nevertheless, they could be reformulated, so they can be expressed in terms of the usability attributes these heuristics improve, and then they could be included in the attribute classification

1

