Mean-field analysis for large-scale GSMPs and interacting fluid models

Richard A. Hayden
rh@doc.ic.ac.uk
AESOP Seminar
November 29, 2012
Mean-field analysis for CTMCs

- N interacting agents each with D local states
- $N \rightarrow \infty$
- System of D ODEs (independent of N)
Simple example: peer-to-peer software update
Simple example: peer-to-peer software update

\[\dot{v}_y(t) = -\rho v_y(t) - (1/\gamma)v_y(t) - \frac{\beta v_y(t)v_u(t)}{N} + \lambda v_x(t) \]
Simple example: peer-to-peer software update

\[
\dot{\nu}_y(t) = -\rho \nu_y(t) - \frac{1}{\gamma} \nu_y(t) - \frac{\beta \nu_y(t) \nu_u(t)}{N} + \lambda \nu_x(t)
\]

Rate leaving state \(y\)
Simple example: peer-to-peer software update

\[\dot{v}_y(t) = -\rho v_y(t) - \frac{1}{\gamma} v_y(t) - \frac{\beta v_y(t) v_u(t)}{N} + \lambda v_x(t) \]

Rate leaving state y

Rate entering state y
Simple example: peer-to-peer software update

Old node

Updated node

\[\frac{1}{\gamma} \quad \lambda \quad \rho \]

\(\beta U / N \)

\(\lambda \quad \rho \quad \times 0.9N \)

\(\times 0.1N \)

Nodes in state \(y \)

Nodes in state \(z \)

Nodes in state \(x \)

Nodes in state \(u \)

Nodes in state \(v \)

Rescaled component count

Time, \(t \)
Simple example: peer-to-peer software update

\[\frac{1}{\gamma} \xrightarrow{} \text{on}_y \xrightarrow{} \text{on}_z' \xrightarrow{} \text{off}_x \xrightarrow{} \text{on}_u \xrightarrow{} \text{off}_v \xrightarrow{} \beta U \frac{\lambda}{N} \xrightarrow{} \rho \times 0.9N \]

Old node

Updated node

\[N = 20 \]

\begin{align*}
\text{Nodes in state } y & \quad \text{Nodes in state } z \\
\text{Nodes in state } x & \quad \text{Nodes in state } u \\
\text{Nodes in state } v & \quad \beta U \frac{\lambda}{N} \end{align*}

\begin{align*}
\text{Rescaled component count} & \quad \text{Rescaled component count} \\
\text{Time, } t & \quad \text{Time, } t
\end{align*}
Simple example: peer-to-peer software update

\[\frac{1}{\gamma} \quad \frac{\beta U}{N} \]

Old node

Updated node

\[N = 50 \]

\[\lambda \]

\[\rho \]

\[\times 0.9N \]

\[\times 0.1N \]

Nodes in state y
Nodes in state z
Nodes in state x
Nodes in state u
Nodes in state v
Simple example: peer-to-peer software update

\[\frac{1}{\gamma} \quad \text{on}_y \quad \frac{\beta U}{N} \]
\[\lambda \quad \rho \quad \text{off}_x \times 0.9N \]
\[\lambda \quad \rho \quad \text{off}_v \times 0.1N \]
Old node
Updated node

\[N = 100 \]
Simple example: peer-to-peer software update

\[\frac{1}{\gamma} \]

\[\lambda \]

\[\rho \]

\[\beta U \]

\[N = 1000 \]

\[N \times 0.9N \]

\[\times 0.1N \]

\[\text{Nodes in state } y \]

\[\text{Nodes in state } z \]

\[\text{Nodes in state } x \]

\[\text{Rescaled component count} \]

\[\text{Time, } t \]
Generally timed transitions
Generally timed (non-Markovian) transitions

Necessary to model realistic computer systems, e.g.:

- **Deterministic durations**: timeouts in communication protocols, networks with fixed-length packets, time to reset/reboot a server;

- **Generally distributed durations**: many (most?) uncertain activity durations do not follow exponential distributions!
Generally timed (non-Markovian) transitions

Necessary to model realistic computer systems, e.g.:

- **Deterministic durations**: timeouts in communication protocols, networks with fixed-length packets, time to reset/reboot a server;

- **Generally distributed durations**: many (most?) uncertain activity durations do not follow exponential distributions!

Generalised semi-Markov process (GSMP); underlying Markov process requires continuous state to track residual times
Generally timed (non-Markovian) transitions

Necessary to model realistic computer systems, e.g.:

- **Deterministic durations:** timeouts in communication protocols, networks with fixed-length packets, time to reset/reboot a server;
- **Generally distributed durations:** many (most?) uncertain activity durations do not follow exponential distributions!

Generalised semi-Markov process (GSMP); underlying Markov process requires continuous state to track residual times

- For large number N of interacting components, even more expensive to solve exactly than the CTMC case;
- Phase-type approximation of generally distributed durations can require large local state spaces — e.g. the k-stage Erlang has coefficient of variation $1/\sqrt{k}$

To keep things simple(r), we consider here just the deterministic case
Peer-to-peer software update with deterministic timeout

\[\dot{v}_y(t) = -\rho v_y(t) - \left(\frac{1}{\gamma}\right)v_y(t) - \frac{\beta v_y(t)v_u(t)}{N} + \lambda v_x(t) \]
Peer-to-peer software update with deterministic timeout

\[\dot{v}_y(t) = -\rho v_y(t) - \frac{\beta v_y(t)v_u(t)}{N} + \lambda v_x(t) \]

Markovian transitions

\[-\mathbf{1}_{\{t \geq \gamma\}} \lambda v_x(t - \gamma) \exp \left(-\int_{t-\gamma}^{t} \frac{\beta v_a(s)}{N} \, ds - \rho \gamma \right) \]
Peer-to-peer software update with deterministic timeout

\[\dot{v}_y(t) = -\rho v_y(t) - \frac{\beta v_y(t)v_u(t)}{N} + \lambda v_x(t) \]

Markovian transitions

\[- \mathbf{1}_{\{t \geq \gamma\}} \lambda v_x(t - \gamma) \exp \left(- \int_{t-\gamma}^{t} \frac{\beta v_a(s)}{N} ds - \rho \gamma \right) \]

Rate of deterministic clocks starting at \(t - \gamma \)
Peer-to-peer software update with deterministic timeout

\[\dot{v}_y(t) = -\rho v_y(t) - \frac{\beta v_y(t)v_u(t)}{N} + \lambda v_x(t) \]

Markovian transitions

\[-\mathbf{1}_{\{t \geq \gamma\}} \lambda v_x(t - \gamma) \exp \left(- \int_{t-\gamma}^{t} \frac{\beta v_a(s)}{N} \, ds - \rho \gamma \right) \]

Rate of deterministic clocks starting at \(t - \gamma \)

\approx \text{timeout probability}
Peer-to-peer software update with deterministic timeout

Old node

Updated node

Rescaled component count

Nodes in state y
Nodes in state z
Nodes in state x

Nodes in state u
Nodes in state v

Time, t

Nodes in state y
Nodes in state z
Nodes in state x
Peer-to-peer software update with deterministic timeout

\[N = 20 \]
Peer-to-peer software update with deterministic timeout

\[N = 50 \]
Peer-to-peer software update with deterministic timeout

Old node

Updated node

$N = 100$
Peer-to-peer software update with deterministic timeout

\[N = 1000 \]
Peer-to-peer software update with deterministic timeout

Old node

Updated node
Peer-to-peer software update with deterministic timeout

\[\dot{v}_y(t) = -\rho v_y(t) - \frac{\beta v_y(t) v_u(t)}{N} + \lambda v_x(t) \]

\[- 1_{\{t \geq \gamma\}} \lambda v_x(t - \gamma) \exp \left(- \int_{t-\gamma}^{t} \frac{\beta v_a(s)}{N} ds - \rho \gamma \right)\]
Peer-to-peer software update with deterministic timeout

\[v_y(t) = v_{y,0} + \int_0^t -\rho v_y(s) - \frac{\beta v_y(s)v_u(s)}{N} + \lambda v_x(s) \, ds \]
\[- \int_0^{(t-\gamma)\vee 0} \lambda v_x(s) \exp \left(- \int_s^{s+\gamma} \frac{\beta v_a(u)}{N} \, du - \rho \gamma \right) \, ds \]
Peer-to-peer software update with deterministic timeout

\[
v_y(t) = v_{y,0} + \int_0^t \left(-\rho v_y(s) - \frac{\beta v_y(s)v_u(s)}{N} + \lambda v_x(s) \right) ds \\
- \int_0^{(t-\gamma)\vee 0} \lambda v_x(s) \exp \left(-\int_s^{s+\gamma} \frac{\beta v_a(u)}{N} du - \rho \gamma \right) ds \\
- \mathbf{1}_{\{t \geq \gamma\}} v_{y,0} \exp \left(-\int_0^{\gamma} \frac{\beta v_a(s)}{N} ds - \rho \gamma \right)
\]
Peer-to-peer software update with deterministic timeout

Old node

Updated node

Nodes in state y

Nodes in state z

Nodes in state x

Nodes in state u

Nodes in state v

Jump at $t = \gamma$

Rescaled component count

Time, t
Peer-to-peer software update with deterministic timeout

\[
\begin{align*}
\text{Old node} & : 0.9N \times \text{on}_y & \frac{\beta U}{N} \\
\text{Updated node} & : \gamma \quad \lambda \quad \rho \\
\text{on}_z' & \quad \text{off}_x \\
\text{on}_u & \quad \text{off}_v \times 0.1N
\end{align*}
\]

\[N = 20\]

Graphical representation of the system dynamics with nodes in states \(y, z, x, u, v\) and transitions governed by \(\lambda, \rho, \beta U/N\). The rescaled component counts over time, showing transitions at \(t = \gamma\).
Peer-to-peer software update with deterministic timeout

Old node

Updated node

\(N = 50 \)
Peer-to-peer software update with deterministic timeout

\[N = 100 \]
Peer-to-peer software update with deterministic timeout

$$N = 1000$$

Old node

- **on**
- **off**

Updated node

- **on**
- **off**

Indicator graphs:

- Nodes in state y
- Nodes in state z
- Nodes in state x
- Nodes in state u
- Nodes in state v

Jump at $t = \gamma$
Peer-to-peer software update with deterministic timeout

\[\frac{\beta U}{N} \]

\[0.9N \times \]

\[\gamma \]

\[\lambda \]

\[\rho \]

\[\rho \] \[\rho \]

\[\times 0.1N \]

\[N = 10000 \]

\[\text{Nodes in state y} \]

\[\text{Nodes in state z} \]

\[\text{Nodes in state x} \]

\[\text{Nodes in state u} \]

\[\text{Nodes in state v} \]

\[\text{Jump at } t = \gamma \]
Population generalised semi-Markov processes (PGSMPs)
Population generalised semi-Markov processes (PGSMPs)

- Interacting components each inhabiting a *local state* in S
Population generalised semi-Markov processes (PGSMPs)

- Interacting components each inhabiting a *local state* in S
- Population process $\mathbf{x} = (x_s)_{s \in S}$ living in *global state space* X

Restrictions for mean-field analysis:

- At most one event clock active in any local state: $\forall s \in S: |\{ e \in E : s \in A_e \}| \leq 1$
- No components with uninterrupted cycles of deterministically timed behaviour
Population generalised semi-Markov processes (PGSMPs)

- Interacting components each inhabiting a \textit{local state} in S
- Population process $\mathbf{x} = (x_s)_{s \in S}$ living in \textit{global state space} \mathcal{X}
- \textit{Markovian transitions} $c \in \mathcal{C}$ each specified by \textit{multiset of tuples} $L_c \subseteq S \times S$ and a \textit{rate function} $r_c : \mathcal{X} \to \mathbb{R}_+$
Population generalised semi-Markov processes (PGSMPs)

- Interacting components each inhabiting a local state in S
- Population process $\mathbf{x} = (x_s)_{s \in S}$ living in global state space X
- Markovian transitions $c \in \mathcal{C}$ each specified by multiset of tuples $L_c \subseteq S \times S$ and a rate function $r_c : X \rightarrow \mathbb{R}_+$
- Deterministically timed transitions specified by event clocks $e \in \mathcal{E}$, with set of active states $A_e \subseteq S$, transition probability $p_e : A_e \times S \rightarrow [0, 1]$ and clock duration $d_e \in \mathbb{R}_{>0}$
Population generalised semi-Markov processes (PGSMPs)

- Interacting components each inhabiting a local state in \(S \)
- Population process \(\mathbf{x} = (x_s)_{s \in S} \) living in global state space \(\mathcal{X} \)
- Markovian transitions \(c \in \mathcal{C} \) each specified by multiset of tuples \(L_c \subseteq S \times S \) and a rate function \(r_c : \mathcal{X} \to \mathbb{R}_+ \)
- Deterministically timed transitions specified by event clocks \(e \in \mathcal{E} \), with set of active states \(A_e \subseteq S \), transition probability \(p_e : A_e \times S \to [0, 1] \) and clock duration \(d_e \in \mathbb{R}_{>0} \)

Restrictions for mean-field analysis:
Population generalised semi-Markov processes (PGSMPs)

- Interacting components each inhabiting a local state in S
- Population process $\mathbf{x} = (x_s)_{s \in S}$ living in global state space \mathcal{X}
- Markovian transitions $c \in C$ each specified by multiset of tuples $L_c \subseteq S \times S$ and a rate function $r_c : \mathcal{X} \to \mathbb{R}_+$
- Deterministically timed transitions specified by event clocks $e \in \mathcal{E}$, with set of active states $A_e \subseteq S$, transition probability $p_e : A_e \times S \to [0, 1]$ and clock duration $d_e \in \mathbb{R}_{>0}$

Restrictions for mean-field analysis:

- At most one event clock active in any local state:
 $\forall s \in S : |\{e \in \mathcal{E} : s \in A_e\}| \leq 1$
Interacting components each inhabiting a *local state* in S

Population process $\mathbf{x} = (x_s)_{s \in S}$ living in *global state space* \mathcal{X}

Markovian transitions $c \in \mathcal{C}$ each specified by *multiset of tuples* $L_c \subseteq S \times S$ and a *rate function* $r_c : \mathcal{X} \to \mathbb{R}_+$

Deterministically timed transitions specified by event clocks $e \in \mathcal{E}$, with set of *active states* $A_e \subseteq S$, *transition probability* $p_e : A_e \times S \to [0, 1]$ and *clock duration* $d_e \in \mathbb{R}_{>0}$

Restrictions for mean-field analysis:

- At most one event clock active in any local state:
 \[\forall s \in S : |\{ e \in \mathcal{E} : s \in A_e \}| \leq 1 \]

- No components with *uninterrupted cycles of deterministically timed behaviour*
General mean-field differential equation
General mean-field differential equation

\[\dot{v}_s(t) = \sum_{c \in C} l^c_s r_c(v(t)) + \ldots \]

where:

\[l^c_s := |\{(s', s) \in L_c\}| - |\{(s, s') \in L_c\}| \]
General mean-field differential equation

\[\dot{v}_s(t) = \sum_{c \in C} l^c_s r_c(v(t)) + \sum_{e \in E} \mathbf{1}_{\{t \geq d_e\}} \sum_{z \in A_e} \left(\ldots \right) \]

Markovian transitions

\[\sum_{s' \in A_e} \sum_{c \in C} \left| \left\{ (y, z) \in L_c : y \notin A_e \right\} \right| r_c(v(t - d_e)) \]

Rate of \(e \) clocks starting at \(t - d_e \) by expo. transits. \(\rightarrow z \)

\[\times \left[Y_e^{t-d_e}(d_e, v) \right]_{z,s'} \times p_e(s', s) - \ldots \]

Probability that \(e \) completes at time \(t \) ending in state \(s' \) via \(s \)

where:

\[l^c_s := \left| \left\{ (s', s) \in L_c \right\} \right| - \left| \left\{ (s, s') \in L_c \right\} \right| \]
General mean-field differential equation

\[\dot{v}_s(t) = \sum_{c \in C} l^c_s r_c(v(t)) + \sum_{e \in \mathcal{E}} 1_{\{t \geq d_e\}} \sum_{z \in \mathcal{A}_e} \left(\right) \]

Markovian transitions

\[\sum_{s' \in \mathcal{A}_e} \sum_{c \in C} \frac{1}{|L_c|} \left| \{(y, z) \in L_c : y \notin \mathcal{A}_e\} \right| r_c(v(t - d_e)) \]

Rate of \(e \) clocks starting at \(t - d_e \) by expo. transits. \(\rightarrow z \)

\[\times \left[Y^{t-d_e}_{e}(d_e, v) \right]_{z, s'} \times p_e(s', s) - \ldots \]

Probability that \(e \) completes at time \(t \) ending in state \(s' \) via \(s \)

where:

\[l^c_s := |\{(s', s) \in L_c\}| - |\{(s, s') \in L_c\}| \]

with auxiliary time-inhomogeneous linear IVP:

\[Y^{t_0}_{e}(0, v) = I \]

\[\dot{Y}^{t_0}_{e}(u, v) = Y^{t_0}_{e}(u, v)Q_e(v(t_0 + u)) \]
General mean-field differential equation

\[
\dot{v}_s(t) = \sum_{c \in C} l^c_s r_c(v(t)) + \sum_{e \in \mathcal{E}} \mathbf{1}_{\{t \geq d_e\}} \sum_{z \in \mathcal{A}_e} \left(\ldots \right)
\]

Markovian transitions

\[- \mathbf{1}_{\{s \in \mathcal{A}_e\}} \sum_{s' \in \mathcal{S}} \sum_{c \in C} \left| \{ (y, z) \in \mathcal{L}_c : y \notin \mathcal{A}_e \} \right| r_c(v(t - d_e))
\]

Rate of \(e\) clocks starting at \(t - d_e\) by expo. transits. \(\rightarrow z\)

\[
\times \left[Y_{e}^{t-d_e}(d_e, v) \right]_{z, s} \times p_e(s, s')
\]

Probability that \(e\) completes at time \(t\) ending in state \(s\) via \(s'\)

where:

\[
l^c_s := \left| \{ (s', s) \in \mathcal{L}_c \} \right| - \left| \{ (s, s') \in \mathcal{L}_c \} \right|
\]

with auxiliary time-inhomogeneous linear IVP:

\[
Y_{e}^{t_0}(0, v) = I
\]

\[
\dot{Y}_{e}^{t_0}(u, v) = Y_{e}^{t_0}(u, v)Q_e(v(t_0 + u))
\]
Mean-field convergence theorem (FLLN)

- Sequence of models indexed by N with initial conditions $x_N^N(0) = N x_0$
- There exists some locally Lipschitz $r_c(x) := (1/N)r_c^N(Nx)$ independently of N (density dependence à la Kurtz)
- $r_c^N(x) \leq R(\|x\| + 1)$ for all $x \in \mathcal{X}^N$ where $R \in \mathbb{R}_+$ is independent of N

Theorem: PGSMP FLLN

For $T, \epsilon > 0$: $\lim_{N \to \infty} \mathbb{P} \left\{ \sup_{t \leq T} \|(1/N)x_N^N(t) - \bar{v}(t)\| > \epsilon \right\} = 0$

Proof.

- In the delay-only case: trace-wise representation of the processes by random time changes of Poisson processes and time-delayed Poisson processes. Subsequent technical details then fairly standard.[1]
- In the general case: seems the continuous state-space elements must be accommodated explicitly . . . cf. the second part of the talk.

Delay-only PGSMPs

Additional restrictions:
Delay-only PGSMPs

Additional restrictions:

- Markovian transitions cannot be enabled *locally* concurrently with deterministic ones
Delay-only PGSMPs

Additional restrictions:

- Markovian transitions cannot be enabled *locally* concurrently with deterministic ones
- When any deterministic transition completes, the component always jumps into a fixed state that does not immediately enable another deterministic clock
Delay-only PGSMPs

Additional restrictions:

- Markovian transitions cannot be enabled *locally* concurrently with deterministic ones
- When any deterministic transition completes, the component always jumps into a fixed state that does not immediately enable another deterministic clock

Delay-only mean-field equation:

$$\dot{v}_s(t) = \sum_{c \in C} l^c_s r_c(v(t))$$

Markovian transitions
Delay-only PGSMPs

Additional restrictions:

- Markovian transitions cannot be enabled *locally* concurrently with deterministic ones
- When any deterministic transition completes, the component always jumps into a fixed state that does not immediately enable another deterministic clock

Delay-only mean-field equation:

\[
\dot{v}_s(t) = \sum_{c \in C} l^c_r_c(v(t)) + \sum_{e \in E} \sum_{c \in C} 1_{\{t \geq d_e\}}
\]

Markovian transitions
Delay-only PGSMPs

Additional restrictions:

- Markovian transitions cannot be enabled *locally* concurrently with deterministic ones
- When any deterministic transition completes, the component always jumps into a fixed state that does not immediately enable another deterministic clock

Delay-only mean-field equation:

\[
\dot{v}_s(t) = \sum_{c \in C} l_s^c r_c(v(t)) + \sum_{e \in E} \sum_{c \in C} 1\{t \geq d_e\}
\]

Markovian transitions

\[
\left(\sum_{s' \in A_e} p_e(s', s) l_{s'}^c r_c(v(t - d_e)) - 1\{s \in A_e\} l_s^c r_c(v(t - d_e)) \right)
\]

Rate of \(e \) clocks starting at \(t - d_e \) by expo. transits. \(\rightarrow s' \) ending in \(s \)

Rate of \(e \) clocks starting at \(t - d_e \) by expo. transits. \(\rightarrow s \)
Delay-only PGSMPs

Additional restrictions:

- Markovian transitions cannot be enabled \textit{locally} concurrently with deterministic ones
- When any deterministic transition completes, the component always jumps into a fixed state that does not immediately enable another deterministic clock

Delay-only mean-field equation:

\[
v_s(t) = x_{s,0} + \sum_{c \in C} l_s^c \int_0^t r_c(v(u)) \, du \\
+ \sum_{e \in E} \sum_{c \in C} \left(\sum_{s' \in A_e} p_e(s', s) l_{s'}^c - 1_{\{s \in A_e\}} l_s^c \right) \int_0^{(t-d_e) \vee 0} r_c(v(u)) \, du
\]
Delay-only PGSMPs

Delay-only mean-field equation:

\[v_s(t) = x_{s,0} + \sum_{c \in C} l_s^c \int_0^t r_c(v(u)) \, du \]

\[+ \sum_{e \in E} \sum_{c \in C} \left(\sum_{s' \in A_e} p_e(s', s) l_{s'}^c - 1_{\{s \in A_e\}} l_s^c \right) \int_0^{(t-d_e) \lor 0} r_c(v(u)) \, du \]
Delay-only PGSMPs

Delay-only mean-field equation:

\[v_s(t) = x_{s,0} + \sum_{c \in C} l^c_s \int_0^t r_c(v(u)) \, du \]

\[+ \sum_{e \in E} \sum_{c \in C} \left(\sum_{s' \in A_e} p_e(s', s) l^c_{s'} - 1_{\{s \in A_e\}} l^c_s \right) \int_0^{(t-d_e) \vee 0} r_c(v(u)) \, du \]

Poisson process delayed random time change representation of counting processes:

\[x_s(t) = x_{s,0} + \sum_{c \in C} l^c_s P_c \left(\int_0^t r_c(v(u)) \, du \right) \]

\[+ \sum_{e \in E} \sum_{c \in C} \left(\sum_{s' \in A_e} p_e(s', s) l^c_{s'} - 1_{\{s \in A_e\}} l^c_s \right) P_c \left(\int_0^{(t-d_e) \vee 0} r_c(v(u)) \, du \right) \]

where \(\{P_c\}_{c \in C} \) are mutually indep. rate-1 Poisson processes
More general mixed discrete–continuous local state spaces
Nodes are in one of two discrete states: active (a) or idle (i)
Nodes are in one of two discrete states: active (a) or idle (i)

Idle nodes are awaiting stimulus, active nodes are exchanging collected data with a neighbour
Wireless sensor network model

Nodes are in one of two discrete states: *active* (a) or *idle* (i)
- Idle nodes are awaiting stimulus, active nodes are exchanging collected data with a neighbour
- Each has own battery, drains at a state-dependent rate

\[\mathbb{1}_{\{B_t > 0\}} \lambda \]

\[B_t \]

\[1 \{ B_t > 0 \} \lambda \]

\[? \]
Nodes are in one of two discrete states: \textit{active} (a) or \textit{idle} (i)

- Idle nodes are awaiting stimulus, active nodes are exchanging collected data with a neighbour
- Each has own battery, drains at a state-dependent rate
- Threshold control — wireless radios operate at two different power levels: $0 < B_t \leq B^*$ (low) or $B_t > B^*$ (high)
Nodes are in one of two discrete states: active \((a) \) or idle \((i) \)

Idle nodes are awaiting stimulus, active nodes are exchanging collected data with a neighbour.

Each has own battery, drains at a state-dependent rate.

Threshold control — wireless radios operate at two different power levels: \(0 < B_t \leq B^* \) (low) or \(B_t > B^* \) (high)

\[
 r(A_l(t), A_h(t)) := (\mathbf{1}_{0 < B_t \leq B^*} \beta_l + \mathbf{1}_{B_t > B^*} \beta_h) \frac{A_l(t) + A_h(t) - 1}{N}
\]
Wireless sensor network model

- Nodes are in one of two discrete states: *active* (a) or *idle* (i)
- Idle nodes are awaiting stimulus, active nodes are exchanging collected data with a neighbour
- Each has own battery, drains at a state-dependent rate
- Threshold control — wireless radios operate at two different power levels: $0 < B_t \leq B^* \text{ (low)}$ or $B_t > B^* \text{ (high)}$

\[r(A_i(t), A_h(t)) := 1_{\{0 < B_t \leq B^*\}} \beta_l \frac{\tau_l(A_i(t) - 1) + \tau_h A_h(t)}{N} + 1_{\{B_t > B^*\}} \beta_h \frac{\tau_l A_i(t) + \tau_h (A_h(t) - 1)}{N} \]

Presumably $\beta_l \leq \beta_h$, $\tau_l \leq \tau_h$
Wireless sensor network model

- Nodes are in one of two discrete states: *active* (a) or *idle* (i)
- Idle nodes are awaiting stimulus, active nodes are exchanging collected data with a neighbour
- Each has own battery, drains at a state-dependent rate
- Threshold control — wireless radios operate at two different power levels: \(0 < B_t \leq B^*\) (low) or \(B_t > B^*\) (high)

\[
r(A_l(t), A_h(t)) := 1_{\{0 < B_t \leq B^*\}} \beta_l \frac{\tau_l (A_l(t) - 1) + \tau_h A_h(t)}{N}
+ 1_{\{B_t > B^*\}} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N}
\]

Presumably \(\beta_l \leq \beta_h\), \(\tau_l \leq \tau_h\) and \(\gamma_h \leq \gamma_l \leq \gamma_i \leq 0\)
Mean-field PDEs

\[
\begin{align*}
\gamma_i & : \text{state } i, \quad 0 < B_t \\
\gamma_l & : \text{state } a, \quad 0 < B_t \leq B^* \\
\gamma_h & : \text{state } a, \quad B_t > B^* \\
0 & : \text{otherwise}
\end{align*}
\]

\[
F_a(t, z), F_i(t, z) : \text{proportion of nodes in } a \text{ or } i, \text{ battery } \leq z
\]
Mean-field PDEs

\[r(A_l(t), A_h(t)) := \mathbbm{1}_{0 < B_t \leq B^*} \beta_l \frac{\tau_l(A_l(t) - 1) + \tau_h A_h(t)}{N} + \mathbbm{1}_{B_t > B^*} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N} \]

\[\frac{d B_t}{dt} = \begin{cases}
\gamma_i : \text{state } i, 0 < B_t \\
\gamma_l : \text{state } a, 0 < B_t \leq B^* \\
\gamma_h : \text{state } a, B_t > B^* \\
0 : \text{otherwise}
\end{cases} \]

▶ \(f_a(t, z) := \frac{\partial}{\partial z} F_a(t, z), \ f_i(t, z) := \frac{\partial}{\partial z} F_i(t, z) \) for \(z \in (0, 1] \)
Mean-field PDEs

\[r(A_l(t), A_h(t)) := 1_{\{0 < B_t \leq B^*\}} \beta_l \frac{\gamma_l(A_l(t) - 1) + \tau_h A_h(t)}{N} + 1_{\{B_t > B^*\}} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N} \]

\[
\begin{cases}
\gamma_i : \text{state } i, 0 < B_t \\
\gamma_l : \text{state } a, 0 < B_t \leq B^* \\
\gamma_h : \text{state } a, B_t > B^* \\
0 : \text{otherwise}
\end{cases}
\]

\[
\frac{dB_t}{dt} = \begin{cases}
\lambda & \text{Discharging of batteries in } [t, t+\delta t] \\
\beta_l \tau_l (A_l(t) - 1) + \beta_h \tau_h (A_h(t) - 1) & \text{Discrete transitions } i \rightarrow a \text{ in } [t, t+\delta t] \\
\beta_l \tau_l (A_l(t) - 1) + \beta_h \tau_h (A_h(t) - 1) & \text{Discrete transitions } a \rightarrow i \text{ in } [t, t+\delta t]
\end{cases}
\]

\[
\begin{align*}
f_a(t, z) &:= \frac{\partial}{\partial z} F_a(t, z), \quad f_i(t, z) := \frac{\partial}{\partial z} F_i(t, z) \text{ for } z \in (0, 1) \\
fa(t + \delta t, z) &\approx f_a(t, z) + \left(f_a \left(t, z + [1_{\{z \leq B^*\}} \gamma_l + 1_{\{z > B^*\}} \gamma_h] \delta t \right) - f_a(t, z) \right) - (1_{\{z \leq B^*\}} \beta_l + 1_{\{z > B^*\}} \beta_h) \delta tf_a(t, z) \\
+ \lambda \delta tf_i(t, z) &\quad \text{Discharging of batteries in } [t, t+\delta t] \\
- (1_{\{z \leq B^*\}} \beta_l + 1_{\{z > B^*\}} \beta_h) \delta tf_a(t, z) \left(\tau_l \int_0^{B^*} f_a(t, v) \, dv + \tau_h \int_{B^*}^{1} f_a(t, v) \, dv \right) + o(\delta t)
\end{align*}
\]
Mean-field PDEs

\[
\begin{align*}
 r(A_l(t), A_h(t)) := & \ 1_{\{0 < B_t \leq B^*\}} \beta_l \frac{\tau_l (A_l(t) - 1) + \tau_h A_h(t)}{N} \\
 & + 1_{\{B_t > B^*\}} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N}
\end{align*}
\]

\[dB_t = \begin{cases}
 \gamma_i : \text{state } i, 0 < B_t \\
 \gamma_l : \text{state } a, 0 < B_t \leq B^* \\
 \gamma_h : \text{state } a, B_t > B^* \\
 0 : \text{otherwise}
\end{cases} \]

\[f_a(t, z) := \frac{\partial}{\partial z} F_a(t, z), \ f_i(t, z) := \frac{\partial}{\partial z} F_i(t, z) \text{ for } z \in (0, 1] \]

\[
\begin{align*}
 \frac{\partial f_a(t, z)}{\partial t} - (1_{\{z \leq B^*\}} \gamma_l + 1_{\{z > B^*\}} \gamma_h) \frac{\partial f_a(t, z)}{\partial z} = \\
 \lambda f_i(t, z) - (1_{\{z \leq B^*\}} \beta_l + 1_{\{z > B^*\}} \beta_h) f_a(t, z) \left(\tau_l \int_0^{B^*} f_a(t, v) \, dv + \tau_h \int_{B^*}^1 f_a(t, v) \, dv \right)
\end{align*}
\]
Mean-field PDEs

\[
\frac{dB_t}{dt} = \begin{cases}
\gamma_i : \text{state } i, \ 0 < B_t \\
\gamma_l : \text{state } a, \ 0 < B_t \leq B^* \\
\gamma_h : \text{state } a, \ B_t > B^* \\
0 : \text{otherwise}
\end{cases}
\]

\[
r(A_l(t), A_h(t)) := 1_{\{0 < B_t \leq B^*\}} \beta_l \frac{\tau_l(A_l(t) - 1) + \tau_h A_h(t)}{N} + 1_{\{B_t > B^*\}} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N}
\]

\[
\lambda 1_{\{B_t > 0\}} r(A_l(t), A_h(t))
\]

\[
\begin{align*}
e_a(t), e_i(t) & : \text{proportion of nodes in } a \text{ or } i \text{ with empty battery}
\end{align*}
\]

\[
e_a(t + \delta t) \approx e_a(t) + \int_0^{\gamma_l \delta t} f_a(t, \nu) d\nu + o(\delta t)
\]

Discharging of batteries in \([t, t + \delta t]\)
Mean-field PDEs

\[r(A_l(t), A_h(t)) := 1_{0 < B_t \leq B^*} \beta_l \frac{\tau_l(A_l(t) - 1) + \tau_h A_h(t)}{N} + 1_{B_t > B^*} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N} \]

\[dB_t = \begin{cases}
\gamma_i : \text{state } i, 0 < B_t \\
\gamma_l : \text{state } a, 0 < B_t \leq B^* \\
\gamma_h : \text{state } a, B_t > B^* \\
0 : \text{otherwise}
\end{cases} \]

- \(e_a(t), e_l(t) \): proportion of nodes in a or l with empty battery

\[\frac{de_a(t)}{dt} = \gamma_l f_a(t, 0) \]
Mean-field PDEs

\[r(A_l(t), A_h(t)) := 1_{0 < B_t \leq B^*} \beta_l \frac{\tau_l(A_l(t) - 1) + \tau_h A_h(t)}{N} + 1_{B_t > B^*} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N} \]

\[1_{B_t > 0} \lambda r(A_l(t), A_h(t)) \]

\[\frac{dB_t}{dt} = \left\{ \begin{array}{ll}
\gamma_i : \text{state } i, 0 < B_t \\
\gamma_l : \text{state } a, 0 < B_t \leq B^* \\
\gamma_h : \text{state } a, B_t > B^* \\
0 : \text{otherwise}
\end{array} \right. \]

- System of two non-linear partial (functional) differential equations with ordinary differential equations capturing the mass at zero
Mean-field PDEs

\[r(A_l(t), A_h(t)) := 1_{0 < B_t \leq B^*} \beta_l \frac{\tau_l(A_l(t) - 1) + \tau_h A_h(t)}{N} + 1_{B_t > B^*} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N} \]

1\{B_t > 0\} \lambda \xrightarrow{\text{r}(A_l(t), A_h(t))} \n
\[\frac{dB_t}{dt} = \begin{cases} \gamma_i : \text{state } i, \ 0 < B_t \\ \gamma_l : \text{state } a, \ 0 < B_t \leq B^* \\ \gamma_h : \text{state } a, \ B_t > B^* \\ 0 : \text{otherwise} \end{cases} \]

- System of two non-linear partial (functional) differential equations with ordinary differential equations capturing the mass at zero
- Specify initial conditions at \(t = 0 \) and also boundary conditions \(f_a(t, 1) = f_i(t, 1) = 0 \) for \(t > 0 \)
Mean-field PDEs

\[
r(A_l(t), A_h(t)) := 1_{\{0 < B_t \leq B^*\}} \beta_l \frac{\gamma_l(A_l(t)-1) + \tau_h A_h(t)}{N} + 1_{\{B_t > B^*\}} \beta_h \frac{\gamma_h A_l(t) + \tau_h (A_h(t)-1)}{N}
\]

- System of two non-linear partial (functional) differential equations with ordinary differential equations capturing the mass at zero
- Specify initial conditions at \(t = 0 \) and also boundary conditions \(f_a(t, 1) = f_i(t, 1) = 0 \) for \(t > 0 \)
- Can be solved inexpensively using standard finite difference techniques
Example solutions

\[r(A_i(t), A_h(t)) := 1_{0 < B_t \leq B^*} \beta_l \frac{\tau_l(A_i(t) - 1) + \tau_h A_h(t)}{N} + 1_{B_t > B^*} \beta_h \frac{\tau_l A_i(t) + \tau_h (A_h(t) - 1)}{N} \]

\[1_{B_t > 0} \lambda \]

\[r(A_i(t), A_h(t)) \]

\[dB_t \quad \begin{cases}
\gamma_i : \text{state } i, \quad 0 < B_t \\
\gamma_l : \text{state } a, \quad 0 < B_t \leq B^* \\
\gamma_h : \text{state } a, \quad B_t > B^* \\
0 : \text{otherwise}
\end{cases} \]
Example solutions

\[r(A_l(t), A_h(t)) := 1_{\{0 < B_t \leq B^*\}} \beta_l \frac{\tau_l(A_l(t) - 1) + \tau_h A_h(t)}{N} + 1_{\{B_t > B^*\}} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N} \]

\[\frac{dB_t}{dt} = \begin{cases}
\gamma_i : \text{state } i, 0 < B_t \\
\gamma_l : \text{state } a, 0 < B_t \leq B^* \\
\gamma_h : \text{state } a, B_t > B^* \\
0 : \text{otherwise}
\end{cases} \]

\[N = 10 \]
Example solutions

\[r(A_i(t), A_h(t)) := 1_{\{0 < B_t \leq B^*\}} \beta_l \frac{\tau_l(A_i(t)-1)+\tau_h A_h(t)}{N} + 1_{\{B_t > B^*\}} \beta_h \frac{\tau_l A_i(t)+\tau_h (A_h(t)-1)}{N} \]

\[1_{\{B_t > 0\}} \lambda \circlearrowright r(A_i(t), A_h(t)) \]

\[\frac{dB_t}{dt} = \begin{cases}
\gamma_i : \text{state } i, 0 < B_t \\
\gamma_l : \text{state } a, 0 < B_t \leq B^* \\
\gamma_h : \text{state } a, B_t > B^* \\
0 : \text{otherwise}
\end{cases} \]

\[N = 20 \]
Example solutions

\[r(A_l(t), A_h(t)) := 1_{0 < B_t \leq B^*} \beta_l \frac{\tau_l(A_l(t) - 1) + \tau_h A_h(t)}{N} + 1_{B_t > B^*} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t) - 1)}{N} \]

\[1_{\{B_t > 0\}} \lambda B_t \]

\[\frac{dB_t}{dt} = \begin{cases}
\gamma_i : \text{state i, } 0 < B_t \\
\gamma_l : \text{state a, } 0 < B_t \leq B^* \\
\gamma_h : \text{state a, } B_t > B^* \\
0 : \text{otherwise}
\end{cases} \]

\[N = 100 \]
Example solutions

\[r(A_l(t), A_h(t)) := 1_{0 < B_t \leq B^*} \beta_l \frac{\tau_l(A_l(t)-1) + \tau_h A_h(t)}{N} + 1_{B_t > B^*} \beta_h \frac{\tau_l A_l(t) + \tau_h (A_h(t)-1)}{N} \]

\[\frac{dB_t}{dt} = \begin{cases}
\gamma_i : \text{state i, } 0 < B_t \\
\gamma_l : \text{state a, } 0 < B_t \leq B^* \\
\gamma_h : \text{state a, } B_t > B^* \\
0 : \text{otherwise}
\end{cases} \]

\[N = 1000 \]
Example solutions

\[r(A_i(t), A_h(t)) := \begin{cases} 1_{\{0 < B_t \leq B^*\}} \beta_l \frac{\tau_l(A_i(t)-1)+\tau_h A_h(t)}{N} + 1_{\{B_t > B^*\}} \beta_h \frac{\tau_l A_i(t)+\tau_h (A_h(t)-1)}{N} \\ 1 \{B_t > 0\} \lambda \end{cases} \]

\[
\begin{aligned}
\frac{dB_t}{dt} &= \\
\gamma_i &\text{: state } i, \ 0 < B_t \\
\gamma_l &\text{: state } a, \ 0 < B_t \leq B^* \\
\gamma_h &\text{: state } a, \ B_t > B^* \\
0 &\text{: otherwise}
\end{aligned}
\]

<table>
<thead>
<tr>
<th>Compared to single trace</th>
<th>Pop. size</th>
<th>Avg. error</th>
<th>Max. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 10)</td>
<td>0.1425</td>
<td>0.3540</td>
<td></td>
</tr>
<tr>
<td>(N = 100)</td>
<td>0.0264</td>
<td>0.1212</td>
<td></td>
</tr>
<tr>
<td>(N = 1000)</td>
<td>0.0138</td>
<td>0.0345</td>
<td></td>
</tr>
<tr>
<td>(N = 10000)</td>
<td>0.0042</td>
<td>0.0336</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compared to mean of 1000 traces</th>
<th>Pop. size</th>
<th>Avg. error</th>
<th>Max. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 10)</td>
<td>0.0307</td>
<td>0.0577</td>
<td></td>
</tr>
<tr>
<td>(N = 100)</td>
<td>0.0042</td>
<td>0.0234</td>
<td></td>
</tr>
<tr>
<td>(N = 1000)</td>
<td>Simulation too costly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N = 10000)</td>
<td>Simulation too costly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mean-field convergence

Tricks with Poisson processes do not work in general
Mean-field convergence

Tricks with Poisson processes do not work in general

- Again we consider a sequence of models indexed by N with increasing population
Mean-field convergence

Tricks with Poisson processes do not work in general

► Again we consider a sequence of models indexed by N with increasing population

► For a given $t \in \mathbb{R}_+$, $F^N_a(t, \cdot)$ and $F^N_i(t, \cdot)$ induce, respectively, empirical (random) measures $\mu^N_a(t)$ and $\mu^N_i(t)$ living in $\mathcal{P}(\mathbb{R}_+)$
Mean-field convergence

Tricks with Poisson processes do not work in general

Again we consider a sequence of models indexed by N with increasing population.

For a given $t \in \mathbb{R}_+$, $F^N_a(t, \cdot)$ and $F^N_i(t, \cdot)$ induce, respectively, empirical (random) measures $\mu^N_a(t)$ and $\mu^N_i(t)$ living in $\mathcal{P}(\mathbb{R}_+)$.

We view (μ^N_a, μ^N_i) as a stochastic process living in $D_{\mathcal{P}(\mathbb{R}_+)^2}[0, \infty)$.
Mean-field convergence

Tricks with Poisson processes do not work in general

- Again we consider a sequence of models indexed by \(N \) with increasing population
- For a given \(t \in \mathbb{R}_+ \), \(F_a^N(t, \cdot) \) and \(F_i^N(t, \cdot) \) induce, respectively, empirical (random) measures \(\mu_a^N(t) \) and \(\mu_i^N(t) \) living in \(\mathcal{P}(\mathbb{R}_+) \)
- We view \((\mu_a^N, \mu_i^N)\) as a stochastic process living in \(D_{\mathcal{P}(\mathbb{R}_+)^2}[0, \infty) \)
- And we show that \((\mu_a^N, \mu_i^N) \Rightarrow (\mu_a, \mu_i)\) where the convergence is weak on the metric space \(D_{\mathcal{P}(\mathbb{R}_+)^2}[0, \infty) \)
Mean-field convergence

Tricks with Poisson processes do not work in general

► Again we consider a sequence of models indexed by \(N \) with increasing population

► For a given \(t \in \mathbb{R}_+ \), \(F_a^N(t, \cdot) \) and \(F_i^N(t, \cdot) \) induce, respectively, empirical (random) measures \(\mu_a^N(t) \) and \(\mu_i^N(t) \) living in \(\mathcal{P}(\mathbb{R}_+) \)

► We view \((\mu_a^N, \mu_i^N)\) as a stochastic process living in \(D_{\mathcal{P}(\mathbb{R}_+)^2}[0, \infty) \)

► And we show that \((\mu_a^N, \mu_i^N) \Rightarrow (\mu_a, \mu_i)\) where the convergence is weak on the metric space \(D_{\mathcal{P}(\mathbb{R}_+)^2}[0, \infty) \)

► Finally we show that the limit measures \(\mu_a \) and \(\mu_i \) are non-random and that their CDFs satisfy the mean-field PDEs
Ongoing work

- General framework for mean-field limits of interacting piecewise deterministic Markov processes (PDMPs)
Ongoing work

- General framework for mean-field limits of interacting piecewise deterministic Markov processes (PDMPs)

Steady-state mean-field limits:
Ongoing work

- General framework for mean-field limits of interacting piecewise deterministic Markov processes (PDMPs)

Steady-state mean-field limits:

- Much harder to prove convergence here
Ongoing work

- General framework for mean-field limits of interacting piecewise deterministic Markov processes (PDMPs)

Steady-state mean-field limits:

- Much harder to prove convergence here

- Will not always hold — likely to depend on intricate stability properties of the limiting PDEs
Thank you, questions?