
Session-Based Distributed Programming in Java

Raymond Hu1, Nobuko Yoshida1 and Kohei Honda2

1 Imperial College London
2 Queen Mary, University of London

Abstract. This paper demonstrates the impact of integrating session types
and object-oriented programming, through their implementation in Java. Ses-
sion types provide high-level abstraction for structuring a series of interactions
in a simple and concise syntax, and ensure type-safe communications between
distributed peers. We present the first full implementation of a language and
runtime for session-based distributed programming featuring asynchronous mes-
sage passing, delegation and session subtyping, combined with class download-
ing and exceptions. The compilation and runtime framework of our language
effectively maps session abstraction onto underlying transports and guarantees
communication safety through static and dynamic session type checking. We
have implemented two alternative protocols for performing correct and efficient
session delegation and prove their correctness. Benchmark results show the ses-
sion abstraction can be realised with minimal runtime overhead.

1 Introduction

Communication in object-oriented programming. Communication is be-
coming a fundamental element of application development. Web applications
increasingly combine the use of numerous distributed services; an off-the-shelf
CPU will soon host thousands of cores per chip; corporate integration builds
complex systems that communicate using standardised business protocols; and
sensor networks will place hundreds of processing units per square meter. A
frequent pattern in the communications-based programming involves processes
interacting via some structured sequence of communications, which as a whole
form a natural unit of conversation. In addition to basic message passing, a
conversation may involve repeated exchanges or branch into one of multiple
paths. Structured conversations of this nature are ubiquitous, arising naturally
in server-client programming, parallel algorithms, business protocols, Web Ser-
vices, and application-level network protocols such as SMTP and FTP.

Objects and object-orientation are a powerful abstraction for sequential and
shared variable concurrent programming. However, objects do not provide suffi-
cient support for high-level abstraction of distributed communication and conver-
sations, even with a variety of communication API supplements. Remote Method
Invocation (RMI), for example, cannot directly capture arbitrary conversation
structures; interaction is limited to a series of separate send-receive exchanges.
More flexible interaction structures can, on the other hand, be expressed through
lower-level (TCP) socket programming, but communication safety is lost: raw
byte data communicated through sockets is inherently untyped and conversa-
tion structure is not explicitly specified. Consequently, programming errors in
communication cannot be statically detected with the same level of robustness
as standard type checking protects object type integrity.

1

The study of session types has explored a type theory for structured conver-
sations in the context of process calculi [30, 16, 18] and a wide variety of formal
systems and programming languages. A session is a conversation instance con-
ducted over, logically speaking, a private channel, isolating it from interference,
and a session type is a specification of the structure and message types of the
conversation as a complete unit. Unlike method call, which implicitly builds a
synchronous, sequential thread of control, communication in distributed appli-
cations is often interleaved with other operations and concurrent conversations.
Sessions provide a high-level programming abstraction for such communications-
based applications, grouping multiple interactions into a logical unit of conver-
sation, and guaranteeing their communication safety through types.

Challenge of session-based programming. This paper demonstrates the
impact of integrating session types and object-oriented programming in Java.
Preceding works include theoretical studies of session types for object-oriented
calculi [13, 11], and the implementation of a systems-level object-oriented lan-
guage with session types for shared memory concurrency [14]. We further these
works by presenting the first full implementation of a language and runtime for
session-based distributed programming featuring asynchronous message passing,
delegation and session subtyping, combined with class downloading and excep-
tions. The design and implementation of such a language poses several non-trivial
technical challenges: the following summarises the key problems and how they
are addressed in the compilation and runtime framework of our language.

1. Integration of object-oriented and session programming disciplines. We ex-
tend Java with minimal syntax for session types and structured communica-
tion operations. Session-based concurrent and distributed programming in-
volves specifying the intended communication protocols using session types,
implementing these protocols using the session operations, and static veri-
fication of the session implementations against the protocol specifications.
Session types describe interfaces for conversation in the way Java interfaces
describe method-call interaction.

2. Ensuring communication safety for distributed applications. Communication
safety is guaranteed through a combination of static and dynamic session
type checking. Static verification of session implementations ensures that
each session party conforms to the local protocol specifications; runtime
verification at session initiation checks that the session parties implement
compatible protocols.

3. Supporting session abstraction over concrete transports. The compilation-
runtime framework of our language maps application-level session opera-
tions, including delegation, to runtime communication primitives, which can
be implemented over a range of concrete transports; our current implemen-
tation uses TCP. Benchmark results show that session communication incurs
little runtime overhead over the underlying transport.

A key technical contribution of our work is the implementation of distributed
session delegation: transparent, type-safe endpoint mobility is a defining feature

2

that raises the session abstraction above the underlying transport. We have
implemented two alternative protocols for coordinating the actions required to
perform a delegation, and we prove their correctness and discuss their design
trade-offs. Our work also demonstrates how the integration of session types and
objects can support runtime features such as eager remote class loading and
eager class verification for message type-safety.

Outline. Section 2 illustrates the key features of session programming. Sec-
tion 3 describes the design elements of the compilation and runtime framework.
Section 4 discusses the implementation of session delegation and its correctness.
Section 5 presents benchmark results comparing session-based programs against
equivalent implementations that use Java Socket and RMI. Section 6 discusses
related work and Section 7 concludes. The compiler and runtime, program ex-
amples and omitted details are available at [21].

2 Programming with Sessions

This section illustrates the central ideas of programming in our session-based
extension of Java, which we call SJ for short, by working through an example,
an online ticket ordering system for a travel agency. This example comes from
a web service usecase in WS-CDL-Primer 1.0 [4], designed to capture typical
collaboration patterns found in many business protocols [6, 8, 31]. Figure 1 de-
picts the interaction between the three parties involved, a client (Customer), the
travel agency (Agency) and a travel service (Service). Customer and Service are
initially unknown to each other but later communicate directly (transparently to
Customer) through the use of delegation, to enable dynamic mobility of sessions
in a type-safe manner. The overall conversation scenario proceeds as follows.

1. Customer begins an order session s with Agency, then requests and receives
the price for the desired journey. This exchange may be repeated an arbitrary
number of times for different journeys under the direction of Customer.

2. Customer either accepts an offer from Agency or decides that none of the
received quotes are satisfactory; the two possible paths are illustrated sepa-
rately as adjacent flows in the diagram.

3. If an offer is accepted, Agency opens the session s′ with Service and delegates
the remaining interaction for s with Customer to Service. The particular
travel service to which Agency connects is likely to depend on the journey
chosen by Customer, but this logic is external to the present example.

4. Customer then sends a delivery address (unaware that he/she is now talking
to Service), and Service replies with the dispatch date for the purchased
tickets. The transaction is now complete.

5. Customer cancels the transaction if no quotes were suitable and the session
terminates.

The rest of this section describes how this application can be implemented in
SJ. Roughly speaking, session programming consists of two steps: specifying the
intended communication protocols using session types, and implementing these
protocols using session operations.

3

Fig. 1. A ticket ordering system for a travel agency.

Protocol specification. Protocols are specified through session type decla-
rations. We call the protocol (i.e. session type) for the order session between
Customer and Agency, from Customer’s side, placeOrder, and the protocol of
the dual type from Agency’s side, acceptOrder; both are specified below.

protocol placeOrder {

begin. // Commence session.

![// Can iterate:

!<String>. // send String

?(Double) // receive Double

]*.

!{ // Select one of:

ACCEPT: !<Address>.?(Date),

REJECT:

}

}

Order protocol: Customer side.

protocol acceptOrder {

begin.

?[

?(String).

!<Double>

]*.

?{

ACCEPT: ?(Address).!<Date>,

REJECT:

}

}

Order protocol: Agency side.

Session types are declared using the protocol keyword. Let us focus on the left-
hand side, placeOrder: it first says a conversation will repeat as many times as
desired (denoted by ![..]*), a sequence which consists of sending a String (!<
String>) and receiving a Double (?(Double)). Customer then selects (!{...}) one
of the two options, ACCEPT and REJECT. If ACCEPT is chosen, Customer sends an
Address and receives a Date, then the session terminates; if REJECT, the session
terminates immediately. acceptOrder is the session type dual to placeOrder, given
by inverting the input ! and the output ? symbols in placeOrder.

Session sockets. After declaring the intended communication protocols, the
next step is to create session sockets for opening sessions and performing session
operations. There are three entities:

4

– Session server socket of type SJServerSocket, which listens for session re-
quests and accepts those that are compatible;

– Session server address of type SJServerAddress, which gives the address of
a session server socket and the type of session it accepts; and

– Session socket of type SJSocket, which represents one endpoint of a session
channel and is used to request a session from a server.

SJ uses the terminology from standard socket programming for familiarity. The
session sockets and server sockets correspond to their standard socket equiv-
alents, sockets and server sockets, enhanced with associated session types to
guarantee communication safety. Session server sockets accept a request if the
type of the server is compatible with the requesting socket; the server will then
create a fresh session socket for the new session. A session server address is the
client-side channel to a session server socket and is specified by the IP address
and TCP port of a session server socket together with its session type seen from
the client. Server addresses can be communicated by sessions to other parties
who may then request a new session with the server. Once a session is established
messages are exchanged through a session socket, from one end of the session
to the other end and back. The occurrences of a session socket in a SJ source
program clearly signify the thread of a conversation among other commands.

Session server sockets. Parties that offer session services, like Agency, use a
session server socket to accept session requests.

SJServerSocket ss_ac = SJServerSocketImpl.create(acceptOrder,port);

The server party processes a session request by

s_ac = ss_ac.accept();

where s ac is an uninitialised SJSocket reference. As for standard server sockets,
the accept operation blocks until a session request is received, but when one
arrives, the server socket additionally validates that the type of the requested
session is compatible with that offered by the server, see § 3 for the details.

Session server address and session sockets. The creation of a session server
address registers, at the session type level, that the server at the specified address
can accept sessions of the specified type. At the client side we set:

SJServerAddress c_ca = SJServerAddress.create(placeOrder, host, port);

which allows a client to initiate a conversation with the server. The server address
is typed with the session type seen from the client side, in this case placeOrder.
As we shall see later this type allows this address to be communicated safely.
Customer also uses c ca to create a session socket:

SJSocket s_ca = SJSocketImpl.create(c_ca);

and request a session with Agency by

s_ca.request();

5

Assuming the server socket identified by c ca is open, request blocks until Agency
performs the corresponding accept. Then the requesting and accepting sides
independently validate session compatibility and if validated the session between
Customer and Agency is established. If incompatible, an exception is raised at
both parties (see Session Failure later).

Session communication (1): send and receive. After the session has been
established, the session socket s ca belonging to Customer (respectively s ac for
Agency) is used to perform the actual session operations according to the session
type specification of placeOrder. Static session type checking ensures that this
contract is obeyed with allowance for session subtyping, see § 3.2 for the details.

The basic message passing operations, performed by send and receive, com-
municate typed objects; communication is asynchronous. The opening exchange
of placeOrder directs Customer to send the details of the desired journey, !<

String>, and receive a price quote, ?(Double).

s_ca.send("London to Paris, Eurostar"); // !<String>.

Double cost = s_ca.receive(); // ?(Double)

Session communication (2): iteration. Iteration is abstracted by the two
mutually dual types written ![...]* and ?[...]* [13, 11]. Like regular expres-
sions, [...]* expresses that the interactions in [...] may be iterated zero or
more times; the prefix ! indicates which party controls the iteration, and the
? peer follows this decision. These types are implemented using the outwhile

and inwhile [13, 11] constructs, which can together be considered a distributed
version of the standard while-statement. The opening exchange of placeOrder,
![!<String>.?(Double)]*, may be repeated under the decision of Customer: the
implementation of this type and its dual are as follows.

boolean decided = false;

... // Set journey details.

s_ca.outwhile(!decided) {

s_ca.send(journDetails);

Double cost = agency.receive();

... // Set decided to true or

... // change details and retry

}

s_ac.inwhile() {

String journDetails

= s_ac.receive();

... // Calculate the cost.

s_ac.send(price);
}

Like the standard while-statement, the outwhile operation evaluates the boolean
condition for iteration, !decided, to determine whether the loop continues or
terminates. The key difference is that this decision is implicitly communicated
to the session peer (in this example from Customer to Agency), synchronising
the control flow between two parties.

Agency is programmed with the dual behaviour. Note inwhile does not have
a conditional expression: this is because the decision to iterate or exit is made
by Customer, communicated to Agency at each iteration. These primitives for
iterative communication can substantially reduce the design complexity of con-
versation, compared to direct implementation using I/O stream.

6

Session communications (3): branching. A session may branch down one of
multiple conversation paths leading to differing sub-conversations. In placeOrder

we have !{ACCEPT: !<Address>.?(Date), REJECT: }: hence if Customer, who is
the ! party, selects ACCEPT then the session proceeds into a sub-conversation with
two communications; selecting REJECT immediately terminates the session.

Agency, according to the ?{ACCEPT: ?(Address).!<Date>, REJECT: } type in
acceptOrder, has the dual behaviour; as the ? party, Agency must wait for Cus-
tomer to make the branch decision. Naturally Agency must support all possible
paths although Customer will only select one when the session is executed.

The branch types are implemented using the outbranch and inbranch. This
pair of operations can be considered a distributed switch-statement, or one can
view outbranch as something similar to method invocation, with inbranch rep-
resenting the target object waiting with one or more methods. We continue the
example with the next part of the programs for Customer and Agency.

if(want to place an order) {

s_ca.outbranch(ACCEPT) {

s_ca.send(address);
Date dispatchDate = s_ca.receive();

}

}

else { // Don’t want to order.

s_ca.outbranch(REJECT) { }

}

s_ac.inbranch() {

case ACCEPT: {

...

}

case REJECT: { }

}

The condition of the if-statement in Customer (whether or not Customer wishes
to purchase tickets) determines which branch will be selected at runtime. The
body of ACCEPT in Agency is completed in Session Delegation below.

Session failure. Sessions are implemented within session-try constructs as:

try (s_ac, ...) {

... // Implementation of session ‘s_ac’ and others.

} catch (SessionIncompatibleException sie) {

... // One of the above sessions could not be initiated.

} catch (SessionIOException ioe) {

... // I/O error on any of the above sessions.

} finally { ... } // Optional.

The session-try is extended from the standard Java try-statement to ensure
that session implementations, which may be freely interleaved, are completed
within the specified scope. Sessions may fail at initiation due to incompatibility,
or generally at any point due to I/O error. Failure is signalled through the
propagation of terminal exceptions: failure of one session will implicitly fail all
other sessions within the same scope. Any other exceptions that cause the flow of
control to leave the session-try before all sessions have been completed will also
fail those sessions. However, a party that has successfully completed its side of a
session may asynchronously leave its session scope. Nested session-try statements
offer programmers the choice to fail the outer session if the inner session fails

7

or to consume the exception and continue. Operations on outer sessions may
not be performed within a nested scope, and nested scopes are completed before
exceptions on outer sessions are processed.

Session delegation. If Customer is happy with one of Agency’s quotes it will
select ACCEPT. This causes Agency to open the delegation session with Service
and delegate to it the remainder of the conversation with Customer, as spec-
ified in acceptOffer. After the delegation, Agency relinquishes the session and
Service agrees to complete it: this ensures that the contract of the original or-
der session will be fulfilled. At the application-level, the delegation involves only
Agency and Service; Customer will proceed to interact with Service unaware
that Agency has left the session, which is evidenced by the absence of any such
action in placeOrder. The session between Agency and Service is specified by:

protocol delegateSession {

begin.!<?(Address).!<Date>>

}

protocol receiveSession {

begin.?(?(Address).!<Date>)

}

Delegations are abstracted as higher-order session types [13, 18, 11], where the
specified message type is itself a session type; in this example, ?(Address).!<

Date>. The message type denotes the remainder of the protocol for the session
being delegated at the point of delegation; the party that receives the session
will resume the conversation from that stage.

In the code materialising this type, delegation is naturally represented by a
sending action of the session socket of the session to be delegated. Continuing
our example, Agency can delegate the order session with Customer to Service by

case ACCEPT: {

SJServerAddress c_as = ... // Specify delegateProtocol.

SJSocket s_as = SJSocketImpl.create(c_as);

s_as.request();

s_as.send(s_ac); // Delegation. Agency has finished with s_ac.

}

and Service receives the delegated session from Agency by

SJServerSocket ss_sa = SJServerSocketImpl.create(receiveSession, port)
SJSocket s_sa = service.accept();

SJSocket s_sc = s_sa.receive(); // Receive delegated session.

Service then completes the session with Customer.

Address custAddr = s_sc.receive();

Date dispatchDate = ... // Calculate dispatch date.

s_sc.send(dispatchDate);

The implementation of session delegation in the SJ runtime uses protocols that
coordinate the involved session peers, and is explained in detail in § 4.

The above example illustrates only the basic features of our language. The
source code of this example is available at [21] together with compiler and run-
time, along with other SJ-programs that feature more complex interactions,
including implementation of business protocols from [6, 5].

8

begin c.request(), ss.accept() // Session initiation.

!<C> s.send(obj) // Object ‘obj’ is of type C.

!<S> s1.send(s2) // ‘s2’ has remaining contract S.

?<T> s.receive() // Type inferred from protocol.

!{L:T,..} s.outbranch(L){...} // Body of case L has type T, etc.

?{L:T,..} s.inbranch(){...} // Body of case L has type T, etc.

![T]* s.outwhile(boolean expr){...} // Outwhile body has type T.

?[T]* s.inwhile(){...} // Inwhile body has type T.

Fig. 2. Session operations and their types.

3 Compiler and Runtime Architecture

3.1 General Framework

The compilation-runtime framework of SJ works across the following three layers.
This section describes how session type information plays a crucial role in each
of these layers.

Layer 1 SJ source code.
Layer 2 Java translation and session runtime APIs.
Layer 3 Runtime execution: JVM and Java libraries.

Through this framework, transport-independent session operations at the application-
level are compiled into more fine-grained communication actions on a concrete
transport. Layer 1 is mapped to Layer 2 by the SJ compiler: session operations
are statically type checked and translated to communication primitives sup-
ported by the session runtime interface. Layer 3 implements the session runtime
interface over a concrete transport and performs dynamic session typing. The
compiler comprises approximately 6KLOC of Java extension to the base Polyglot
framework [26]. The current implementation of the session runtime uses TCP
and consists of approximately 1 KLOC of Java.

A core principle of this framework is our view that explicit declaration of con-
versation structures, coupled with the static and dynamic type checking of SJ,
provides a basis for well-structured communication programming. We envisage
programmers working on a distributed application first agree on the protocols
through which the components interact, specified using session types, against
which the implementation of each component is statically validated. Dynamic
type checking then ensures that session peers implement compatible protocols
(i.e. the components have been correctly composed) before sessions are com-
menced during runtime. The mechanisms encapsulated by the session runtime
by which the session operations (initiation, send/receive, branch, loop, delega-
tion) and additional features (eager class downloading, eager class verification)
are performed are discussed in § 3.3 and § 4.

3.2 The SJ Compiler and Type-checking

The SJ compiler type-checks the source code according to the constraints of both
standard Java typing and session typing and, using this type information, maps

9

the SJ surface syntax to Java and the session runtime APIs. Type-checking for
sessions types starts from validating the linear usage of each session socket, pre-
venting aliasing and any potential concurrent usage. On the basis of linearity,
the type-checker ensures that each session implementation conforms to the spec-
ified protocol with respect to the communicated message types and conversation
structure, as stipulated by the correspondence between session operations and
type constructors given in Figure 3.

Some subtle typing cases arise when session sockets are passed as method
arguments (a consequence of integrating session and object types) and for session
delegation; both involve transfer of responsibility for completing the remainder
of session being passed. Methods that accept session socket arguments must
declare the expected session types:

int foobar(protocol p s, ...) throws SessionIOException {

... // Implementation of s according to p.

}

Session passing is also subject to linearity constraints. For example, the same
session socket cannot be passed as more than one parameter in a single method
call, and the following examples are similarly badly typed since they delegate
the session s2 multiple times.

while(...) { s1.send(s2); } s1.inwhile() { s1.send(s2); }

Session subtyping is an important feature for practical programming, per-
mitting message type variance for send and receive operations and structural
subtyping for branching [17, 9]. Message type variance follows the object class
hierarchy, again from the integration of session and object types; intuitively, a
subtype can be sent where a supertype is expected. Structural session subtyp-
ing [17, 8] has two related purposes. Firstly, an outbranch implementation needs
only select from a subset of the cases offered by the protocol, and vice versa for
inbranch; secondly, inbranch (server) and outbranch (client) types are compati-
ble at runtime if the former supports a superset of the all cases that the latter
may require. The following demonstrates the various kinds of session subtyping.

protocol thirstyPerson {

begin.!{

COFFEE: !<Euros>,

TEA: !<Euros>

}

}

...

if (...) { // Implemented...

s.outbranch(COFFEE) { ... };

}

else { // ...a coffee addict.

s.outbranch(COFFEE) { ... };

}

protocol vendingMachine {

begin.?{

COFFEE: ?(Money),

TEA: ?(Money),

CHOCOLATE: ?(Money)

}

}

...

s.inbranch() {

case COFFEE: { ... }

case TEA: { ... }

case CHOCOLATE: { ... }

case CAT: { ... }

} // Weird, but type-safe.

10

Fig. 3. The structure of the SJ session runtime.

This example uses subtpying at both compilation and runtime. Message subtyp-
ing for sessions is augmented by remote class loading, discussed in § 3.3.

3.3 The Session Runtime

The overall structure of the session runtime is illustrated in Figure 3. The SJ
compiler translates the session operations, the upper-most layer of the figure,
into the communication primitives of the session APIs. The session runtime im-
plements these primitives through a set of interdependent protocols that model
the semantics of the translated operations; these protocols map the abstract op-
erations to lower-level communication actions on a concrete transport. In this
way, the session APIs and runtime cleanly separate the transport-independent
session operations from specific network and transport concerns. The main com-
ponents as depicted in the above figure are:

– the initiation protocol, class verifier and class downloader;
– basic send/receive, which also supports in/outbranch and in/outwhile;
– the delegation protocol and the close protocol.

Session type information, tracked by the runtime as each session operation is
performed, is crucial to the operation of several of the component protocols.
The following describes each component except delegation discussed in § 4.

Basic send/receive. The properties of session types, such as strict message
causality for session linearity, require the communication medium to be reliable
and order preserving. This also allows the session branch and while operations to
be implemented by sending/receiving a single message, i.e. the selected branch
label or loop condition value. As depicted in the above figure, our current im-
plementation uses TCP: each active session is supported by a single underlying
TCP connection. However, the session runtime would not require much modifi-
cation to use other transports with the above properties, such as SCTP. Session
messages, either Java objects or primitive types, are transmitted through the
TCP byte stream using standard Java serialisation. Basic send/receive is asyn-
chronous, meaning a basic send does not block on the corresponding receive;
however, receive does block until a (complete) message has been received.

11

Session initiation and dynamic type checking. Session initiation takes
place when the accept and request operations of a server and client reduce. The
initiation protocol establishes the underlying TCP connection and then verifies
session compatibility. The two parties exchange the types of the sessions they
implement, which have been statically verified, and each independently validates
compatibility allowing for session subtpying. If successful, then the session has
been established, otherwise both parties raise an exception and the session is
aborted. The initiation protocol can also perform eager class downloading and/or
eager class verification, depending on the parameters set on each session socket.

Class downloader and class verifier. Our runtime supports a remote class
loading feature similar to that of Java RMI. Remote class loading is designed to
augment message subtyping, enabling the communication of concrete message
types that implement the abstract types of a protocol specification. Session peers
can specify the address of an external HTTP class repository (codebase) from
which additional classes needed for the deserialization of a received message
object can be retrieved. By default, remote class loading is performed lazily,
i.e. at the time of deserialization, as in RMI. Alternatively, a party may chose to
eagerly load, at session initiation, all possibly needed classes as can determined
from the session type of the session peer (although, due to subtyping, lazy class
loading may still be required during the actual session). Similarly, session peers
may chose to perform eager class verification for all shared classes at session
initiation; class verification is implemented using the standard SerialVersionUID

checks for serializable classes.

The close protocol. SJ does not have an explicit session close operation;
instead a session is implicitly closed when program flow leaves the enclosing
session-try scope. There are essentially three ways for this to happen. The first
case is when both parties finish their parts in a conversation and the session
terminates normally. The second is when an exception is raised at one or both
sides, signalling session failure. In this case, the close protocol is responsible for
propagating the exception to all other active sessions within the same scope,
maintaining consistency across such dependent sessions. The third more subtle
case arises due to asynchrony: it is possible for a session party to complete its
side of a session before or whilst the peer is performing a delegation. Section 4
discusses how the delegation and close protocols interact in such case.

4 Protocols for Session Delegation

Session delegation is a defining feature of session-typed programming; transpar-
ent, type-safe endpoint mobility raises the session abstraction above ordinary
communication over a concrete transport. This means a conversation should
continue seamlessly regardless of how many times either party changes location,
at any point of the conversation. Consequently, each session delegation involves
intricate coordination between three or even four parties, if both peers simulta-
neously delegate the same session. In SJ, delegation is performed using the same

12

syntax as the ordinary send and receive; the compilation-runtime framework of
SJ resolves delegation using statically verified session type information.

This section, after examining the trade-offs between general implementation
strategies, presents two alternative runtime protocols for delegation, and outlines
their correctness arguments. Henceforth we call the parties involved in a dele-
gation the s-sender (for session-sender) and the s-receiver (for session-receiver),
and the peer of the s-sender for the session being delegated the passive-party. We
discuss the implementation of delegation in the context of a TCP-like connection-
based transport in accordance with our implementation of the SJ runtime.

4.1 Design Options for the Delegation Protocol

Indefinite redirection and direct reconnection. One way to implement
delegation is for the s-sender to indefinitely redirect all communications of the
session, in both directions, between the s-receiver and passive-party, in a similar
scheme to Mobile IP [22]. The merit of this approach is that no action is required
on the part of the passive-party. At the same time, communication overhead for
the indirection can be expensive, and the s-sender is needed to keep the session
alive even after it has been logically delegated. Thus, the s-sender is prevented
from terminating even if it has completed its own computation, and its failure
also fails the delegated session. These observations suggest this design option
is unsuitable for dynamic network environments such as ubiquitous computing
and P2P networks.

An alternative design is to directly reconnect the underlying transport con-
nections to reflect the conversation dynamics: we first close the original con-
nection for the session being delegated, and then replace it with a connection
between the new session peers (the s-receiver and the passive-party). While this
demands additional network operations on the part of the passive-party, it frees
the s-sender from the obligation to indefinitely take care of the delegated session,
giving a robust and relatively efficient solution. Although indefinite redirection
is still relevant for fixed and reliable hosts, we believe that direct reconnection
has overwhelming functional advantages.

Challenge of reconnection-based design. The design of a delegation pro-
tocol based on reconnection raises an interesting problem due to asynchrony of
communication (send is non-blocking). We explain by returning to the example
in § 2. As specified in the global description of application (Figure 1), if Customer
selects ACCEPT, Agency delegates the active order session with Customer to Ser-
vice, and then Customer should send the Address to Service. In practise, however,
Customer is operating in parallel with Agency: Customer may asynchronously
dispatch the Address before or during the delegation, and so this message will
be incorrectly addressed to Agency. We call such messages “lost messages”. Be-
cause of this lost message, Customer and Agency may have different views of
the session being delegated at the time of delegation: performing reconnection
naively breaks communication safety as Customer and Service have inconsis-
tent session states. Therefore, a correct reconnection-based delegation protocol
should be able to resolve potential session view discrepancies.

13

Two reconnection-based protocols. We have examined and implemented
two strategies for resolving the issue of lost messages due to session view dis-
crepancy.

Resending Protocol (resends cached lost messages after reconnection) Here
lost messages, if any, are cached at and resent from the passive-party to the
s-receiver after the new connection is established, explicitly re-synchronising
session state before the delegated session is resumed. In our example, the
original connection between Customer and Agency is first replaced by a con-
nection between Customer and Service; then Customer resends the Address

to Service and they resume the conversation.
Forwarding Protocol (forwards lost messages before reconnection) Here the

s-sender first forwards all lost messages (if any) received from the passive-
party, and then the delegated session is re-established. In our example, the
Address is forwarded by Agency to Service and then the original connection
is replaced by the new connection between Customer and Service.

4.2 Properties of the Delegation Protocols

The preceding discussion on lost messages suggests the value of being explicit
about the correctness properties of the delegation protocols. We list the key
properties against which the two designs are validated. Below “control message”
means a message created by a delegation protocol, as opposed to the actual
“application messages” of the conversation.

P1: Linearity For control message sent, there is always a unique receiver wait-
ing for that message. Hence each control message is delivered deterministi-
cally without confusion.

P2: Liveness Discounting failure, the delegation protocol cannot deadlock, i.e.:
– (Deadlock-freedom) No circular dependencies between actions.
– (Readiness) The server side of the reconnection is always ready.
– (Stuck-freedom) The connection for the session being delegated is closed

only after all messages have been completely resent or forwarded.
P3: Session Consistency The delegation protocol ensures no message is lost

or duplicated, preserving the order and structure of the delegated session.

In the following discussions we assume that a protocol uses the same TCP con-
nection for both application messages and control messages (as in our actual
implementation). Semantically this means ordering is also preserved between
both these kinds of messages.

4.3 General Framework for Reconnection-Based Delegation

To set up the general scenario, we let A be the passive-party, B the s-sender and
C the s-receiver; B will delegate the session s to C via s′. The basic idea is for
B to inform A that s is being delegated s via a delegation signal containing the
address of C. Eventually the original connection for s is closed and A reconnects
to the delegation target C. From this point, we shall simply say “A” to mean
the “runtime for A” if no confusion arises.

14

Recalling that control and application messages are sequentialised, the del-
egation signal from B will only be detected by the runtime of A when blocked
expecting some message from B as dictated by the session type. The subsequent
behaviour of the delegation protocols depends on what the expected input should
be. There are four cases, as illustrated below (the first picture corresponds to
Cases 1 and 2, the second Case 3 and the third Case 4).

Case 1: A is performing a basic receive
(for receive, including higher-order re-
ceive, inbranch or inwhile), waiting for
a value, a session or a label.
Case 2: A has has finished its side of s.
to be closed between A and C.

Case 3: A is attempting to delegate an-
other session s′′ to B via s, where s′′ is
with the fourth party D.

Case 4: A is also delegating the session
s, to the fourth party D. This is simul-
taneous delgeation.

Case 3 comes from the fact that delegating a session is a compound operation
that contains a blocking input.3 Since A has to be waiting for an input to detect
the delegation signal, we need not consider the cases where A is performing an
atomic output operation (ordinary send, outbranch or outwhile).

As an example, we return to our example application: Customer is attempting
to receive a Date (from Agency) when it detects the delegation signal, hence this
is an instance of Case 1. Taking Case 1 as the default case for the purposes of
this discussion, we shall illustrate the operation of the resending and forwarding
protocols in § 4.4 and § 4.5. We then outline the remaining three cases in § 4.6.

4.4 Resending Protocol

The operation of the resending protocol for Case 1, as implemented given our
existing design choices, is given in Figure 4. The key feature of this protocol
is the use of session types at runtime to track the progress of the two peers of

3 We have also implemented a non-blocking delegation. For simplicity, however, we
consider only synchronous session-sending in the current discussions.

15

1. B→C: “Start delegation”
2. C: open server socket on free port pC , accept on pC

3. C→B: pC

4. B→A: DSB
A(C) = 〈STB

A , IPC , pC〉
5. A→B: ACKAB

6. A: close s 6’. B: close s
7. A: connect to IPC:pC

8. A→C: LM(STA
B − STB

A)

Fig. 4. Operation of the Resending Protocol for Case 1.

the delegated session: this makes it possible to exactly identify the session view
discrepancy (“the lost messages”) and resynchronise the session.

The first phase of the protocol runs from Step 1 to Step 5, which delivers
the information needed for reconnection and resending to the relevant parties.
In Step 1, B informs C that delegation is happening. In Step 2, C binds a new
ServerSocket to a fresh local port pC for accepting the reconnection, and in Step
3, C tells B the value of pC . In Step 4, B sends the delegation signal (for target
C), denoted DSB

A(C), to A. As stated, this signal contains the runtime session
type of the session being delegated, from B’s perspective, denoted STB

A . As a
result A can now calculate the difference between its view and B’s view for this
session. The delegation signal also contains the IP address and open port of the
delegation target, IPC and pC . In Step 5, A sends an acknowledgement ACKAB

to B. This concludes the first phase.
The second phase performs the actual reconnection and lost message resend-

ing. Firstly, in Step 6 and Step 6’, A (immediately after sending ACKAB) and
B (after receiving it) close their respective socket endpoints for the original ses-
sion connection: any lost messages at B are simply be discarded. In Step 7, A
connects to C to establish the new connection for the delegated session (C has
been waiting for reconnection at pC since Step 2). In Step 8, A resends the lost
messages, denoted LM(STA

B − STB

A), to C based on the session type difference
calculated above (after Step 4). A retrieves the lost messages from its cache of
previously sent messages (maintained by each party), and C buffers them. In
our running example, the runtime type STB

A (the view from B) is T ;!{ACCEPT:!(
Address)}, and the runtime type STA

B (the view from A) is T ;?{ACCEPT: }. Hence
the difference STB

A−STA

B is !(Address), and the corresponding message is resent
after the reconnection. After Step 8, A and C can resume the session as normal.

4.5 Forwarding Protocol

In the forwarding protocol, A does not have to concern itself about lost messages
as they are automatically forwarded from B (the old endpoint of the delegated
session) to C (the new endpoint). The protocol works as listed in Figure 5.

The first phase of the protocol (Step 1 to Step 5) is precisely as in the
resending protocol, except that the delegation signal in Step 4 no longer needs
to carry the runtime session type STB

A .
In the second phase, reconnection is attempted in parallel with the lost mes-

sage forwarding. In Step 5’, which immediately follows Step 4 (sending the del-

16

1. B→C: “Start delegation”
2. C: open server socket on free port pC

3. C→B: pC

4. B→A: DSB
A(C) = 〈IPC , pC〉

5. A→B: ACKAB 5’. B: enter f/w mode

6. A: close s 6’. B→C: Ṽ ::ACKAB

7. A: connect to IPC:pC 7’. B: exit f/w mode 7”. C: buffer Ṽ
8’. B: close s 8”. C: accept on pC

Fig. 5. Operation of the Forwarding Protocol for Case 1.

egation signal to A), B starts forwarding to C all messages that have arrived
or are newly arriving from A. The actual delivery is described in Step 6’ where
Ṽ denotes all messages received by B from A up to ACKAB, i.e. the “lost mes-
sages”. The delegation acknowledgment ACKAB sent by A in Step 5 signifies
end-of-forwarding when it is received and forwarded by B to C in Step 6’: B
knows that A is aware of the delegation and will not send any more messages (to
B), and hence ends forwarding in Step 7’. Ṽ is buffered by C to be used when
the delegated session is resumed.

In Step 6, A closes its endpoint to the connection with B after sending ACKAB

in Step 5; since B may still be performing the forwarding at this point, the
opposing endpoint is not closed until Step 8’. In Step 7, A requests the new
connection to C using the address and port number received in Step 4. However,
C does not accept the reconnection until Step 8” (pC is open so A blocks) after
receiving all the forwarded messages in Step 7”. As for the resending protocol,
after the session is resumed C first processes the buffered messages Ṽ before
any new messages from A, preserving message order. Note Steps 5-7, Steps 5’-
8’ (after Step 4) and Steps 7”-8” (after Step 6’) can run in parallel with two
cross-dependencies, 6’ on 5 and 8” on 7.

4.6 The Remaining Cases for the Delegation Protocols

We summarise how the two protocols behave for the remaining three cases dis-
cussed in § 4.3. The full protocol specifications can be found in [21]. Most parts
of both protocols are identical with Case 1: the key idea is that the role of the
delegation acknowledgement ACKAB is played in each case by some other control
signal.

In Case 2, A sends a special signal FINAB (due to the close protocol) to
let B know that it has completed its side of the session. Basically FINAB signi-
fies instead of ACKAB to B that the original session connection can be closed
immediately (hence Step 5 is not needed).

In Case 3, A is the s-sender for another session s′′ between A and the fourth
party D (the passive-party of s′′). In this case, B receives a “Start Delegation”
signal (for the delegation of s′′) from A. In the resending protocol, this signal is
resent with LM(STA

B−STB

A) at Step 8 to C in order to start the subsequent run of
the delegation protocol with A and D. In the forwarding protocol, this message
simply replaces ACKAB as an end-of-forwarding signal after being forwarded by
B, and at the same time alerts C to the subsequent delegation.

17

In Case 4, instead of ACKAB at Step 5, B receives DSA

B(D) from A. In the
resending protocol, C buffers the lost messages from A, closes this intermediate
connection, and then reconnects to the port at which D is waiting (C gets the
address of D from A). The forwarding protocol is similar to Case 3.

4.7 Correctness of the Delegation Protocols.

We present the key arguments for our protocols w.r.t. the three properties P1-3
in § 4.2, focusing on Case 1. For other cases see [21].4

Resending Protocol: P1 is obvious from the description of the protocol. For
P2 we first observe concurrent executions only exist between Step 6-8 and Step
6’. Note a deadlock arises only when a cycle (like A→B and B→A) is executed
concurrently which is impossible from the protocol definition. Readiness holds
since the connection to pC (Step 7) takes place after its creation (as Step 2).
Stuck-freedom holds since Steps 6 and 6’ take place after all operations are com-
pleted between A and B, ensured by ACKAB. The key property is P3. This holds
since the sending action from C happens after the lost messages from Step 8 are
stored at C, which holds since the sending action from C uses the same port pC.
Hence the order of the session is preserved before and after the protocol.
Forwarding Protocol: The reasoning is essentially similar to that for the re-
sending protocol, especially for P2. The key property is now P1 which further
affects P3. Basically, observe that positioning “accept pC” after all forwarding
has been completed means that there cannot be any communication on the new
connection to interfere with message ordering in the session (i.e. in Step 8”), we
avoid this preposterous situation, satisfying both P1 and P3. If we had “accept
pC” before Step 8” so that the next value from C to A via pC were to be sent
without waiting for the ack from Step 6’, C could receive further messages from
A ahead of the forwarded message at Step 7, destroying P1. This would have
confused the ordering of the session, making P3 unsatisfied.

4.8 Trade-Offs in the Two Protocols

A central contrast between the two protocols lies in which party takes respon-
sibility for recovering lost messages: in the resending protocol the responsibility
is on A (passive-party) while in the forwarding protocol it lies on B (s-sender,
the old endpoint). We examine how this issue affects trade-offs between cost and
robustness in the two protocols, suggesting different environments and require-
ments these protocols may be better suited to.

Regarding space-time cost, the resending protocol requires runtime session
type tracking and caching previously sent messages. However, by session types,
we need only cache up to the most recent receive operation, and the cost can be
predicted. On the other hand, if there is a chain of the delegations, the forwarding
protocol requires Ṽ to go through all peers. Both protocols use the same number
of control messages in total.
4 N.B. Deadlock can occur if, in Cases 1-4, A and C are the same party, or if, in Case

4, C and D are the same party. We discount these cases; the delegation of a session
to the peer of that session is illegal [18] and gives a runtime error.

18

Regarding robustness, the resending protocol allows B to exit at an earlier
stage, which can be an advantage in mobile computing (e.g. if B needs to move to
a different location). Furthermore, the s-sender performs more operations with
the s-receiver in the forwarding protocol which means the failure of one may
affect the other as well as the passive-party, which is clearly less desirable.

5 Performance and Experience

The current implementation of SJ incorporates all of the compiler and runtime
elements discussed so far including the two delegation protocols, resending and
forwarding (called SJRSocket and SJFSocket). This section evaluates the session
runtime performance through benchmarks in low and high latency environments.
We focus on one of the benchmarks which compares simple SJ-programs with
equivalent programs implemented in Java Socket (java.net.socket) and Java
RMI. The results for FSocket show that the session abstraction can be efficiently
supported over TCP; RSocket, in spite of its additional runtime overhead and
lack of optimisation, is consistently competitive with RMI.

Protocol and benchmark plan. For our main micro benchmark we used
a simple protocol of type begin.![?(MyObject)]*, which approximately cor-
responds to an RMI method of signature, MyObject rmiMeth(boolean b). The
primitive boolean argument of the method is implicit in the session type ![...]*,
and hence the communication of this message is common to both session and
RMI. By a session of length n we mean n iterations of the in/outwhile loop, or n
consecutive RMI calls. The SJ and standard socket also incur one extra commu-
nication for the final false value that ends the conjoined iteration, whereas the
RMI client simply stops calling the server. The full source code for the bench-
mark are available at [21].

We measured the time to complete sessions of increasing length (starting at
zero, and increasing orders of magnitude) for different sizes of MyObject (starting
from a serialised size of 100 Bytes: for reference, a java.lang.Integer object seri-
alises to 81 Bytes). For each combination of the session length and message size,
the benchmark was executed 1, 000 times and the mean of the results, excluding
the first run (for stability), were recorded. Each run of a session is performed by
a separate instance of the client program, ensuring that a new connection is used
each time; the server sides operate continuously in all the cases. Each session
is preceded by a dummy run of length one (a single dummy call in the RMI
case) to ensure all required classes have been loaded and verified by the JVM at
both the server and client before executing the actual benchmarked session. The
communicating parties were set up so that no class downloading is required.

The same benchmarks were performed in both low latency and high latency
environments. In the former the benchmarks were executed on two physically
neighbouring PCs (Intel Pentium 4 HT 3 GHz, 1 GB main memory) connected
via gigabit Ethernet, running Mandrake 10.2 (Linux 2.6.17) with Java compiler
and runtime (Standard Edition) version 1.6.0. Latency between the two machines
was measured using ping (56 bytes) to be on average 0.14 ms. Nagle’s algorithm is

19

Fig. 6. Benchmark results for message sizes 100 Bytes and 10 KBytes.

disabled (TCP NODELAY is set to true) in SJ and raw socket. All of our benchmarks
avoid DNS lookups by directly using IP addresses.

The benchmark results for MyObject of sizes 100 Bytes and 10 KBytes are
given in Figure 6; the full data set is available at [21]. The forwarding-based ses-
sion runtime (FSocket) incurs very little overhead against the standard socket
implementation (Socket). RSocket is more costly than FSocket, as the RSocket
runtime additionally tracks the types of active sessions and manages the cache
for copies of previously sent messages (however the number of cached messages
never has to exceed one as the cache is cleared with each iteration using runtime
type information). This process currently involves an extra serialisation step
which can be avoided. The overheads of RSocket are slightly more prominent for
smaller MyObject sizes; this is because the relative cost of the actual communica-
tion is less. Note that RSocket, although quite unoptimised, is still consistently
competitive with RMI. We also observe that many applications will naturally
involve greater local processing so that the relative overhead of communication
in SJ will be offset through interleaving.

The results from running the same benchmark in a higher latency environ-
ment (RTT ∼30ms), available at [21], reinforce the above findings: a higher
latency increases the cost of basic communication and so offsets (substantially
eliminates) the relative cost of the session runtime overheads. Further the re-
sults on FSocket in comparison to bare Socket show that the overheads for our
current implementation of session initiation based on asynchronous handshake
are practically negligible for a larger session (of length 100 and more). Further
micro benchmark results including those on delegation performance (consistent
with our architectural design discussed in Section 4) are presented in [21].

20

Programming experience. In addition to Travel Agency in § 2, we used SJ
to implement the major usecases from [5], all of which are sophisticated forms
of business protocols. For some of these, we also implemented the equivalent
versions using standard Socket (each of these examples involves a structured se-
quence of asynchronous messages, as is standard in many financial protocols [31],
so that coding them with RMI is not as natural). These examples include a more
complex version of the Travel Agency example in [5], which features branching
and nested iteration with two possible break points from the different loop levels.
Another usecase has more concurrent features, where one buyer interacts with
multiple suppliers who in turn interact with multiple manufactures.

From these examples, we find three key aspects which make session-based
programming considerably easier than bare socket programming.

1. The direct use of classes as the types of messages.
2. The high-level abstraction of session operations (in particular delegation),

mapped to transport communication actions by the session runtime.
3. The explicit declaration of the conversation structure and accompanying static

validation.

All these aspects contribute to a simpler, pain-free and streamlined programming
of communications. In particular we find many conversation patterns (including
a large real usecase as found in [15, Chapter 7]) are described clearly and con-
cisely by a combination of sequencing, branching, recursive sessions and simple
exceptions with existing Java primitives, ensuring type-safety. See [21] for the
full sample programs.

Our current implementations are not optimised in such aspects as the global
set-up time, but our micro benchmark results suggest that SJ has the prospect for
the use in real business environments with competitive performance, with clear
and succinct description of communication structures, robust type checking, and
potential enhancement in resilience and other properties through session runtime
features such as reconnection-based delegation.

6 Related Work

Language design for session types One of the usage of session types in prac-
tice is found in Web Services. Because of the need of static validation of safety of
business protocols, a description language called Web Service Description Lan-
guages (WS-CDL), developed by a W3C standardisation working group [28],
uses a variant of session types. A description in WS-CDL is implemented through
communication among distributed end-points written in languages such as Java
or WS4-BPEL. [8, 6, 19] studied the principles to obtain a sound and complete
implementation from a description written in CDL. Another use of session-types
is the standardisation of financial protocols in UNIFI (ISO20022) [31]. We are
planning to use SJ and its compiler-runtime as a part of implementation tech-
nologies for these standards.

An implementation of session types in Haskell is studied in [24], where a
calculus based on session types is encoded into Haskell. A merit of this approach

21

is that a type checking for session types can be done by that for Haskell. They do
not consider compatibility check at session initiation, which is essential for using
session types in open environments. It may be difficult to realise compatibility
check or type-safe delegation within their framework since their encoding does
not directly type IO channels.

Fähndrich et. al [14] integrate a variant of session types into a derivative
of C] for systems programming in shared memory uni/multiprocessor environ-
ments, with an aim to describe interface among OS-modules as message passing
conversations. The focus of their design is to implement message passing in
shared memory uni/multiprocessors rather than in distributed computing envi-
ronments. To realise their aim, they use fixed conversation structures given by
session types in combination with ownership types and a designated heap area
for messages: in-session communications are executed as direct pointer rewrit-
ing, obtaining efficiency suitable for shared memory kernel programming. From
the viewpoint of abstraction for distributed object-oriented programming, their
design lacks dynamic type checking and subtyping as found in SJ, both of which
are essential in open distributed environments. Since session-based communica-
tion in [14] assumes shared memory environments, its runtime does not include
distributed implementation of session abstractions such as protocols for delega-
tion, which is a focal point of the present study. In spite of significant differences
in intended environments and design directions, the two works show non-trivial
impacts the introduction of session types can have on abstraction and imple-
mentation in objected-oriented languages.

A framework of cryptographically protecting session execution from both
external attackers in networks and malicious principals is studied based on F#
in [12]. Their session specification models an interaction sequence between two or
more constituent network peers (called roles). The description is given as a graph
whose node represents a state of a role in a session, and whose edge denotes a
dyadic communication and control flow. Their aim is to use such specifications
for modelling and validation rather than programming. Thus neither a type
discipline nor a runtime are implemented in their work.

Language design based on process calculi The present work shares with
many recent works its direction towards well-structured communication-based
programming using types. Pict [25] is the programming language based on the
π-calculus with linear and polymorphic types. Polyphonic C] [7] is designed
based on Join-calculus and uses a type discipline for safe and sophisticated ob-
ject synchronisation. Acute [1] is an extension of OCaml for coherent naming
and type-safe version change of distributed code. Concurrency and Coordination
Runtime (CCR) [2] is a port-based concurrency library for C] for component-
based programming, whose design is based on Poly].

Occam-pi [3] is a highly efficient concurrent language based on channel-based
communication. Its syntax is based on both Hoare’s CSP (and its practical em-
bodiment, Occam) and the π-calculus. Designed for systems-level programming,
the language allows generation of more than million threads for a single proces-
sor machine without efficiency degradation. Occam-pi can realise various locking

22

and barrier abstractions built from its highly efficient communication primitives.
DirectFlow [23] is a domain specific language which supports stream processing
with a set of abstractions inspired by CSP, such as filters, pipes, channels and
duplications. DirectFlow is not a stand-alone programming language, but is used
via embedding into any host languages for defining a data-flow of components.
In both languages, typing of a larger unit of (a series of) hand-shake communica-
tions than an individual communication or composition has not been guaranteed.

X10 [10] is a typed concurrent language based on Java, and is designed for
high-performance computing. Its current design focuses on global, distributed
memory whose sharing is carefully controlled by X10’s type system. A notable
aspect is the introduction of distributed locations into the language, cleanly
integrated with its disciplined thread model. The current version of the language
does not include communication primitives.

None of the above works use conversation-based abstraction for communica-
tion programming, hence neither typing disciplines that can guarantee commu-
nication safety of a conversation structure, nor associated runtime for realising
the abstraction is considered. The interplay between their design elements and
session types is an interesting future topic.

7 Conclusion and Future Work

This paper presented the design and implementation of session types and as-
sociated programming constructs in Java. Session types can be used to de-
clare a variety of structured interactions between multiple distributed parties
and naturally integrated with object-oriented distributed programming such as
class-downloading, with compositional, static and dynamic type-checking. We
extended Java with session primitives and with subtyping. Our experience so far
indicates that many programming patterns for structured conversations [6, 4, 31,
15] are representable by a combination of branching, iteration and basic excep-
tions, together with session subtyping. We also designed and implemented two
alternative session delegation protocols with correctness arguments. Lastly, we
demonstrated that our runtime framework can support the session abstraction
with minimal overhead on the underlying transports, and our current imple-
mentation performs competitively with RMI, the standard typed primitives for
inter-process communications in object-oriented languages.

Sessions and session types offer an abstraction layer for structured communi-
cation sequences. Our runtime decouples underlying communication mechanisms
from this layer, mediated by type information. Exploitation of this framework for
contexts other than socket is an interesting subject of further study, especially
given the inherently open nature of communication. Safety of communication in a
session hinges on two assumptions: that involved programs are statically verified
with respect to declared session types, and that they communicate their session
types and perform the compatibility validation honestly. Either maliciously or
by error, if these assumptions are not met, safety is lost. How we can dynam-
ically avoid this issue is an interesting future topic, together with the study of
other aspects of security in session types [12]. Investigation of how session-based

23

programming may be integrated into such languages as [10, 3, 23, 29] is also an
open subject. A logical nature of sessions, used for transparent delegation in
the present work, can be exploited along the line of [27], making the most of
the predictability of interactions based on session types. This logical nature can
in turn be used for optimisations: In addition to basic code refactoring, advan-
tage of session type information regarding types (hence often size bound) and
direction of messages as well as predetermined scenarios of communications may
be exploited. For example, we can piggyback the first message(s) of a session
on the initiation messages, to compensate for the initiation overheads, which
will be effective in low-latency environments. Object serialisation might be cus-
tomised to generate smaller binary data with less embedded type information
given that the expected type of the message is known a priori. There are many
other opportunities for optimisations including message batching (like Nagle’s
algorithm, but based on session types), which may give better performance for
small messages in high latency environments. The current implementation and
its refinement are being developed as a possible foundation of programming and
execution for public standards for web services [6] and financial protocols [31],
combined with theories from [8, 20].

References

1. Acute home page. http://www.cl.cam.ac.uk/users/pes20/acute.
2. CCR: An Asynchronous Messaging Library for C#2.0. http://channel9.msdn.

com/wiki/default.aspx/Channel9.ConcurrencyRuntime.
3. occam-pi home page. http://www.cs.kent.ac.uk/projects/ofa/kroc/.
4. Web Services Choreography Description Language: Primer 1.0. http://www.w3.

org/TR/ws-cdl-10-primer/.
5. Web Services Choreography Requirements. http://www.w3.org/TR/

ws-chor-reqs/.
6. Web Services Choreography Working Group. http://www.w3.org/2002/ws/chor/.
7. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#.

ACM Trans. Program. Lang. Syst., 26(5):769–804, 2004.
8. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Pro-

gramming for Web Services. In ESOP’07, volume 4421 of LNCS, pages 2–17.
Springer, 2007.

9. M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-Talbot. A
theoretical basis of communication-centred concurrent programming. Published in
[6], 2006.

10. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster
computing. In OOPSLA’05. ACM Press, 2005.

11. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asynchronous Session Types
and Progress for Object-Oriented Languages. In FMOODS’07, volume 4468 of
LNCS, pages 1–31, 2007.

12. R. Corin, P.-M. Denielou, C. Fournet, K. Bhargavan, and J. Leifer. Secure Imple-
mentations for Typed Session Abstractions. In CFS’07. IEEE-CS Press, 2007.

13. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session
Types for Object-Oriented Languages. In ECOOP’06, volume 4067 of LNCS,
pages 328–352. Springer, 2006.

24

14. M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, , and
S. Levi. Language Support for Fast and Reliable Message-based Communication
in Singularity OS. In EuroSys’06, ACM SIGOPS, pages 177–190, 2006.

15. H. Foster. A Rigorous Approach to Engineering Web Service Compositions. PhD
thesis, Department of Computing, Imperial College London, January 2006.

16. S. Gay and M. Hole. Types and Subtypes for Client-Server Interactions. In
ESOP’99, volume 1576 of LNCS, pages 74–90. Springer-Verlag, 1999.

17. S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Infor-
matica, 42(2/3):191–225, 2005.

18. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
ciplines for structured communication-based programming. In ESOP’98, volume
1381 of LNCS, pages 22–138. Springer-Verlag, 1998.

19. K. Honda, N. Yoshida, and M. Carbone. Web Services, Mobile Processes and
Types. The Bulletin of the European Association for Theoretical Computer Science,
February(91):165–185, 2007.

20. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types,
2008. POPL’08, http://www.doc.ic.ac.uk/~yoshida/multiparty.html.

21. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in
Java. http://www.doc.ic.ac.uk/~rh105/sessiondj.html.

22. IETF. IP Mobility Support for IPv4. http://dret.net/rfc-index/reference/

RFC3344.
23. C.-K. Lin and A. P. Black. DirectFlow: A domain-specific language for information-

flow systems. In ECOOP, volume 4609 of LNCS, pages 299–322. Springer, 2007.
24. M. Neubauer and P. Thiemann. An Implementation of Session Types. In PADL,

volume 3057 of LNCS, pages 56–70. Springer, 2004.
25. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-

calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

26. Polyglot Home Page. http://www.cs.cornell.edu/Projects/polyglot/.
27. A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host mobility. In

MOBICOM, pages 155–166, 2000.
28. S. Sparkes. Conversation with Steve Ross-Talbot. ACM Queue, 4(2), March 2006.
29. J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: high-throughput

stream programming in java. In OOPSLA, pages 211–228. ACM, 2007.
30. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its

Typing System. In PARLE’94, volume 817 of LNCS, pages 398–413, 1994.
31. UNIFI. International Organization for Standardization ISO 20022 UNIversal Fi-

nancial Industry message scheme. http://www.iso20022.org, 2002.

25

