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Chapter 1

Introduction

This report is a study of the asynchronous π-calculus and the theory of concurrent com-
binators as models of concurrent computation. The primary aim of this report is to show
that the cc combinator system is as expressive as the monadic asynchronous π-calculus
without summation or matching [9].

This chapter contains some introductory words on process calculi and an informal
overview of the cc. Chapter 2 examines the asynchronous π-calculus in greater detail and
asserts the necessary definitions and results. Chapter 3 presents a formal account of the
cc and establishes the main result. Chapter 4 discusses some related work and Chapter 5
concludes.

1.1 Process Calculi

Process calculi model concurrent systems as a network of interacting parts, or agents,
and communication within systems as the interaction of constituent agents. CCS [6] and
the π-calculus [8] are based on interaction via atomic synchronisation as a computational
primitive, and on the notion of observational equivalence between systems. The idea is
that a system can be characterised by its interactive behaviour as defined by its capability
for communication: to observe the behaviour of a system is to communicate with it.

CCS and π-calculus agents are represented as computational processes that describe
behaviour through the capability for action. The actions which an agent may perform are
abstracted to internal progression, which has no external effects, and the two fundamental
operations of communication, sending and receiving a message (output and input). Sys-
tems consist of agents connected by named links, and two agents can interact if they have
complementary capabilities for communication over the same link. Processes are formed
by composing actions using the basic constructs of parallel composition (concurrency),
prefix (for synchronisation), summation (for representing choice) and restriction (of access
to links, and thus of capability for action).

The π-calculus is an evolution of CCS that incorporates the notion of system mobility
in terms of link dynamics (and also mobile processes). The names of links themselves
can be passed as messages allowing new, possibly private, connections to be generated.
The model of computation for interactive systems provided by the π-calculus is analogous
to that of the λ-calculus for general computation. However, there is no one definitive
π-calculus; many variants have emerged as it has been adapted and applied in practise.
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2 CHAPTER 1. INTRODUCTION

The asynchronous π-calculus is a sub-calculus of the π-calculus which models asyn-
chronous communication by precluding synchronisation over output actions. Asynchro-
nous communication can be typified by the separation of the act of sending a message,
which can be thought of as putting a message into an intermediary medium, from that of
receiving a message, which retrieves the message from the medium. In this way, isolated
output actions can be seen as representing such messages in an implicit communication
medium; a message is “sent” when the corresponding output action becomes active within
the sender process. Chapter 2 examines the asynchronous π-calculus in greater detail.

1.2 Concurrent Combinators [2]

The main content of this report relates to the cc, a calculus of concurrent combinators,
which we shall show to be capable of encoding, and thus is as expressive as, the monadic
asynchronous π-calculus without summation or matching. Note that the cc as defined
in this report differs slightly from that in [2] due to the inclusion of the replication op-
erator. We first give an informal overview of the cc in this introduction, and present a
formal account in Chapter 3. See Section 4.1.1 for a description of generalised concurrent
combinators.

The cc consists of a set of atoms, a grammar by which compound combinators can be
constructed from these atoms, the basic algebra over combinator terms, and a reduction
relation, again over terms, which formally describes combinator behaviour. One purpose
of the cc, as with other combinatory systems [1], is to provide a platform from which the
properties of other models of computation may be studied, namely the π-calculus and its
variants.

The cc-atoms are designed to capture the fundamental essence of concurrent compu-
tation in the π-calculus. Each atom represents a fixed unit of computational behaviour
formed from the decomposition of the name passing and synchronisation operations on
which the π-calculus is based. To reflect the specific actions that a π-process may perform,
the behaviour that an atom embodies must be instantiated over a particular set of names,
forming an atomic agent.

Atomic agents can be seen as atoms connected to names in the outside world through
polarised interaction ports. The bindings of ports to names are specified as parameters to
the atomic agent, of which the first (leftmost) is called the subject. Subject port polarity
indicates whether the function of an atom is to perform an input (−) or output (+) action
at the named “location”, and the polarity of other ports indicate how descendents of the
agent will use the corresponding names.

Computation in the cc is based on dyadic interaction of atomic agents as governed
by the behaviour that each corresponding atom encapsulates. Two agents may inter-
act if they are connected through complementary (in terms of polarity) subject ports to
the same name. The subsequent reduction can be seen as a reaction that consumes the
reagents, generating new agents in their stead. π-calculus name passing manifests itself
in the communication topology dynamics resulting from interactive reduction. Figure 1.1
illustrates these concepts.

More specifically, cc computation is given by the reduction relation on cc-terms. cc-
reduction is defined by a set of atomic interaction rules (operational semantics) that specify
how a pair of compatible atoms can be reduced; this is the only source of computation
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Figure 1.1: Combinator interaction.

within a cc-system. Each interaction rule is actually a rule schema where each parameter
is a universally-quantified meta-name, and there is only one rule for each pair of compatible
atoms. Thus, the behaviour encapsulated by each atom is best understood in terms of
how the atoms interact. Following is a summary of the cc atoms and their respective
interaction rules.

1. Message M(x+y±) The Message delivers the name connected to its value port to the
target location, specified by the second and first parameters respectively. The Message
is the only atom with a positive subject port, and thus all reductions occur between
a Message and one other of the atoms below. The neutral polarity of the second
parameter, denoted by ±, reflects that it cannot known without further context how
the name being carried will be used in the future. No atoms other than the Message
have a neutral port.

2. Duplicator D(x−u+v+) | M(x+y) −→ M(uy) | M(vy) The Duplicator creates two
new Message atoms, carrying the name received over the first parameter, with targets
as specified by its second and third parameters.

3. Killer K(x−) | M(xy) −→ 0 The Killer destroys a Message.

4. Forwarder FW(x−u+) | M(x+y) −→M(uy) The Forwarder forwards a message by
creating a new Message, carrying the name received over the first parameter, to the
target specified by the second parameter.

5. Left Binder Bl(x−u+) | M(x+y) −→ FW(yu) The Left Binder creates a new For-
warder with the name received over the first parameter as subject and target as specified
by the second parameter.

6. Right Binder Br(x−u−) | M(x+y) −→ FW(uy) The Right Binder creates a new
Forwarder with subject as specified by the second parameter and target set to the
name received over the first parameter .

7. Synchroniser S(x−u−v+) | M(x+y) −→ FW(uv) The Synchroniser creates a new
Forwarder upon receipt of a name over the first parameter between the locations as
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specified by the second and third parameters. The received name is discarded; the
interaction between a Synchronizer and a Message is of pure synchronisation with no
name passing.

The Duplicator and Forwarder perform straightforward name passing operations by
generating new message atoms that deliver the object name to the specified target(s).
The Left Binder, Right Binder and Synchroniser perform more complicated operations
that “use” rather than simply pass the received name. These atoms modify the topol-
ogy of communication, that is, the links within a combinator network, by creating new
Forwarders, and thus could be described as performing name passing meta-operations.

cc-term grammar allows combinator terms, or agents, to be constructed from atoms
and other combinators through parallel composition, name hiding and replication; these
operators are essentially identical to their π-calculus counterparts. Parallel composition
is perhaps the definitive construct of any model of concurrent systems, allowing the con-
stituent agents of a system to act and interact independently of, and concurrently with,
other agents.

Figure 1.2: Combinator interaction with name hiding.

Name hiding is the division of access to a restricted location between those agents
inside and those outside the scope of restriction. In other words, agents bound under the
restriction of a name may not interact with atoms outside the restriction over that name
(Figure 1.2). Although a restricted agent and a non-restricted agent may have bindings to
the same literal identifier, the separate instances of the identifier are conceptually distinct.

The final operator, replication, provides a mechanism for infinite computation. In
terms of combinator interaction, replication can be viewed as denoting persistent agents
that are not consumed by reaction, enabling them to participate in any number of further
reactions. As can be seen from the interaction rules given above, cc-reduction always
decreases the number of non-Message atoms; thus, unbounded behaviour cannot be ex-
pressed in the cc without replication. However, Section 4.1 discusses an extension of the
cc that can represent infinite computation without an explicit replication operator by
introducing some additional atoms.

The basic algebra over cc-terms defines the property of structural congruence, which
relates those terms expected to have the same essential behaviour. As in the π-calculus,
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the rules for structural congruence are derived from the meanings of the syntactic con-
structs; indeed, the rules for structural congruence in the cc are identical to those for the
asynchronous π-calculus as presented in this report.

1.3 Application of Concurrent Combinators

As mentioned in the preceding section, the cc can be used to investigate the properties
of the π-calculus and its variants. The result that any asynchronous monadic π-term
(without summation or matching) can be expressed as a behaviourally-equivalent cc-term
(Chapter 3) is reminiscent of the fact that any λ-expression can be expressed using only
the S and K combinators [1]. In the latter, the decomposition of β-reduction into the
primitive higher-order functions denoted by S and K allows λ-abstraction to be replaced;
in the former, the decomposition of the asynchronous message receipt operation into the
seven basic cc-atoms replaces the input prefix.

The properties of combinatory logic, namely its expressiveness despite the small set
of combinators, the relative simplicity of combinator reduction and the absence of formal
variables, make it of interest for both theoretical and practical reasons. Similarly, the
analysis of π-interaction from which the cc is derived offers insight into some fundamental
aspects of concurrent computation in the π-calculus, such as the relationship between
atoms due to name sharing as well as term-level composition [2].

It can intuitively be seen how the compositional, binding and synchronisation compo-
nents of the π-calculus name passing primitive have been devolved into the cc-atoms. The
close relationship between the cc and the π-calculus makes embedding the former within
the latter as a sub-calculus straightforward: after defining a mapping that preserves the
essential behaviour of each atom, it is then a matter of verifying that π-reduction between
the translated atoms corresponds to cc-reduction. Figure 1.3 illustrates an example of
this.

Figure 1.3: Interaction of cc combinators embedded into the π-calculus.

By bringing the cc within the π-calculus, we are now able to use machinery provided
by the latter, namely bisimulation, to analyse the properties of the former. This facilitates
the verification of the main result stated above, that the cc is capable of encoding the
asynchronous π-calculus without loss of expressiveness. Chapter 3 covers the relationship
between the π-calculus and the cc (illustrated in Figure 1.4) in more detail.
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Figure 1.4: Encoding of the cc within the π-calculus and vice versa.

Establishing the expressiveness of the cc, and the roles of the cc-atoms, provides the
aforementioned platform for investigating other sub-calculi of the π-calculus. In general,
the technique of encoding, or being unable to encode, a language or calculus within another
can reveal information regarding their comparative expressiveness. The encapsulation of
computational behaviour within atomic combinatory units enables experimentation with
the inclusion and exclusion of particular atoms, and can be used to characterise an encoded
language.

The mapping from asynchronous π-terms to their equivalent counterparts in the cc,
which will be defined in Chapter 3, serves as a template, and can sometimes be reused,
for encoding such calculi in the cc. The cc can thus be used as a tool for analysing
the properties of a particular calculus with respect to modelling concurrent systems, if
it differs from others and how, and to discover what (real-world) situations they can be
applied to.



Chapter 2

The Asynchronous π-Calculus

The π-calculus and the asynchronous π-calculus were briefly introduced in Section 1.1.
This chapter examines the latter and its properties in greater detail, and prepares the nec-
essary background material for Chapter 3. The primary reference source for this chapter
is [8], and many of the definitions presented in this chapter, particularly in Section 2.4,
are cited from or based on this source. The other main reference sources are [9] and [5].

In the asynchronous π-calculus, processes independently act and interact through asyn-
chronous communication. Names are the simplest entities, and typically denote commu-
nication links, or channels. Processes are defined with respect to the names over which
the basic actions, sending and receiving a name, can be performed. When applied to spe-
cific situations, names may represent values such as locations, passwords, and processes
themselves.

Process interaction, which in the π-calculus is the same phenomenon as inter-process
communication, is essentially a name-passing operation; the names stored within a process
may be updated as a result of interaction and, together with the synchronisation mech-
anism, may enable further action. As will be explained in Section 2.1, asynchronicity is
modelled by precluding synchronisation over output actions.

There are many variants of the asynchronous π-calculus differing in the abstractions
that each captures: single or multiple name-passing, choice between input actions, explicit
internal action, the capabilities that may be activated by communication, internal and ex-
ternal mobility, and many others. In this report, we consider the monadic asynchronous
π-calculus without summation or matching as presented in [9], which will simply be re-
ferred to as the asynchronous π-calculus, or just the π-calculus, if there is no confusion.
Methods for encoding certain behaviours that are inherent to more expressive calculi are
discussed briefly in Section 2.5.

Firstly, the syntax and structure of the asynchronous π-calculus is defined. Two rela-
tions on asynchronous π-terms that govern their behaviour, reduction and transition, and
their respective properties are then examined. Following this is the main purpose of this
chapter, the identification of a suitable process equivalence that relates processes with the
same essential behaviour. This forms the foundations over which the theory of concurrent
combinators for the π-calculus is developed in Chapter 3.

As will be seen, several useful process equivalences exhibit special properties for the
asynchronous π-calculus that do not hold for the full π-calculus. These theoretical results
complement the practical motivations for the asynchronous π-calculus: many real-world

7



8 CHAPTER 2. THE ASYNCHRONOUS π-CALCULUS

systems consist of components that communicate asynchronously, and many implementa-
tions of synchronous communication are built from asynchronous primitives.

2.1 Syntax

Definition 2.1.1 (names and processes) The set of terms, or processes, in the monadic
asynchronous π-calculus without summation or matching, Pπ, ranged over by P, Q, R, ...
is given by the syntax

P ::= P |Q | xz.P | (ν z) P | ! P | xy | 0 .

where the lower-case letters x, y, z, ... range over a countably-infinite set of names. Given a
name x, the corresponding co-name is x. We abbreviate (ν z1) , ..., (ν zn) to (ν z1, ..., zn)
or just (ν z̃) .

Occurrences of a name z in xz.P and (ν z) P are binding with scope P . The binding
occurrence and all other occurrences within P of z are bound, and the occurrence of a
name is free if not bound. The sets of bound and free names [5] occurring within P are
denoted by bn(P ) and fn(P ) respectively. xz.P will be abbreviated to x.P if z 6∈ fn(P ),
and (ν z) xz to x. The occurrence of a process Q within a process P is guarded if it occurs
under a xz prefix, and unguarded otherwise. ¤

The first (leftmost) operator denotes parallel composition. The following three oper-
ators, input prefix, name restriction and replication respectively, bind more tightly than
parallel composition, and parentheses are used to disambiguate processes when written as
linear expressions. The remaining two terms denote the output and nil processes respec-
tively. It is important to note that, under this definition, a name that does not occur in
a process is neither bound nor free in that process.

These syntactical constructs from which processes are assembled represent abstracted
aspects of communication and computation within a concurrent system. In general, names
can be thought of as communication channel identifiers. The basic actions that processes
may perform are to receive and send messages on the channels specified by the leftmost
names of the input prefix and output term respectively. Input prefixing abstracts the
receipt of a message by substituting all bound occurrences of the binding name with the
received name. An asynchronous message send can be seen as occurring when an output
term becomes unguarded, that is, when all prefixes have been removed by performing
input actions; the resulting output particle then represents a message in an implicit com-
munication medium. In this way, the input prefix enables synchronisation over input
actions.

There is no syntactic distinction between instantiable names and non-instantiable
names, or in other words, between variables and constants. The free names of a process
define its capabilities for action: a process can only receive or send via a name if the name
is free in that process. For two processes to interact, one must have the capability to
send, and the other to receive, a message over a name free in both. Thus, name passing
forms the basic computational primitive of the π-calculus, and process interaction and
inter-process communication become equivalent under this abstraction.

By controlling the binding of names, restriction determines which processes can inter-
act: processes within the scope of restriction are able to interact via the restricted name
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(P |Q)σ def= Pσ |Qσ

(xz.P )σ def= (xv)σ.Pσ

((ν z) P )σ def= (ν z) Pσ

(!P )σ def=! Pσ

0σ
def= 0

Table 2.1: Application of substitution.

but not with outside processes. Composition enables processes to proceed and interact
independently of other processes within the system, and replication can be thought of
as the infinite composition of a particular process, thus allowing infinite computation to
be represented. Replication is a fundamental element of the π-calculus as unbounded
behaviour cannot be expressed without it. Section 2.2 provides a more formal definition
of process behaviour. The above syntactic constructs were also introduced for the cc in
Section 1.2.

As mentioned above, the absence of output prefixing is the source of asynchronicity
in the asynchronous π-calculus: the inability to synchronise over output actions means
that a process cannot directly determine when another has received a message. As any
number of unguarded outputs may appear within a process, the implicit communication
medium has unbounded capacity, and, due to the commutativity of parallel composition
(Section 2.2), no ordering of “in-transit” messages is preserved. For these reasons the
summation operator, which represents choice of action within a process, is disallowed: if
given the choice between performing input and output actions, a process can itself control
whether to discard messages by performing an input. Although it may be desirable to
model a lossy medium over which sent messages may not be received, this is better achieved
by adding to the system terms such as !xz.0 which can non-deterministically consume
messages on the channel x. The match operator is excluded from the asynchronous π-
calculus as a trade-off for certain proof techniques at the cost of expressiveness [8].

Definition 2.1.2 (substitution and α-equivalence)

(i) A name is fresh in P if the name does not occur in P .
(ii) The application of a substitution {y1, ..., yn/x1, ..., xn} to a process P , denoted by

P{y1, ..., yn/x1, ..., xn}, replaces each free occurrence of x1, ..., xn with y1, ..., yn re-
spectively according to the rules given in Table 2.1. Names bound within P that
clash with any of y1, ..., yn are implicitly α-converted, as defined below, to fresh
names. Substitutions are ranged over by σ.

(iii) α-conversion of a process is the replacement of a subterm xz.Q by xw.Q{w/z}, or
(ν z) Q by (ν w) Q{w/z}, where in each case w does not already occur in Q.

(iv) P and Q are α-equivalent, P =α Q, if Q can be obtained from P via a finite number
of α-conversion steps. ¤

α-conversion is the meta-operation of renaming consistently the occurrences of a name
bound within a process. Implicit α-conversion of bound names that clash with names
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P ≡ Q, if P =α Q (sc-alpha)
P | (Q |R) ≡ (P |Q) |R (sc-comp-assoc)

P |Q ≡ Q | P (sc-comp-comm)
P | 0 ≡ P (sc-comp-inact)

(ν z, w) P ≡ (ν w, z) P (sc-res-assoc)
(ν z) (P |Q) ≡ P | (ν z) Q, if z 6∈ fn(P ) (sc-res-comp)

(ν z)0 ≡ 0 (sc-res-inact)
!P ≡ P | !P (sc-rep)

Table 2.2: The axioms of structural congruence.

received via input actions avoids the unintended capture of the latter by the binding
occurrences of the former. Intuitively it can be seen that α-conversion preserves each
difference between names and thus α-equivalence describes literal process equality up to
this syntactic constraint.

2.2 Reduction

The reduction relation on processes, −→, describes how a system represented as π-term
can evolve independently of its environment as a result of progressive intraaction. The
structural congruence relation enables this process by bringing together potential intraac-
tors.

Definition 2.2.1 (equivalence, context and congruence)

(i) An equivalence relation R on processes is a binary relation where

P R P (refl)
if P RQ then QR P (symm)
if P RQ and QRR then P RR (trans)

(ii) A context is obtained when an occurrence of 0 in a term given by the process
grammar in Definition 2.1.1 is replaced with a hole [· ]. Given a process P and a
context C, C[P ] is the literal replacement of the [· ] in C by P .

(iii) A congruence is an equivalence relation on processes that satisfies the condition

if P RQ then C[P ]R C[Q] (cong) ¤

Definition 2.2.2 (Structural Congruence) Structural congruence, ≡, is the smallest
congruence on processes that satisfies the axioms in Table 2.2. ¤

Structural congruence allows the syntactic structure of a process to be manipulated
whilst preserving the essential behaviour of the process, or in other words, structural
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(r-par) P −→ P ′
P |Q −→ P ′ |Q (r-res) P −→ P ′

(ν z) P −→ (ν z) P ′

(r-comm)
xy | xz.P −→ P{y/z} (r-struct) P ≡ Q −→ Q′ ≡ P ′

P −→ P ′

Table 2.3: The rules of π-reduction.

congruence identifies those processes with the same behavioural aspects of interest. This
is achieved through the careful specification of axioms that express the intrinsic meanings
of the π-operators and allow only the desired manipulations.

Example 2.2.3 Rule (sc-rep) captures the idea of replication as an infinite composi-
tion.

! P ≡ P | ! P (sc-rep)
≡ P | P | ! P (sc-rep)
≡ ...

¤

Example 2.2.4 We prove the intuitive result that restricting a name not free in a process
has no effect. Take P where z 6∈ fn(P ).

(ν z) P ≡ (ν z) (P | 0) (sc-comp-inact)
≡ P | (ν z)0 (sc-res-comp)
≡ P | 0 (sc-res-inact)
≡ P (sc-comp-inact)

¤

Definition 2.2.5 (reduction) The reduction relation, −→, is the smallest relation be-
tween processes satisfying the rules in Table 2.3. ¤

Reduction defines how a system can perform internal action through the interaction of
its constituent components. The reduction relation can be manifested as a term-rewriting
system: (r-struct) allows (sub)terms to be manipulated into a form which can be re-
duced, and ensures by construction that the relation is closed under structural congruence
by its application after a reduction. Intuitively, it can be seen that the reduction relation
captures the intended semantics of the π-operators as described in Section 2.1. The ab-
sence of P −→ P ′ implies !P −→! P ′ is consistent with the notion of replication as infinite
composition as such a rule would express infinite progress in a single step.

Example 2.2.6 Let P
def= xa | xz.zy | xb. We have both

P −→ P ′ def= ay | xb (r-par, r-comm)
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and

P −→ P ′′ def= by | xa (r-struct, r-par, r-comm)

which shows that reduction is non-deterministic, as both reductions are valid, and also
non-confluent, as neither P ′ nor P ′′ can be further reduced. ¤

Example 2.2.7 We illustrate name hiding and scope extrusion, and also the role of
(r-struct) in manipulating processes into forms which can be reduced. The first case
again demonstrates that restriction of a name not free in a process has no effect (see
Example 2.2.4).

(ν x) u.0 | uy −→ 0 (r-struct, r-comm)

The following shows how name restriction is enforced by the side-condition of (sc-res-
comp).

(ν x) x.0 | xy −→6

Reduction is not possible because the component on the right cannot be brought within
the restriction. Using α-conversion to by-pass this constraint is, of course, futile as the
subjects of the actions will no longer correspond when (r-comm) needs to be applied.

However, scope extrusion allows a restricted process to send a private channel name
to another process,

(ν x) (vx | x.0) | vz.zy −→ (ν x) (x.0 | xy) (r-struct, sc-res-par, r-res, r-comm)
−→ 0 (r-res, r-comm)

and the subsequent reduction within the restriction can be seen as communication between
the processes over this private channel. In the final case, we again use scope extrusion to
bring the component on the right within the restriction.

(ν x) (vx | x.0) | vz.(zy | xy) −→ (ν w) (w.0 | wy | xy) (r-struct, sc-res-par, r-res, r-comm)

In order to do this, the component on the left was first α-converted by (r-struct) to
satisfy the side-condition of (sc-res-comp). This shows that the sent name is genuinely
private and is not known to any other process. Thus, the combination (ν z) xz expresses
the capability to simultaneously create and send a fresh name, and name clashes can
always be avoided as there are an infinite number of fresh names to chose from. ¤

2.3 Transition

Reduction as a description of system behaviour is limited in that it cannot say how a
system can interact with its environment, asking only enough of process syntax to satisfy
intraaction and no more. Transition overcomes these limitations by utilising more of
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(alpha) P =α Q l−→ Q′ =α P ′

P l−→ P ′ (ins)
xy.P

xy−→ P{y/x} (out) xy
xy−→ 0

(par-l) P l−→ P ′

P |Q l−→ P ′ |Q
bn(l) ∩ fn(Q) = ∅ (rep) P | ! P l−→ P ′

! P l−→ P ′

(res) P l−→ P ′

(ν z) P l−→ (ν z)P ′ z 6∈ fn(l) ∪ bn(l) (open) P xz−→ P ′

(ν z) P
x(z)−→ P ′

x 6= z

(comm-l) P
xy−→ P ′ Q

xy−→ Q′

P |Q τ−→ P ′ |Q′ (close-l) P
x(z)−→ P ′ Q xz−→ Q′

P |Q τ−→ (ν z) (P ′ |Q′)
z 6∈ fn(Q)

Table 2.4: The rules of synchronous early transition.

the information that can derived from process syntax, namely the specific actions that a
process can perform on its environment. The transition relations on processes are labelled
for each transitional action, where P l−→ Q expresses that P can become Q by performing
the action denoted by l. As will be discussed below, this report assumes the synchronous
early transition relations except where stated otherwise.

Definition 2.3.1 (labels and actions) The labels, ranged over by l, l′, ..., are given by

Lab ::= xy | xy | x(z) | τ

and denote actions. τ denotes the invisible action; the others are visible. The first (left-
most) name of a label specifying a visible action is the subject, and the second the object.
The free names of a label are the names that occur in the label, with the exceptions of z in
x(z), which is bound, and τ , which has no subject or object and contains no occurrences
of any names. The application of a substitution to a label concerns only the free names
of the label. ¤

The first label denotes the action of receiving the name y via the name x, the second
is sending y via x, and the third is sending a fresh name via x. τ represents the internal
process action.

Definition 2.3.2 (Transition) The synchronous early transition relations for the asyn-
chronous π-calculus, { l−→ | l ∈ Lab}, are the smallest relations defined by the rules in
Table 2.4 along with (par-r), (comm-r) and (close-r), the symmetric forms of (par-
l), (comm-l) and (close-l), in which the roles of the left and right components are
exchanged. ¤

Transition takes the position of an observer who can communicate with a system as
well as being able to detect changes in system state. Transition, unlike reduction, reflects
the observation of explicit actions, specifically the messages that a process can send and
receive. Both reduction and transition have intuitive justification for their respective for-
mal expression of the meanings of the π-operators and concurrent computation. However,
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transition goes beyond reduction as a description of process behaviour by exposing the
capability for communication as well as internal action. Indeed, internal transition and
reduction are the same up to structural congruence [8].

The terminology early transition refers to abstracted message receipt, that is, the
instantiation of bound names in a process by the object of the message, occurring when
the input action of the receiver is inferred. Alternatively, the late transition relations
perform this instantiation when communication is inferred by replacing the (synchronous)
early input action

xy.P
xy−→ P{y/x}

with bound-input actions of the form

x(z).P
x(z)−→ P

where z serves as a placeholder for a received name to be instantiated in

(l-comm-l)
P

xy−→ P ′ Q
x(z)−→ Q′

P |Q τ−→ P ′ |Q′{y/z}

The choice of communication model as determined by a particular set of transition
relations impacts upon how process behaviour can be compared. However, the three main
behavioural equivalences employed in the full π-calculus coincide for the asynchronous π-
calculus. It should also be noted that both of the above transition relations allow any name
to be received via an input action, a feature highlighted by the use of bound placeholders in
late input. A fourth behavioural equivalence based on the receipt of a single fresh name,
a condition too weak to be useful in the full π-calculus, also coincides with the three
previously mentioned equivalences in the asynchronous π-calculus. Section 2.4 discusses
behavioural equivalence in more detail.

Example 2.3.3 The rule (alpha) avoids clashes between bound and received names; in
reduction, this feature was encompassed by (r-struct) as structural congruence contains
α-equivalence.

Let S
def= P | Q, where P

def= xz and Q
def= | (ν z) xw.wz. S has an internal transition

from rules (comm-l), (out), (alpha), (res) and (ins).

xw.wy xz−→ zy

(ν z) xw.wz =α (ν y) xw.wy xz−→ (ν y) zy

xz xz−→ 0 (ν z) xw.wz xz−→ (ν y) zy

xz | (ν z) xw.wz τ−→ 0 | (ν y) zy

As mentioned in Section 2.1, α-conversion is often used implicitly. ¤

Example 2.3.4 We again consider scope extrusion which is performed using the two
explicit rules for opening and closing the scope of a restriction, (open) and (close). Note
that the side condition of (res) ensures that only (open) can be used for scope opening,
as well as preventing communication over the restricted name. The latter property is also
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enforced by the side condition of (open).

Let S
def= (P |R) |Q, where P

def= (ν x) ux and Q
def= uz.z. Then, by (close-l), (par-l),

(open), (out) and (in),

ux ux−→ 0

(ν x) ux
u(x)−→ 0

(ν x) ux |R u(x)−→ 0 |R uz.zy ux−→ xy

((ν x) ux |R) | uz.zy τ−→ (ν x) (0 |R | xy)

provided that x 6∈ fn(R) as required to fulfil the side condition of (par-l), ensuring that
the sent name is fresh. Thus, the side conditions of (close-l), (par-l) and their sym-
metric forms serve the same purpose as (sc-res-comp) in reduction (see Example 2.2.7).
However, (alpha) can again be used to avoid name clashes by allowing suitably fresh
names to be chosen. ¤

In the full π-calculus, observation of process behaviour is the same as interacting with
a process by performing complementary actions to the capabilities of the process. This is
possible because both input and output actions can have continuations: prefixing provides
a mechanism for synchronisation, and thus the occurrence of either type of action can be
directly observed through dependent components. This is the meaning of the terminology
synchronous transition.

In the asynchronous π-calculus, output continuations are precluded to affect asynchro-
nous communication. However, input prefixing allows output actions to be observed as
in the full π-calculus, and input actions can be observed indirectly. For example, the
component

(ν z) (xz | zw.P )

can detect that the name z, private to the component, has been received if the receiver
replies by sending a message on z. Thus, the asynchronous π-calculus as presented above
models asynchronous communication through the modification of process syntax, whilst
adopting the existing transition relations based on synchronous (early) transition. This
report is mainly concerned with process equivalences based on this particular represen-
tation of asynchronicity. Alternatively, asynchronous communication could be modelled
using asynchronous transition relations, as discussed in Section 2.6.

2.4 Behavioural Equivalence

The reduction and transition relations express the behaviour of systems represented as
π-calculus terms. These formal descriptions of process behaviour permit various methods
for comparing processes, in particular, establishing whether two processes have equivalent
behaviour. These methods are based on the general technique of bisimulation, a process
governed by two sets of rules: what processes are allowed to do, and what is required of a
process with respect to the capabilities of another to qualify for equivalence. The former
can be defined in terms of either reduction, or more usefully (as will be seen), transition.
The latter is given by the rules of the particular bisimulation being employed. Bisimilarity
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relations differ in terms of their discriminatory strength, robustness across differing vari-
ants of the π-calculus, and the tractability of their corresponding proof techniques. The
combination of these factors determines how useful a bisimilarity equivalence is.

Definition 2.4.1 (bisimulations and bisimilarities) A bisimulation is an equivalence
relation on a subset of processes closed under its defining conditions. A bisimilarity is the
union of all corresponding bisimulations that satisfy the conditions. Thus, a bisimilarity
is the largest such bisimulation, and a bisimulation can be defined implicitly within the
definition of the bisimilarity. ¤

This notion of bisimulation is sufficient for this report, and assumes that bisimulations
will be defined to respect the properties of equivalence. However, symmetry is not a
fundamental requirement for bisimulation. The fact that a union of bisimulations will be
a bisimulation (the union of a finite number of closed sets is closed) gives transitivity and
justifies the above definition of a bisimilarity. Formally, we should show that a bisimilarity
is an equivalence from the corresponding bisimulation definition, but we shall employ
Definition 2.4.1 in this report as an informal “shortcut”. As an example, consider reduction
bisimilarity, which is defined firstly in terms of reduction bisimulation.

Definition 2.4.2 (reduction bisimilarity I) A relation S is a reduction bisimulation
if whenever (P, Q) ∈ S,

(1) P τ−→ P ′ implies Q τ−→ Q′ for some Q′ with (P ′, Q′) ∈ S
(2) Q τ−→ Q′ implies P τ−→ P ′ for some P ′ with (P ′, Q′) ∈ S

Reduction bisimilarity is the union of all reduction bisimulations; P and Q are reduction
bisimilar if (P, Q) ∈ S for some reduction bisimulation S. ¤

The definition of reduction bisimilarity can be re-expressed under Definition 2.4.1
to implicitly include the definition of reduction bisimulation as follows. The existential
quantification in the former definition is absorbed into the τ−→Bτ operator composition.

Definition 2.4.3 (reduction bisimilarity II) Reduction bisimilarity is the bisimilarity
relation on processes, Bτ , such that whenever P Bτ Q, P τ−→ P ′ implies Q τ−→Bτ P ′. ¤

A reduction bisimulation is essentially a comparison of possible τ -transition derivation
sequences, or in other words, the capability for internal action, between two processes. For
example, any two processes that have no τ -transitions, such as 0 and xz.0 are reduction
bisimilar. Consequently, reduction bisimilarity does not provide an appropriate descrip-
tion of equivalent process behaviour. However, this basic instance of reduction-based
equivalence can be improved upon by forming a congruence from reduction bisimilarity
using Definition 2.2.1 (iii).

Definition 2.4.4 (reduction congruence) Processes P and Q are reduction congruent
if P Bτ Q implies C[P ] Bτ C[Q] for every context C. Thus, reduction congruence is the
largest congruence included in Bτ . ¤
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The definition states that two processes are reduction congruent if they reduction
bisimilar in all contexts. Thus, reduction congruence can distinguish between xa and xb
using C def= [· ] | xw.(wc | az.0), and between uy and vy using C′ def= [· ] | uz.0. However,
reduction congruence is still limited as a process equivalence by its absolute dependence
on internal transition. For example, the process P

def=! (xy | xz.0) cannot be distinguished
from P | Q for any Q as P τ−→≡ P . More is required than the simple comparison of
independent process evolution to form a satisfactory process equivalence.

Definition 2.4.5 (strong barbs) Let µ range over the set of names and co-names. The
strong observability predicate, or barb, ↓µ , is defined by

(1) P ↓x ⇐⇒ P ≡ (ν z̃) (xy.Q |R) for some Q, R and where x 6∈ {z̃}
(2) P ↓x ⇐⇒ P ≡ (ν z̃) (xy |Q) for some Q and where x 6∈ {z̃}. ¤

In other words, P ↓µ expresses that P is immediately capable of performing an output
action with subject µ. The definition of barbs formalises observability, and is in accordance
with the notion of observation and communication as the same phenomenon in the π-
calculus. More specifically, the observations of interest are the capabilities of a process for
performing input and output actions; the perspective of an observer is from within the
system as a special component added for this purpose. Reduction bisimilarity can now be
augmented to incorporate observability.

Firstly, note that in the asynchronous π-calculus, the exclusion of output continuations
means that it would not be inappropriate to restrict the observables to be the co-names.
This strategy would yield asynchronous behavioural equivalences that compare only the
output barbs, ↓x , for a pair of processes. Such equivalences would relate P1

def= xz.xz to
Q

def= 0, and also P2
def=! xz.xz to Q, expressing that a communication buffer cannot be

observed under asynchronous communication. However, we will continue with both input
and output barbs; this is justified by the fact that strong barbed congruence and barbed
congruence, which will be defined shortly, imply asynchronous strong barbed congruence
and asynchronous barbed congruence respectively [8].

Definition 2.4.6 (strong barbed bisimilarity) Strong barbed bisimilarity is the bisim-
ilarity relation on processes, .∼, such that whenever P

.∼ Q,

(1) P ↓µ implies Q↓µ

(2) P τ−→ P ′ implies Q τ−→ .∼ P ′. ¤

A strong barbed bisimulation is defined as a reduction bisimulation that respects ob-
servability. Thus, strongly barbed bisimilar processes are reduction bisimilar processes
with matching barbs at each τ -transition step in a bisimulation containing the processes.
This is due to Definition 2.4.1, which enables bisimilarity to be shown between two
processes by exhibiting such a bisimulation, and because strong output barbs indicate
only the immediate actions that a process may perform. This highlights the convenience
of using τ -transition rather than reduction in the definition of (strong barbed) bisimilarity,
as it generally allows the subsequent proofs to be more concise.

However, the independence of barbs from the objects of observable actions renders
strong barbed bisimulation unsatisfactory as a process equivalence: any two processes that
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can evolve over a common progression of internal action with corresponding capabilities
for output over the same channels are deemed behaviourally equivalent, regardless of the
content of sent messages. As a result, any two single output terms with the same subject,
such as xa and xb, are strongly barbed bisimilar, as are xa and (ν z) xz. There is also no
consideration of how the capabilities expressed by barbs may actually be exercised; strong
barbed bisimilarity is inadequate when multiple derivations exist for interleaving output
and reduction actions. For example, R

def= (ν x) (uy | x | x.0) .∼ S
def= (ν x) (! uy | x | x.0).

These problems are addressed by strong barbed congruence.

Definition 2.4.7 (strong barbed congruence) Processes P and Q are strong barbed
congruent, P

.' Q, if C[P ]
.' C[Q] for every context C. Thus,

.' is the largest congruence
in .∼. ¤

The extra discriminatory power of strong barbed congruence with respect to strong
barbed bisimilarity is analogous to that of reduction congruence with respect to re-
duction bisimilarity. In particular, contexts can now be used to distinguish between
processes, such as those mentioned above, based on the names they can send. For in-
stance, C def= [· ] | xz.(z | a.0) is enough to show both xa 6 .' xb and xa 6 .' (ν z) xz, and
C′ def= [· ] | u.0 distinguishes R and S as defined above.

Strong barbed congruence is a satisfactory process equivalence [8]. To apply the π-
calculus, however, it is desirable to abstract away from internal action, which strong barbed
congruence considers on equal terms to visible actions.

Definition 2.4.8 (weak transition)

(i) =⇒ is the reflexive and transitive closure of τ−→.

(ii) l=⇒ is =⇒ l−→=⇒, where l ∈ Lab.

l̂=⇒ stands for =⇒ if l = τ , and l=⇒ otherwise. ¤

For strong barbed bisimilarity, the comparison of process behaviour is performed over
single transition steps. (Weak) barbed bisimilarity, defined below, employs weak transition
which collapses any number, possibly zero, of invisible actions onto a single visible action.
Internal action must similarly be abstracted away from the notion of observability in order
to define behavioural equivalence under this abstraction.

Definition 2.4.9 (weak barbs) ⇓µ is =⇒↓µ . ¤

Weak versions of the strong bisimilarities can now be defined by adjusting the rules
that determine what is required of a process to successfully match the actions of another.
Due to the nature of weak transition, it can intuitively be seen that showing weak bisimi-
larity will require more work than its strong counterpart as there will, in general, be more
computation paths to be explored. However, the symmetric and recursive nature of bisim-
ulation allow the same relation to be obtained when the abstracted versions of transition
and observability are restricted to one side of a bisimulation [8]. In other words, matching
−→ with =⇒ generates the same relation as matching =⇒ with =⇒, but will require less
work to show.



2.4. BEHAVIOURAL EQUIVALENCE 19

Definition 2.4.10 (barbed bisimilarity) Barbed bisimilarity is the bisimilarity rela-
tion on processes,

.≈, such that whenever P
.≈ Q,

(1) P ↓µ implies Q⇓µ

(2) P τ−→ P ′ implies Q =⇒ .≈ P ′ ¤

Barbed bisimilarity does allow some abstraction from internal process activity, but, like
strong barbed bisimilarity, suffers from the inability to distinguish between the contents
of sent messages. For example, (ν x) (xu | xz.zy)

.≈ uv. Thus, a stronger relation is
once again formed by taking the largest congruence from within barbed bisimilarity; this
relation, barbed congruence, is often applied as the main behavioural equivalence on π-
calculus processes.

Definition 2.4.11 (barbed congruence) Processes P and Q are barbed congruent,
P

.∼= Q, if C[P ]
.≈ C[Q] for every context C. ¤

Unfortunately, it is often difficult to work directly with weak (and strong) barbed
congruence from their definitions. The requirement of equivalence under all contexts
makes barbed bisimulation proof in the general case a demanding procedure. However,
certain cases are more amenable. For example, to prove (ν x) (x.P )

.∼= 0 it can be observed
that neither process has any barbs or reductions. Then by induction over the asynchronous
π-operators, and from the base cases of 0 and uy for all u and y, C[(ν x) (x.P )]

.∼= C[0] can
be proved for all C.

Proposition 2.4.12 (≡⊆ .∼=)
Proof We can show that ≡ implies

.≈, and then the desired result follows from the fact
that ≡ is a congruence, and that

.∼= is the largest congruence in
.≈. Alternatively, we can

derive the result from the ≡-based definition of weak output barbs, the (r-struct) rule
in the definition of −→, and the fact that ≡ is a congruence. ¤

Proposition 2.4.12, which shows ≡ is more restrictive than, and respects
.∼=, allows

equivalences to be proved from the axioms of ≡ using the congruence and transitivity
properties of

.∼= [5]. For example,

x ≡ x | 0 .∼= x | (ν z)0
.∼= (ν z) (x | 0)

.∼= ...

Showing that two processes are not barbed congruent is typically an easier task; as
demonstrated previously for reduction and (strong) barbed congruence, it is enough to
identify a single context that can distinguish the processes. Still, it is useful to have
other indirect but more tractable techniques for showing barbed congruence. Firstly, we
consider (weak) bisimilarity, which implies, and is strictly contained by, barbed bisimilarity
[8]. Bisimilarity and can be proved without needing to quantify over all contexts; its nature
is a departure from the reduction-based equivalences seen so far.

Definition 2.4.13 (bisimilarity) Bisimilarity is the bisimilarity relation on processes,

≈, such that whenever P ≈ Q, P l−→ P ′ implies Q l̂=⇒≈ P ′. ¤
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Bisimilarity is a labelled equivalence: it uses the full expressiveness of the transition
relations to describe process equivalence through direct comparison of actions. Bisimi-
larity requires less work to show than barbed congruence, which effectively observes the
behaviour of processes when embedded into all possible system contexts. However, the
(ins) and (open) transition rules implicitly capture some of the power of explicit context
comparison by allowing any name to be received by input, and any fresh name to be sent
by bound-output actions. Omitted from this report is the definition of the relation ∼, the
strong version of ≈, which is strictly contained within ≈ (and thus could be used to show
≈).

Bisimilarity has an implicit caveat that a bound-output action of one process need
only be matched by the other if the bound-output object is not free in either process.
This is a consequence of asserting that bound-output objects must be fresh, as enforced
by the side-conditions of (par-l) and (par-r) (see Section 2.3). This restriction is a minor
issue as the bound-output object can be almost any name, and by convention, freshness
is extended to encompass all processes and entities in consideration.

For the full π-calculus, bisimilarity is not preserved by arbitrary substitution but is a
non-input congruence, that is, a congruence quantified over all contexts for which the hole
does not occur under an input prefix [8]. This is because new possibilities for intraaction
may be created when certain free names are received. For example, taking the full π-
calculus processes P

def= z | w and Q
def= z.w + w.z, then we have P ≈ Q, but xz.P 6≈ xz.Q.

However, the substitution-closure of bisimilarity, full bisimilarity, is the largest congruence
included in bisimilarity, and implies

.∼= [8].

Proposition 2.4.14 (≡⊆≈)
Proof By the fact that if P ≡ Q and P l−→ P ′, then for some Q′ we have Q l−→ Q′ and
P ′ ≡ Q′ [8], it follows from the definitions of =⇒ and ≈ that ≡ is a bisimulation, and thus
the desired result is obtained. ¤

This result can be used to conveniently shorten bisimulation proofs when applica-
ble (see Example 2.4.17), and corresponds to the fact that replacing the transition rule
(alpha) with

(t-struct)
P ≡ Q l−→ Q′ ≡ P ′

P l−→ P ′

would yield the same relation, namely ≈. This modification would make (rep) redun-
dant, but bisimilarity proofs would require working up to structural congruence for each
transition. As previously mentioned, defining the reduction-based bisimilarities in terms
of reduction rather than τ -transition would have similar consequences.

There are actually several variants of bisimilarity, each with its own particular use.
The late transition relations, discussed in Section 2.3, lead naturally to late bisimilarity,
a very similar relation to bisimilarity but with stronger requirements for matching input
actions. Open bisimilarity, unlike early and late bisimilarity, is by definition a congruence,
and is more demanding than the other variants but has the advantages that no explicit or
implicit quantification over input names or substitutions is involved. In fact, each of these
variants of bisimilarity can be expressed using either of the early and the late transition
relations, but for late bisimilarity the latter are more convenient [8].

For the asynchronous π-calculus, however, bisimilarity and the variants mentioned
above all coincide, and the common relation is a congruence preserved by all contexts of
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Figure 2.1: The relationship between
.∼=, ≈, ≈g and ≡ on the asynchronous π-calculus.

the full π-calculus that implies barbed congruence [8]. Furthermore, an additional variant,
ground bisimilarity, also coincides with the common congruence. This is a useful result as
ground bisimilarity requires less work to show than bisimilarity for the following reason.
(ins) expresses that any name can be received by an input action, and thus to show
bisimilarity between P and Q, P

xy−→ P ′ must be matched with a Q
xy−→ Q′ for each name

y. For ground bisimilarity, it is enough to consider a single fresh name as the object of an
input or bound-output action.

As a consequence, ground bisimilarity is less discriminating than bisimilarity, and is
unsatisfactory as a process equivalence for the full π-calculus. The main reason for this,
as with barbed bisimilarity and bisimilarity, is that all names are open to instantiation to
any name. The strength of ground bisimilarity in the asynchronous π-calculus stems from
the fact that an output cannot preclude any other action nor enable further action due to
the absence of summation and output continuations.

Definition 2.4.15 (ground bisimilarity) Ground bisimilarity is the bisimilarity rela-
tion, ≈g, such that whenever P ≈g Q, there is z 6∈ fn(P ) ∪ fn(Q) such that if P l−→ P ′

where l ∈ {xz, xy, x(z), τ}, then Q l̂=⇒≈g P ′. ¤

Lemma 2.4.16 (Properties of ≈g for the asynchronous π-calculus)

(i) ≈g is a congruence on the asynchronous π-calculus.

(ii) ≈g ⊆
.∼=.

(iii) ≈g =≈.

These results are cited from [8]. ¤

Thus, to show barbed congruence between asynchronous π-processes, it is enough
to exhibit a ground bisimulation containing them. The coincidence of bisimilarity and
ground bisimilarity on the asynchronous π-calculus leads to the symbols ≈ and ≈g being
interchanged freely within this report when referring to the common relation. Figure 2.1
illustrates the relationship between the most important, with regards to this report, of the
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behavioural equivalences (all of which are congruences) defined in this chapter, namely
.∼=,

≈, ≈g and ≡.

Example 2.4.17 Let L
def= (ν x) (xy | xz.z) and R

def= y.

1. We first prove L ≈ R by constructing a bisimulation, S, containing (L,R).

(1) (L,R) ∈ S
¦ L τ−→ L′ def= (ν x) (0 | y) matched by R =⇒ R

¦ R
y−→ R′ def= 0 matched by L

y
=⇒ L′′ def= (ν x) (0 | 0)

(2) (L′, R) ∈ S
¦ L′ y−→ L′′ matched by R

y−→ R′

(3) (R′, L′′) ∈ S and neither has any transitions.

S = {(L,R), ((ν x) (0 | y), R), (0, (ν x) (0 | 0))} is a bisimulation, and therefore L ≈ R.

2. We now illustrate the application of Definition 2.4.1.

(1) Check L ≈ R.

¦ L τ−→ L′ def= (ν x) (0 | y) matched by R =⇒ R

¦ R
y−→ R′ def= 0 matched by L

y
=⇒ L′′ def= (ν x) (0 | 0)

(2) Check L′ ≈ R.

¦ L′ y−→ L′′ matched by R
y−→ R′

(3) R′ ≈ L′′ as neither has any transitions.

Thus, we have the desired result.

3. We can now show how Proposition 2.4.14 can be used to shorten proofs.

(1) Check L ≈ R.

¦ L τ−→ L′ def= (ν x) (0 | y) matched by R =⇒ R

¦ R
y−→ R′ def= 0 matched by L

y
=⇒ L′′ def= (ν x) (0 | 0)

(2) L′ ≈ R as L′ ≡ R.
(3) R′ ≈ L′′ as R′ ≡ L′′.

Furthermore, to show P ≈ Q, it would suffice to show P ≡ P ′ ≈ Q′ ≡ Q due to the
transitivity of ≈. ¤

2.5 Expressiveness

This section discusses some issues relating to the expressiveness of the monadic asynchro-
nous π-calculus as presented in this chapter. It is of both practical and theoretical interest
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to determine what a particular system is capable of expressing, and in particular how
different combinations of operators affect expressiveness. The analysis of expressiveness is
the primary motivation for the cc, and its main application.

2.5.1 Polyadicity

In the polyadic π-calculus, tuples of arbitrary length may be instantaneously communi-
cated. Simple arity-matching can be used to control communication, but more generally,
some form of typing system is required to determine whether a polyadic process is well
formed [8].

However, polyadic π-terms can be expressed in the monadic asynchronous π-calculus;
the translation is a homomorphism, except for the input prefix and output action which are
extended to follow a monadic protocol for (synchronously) receiving and sending multiple
names respectively.

[[x(z1, ..., zn).P ]] def= xs.(ν r) (sr | rz1.(... | (sr | rzn.P )...))
[[x〈y1, ..., yn〉]] def= (ν s) (xs | sr.(ry1 | sr.(... | sr.(ryn)...)))

Firstly, the sender and receiver exchange fresh names w and v to create two private
channels between them. The sender then uses the receiver’s private channel to transmit
each element of the tuple, y1, ..., yn, to be acknowledged in turn by the receiver over the
sender’s channel. Input prefixing ensures that the sender only sends each element after
the previous has been acknowledged, and that the receiver only acknowledges elements
that it has received. Thus, the order of elements within the tuple is preserved.

This mapping is sound, but not complete. For example, taking P
def= xz.xz.0 and

Q
def= xz.0 |xz.0, we have P ≈ Q, but [[P ]] 6≈ [[Q]]. In [[P ]], the two instances of the protocol

are serialised, but in [[Q]], they may be run concurrently.

2.5.2 Synchronised Communication

The preceding example illustrates how a communication feature, in this case polyadicity,
that is not directly supported can be emulated through a suitable encoding. The multiple
name passing protocol can be extended to perform general synchronised communication by
emulating output continuations. Firstly, we use the following mapping to encode output
continuations in the polyadic asynchronous π-calculus.

[[xz̃.P ]] def= x(z̃, s).([[P ]] | s)
[[xỹ.P ]] def= (ν s) (x〈ỹ, s〉 | s.[[P ]])

This encoding describes a standard protocol for performing synchronised interaction using
a pair of asynchronous communications: the sender sends a fresh name with the message,
and waits for an acknowledgement signal from the receiver via the fresh name before
proceeding. This protocol can then be combined with the protocol in the preceding section
to give a full encoding of synchronous, multiple name passing in the monadic asynchronous
π-calculus. Again, the resulting mapping is sound, but not complete.
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2.6 Asynchronous Bisimilarity

The main behavioural equivalences discussed in Section 2.4 are based on the synchro-
nous early transition relations defined in Section 2.3. As discussed previously, alternative
transition relations can be used to establish behavioural equivalences with differing char-
acteristics. Following is a definition of asynchronous (early) transition relations.

Definition 2.6.1 (asynchronous early transition [9]) The asynchronous early tran-
sition relations for the asynchronous π-calculus are the smallest relations defined by (t-
struct) in Section 2.4 and (out), (par-l), (par-r), (rep), (res), (open) given in Ta-
ble 2.4 with l−→ replaced with l−→a, along with the following (ina) and (tau) rules.

(ina) 0
xy−→a xy (tau) P τ−→ P ′

P τ−→a P ′

Asynchronous bisimilarity, ≈a, is defined by replacing −→ and =⇒ in Definition 2.4.1 with
−→a and =⇒a respectively, where =⇒a is defined as expected. ¤

Inaction, which has no transitions under the synchronous transition relations, is now
capable of performing asynchronous input (and so is no longer appropriately named).
Whereas output asynchronicity is emulated through syntax restriction, input asynchronic-
ity is expressed through the semantics of the new input action: the act of receiving a
message has been decoupled from the use of the message. The latter is captured by the
primitive input prefix abstraction, and thus this construct cannot be dropped from process
syntax in the manner of output prefixing.

The asynchronous transition relations can actually be viewed as having a “late” quality
as the instantiation of received names within a system is delayed from the actual arrival of
a message in the system. Consequently, a system can no longer directly synchronise with
its environment, and the consumption of a received message cannot be observed.

Proving bisimilarity under asynchronous transition requires finding an appropriate
closure that respects the capability of a system to receive any message at any point of
execution. Asynchronous bisimilarity naturally satisfies the asynchrony law, I〈x〉 ≈a 0.
This result captures the essence of asynchronous communication, showing that it is not
possible to observe the presence of a communication buffer. I〈x〉 6≈ 0, as 0 is the inaction,
but the law would be satisfied by asynchronous barbed congruence (under synchronous
transition) as communicating with the buffer simply returns the sent message; an external
observer cannot detect that anything has happened.



Chapter 3

Concurrent Combinators

The cc was introduced in Section 1.2 and is now examined in greater detail. Firstly, the cc
itself is presented formally. It is then shown that the cc can be precisely embedded into the
asynchronous π-calculus as the ccπ. Finally, it is shown that the asynchronous π-calculus,
as presented in Chapter 2, and the ccπ have the same expressive power up to (weak)
bisimilarity: every asynchronous π-calculus process has a bisimilar ccπ representation.

Throughout this chapter, relations will often be decorated by their respective calculus
to avoid confusion, for example to distinguish −→π from −→cc.

3.1 The cc [2]

Definition 3.1.1 (cc-atoms) The set of atoms in the cc is defined to be

Acc
def= {M,D,K,FW,Bl,Br,S}

and is ranged over by C, C′, ... . The arity of an atom is given by the function ar : Acc →
{1, 2, 3} where

ar(C) =





3, if C ∈ {D,S}
2, if C ∈ {M,FW,Bl,Br}
1, if C ∈ {K} .

¤

Definition 3.1.2 (atomic agents) An atomic agent has the form C(ṽn) where C ∈ Acc,
n = ar(C), and ṽn is a sequence of identifier parameters of length n which range over
names a, b, c, ... . Each parameter of an atomic agent has an associated polarity ranging
over {+,−,±}. The set Acc of cc atomic agents and the polarities of their parameters
are

Acc
def= {M(x+y±), FW(x−y+), D(x−y+z+), K(x−), Bl(x−y+), Br(x−y−), S(x−y−z+)} .

The subject of an atomic agent is the identifier specified in the first (leftmost) parameter
position; the other identifiers, if any, are called objects. The subject polarity of an atomic
agent is referred to as the polarity of the atomic agent. ¤

25
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D(x−u+v+) | M(x+y) −→M(u+y) | M(u+y) K(x−) | M(x+y) −→ 0

FW(x−u+) | M(x+y) −→M(u+y) Bl(x−u+) | M(x+y) −→ FW(y−u+)
Br(x−u−) | M(x+y) −→ FW(u−y+) S(x−u−v+) | M(x+y) −→ FW(u−v+)

Table 3.1: Reduction rules for cc terms.

As described in Section 1.2, the parameters of an atomic agent can be seen as bindings
between the interaction ports of an atom to outside names. The number of ports of an
atom is given by its arity, and the interactive behaviour of an atom is coupled to its subject
polarity. The neutral object polarity, ±, of M(x+y±) will generally be omitted.

Definition 3.1.3 (cc-terms) The set of terms, also called agents, that can be expressed
in the cc, Pcc, and ranged over by P,Q, R, ... is defined by the following grammar

Pcc ::= C(ṽn) | P |Q | (ν z) P | ! P | 0

where C(ṽn) ∈ Acc. In each of (ν z) P , occurrences of the name z are bound within the
scope of P . An occurrence of a name is free if it is not bound. Again, bn(P ) and fn(P ) are
used to denote the bound and free names of P respectively. Substitution and α-equivalence
for cc-terms are defined as for the π-calculus in Definition 2.1.2, appropriately replacing
the references to processes with cc-terms, and replacing (iii) with

(iii) α-conversion of a cc-term is the replacement of a subterm (ν z) P by (ν w) P{w/z}
where w does not already occur in P . ¤

The cc-operators are analogous to their counterparts in the π-calculus, and an inter-
pretation of parallel composition, name hiding and replication as applied to the cc was
given in Section 1.2. Unlike the π-calculus, the absence of any prefixing constructs means
that restriction is the sole source of name binding.

Definition 3.1.4 (cc structural congruence and reduction) The structural congru-
ence relation ≡cc is defined over cc-terms by the same rules as in the π-calculus (Table 2.2).
The reduction relation on cc-terms, −→cc, is the smallest relation generated by the rules
in Table 3.1 along with (r-par), (r-res) and (str) in Table 2.3. ¤

Thus, two atomic agents can be reduced if they have opposing subject polarities, and
there is one and only one rule for each such case. Combinator polarities are preserved by
reduction, and the free identifiers of the resulting term are a subset of the free identifiers
of the reagents. An understanding of cc-term behaviour as specified by these fixed dyadic
interaction rules was described in Section 1.2.

Example 3.1.5 Synchronous multiple name passing (see Section 2.5.1) is demonstrated
using cc atomic agents [2]. Assume the following agents.

SW(xy) def= (ν z) (Br(xz) |M(zy))
SW ′(xyuv) def= (ν w, z) (D(xwz) | SW(w)y | S(zuv))

R(u1u2v1v2y) def= (ν x,w, z) (D(u1u2w) | D(v1v2z) | S(zwx) | SW(xy))
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SW(xy) is the Switcher, which has the behaviour

SW(xy) | M(xu) −→∗ M(uy) ,

and SW ′(xyuv) is an augmented Switcher that creates an additional FW(uv) after switch-
ing out y. The agent R(u1u2v1v2y) firstly relays the names received over u1 and v1 to u2

and v2 respectively, and then sends y to the name received over u1. We now define

src(v1, ..., vn) def= (ν c, c1, ..., cn) (M(ac) | FW(cc1)
| SW ′(c1v1cc2) | ... | SW ′(cn−1vn−1ccn)
| SW(cnvn))

and

rcv(u1, ..., un) def= (ν p0, p1, ..., pn, q1, ..., qn)
(D(ap0p1) | SW(p0q1)

| R(p1p2q1u1q2) | ... | R(pn−1pnqn−1un−1qn)
| S(pnqnun)) ,

and trace the reduction of src(v1, ..., vn) | rcv(u1, ..., un).

src(v1, ..., vn) | rcv(u1, ..., un)
−→ (ν ... ) (M(p0c) | M(p1c) | SW(p0q1) | ... )
−→ (ν ... ) (M(p1c) | M(cq1) | FW(cc1) | ... )
−→ (ν ... ) (M(p1c) | M(c1q1) | SW ′(c1v1cc2) | ... )
−→ (ν ... ) (M(p1c) | M(q1v1) | R(p1p2q1u1q2) | FW(cc2) | ... )
−→ M(u1v1) | (ν ... ) (M(p2c) | M(cq2) | FW(cc2) | ... )
...

−→ M(u1v1) | M(u2v2) | ...

As the reduction progresses, src will continue to send the remaining names v3, ..., vn to rcv
in the correct order. Interference is prevented due to c being created as a private channel.
¤

3.2 Embedding the cc within the π-calculus [2]

We now embed the cc within the π-calculus.

Definition 3.2.1 (ccπ-atoms [9]) The ccπ-atoms comprise the set Aπ of π-processes
named and annotated as follows.

m(x+y±) def= xy d(x−u+v+) def= xz.(m〈uz〉 |m〈vz〉) k(x−) def= xz.0 fw(x−u+) def= xz.m〈uz〉

bl(x−u+) def= xz.fw〈xu〉 br(x−u−) def= xz.fw〈uz〉 s(x−u−v+) def= xz.fw〈uv〉

An atomic agent is an instance of one of these atoms. ¤
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[[P |Q]]π
def= [[P ]]π | [[Q]]π [[(ν z)P ]]π

def= (ν z) [[P ]]π [[!P ]]π
def= ! [[P ]]π

[[C(ṽ)]]π
def= c〈ṽ〉 [[0]]π

def= 0

Table 3.2: Translation from Pcc to Pccπ .

The parameter annotations {−, +}, as for cc-atoms, explicitly identify whether the
named process will perform an input or output action on the annotated name. Again,
the ± annotation signifies that a parameter will only be used passively by the immediate
process, that is, the process can perform a send action which will transmit the annotated
name. Being members of Pπ, the ccπ-atoms are of course encompassed by the −→π and
≈ relations. The ccπ-atoms are defined in accordance with the cc so that reduction can
only occur between m〈xy〉 and one of the other atoms; this interaction is atomic in the
sense that reduction will always result in one or more new atoms, with the exception of
m〈xy〉 | k〈x〉 −→ 0.

Definition 3.2.2 (the ccπ) The ccπ is the subcalculus of the π-calculus whose processes
ranged over by P, Q,R, ... are given by

Pccπ ::= c〈ṽ〉 | P |Q | (ν z) P | ! P | 0

where c〈ṽ〉 ∈ Aπ and ṽ is a sequence of names of length equal to the notational arity of
atom c. ¤

Mapping of cc-terms to ccπ-terms is straightforward.

Definition 3.2.3 (translation from Pcc to Pccπ) The mapping [[· ]]π : Pcc → Pccπ is
given by the rules in Table 3.2. The rule [[C(ṽ)]]π

def= c〈ṽ〉 describes the literal correspon-
dence between cc atomic agents and ccπ-atoms of the same name. ¤

Proposition 3.2.4 (syntactic and operational correspondence) The translation
from Pcc to Pccπ by the function [[· ]]π exhibits the following properties for all P,Q ∈ Pcc.

(i) fn(P ) = fn([[P ]]π) .
(ii) For any substitution σ, [[Pσ]]π ≡ [[P ]]πσ .
(iii) P ≡cc Q ⇒ [[P ]]π ≡π [[Q]]π .
(iv) P −→cc Q ⇒ [[P ]]π −→π [[Q]]π .

Proof The general approach of the required proofs firstly involve case by case verification
of the proposition for each cc atomic agent or atomic reduction step. The inductive
hypothesis is then applied over the structure of cc terms or relevant relation rules. Further
details are given in Appendix A.1. ¤

These results show that [[· ]]π exactly preserves the behaviour of cc-terms when mapped
to their corresponding ccπ representations. A useful relation for ccπ-terms is β-equality
which requires the notion of pointedness.
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Definition 3.2.5 (active names and pointedness)

(i) For a process P , the set of output active names is given by an↑(P ) def= {x |P ↓x }, and
the set of input active names is given by an↓(P ) def= {x | P ↓x }.

(ii) For P ∈ Pccπ , P is x↑-pointed, P 〈x↑〉, iff

(1) an↑(P ) = {x} and an↓(P ) = ∅
(2) ∀c〈x−ṽ〉 : (P | c〈x−ṽ〉 −→ Q1) ∧ (P | c〈x−ṽ〉 −→ Q2) ⇒ Q1 ≡ Q2

(3) P −→6 .

P 〈x↓〉 is defined by replacing ↑ and + with ↓ and − respectively. ¤

Pointedness indicates that a ccπ-term is immediately capable of interacting over the
specified name, and over that name only. For example, m〈xy〉 has an↑(P ) = {x}, and all
P such that P 〈x↑〉 must contain exactly one such subterm in which the occurrence of x is
free.

Definition 3.2.6 (β-equality [9]) β-reduction, −→β, is defined by the rule

(commβ) (ν x) (P 〈x↑〉 |Q〈x↓〉) −→β (ν x)R

if P 〈x↑〉 |Q〈x↓〉 −→β R, together with (r-par), (r-res) and (str) in Table 2.3. β-equality,
=β, is the symmetric and transitive closure of −→∗

β ∪ ≡. ¤

Proposition 3.2.7 (=β ⊆≈ [9])
Proof Take R def= {(P, Q) | P −→β Q}∪ ≡ and show it is a bisimulation [9]. ¤

−→β is the subset of −→ where the interacting components exhibit complementary
pointedness of the same name; due to the restriction of this name, β-reduction describes
both the single capability for action of each component and the sole possible outcome of
the subsequent interaction. It can be intuitively seen that =β implies ≈ by considering the
possible transitions that have to be matched by each process in a bisimulation containing
them, and from the fact that ≡ respects pointedness. β-reduction is useful when working
to show bisimilarity between ccπ terms because atomic agents, when under the necessary
restriction, always fulfil such one-to-one pointedness.

Example 3.2.8 Consider again the Switcher, SW(xy), defined in Example 3.1.5. Intu-
itively, one would define a Switcher for the π-calculus by

sw(xy) def= xz.zy .

We show that sw〈xy〉 ≈ [[SW(xy)]]π as an illustration of the cc to π-calculus mapping
and its behaviour preserving properties. β-reduction is demonstrated as part of the proof.

[[SW(xy)]]π
def= [[(ν z) (Br(xz) | M(zy))]]π (Example 3.1.5)
= (ν z) [[(Br(xz) | M(zy))]]π (Definition 3.2.3)
= (ν z) ([[Br(xz)]]π | [[M(zy)]]π) (Definition 3.2.3)
= (ν z) (br〈xz〉 |m〈zy〉) (Definition 3.2.3)
= (ν z) (xv.zw.vw | zy) (Definition 3.2.1)

Let L
def= xz.zy and R

def= (ν z) (xv.zw.vw | zy).
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(1) Check L ≈ R.

¦ L xu−→ L′ def= uy matched by R xu−→ R′ def= (ν z) (zw.uw | zy)

(2) Check L′ ≈ R′

R′ −→β (ν z) uy (Definition 3.2.6)
≈ L′ (Proposition 2.4.14, Proposition 3.2.7)

Also, it is easy to see that

SW(xy) | M(xa) −→cc (ν z) (FW(za) |M(zy))
−→cc (ν z) (M(ay))

corresponds with

[[SW(xy) | M(xa)]]π
def= (ν z) (xv.zw.vw | zy) | xa

−→π (ν z) (zw.aw | zy)
−→π (ν z) (ay)

¤

3.3 Encoding the π-Calculus in the ccπ[9]

The crucial difference in syntactic structure between the monadic asynchronous π-calculus
(without summation and matching) and the ccπ is the absence of arbitrary input prefixing
from the latter. However, it shall be shown that input prefix behaviour can be represented
using only the seven basic atoms of the ccπ.

Firstly, substitution decomposition as a method of manipulating name dependencies
within a term is explained. An input prefix meta-construct is then introduced for ccπ-
terms, along with a mapping of terms containing this abstraction to concrete members
of Pccπ . This mapping is constructed to express each possible relationship between an
input prefix and the prefixed term as some finite composition of ccπ-atoms. Finally, a
full encoding of Pπ in the Pccπ is defined, and it is shown that π-processes and their
corresponding ccπ translations are (weakly) bisimilar and thus barbed congruent.

Proposition 3.3.1 (substitution decomposition [9])

(i) c〈x−ṽ〉 ≈ (ν c) (fw〈xc〉 | c〈cṽ〉) and c〈ũx+ṽ〉 ≈ (ν c) (fw〈cx〉 | c〈ũc+ṽ〉) with c fresh.
(ii) ∀c〈ṽ〉 ∈ Pccπ : P ≈ (ν c̃) (c1〈ṽ1〉σ1 | . . . | cn〈ṽn)σn〉) for some ci〈ṽi〉 ∈ Aπ and an

injective renaming σi, and where each v ∈ ṽi is pairwise distinct.

Proof The former can be shown by mechanical verification for each applicable cc-atom.
The latter is proved by the former. Further details are given in Appendix A.2. ¤

Substitution decomposition allows names to be “pushed out” of ccπ-atoms by intro-
ducing a Forwarder as a level of indirection over the original term. This allows atomic
agents with repeated parameters, which cannot be directly generated through substitu-
tion, to be decomposed into terms without repeated parameters. Part (ii) uses this result
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to state that any ccπ atomic agents can be expressed as a parallel composition of the basic
atoms belonging to Aπ. This holds because the only cases where this statement is not
trivially true arise for atomic agents with repeated argument names, and can be dealt with
using (i): it is always possible to use fresh names for the required restrictions which can
then be moved to the front of the term by structural congruence. Furthermore, a stronger
result can be shown to hold as Killer and Forwarder can be defined using the Duplicator,
reducing the basic atoms to a minimal set of five. However, this report does not explore
this result in further detail. Substitution decomposition will be encountered below when
dealing with the binding aspects of the input prefix.

Example 3.3.2 Consider s〈xxx〉. By Proposition 3.3.1 we have

s〈xxx〉 ≈ (ν c1) (fw〈c1x〉 | s〈c1xx〉)
≈ (ν c1, c2) (fw〈xc1〉 | s〈c1xc2〉 | fw〈c2x〉) (Proposition 2.4.16)

which is straightforward to verify. Let L
def= xw.xz.xz and R

def= (ν c1, c2) (xz.c1z|c1w.xz.c2z|c2z.xz).

(1) Check L ≈ R.

¦ L
xy−→ L′ def= xz.xz matched by R

xy−→ R′ def= (ν c1, c2) (c1y | c1w.xz.c2z | c2z.xz)

(2) Check L′ ≈ R′. However,

R′ −→β R′′ def= (ν c1, c2) (xz.c2z | c2z.xz) ,

so check L′ ≈ R′′.

¦ L′ xy−→ L′′ def= xy matched by R′′ xy−→ R′′′ def= (ν c1, c2) (c2y | c2z.xz)

(3) L′′ ≈ R′′′ as R′′′ −→β Riv def= (ν c1, c2) xy and L′′ ≡ Riv. ¤

Definition 3.3.3 (input meta-prefix mapping) Application of the input prefix meta-
construct to P ∈ Pccπ is represented by a∗x.P . The ccπ term denoted by a∗x.P is formed
by applying the rules in Table 3.3 where c, c1 and c2 are fresh and pairwise distinct. A

single translation step resulting from the application of the nth rule is denoted by
(n)7−→. ¤

The meta-prefix mapping rules are a deconstruction of the semantics of the input pre-
fix, the idea being to emulate the essential behaviour of input-prefixed terms through the
available constructs. The rules have been categorised according to the different behav-
ioural aspects of the input prefix that they capture. The Composition rules deal with
the structural implications of input-prefixing the other syntactical constructs. When the
prefixed body contains no placeholders for received names, input-prefixing serves purely as
a synchronisation mechanism; this behaviour is represented by the Synchronisation rules.

The Binding rules emulate the name binding abstraction of the input prefix by for-
warding input names to the relevant locations. The general mechanism is closely related
to substitution decomposition (Proposition 3.3.1), as expressed by the rules of Binding
II and III. Binding II pushes bound output parameters out of a term into additional for-
warders, and Binding III inserts forwarders in front of bound input parameters; rule (xi)
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Composition
(i) x∗z.(P |Q) def= (ν c1, c2) (d〈xc1c2〉 | c∗1z.P | c∗2z.Q)
(ii) x∗z.(ν c′) P

def= (ν c) x∗z.P{c/c′}
(iii) x∗z.0 def= k〈x〉
(iv) x∗z.!P def= (ν c) (fw〈xc〉 | ! c∗z.(P |m〈cz〉))

Synchronisation
(v) x∗z.c〈v+w̃〉 def= (ν c) (s〈xcv〉 | c〈c+w̃〉) z 6∈ {vw̃}
(vi) x∗z.c〈v−w̃〉 def= (ν c) (s〈xvc〉 | c〈c−w̃〉) z 6∈ {vw̃}

Binding I
(vii) x∗z.m〈vz〉 def= fw〈xv〉 z 6= v

(viii) x∗z.fw〈zv〉 def= bl〈xv〉 z 6= v

(ix) x∗z.fw〈vz〉 def= br〈xv〉 z 6= v

Binding II
(x) x∗z.c〈w̃1z

+w̃2〉 def= (ν c) x∗z.(fw〈cz〉 | c〈w̃1c
+w̃2〉) z 6∈ {w̃1}

Binding III
(xi) x∗z.c〈z−w̃〉 def= (ν c) x∗z.(fw〈zc〉 | c〈c−w̃〉)
(xii) x∗z.br〈vz−〉 def= (ν c1, c2, c3) x∗z.(d〈vc1c2〉 | s〈c1zc3〉 | br〈c2c3〉) z 6= v

(xiii) x∗z.s〈uz−v〉 def= (ν c1, c2) x∗z.(s〈uc1c2〉 |m〈c1z〉 | bl〈c2v〉) z 6= u

Table 3.3: Input meta-prefix mapping for ccπ terms.

is applied when the bound input name is the subject of the term, and rules (xii) and (xiii)
catch the remaining cases. As intended by substitution decomposition, these rules also
handle the terms that contain repeated parameter bindings, which is enforced by the side
conditions of rules (iv) to (ix). The rules of Binding I represent the binding base cases
and are simply instances of structural congruence, as is rule (iii).

The structure of the meta-prefix mapping rules corresponds to the syntax of ccπ, and
their semantics provides insight into the origins of the cc atoms and the particular behav-
iour that each encapsulates. For example, the Duplicator and Killer arise from rules (i)
and (iii) respectively, and the synchroniser, of course, has its roots in the Synchronisation
rules.

Proposition 3.3.4 (properties of input meta-prefix mapping) The input meta-
prefix mapping for ccπ-terms exhibits the following properties for all P,Q ∈ Pccπ .

(i) xz.P ≈ x∗z.P .
(ii) P ≈ Q ⇒ x∗z.P ≈ x∗z.Q .
(iii) x∗z.P |m〈xv〉 −→≈ P{v/z} .
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Proof For (i), we proceed inductively over the rules in Table 3.3, and (ii) follows directly.
Rules (i) and (iv) use Proposition 3.2.7 after the induction step, and the remaining cases
simply require mechanical verification. The approach to (iii) has the same structure as for
(i). Further details are given in Appendix A.3. ¤

These results verify that meta-prefix mapping has the desired behaviour, and that it
both observes and preserves bisimilarity, and thus barbed congruence. The decomposition
of the π-calculus input prefix into ccπ-atoms enables the complete encoding of Pπ in the
ccπ.

Example 3.3.5 Let P
def= x∗z.(0 | 0).

P
(i)7−→ (ν c1c2) (d〈xc1c2〉 | c∗1z.0 | c∗2z.0)
(iii)7−→ (ν c1c2) (d〈xc1c2〉 | k〈c1〉 | c∗2z.0)
(iii)7−→ (ν c1c2) (d〈xc1c2〉 | k〈c1〉 | k〈c2〉)

As expected, the ccπ translation of P is a process which simply kills the input. Rule
(i) is first applied to distribute the meta prefix over the composition, and the resulting
meta-terms are instances of the base case represented by rule (iii). ¤

Example 3.3.6 Let Q
def= a∗x.b∗y.m〈xv〉. Intuitively, it can be seen that the first

meta-prefix of this term binds its input to the message subject, but the second has a
synchronisation effect only. Consequently, the translation of Q demonstrates the function
of rule (x) for binding output names, and of rules (v) and (vi) for pure synchronisation.
From the application of each rule, we can observe how the different atoms come into being
and what roles they play.

Q
(v)7−→ a∗x.(ν c1) (s〈bc1x〉 |m〈c1v〉)
(ii)7−→ (ν c1) (a∗x.(s〈bc1x〉 |m〈c1v〉))
(i)7−→ (ν c1...3) (d〈ac2c3〉 | c∗2x.s〈bc1x〉 | c∗3x.m〈c1v〉)
(x)7−→ (ν c1...3) (d〈ac2c3〉 | (ν c4) (c∗2x.(fw〈c4x〉 | s〈bc1c4〉)) | c∗3x.m〈c1v〉)
≡ (ν c1...4) (d〈ac2c3〉 | c∗2x.(fw〈c4x〉 | s〈bc1c4〉) | c∗3x.m〈c1v〉)
(i)7−→ (ν c1...4) (d〈ac2c3〉 | (ν c5c6) (d〈c2c5c6〉 | c∗5x.fw〈c4x〉 | c∗6x.s〈bc1c4〉) | c∗3x.m〈c1v〉)
≡ (ν c1...6) (d〈ac2c3〉 | d〈c2c5c6〉 | c∗5x.fw〈c4x〉 | c∗6x.s〈bc1c4〉 | c∗3x.m〈c1v〉)
(ix)7−→ (ν c1...6) (d〈ac2c3〉 | d〈c2c5c6〉 | br〈c5c4〉 | c∗6x.s〈bc1c4〉 | c∗3x.m〈c1v〉)
(vi)7−→ (ν c1...6) (d〈ac2c3〉 | d〈c2c5c6〉 | br〈c5c4〉 | (ν c7) (s〈c6bc7〉 | s〈c7c1c4〉) | c∗3x.m〈c1v〉)
≡ (ν c1...7) (d〈ac2c3〉 | d〈c2c5c6〉 | br〈c5c4〉 | s〈c6bc7〉 | s〈c7c1c4〉 | c∗3x.m〈c1v〉)
(v)7−→ (ν c1...7) (d〈ac2c3〉 | d〈c2c5c6〉 | br〈c5c4〉 | s〈c6bc7〉 | s〈c7c1c4〉 |

(ν c8) (s〈c3c8c1〉 |m〈c8v〉))
(v)7−→ (ν c1...8) (d〈ac2c3〉 | d〈c2c5c6〉 | br〈c5c4〉 | s〈c6bc7〉 | s〈c7c1c4〉 | s〈c3c8c1〉 |m〈c8v〉)

By informal inspection, we can see that the ccπ translation has preserved the essential
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[[P |Q]]ccπ

def= [[P ]]ccπ | [[Q]]ccπ [[(ν z)P ]]ccπ

def= (ν z) [[P ]]ccπ [[!P ]]ccπ

def= ! [[P ]]ccπ

[[xz]]ccπ

def= m〈xz〉 [[xz.P ]]ccπ

def= x∗z.[[P ]]ccπ [[0]]ccπ

def= 0

Table 3.4: Translation from Pπ to Pccπ .

behaviour of Q. Initially, d〈ac2c3〉 is the only active agent, ensuring that synchronisation
over a occurs before any other action as well as propagating the name received during syn-
chronisation. This activates s〈c6bc7〉, permitting the synchronisation over b, corresponding
to the second prefix, to occur whilst freeing the stored name v through s〈c3c8c1〉. The
br〈c5c4〉 agent, to which the name from the initial reduction is forwarded, will then send
v to this name. ¤

Definition 3.3.7 (translation from Pπ to Pccπ) The mapping [[· ]]ccπ : Pπ → Pccπ is
given by the rules in Table 3.4. ¤

The bulk of the translation work naturally lies in the mapping of input prefixes; the
remaining syntactic operators are essentially unaffected by the translation and are directly
carried over into the ccπ. More precisely, the encoding is homomorphic, and also message
preserving, [[xz]]ccπ ≈ xz [9]. The latter property indicates that the encoding preserves
the essential meaning and behaviour of the translated terms. Indeed, the Message and 0
process constitute the base cases of this inductive translation; the role of prefix-mapping as
the source of the other atoms provides insight on the relationship between the mechanics
of the π-calculus and the function of each cc-atom.

Lemma 3.3.8 (properties of [[· ]]ccπ) The translation from Pπ to Pccπ by the function
[[· ]]ccπ exhibits the following properties for all P,Q ∈ Pπ.

(i) P ≈ [[P ]]ccπ

(ii) P ≡ Q ⇒ [[P ]]ccπ ≈ [[Q]]ccπ .
(iii) P −→ Q ⇒ [[P ]]ccπ −→≈ [[Q]]ccπ .

Proof The proof of (i) is a straightforward verification proceeding inductively from the
Message and 0 base cases over each of the mapping rules using the congruence property
of ≈. (ii) follows directly from (i). (iii) has a similar structure to Proof A.1.4. Further
details are given in Appendix A.4. ¤

Lemma 3.3.8 (i) shows that we can indeed express any term in the asynchronous π-
calculus as a term in the ccπ up to bisimilarity, and thus barbed congruence. Parts (ii) and
(iii) illustrate some of the subsequent properties of the encoding, verifying that translated
terms behave as expected.

Example 3.3.9 In Example 3.2.8, we showed that sw(xy) ≈ [[SW(xy)]]π as a demonstra-
tion of the mapping from cc-terms to ccπ-terms (Definition 3.2.3 and Proposition 3.2.4).
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We now illustrate the encoding of π-terms in the ccπ (Definition 3.3.7 and Lemma 3.3.8)
by verifying that sw(xy) ≈ [[sw(xy)]]ccπ .

[[sw(xy)]]ccπ

def= [[xz.zy]]ccπ (Example 3.2.8)
= x∗z.[[zy]]ccπ (Definition 3.3.7)
= x∗z.m〈zy〉 (Definition 3.3.7)

The translation is completed by expanding the input meta-prefix according to Defini-
tion 3.3.3.

x∗z.m〈zy〉 (x)7−→ (ν c)x∗z.(fw〈cz〉 |m〈cy〉)
(i)7−→ (ν c, c1, c2) (d〈xc1c2〉 | c∗1z.fw〈cz〉 | c∗2z.m〈cy〉)
(ix)7−→ (ν c, c1, c2) (d〈xc1c2〉 | br〈c1c〉 | c∗2z.m〈cy〉)
(v)7−→ (ν c, c1, c2) (d〈xc1c2〉 | br〈c1c〉 | (ν c3) (s〈c2c3c〉 |m〈c3y〉))
≡ (ν c, c1...3) (d〈xc1c2〉 | br〈c1c〉 | s〈c2c3c〉 |m〈c3y〉)

Let L
def= xz.zy and R

def= (ν c, c1...3) (xw.(c1w | c2w) | c1w.cz.wz | c2w.c3z.cz | c3y).

(1) Check L ≈ R.

¦ L xu−→ L′ def= uy matched by
R xu−→ R′ def= (ν c, c1...3) (c1u | c2u | c1w.cz.wz | c2w.c3z.cz | c3y)

(2) L′ ≈ R′ as R′ −→∗
β R′′ def= (ν c, c1...3) uy and L′ ≡ R′′. ¤
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Chapter 4

Related Work

This chapter presents some related work.

4.1 Replication in Concurrent Combinators [3]

The cc, presented in [2], demonstrates that the fundamental mechanics of process com-
munication, as abstracted by process calculi such as the asynchronous π-calculus, can be
expressed using only CC atoms and constructs of parallel composition and name hiding.
At the heart of this work lies the cc encoding of the π-calculus input prefix which de-
composes the implicit binding and synchronisation operations of the prefix into the basic
units of process behaviour embodied by the atoms. The structure of this encoding both
illustrates the origin and purpose of each atom, and provides a means for verifying the
expressiveness of the cc.

The present paper generalises and extends the prior work to create a concurrent combi-
nator system, ccϕ, capable of representing replication. As discussed previously, the notion
of replication is necessary in the name passing abstraction of concurrent computation be-
cause the mechanics of communication would otherwise strictly consume a process: no
representation of unbounded behaviour would be possible. The main result of this paper
shows that replication behaviour can be encoded using a finite set of ccϕ atoms without
an explicit replication operator.

4.1.1 Generalised Concurrent Combinators

A generalised concurrent combinator system is formally defined as a triple 〈PA,≡,−→〉
where PA is the set of terms derived from A, ≡ is the structural equality over terms,
and −→ is the reduction relation over terms. The first element consists of a finite set
of atoms, and a grammar for constructing terms defined as for the cc but without the
replication operator. Structural equivalence is similarly modified to exclude replication.
The reduction relation is specified through a rule schema that describes dyadic interaction
between atoms, and includes (par), (r-res) and (struct). Pointedness, equality over
agents, and β-equivalence as defined for the cc can be directly applied to the general case.

A specific combinator system, S, is an instance of this general framework, and is
behaviourally closed under prefix and replication if input prefix, as understood in the cc,
and simple replication behaviour can be expressed, even though S lacks the corresponding
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syntactic constructs. Simple replication behaviour is described by

!∗xP | ?M(x) −→ !∗xP | P
and implies eager replication as found in the π-calculus. These two properties are formally
defined as the prefix and replication closures [3], which capture the essence of the respective
abstractions. The original cc (without replication) [2] is clearly an instance closed under
prefix, but not simple replication.

4.1.2 Encoding Replication

The theorem that an instance of the generalised concurrent combinator system which is
behaviourally closed under both prefix and simple replication exists is proved by presenting
ccϕ as such an instance. ccϕ contains the original cc atoms, plus persistent versions of
each atom, excluding the Message, named the atomic replicators. Structural equivalence
is as before, but the reduction relation comprises additional rules of the form

(rep) ! C(xṽ) | M(xy) −→! C(xṽ) | P ,

where ! C(xṽ) denotes the peristent version of C(xṽ) (! is not a syntactic operator), and
C(xṽ) | M(xy) −→ P . Persistence of atomic replicators across reduction reflects the
essence of replication. The encoding of input prefixes is similarly extended with rules for
the atomic replicators. This provides behavioural closure under prefix, but not replication
because terms such as !∗u(ν z)M(xz) cannot be represented due to an inherent restriction
on name distinction [3].

This problem is addressed by introducing the name generator atom

(gen) #N (x) | M(xy) −→ #N (x) | (ν z)M(yz)

which can forever send new names to a specified location, and template atoms of the form

(tem) #C(x) | M(xy) −→ #C(x) | rcv(ṽ). C(ṽ)

for each of the original and persistent cc atoms, where rcv is as defined in Example 3.1.5.
The templates allow agents with arbitrary parameter values to be created during compu-
tation. Additional rules for these new atoms are required for prefix mapping.

The general idea behind ccϕ replicators is to create a template for each atomic agent
of the term being replicated and to instantiate these templates with existing names and/or
new names using name generators. The actual encoding is quite involved and consists of
three parts: an interface to the outside which accepts term replication requests, a name
emitter that provides the required names, and a constructor which uses these names to
instantiate the requested term.

4.2 Solos in Concert [4]

The fusion calculus is calculus of concurrency related to the π-calculus. The subcalculus
formed by removing continuations and summation, the fusion calculus of solos, is as ex-
pressive as the parent calculus. This is shown using similar techniques to those discussed
in Chapter 3 for the π-calculus and ccπ. In particular, a similarly structured encoding
from the parent calculus to the subcalculus, which tackles the prefix construct, is used as
the basis for subsequent structural induction proofs.
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4.2.1 The Fusion Calculus [7]

The fusion calculus is an extension through simplification of the π-calculus whose defining
features are the symmetry of input and output, and a single operator for name binding.
This is in contrast to the asynchronous π-calculus which is developed from the full π-
calculus by increasing the asymmetry between input and output, and like its parent has
two binding operators.

Input and output in the fusion calculus can perhaps be better described as action and
co-action as they are essentially dual versions of the same operation. Whereas the π-
calculus employs name passing as the basic communication primitive, the fusion calculus
has fusion which simply equates the objects supplied by the two communicating processes.
For example,

xy.P | xz.Q |R {y = z}−→ P |Q |R ,

where
{y = z}−→ expresses that the fusion has a global effect that applies equally to both the

sender and receiver, and also any other process running in parallel. Communication in the
fusion calculus can thus be seen as the update of an implicit shared state.

The semantics of the π-calculus input prefix combines the action of receiving a message
with the binding of its scope. In the fusion calculus, binding has been decoupled from
input and embodied within a single binding operator, scope, that captures the fundamental
behaviour behind both input binding and the restriction operator of the π-calculus. As a
result, binding due to scope is neither mandatory, as with input binding, nor impossible,
as with restriction, and can be thought of as a means to control the extent and direction
of a fusion. For instance, the transition given in the previous example identifies y and z,
but leaves the implications of this fusion to future derivations of P |Q |R. Also,

(z)(xvy.P | (w)(xwz.Q |R) | S 1−→ (P | (Q |R){v/w} | S){y/z}

illustrates that input binding is no longer directly tied to the actual input operator, but
may be arbitrarily scoped. 1 denotes the identity relation, and 1−→ expresses that the
transition does not involve any fusions with global scope.

The simpler nature of the fusion calculus, in comparison to the π-calculus, is due to
the decoupling of binding from input actions and having a single binding operator. This
is evidenced by the symmetry of input and output, the smaller set of transition rules, the
fact that the fusion calculus has only one sensible bisimulation congruence [7], and its
general expressiveness. The relationship between the π-calculus and the fusion calculus
can be understood by thinking of xz.Pπ as (z)xz.Pf , (ν z)Qπ as (z)Qf if Q 6= xz.R, and
1 as τ . For example,

xy.P | (z)xz.Q 1−→ P |Q{y/z}
illustrates how π-calculus interaction can be emulated in the fusion calculus by scoping
input actions. By extending these mappings over the structure of π-syntax, it can be seen
that the π-calculus is contained within the fusion calculus.

4.2.2 The Fusion Calculus of Solos [4]

The asynchronous π-calculus is formed by dropping output continuations from process
syntax. To avoid breaking input and output symmetry, an asynchronous fusion calculus
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can be formed by removing continuations completely. The remaining input and output
particles are named solos, and the resulting calculus, the fusion calculus of solos, which
shall be referred to in this report as just the solos calculus. As with the asynchronous
π-calculus, the solos calculus omits summation (see Section 2.1).

In fact, the solos calculus is capable of encoding prefixes (and guarded summation), and
thus is as expressive as the original calculus. Two different encodings are presented, one
using the match operator which results in correspondence up to barbed bisimilarity, and
the other using only solos, scope and parallel composition which results in correspondence
up to weak barbed bisimilarity. From these results, it can be shown that each encoding
preserves its relative level of correspondence between processes.

As with the encoding of Pπ in the Pccπ , the encoding of the fusion calculus in the solos
calculus using match is a homomorphism except in the case of prefix. Once again, the
majority of the translation work involves re-expressing process behaviour due to prefixing
as some finite composition of components. However, encoding prefix in the solos calculus
is simpler than in the π-calculus due to the relative simplicity of the prefix construct in the
former and the expressiveness of fusion interaction. Being free of any binding semantics,
prefix in the fusion calculus serves only as a mechanism for synchronisation, and thus can
be replaced by a suitable protocol.

The expressiveness of fusion allows transitions of the form

xvy.P | (z)xzz
{v = y}−→ P

where the catalyst agent (z)xzz fuses the two names sent to it, even if bound in P .
The solos calculus protocol used to emulate prefix synchronisation exploits this effect in
combination with match operator guards to detect when interaction has occurred.

[[xṽ.P ]] def= (wz)(xṽzww | [w = z][[P ]])
[[xṽ.P ]] def= (wz)(xṽwwz | [w = z][[P ]])

Thus,

[[(v)(xu.P | xv.Q)]] def= (v)((wz)(xṽwwz | [w = z][[P ]]) | (wz)(xṽzww | [w = z][[Q]]))
≡ (vw1w2z1z2)(xṽw1w1z1 | [w1 = z1][[P ]] | xṽz2w2w2 | [w2 = z2][[Q]])

Three protocol objects are appended to the original input and output actions, and the
match guards prevent the continuations [[P ]] and [[Q]] from proceeding. When interaction
occurs, the subsequent fusion identifies w and z on each side of the interaction satisfying
the conditions of both guards.

The second encoding does not use match but requires the notion of a “top-level”
context. The synchronisation protocol used in this encoding works by recursively stripping
prefixes from their continuations, and encoding every action with a fresh scoped subject
thus preventing any progress. However, for each prefix, a key term is generated that will
fuse the fresh name with the original subject upon interaction with a catalyst, whilst
also creating a new catalyst to replace the consumed catalyst. Prefixes are appended
with additional protocol objects that allow their continuations to proceed once interaction
between the prefixes has occurred.

[[xṽ.P ]]s
def= (s′w)(wṽss′ | [[P ]]s′ | (t)(sxwt | (z)tzzt))

[[xṽ.P ]]s
def= (s′w)(wṽs′s | [[P ]]s′ | (t)(sxwt | (z)tzzt))
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The resulting transitions can be viewed as a chain reaction, started by the initial catalyst
added to the top-level encoding, which is scoped over the catalyst subject.

[(P )] def= (s)([[P ]]s | (z)szzs)

Both of the presented encodings successfully decompose prefixes into communication
and synchronisation components. As with the encoding of the π-calculus in the ccπ

replication proves to be the tricky case: the first encoding behaves as desired if replication
is added to the solos calculus, but the same does not hold for the second. It is also shown
that guarded summation can be encoded with a weakening of correspondence, and that
expressiveness of the polyadic solos calculus is retained by the dyadic solos calculus, but
not the monadic solos calculus. This is in contrast to the work presented in Chapter 3
which is based on the monadic asynchronous π-calculus.

The mappings from the fusion calculus to the solos calculus (the first encoding) and
π-calculus to the ccπ (as presented in Definition 3.3.7) are similar in that replication is
included as a explicit syntactic construct. However, as discussed in the preceding section,
[3] extends the cc with additional atoms that preclude the need for an explicit replication
operation.
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Chapter 5

Conclusions and Further Work

5.1 Conclusions

This report has studied the asynchronous π-calculus and the cc concurrent combinator
system. In Chapter 2 covers some details of the former, in particular exploring relations
that could be adopted for process equivalence. Chapter 1 introduced, and Chapter 3
presented a formal account of the cc and the relationship between the two systems. The
main result, that the monadic asynchronous π-calculus without summation or matching
can be encoded within the cc, was built up over a series of proofs in Chapter 3, the details
of which are given in Appendix A. The case involving replication proved to be the trickiest,
but its proof provides the cc with full computational power. The crux of the work is the
decomposition of the π-calculus input prefix into a finite composition of ccatoms.

5.2 Further Work

The material in this report is mostly of an introductory or informal nature without great
detail of techniques or proofs, apart some selected parts of Chapter 3. However, it pro-
vides a good basis for pursuing the study of process calculi and concurrency further. As
briefly discussed in Section 4.1, it is possible to represent unbounded behaviour using
some additional atoms that replace the replication operator [3]; it would be interesting to
examine this work more thoroughly. It has also been mentioned that the cc can be used
to characterise the expressiveness of other subcalculi of the π-calculus, as in [9]. This has
not been covered in this report, but would be a natural step for further work.
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Appendix A

Details of Proofs from Chapter 3

Some selected proofs from Chapter 3 are now presented in more detail. Application of the
induction hypothesis is abbreviated to IH.

A.1 Proposition 3.2.4

Syntactic and operational correspondence

The translation from Pcc to Pccπ by the function [[· ]]π exhibits the following properties for
all P, Q ∈ Pcc.

(i) fn(P ) = fn([[P ]]π) .
(ii) For any substitution σ, [[Pσ]]π ≡ [[P ]]πσ .
(iii) P ≡cc Q ⇒ [[P ]]π ≡π [[Q]]π .
(iv) P −→cc Q ⇒ [[P ]]π −→ π[[Q]]π .

Proof A.1.1 (i) We use induction on the structure of terms. The base cases consist
of comparing the free names of the individual cc atomic agents and the 0 term against
their corresponding ccπ mappings. Then for each cc structural construct, we apply the
corresponding mapping rule and use the induction hypothesis to show that the free names
of a arbitrary term are preserved.

Base cases (names are implicitly universally quantified in each case).

1. fn(0) =α fn([[0]]π)

fn([[0]]π) = fn(0) (Definition 3.2.3)

2. fn(M(xy)) = fn([[M(xy)]]π)

fn([[M(xy)]]π) = fn(m〈xy〉) (Definition 3.2.3)
= fn(xy) (Definition 3.2.1)
= {x, y} (Definiton 2.1.1)
= fn(M(xy)) (Definition 3.1.3)
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3. fn(D(xuv)) = fn([[D(xuv)]]π)

fn([[D(xuv)]]π) = fn(d〈xuv〉) (Definition 3.2.3)
= fn(xz.(uz | vz)) (Definition 3.2.1)
= {x, u, v} (Definiton 2.1.1)
= fn(D(xuv)) (Definition 3.1.3)

4. fn(K(x)) = fn([[K(x)]]π)

fn([[K(x)]]π) = fn(k〈x〉) (Definition 3.2.3)
= fn(xz.0) (Definition 3.2.1)
= {x} (Definiton 2.1.1)
= fn(K(x)) (Definition 3.1.3)

And similarly for the remaining base cases.

Inductive cases (P, Q ∈ Pcc for all cases).

1. fn(P |Q) = fn([[P |Q]]π)

fn(P |Q) = fn(P ) ∪ fn(Q) (Definiton 3.1.3)
= fn([[P ]]π) ∪ fn([[Q]]π) (IH)
= fn([[P ]]π | [[Q]]π) (Definiton 2.1.1)
= fn([[P |Q]]π) (Definition 3.3.7)

2. fn((ν z) P ) = fn([[(ν z) P ]]π)

fn((ν z) P ) = fn(P ) \ {z} (Definiton 3.1.3)
= fn([[P ]]π) \ {z} (IH)
= fn((ν z) [[P ]]π) (Definiton 2.1.1)
= fn([[(ν z) P ]]π) (Definition 3.3.7)

3. fn((ν z) P ) = fn([[(ν z) P ]]π)

fn(!P ) = fn(P ) (Definiton 3.1.3)
= fn([[P ]]π) (IH)
= fn(![[P ]]π) (Definiton 2.1.1)
= fn([[!P ]]π) (Definition 3.3.7)

This concludes this proof. ¤

Proof A.1.2 (ii) We again use induction on the structure of terms as for part (i). The
base cases involve comparing the two resulting π-calculus terms from the application of a
general substitution σ prior and following the application of the mapping function to each
atomic agent and the 0 term.

Base cases (names are implicitly universally quantified in each case).



A.1. PROPOSITION 3.2.4 47

1. [[0σ]]π =α [[0]]πσ

[[0σ]]π = [[0]]π (Definition 2.1.2)
= 0 (Definition 3.2.3)
= 0σ (Definition 2.1.2)
= [[0]]πσ (Definition 3.2.3)

2. [[M(xy)σ]]π =α [[M(xy)]]πσ where σ = {x′, y′, .../x, y, ... }
[[M(xy)σ]]π = [[M(x′y′)]]π (Definition 2.1.2)

= m〈x′y′〉 (Definition 3.2.3)
= m〈xy〉σ (Definition 2.1.2)
= [[M(xy)]]πσ (Definition 3.2.3)

3. [[D(xuv)σ]]π =α [[D(xyv)]]πσ where σ = {x′, u′, v′, .../x, u, v, ... }
[[D(xuv)σ]]π = [[D(x′u′v′)]]π (Definition 2.1.2)

= d〈x′y′v′〉 (Definition 3.2.3)
= d〈xuv〉σ (Definition 2.1.2)
= [[D(xuv)]]πσ (Definition 3.2.3)

4. [[K(x)σ]]π =α [[K(x)]]πσ where σ = {x′, .../x, ... }
[[K(x)σ]]π = [[K(x′)]]π (Definition 2.1.2)

= k〈x′〉 (Definition 3.2.3)
= k〈x〉σ (Definition 2.1.2)
= [[K(x)]]πσ (Definition 3.2.3)

And similarly for the remaining base cases.

Inductive cases (P, Q ∈ Pcc for all cases).

1. [[(P |Q)σ]]π =α [[P |Q]]πσ

[[(P |Q)σ]]π = [[Pσ |Qσ]]π (Definition 3.1.3)
= [[Pσ]]π | [[Qσ]]π (Definition 3.2.3)
= [[P ]]πσ | [[Q]]πσ (IH)
= ([[P ]]π | [[Q]]π)σ (Definition 2.1.2)
= ([[P |Q]]π)σ (Definition 3.2.3)

2. [[((ν z) P )σ]]π =α [[(ν z) P ]]πσ

[[((ν z) P )σ]]π = [[(ν z) (Pσ)]]π (Definition 3.1.3)
= (ν z) [[Pσ]]π (Definition 3.2.3)
= (ν z) ([[P ]]πσ) (IH)
= ((ν z) [[P ]]π)σ (Definition 2.1.2)
= [[(ν z) P ]]πσ (Definition 3.2.3)
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3. [[(!P )σ]]π =α [[!P ]]πσ

[[(!P )σ]]π = [[! (Pσ)]]π (Definition 3.1.3)
= ![[Pσ]]π (Definition 3.2.3)
= !([[P ]]πσ) (IH)
= (! [[P ]]π)σ (Definition 2.1.2)
= [[!P ]]πσ (Definition 3.2.3)

This concludes this proof. ¤

Proof A.1.3 (iii) We give an inductive proof over the axioms of structural congruence.
This involves verifying the proposition for each case; we can conclude that if the desired
result holds for each axiom then it will hold for the entire relation. We take P,Q ∈ Pcc.

1. P =α Q ⇒ [[P ]]π =α [[Q]]π

fn(P ) = fn(Q) (Definition 3.1.3)
⇒ fn([[P ]]π) = fn([[Q]]π) (Proposition 3.2.4 (i))

2. P |Q ≡cc Q | P ⇒ [[P |Q]]π ≡π [[Q | P ]]π

[[P |Q]]π = [[P ]]π | [[Q]]π (Definition 3.2.3)
≡ [[Q]]π | [[P ]]π (Definition 2.2.2)
= [[Q | P ]]π (Definition 3.2.3)

3. P | (Q |R) ≡cc (P |Q) |R ⇒ [[P | (Q |R)]]π ≡π [[(P |Q) |R]]π

[[P | (Q |R)]]π = [[P ]]π | [[Q |R]]π (Definition 3.2.3)
= [[P ]]π | [[Q]]π | [[R]]π (Definition 3.2.3)
= [[P |Q]]π | [[R]]π (Definition 3.2.3)
= [[(P |Q) |R]]π (Definition 3.2.3)

4. P | 0 ≡cc P ⇒ [[P | 0]]π ≡π [[P ]]π

[[P | 0]]π = [[P ]]π | [[0]]π (Definition 3.2.3)
= [[P ]]π | 0 (Definition 3.2.3)
≡ [[P ]]π (Definition 2.2.2)

5. (ν z) (ν z) P ≡cc (ν z) P ⇒ [[(ν z) (ν z) P ]]π ≡ [[(ν z) P ]]π

[[(ν z) (ν z)P ]]π = (ν z) [[(ν z) P ]]π (Definition 3.2.3)
= (ν z) (ν z) [[P ]]π (Definition 3.2.3)
≡ (ν z) [[P ]]π (Definition 2.2.2)
= [[(ν z) P ]]π (Definition 3.2.3)
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6. (ν z, w) P ≡cc (ν w, z) P ⇒ [[(ν z, w) P ]]π ≡ [[(ν w, z) P ]]π

[[(ν z, w) P ]]π = (ν z) [[(ν w) P ]]π (Definition 3.2.3)
= (ν z) (ν w) [[P ]]π (Definition 3.2.3)
≡ (ν w) (ν z) [[P ]]π (Definition 2.2.2)
= (ν w) [[(ν z) P ]]π (Definition 3.2.3)
= [[(ν w, z) P ]]π (Definition 3.2.3)

7. (ν z) (P | Q) ≡cc P | (ν z) Q ⇒ [[(ν z) (P | Q)]]π ≡ [[P | (ν z) Q]]π, where z 6∈ fn(P ) on
both sides.

[[(ν z) (P |Q)]]π = (ν z) [[P |Q]]π (Definition 3.2.3)
= (ν z) ([[P ]]π | [[Q]]π) (Definition 3.2.3)
≡ [[P ]]π | (ν z) [[Q]]π (Definition 2.2.2)
= [[P ]]π | [[(ν z) Q]]π (Definition 3.2.3)
= [[P | (ν z)Q]]π (Definition 3.2.3)

8. (ν z)0 ≡cc 0 ⇒ [[(ν z)0]]π ≡ [[0]]π

[[(ν z)0]]π = (ν z) [[0]]π (Definition 3.2.3)
= (ν z)0 (Definition 3.2.3)
≡ 0 (Definition 2.2.2)
= [[0]]π (Definition 3.2.3)

9. ! P ≡cc P | ! P ⇒ [[P ]]π ≡π [[P | ! P ]]π

[[P ]]π ≡ [[P ]]π | ! [[P ]]π (Definition 2.2.2)
= [[P ]]π | [[!P ]]π (Definition 3.2.3)
= [[P | !P ]]π (Definition 3.2.3)

This concludes this proof. ¤

Proof A.1.4 (iv) We give an inductive proof over the rules of reduction. The base cases
consist of verifying that reduction between cc atomic agents is preserved by π-reduction.
This then justifies the use of the inductive hypothesis in verifying that the proposition
holds over the compositional reduction rules.

Base cases (names are implicitly universally quantified in each case).

1. D(xuv) |M(xy) −→cc M(uy) |M(vy) ⇒ [[D(xuv) |M(xy)]]π −→π [[M(uy) |M(vy)]]π

[[D(xuv) | M(xy)]]π = [[D(xuv)]]π | [[M(xy)]]π (Definition 3.2.3)
= d〈xuv〉 |m〈xy〉 (Definition 3.2.3)
= xz.(uz | vz) | xy (Definition 3.2.1)

−→ uy | vy (Definition 2.2.5)
= m〈uy〉 |m〈vy〉 (Definition 3.2.1)
= [[M(uy) | M(vy)]]π (Proposition 3.2.3)
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2. K(x) |M(xy) −→cc 0 ⇒ [[K(x) |M(xy)]]π −→π [[0]]π

[[K(x) |M(xy)]]π = [[K(x)]]π | [[M(xy)]]π (Definition 3.2.3)
= xz.0 | xy (Definition 3.2.3, Definition 3.2.1)

−→ 0 (Definition 2.2.5)
= [[0]]π (Proposition 3.2.3)

3. FW(xu) | M(xy) −→cc M(uy) ⇒ [[FW(xu) | M(xy)]]π −→π [[M(uy)]]π

[[FW(xu) | M(xy)]]π = [[FW(xu)]]π | [[M(xy)]]π (Definition 3.2.3)
= xz.uz | xy (Definition 3.2.3, Definition 3.2.1)

−→ uy (Definition 2.2.5)
= [[M(uy)]]π (Definition 3.2.1, Proposition 3.2.3)

4. Bl(xu) | M(xy) −→cc FW(uy) ⇒ [[Bl(xu) | M(xy)]]π −→π [[FW(yu)]]π

[[Bl(xu) | M(xy)]]π = [[Bl(xu)]]π | [[M(xy)]]π (Definition 3.2.3)
= xw.wz.uz | xy (Definition 3.2.3, Definition 3.2.1)

−→ yz.uz (Definition 2.2.5)
= [[Bl(yu)]]π (Definition 3.2.1, Proposition 3.2.3)

And similarly for the remaining two base cases.

Inductive cases (P, Q ∈ Pcc for all cases).

1. P −→cc P ′ ⇒ [[P |Q]]π −→π [[P ′ |Q]]π

P −→cc P ′ ⇒ [[P ]]π −→π [[P ′]]π (IH)
⇒ [[P ]]π | [[Q]]π −→π [[P ′]]π | [[Q]]π (Definition 2.2.2)
⇒ [[P |Q]]π −→π [[P ′ |Q]]π (Definition 3.2.3)

2. P −→cc P ′ ⇒ [[(ν z) P ]]π −→π [[(ν z) P ′]]π

P −→cc P ′ ⇒ [[P ]]π −→π [[P ′]]π (IH)
⇒ (ν z) [[P ]]π −→π (ν z) [[P ′]]π (Definition 2.2.2)
⇒ [[(ν z) P ]]π −→π [[(ν z) P ′]]π (Definition 3.2.3)

3. P ≡cc Q −→cc Q′ ≡cc P ′ ⇒ [[P ]]π −→π [[P ′]]π

From Proposition 3.2.4 (iv),

¦ P ≡cc Q ⇒ [[P ]]π ≡π [[Q]]π
¦ Q′ ≡cc P ′ ⇒ [[Q′]]π ≡π [[P ′]]π ,

and by the induction hypothesis,

Q −→cc Q′ ⇒ [[Q]]π −→π [[Q′]]π .
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Then, by applying (r-struct),

[[P ]]π ≡π [[Q]]π −→π [[Q′]]π ≡π [[P ′]]π

[[P ]]π −→π [[P ′]]π

This concludes this proof. ¤

A.2 Proposition 3.3.1

Substitution decomposition

The translation from Pcc to Pccπ performed by the function [[· ]]π exhibits the following
properties for all P, Q ∈ Pcc.

(i) c〈x−ṽ〉 ≈ (ν c) (fw〈xc〉 | c〈cṽ〉) and c〈ũx+ṽ〉 ≈ (ν c) (fw〈cx〉 | c〈ũc+ṽ〉) with c fresh.
(ii) ∀c〈ṽ〉 ∈ Pccπ : P ≈ (ν c̃) (c1〈ṽ1〉σ1 | . . . | cn〈ṽn)σn〉) for some ci〈ṽi〉 ∈ Aπ and an

injective renaming σi, and where each v ∈ ṽi is pairwise distinct.

Proof A.2.1 (c〈x−ṽ〉 ≈ (ν c) (fw〈xc〉 |c〈cṽ〉)) We perform a case by case verification for
each ccπ atom. This simply involves showing that the corresponding atomic processes are
indeed bisimilar to their substitution decompositions. Where used, the names c, c1 and
c2 are assumed fresh in all cases.

1. d〈xuv〉 ≈ (ν c) (fw〈xc〉|d〈cuv〉). Let L
def= xz.(uz |vz) and R

def= (ν c) (xz.cz |cz.(uz |vz)).

(1) Check L ≈ R.

¦ L
xy−→ L′ def= uy | vy matched by R

xy−→ R′ def= (ν c) (cy | cz.(uz | vz))

(2) L′ ≈ R′ as R′ −→β R′′ def= (ν c) (uy | uy) and L′ ≡ R′′.

2. k〈x〉 ≈ (ν c) (fw〈xc〉 | k〈c〉). Let L
def= xz.0 and R

def= (ν c) (xz.cz | cz.0).

(1) Check L ≈ R.

¦ L
xy−→ L′ def= 0 matched by R

xy−→ R′ def= (ν c) (cy | cz.0)

(2) L′ ≈ R′ as R′ −→β R′′ def= (ν c)0 and L′ ≡ R′′.

3. fw〈xu〉 ≈ (ν c) (fw〈xc〉 | fw〈cu〉). Let L
def= xz.uz and R

def= (ν c) (xz.cz | cz.uz).

(1) Check L ≈ R.

¦ L
xy−→ L′ def= uy matched by R

xy−→ R′ def= (ν c) (cy | cz.uz)

(2) L′ ≈ R′ as R′ −→β R′′ def= (ν c) uy and L′ ≡ R′′.

4. bl〈xu〉 ≈ (ν c) (fw〈xc〉 | bl〈cu〉). Let L
def= xw.wz.uz and R

def= (ν c) (xz.cz | cw.wz.uz).

(1) Check L ≈ R.
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¦ L
xy−→ L′ def= yz.uz matched by R

xy−→ R′ def= (ν c) (cy | cw.wz.uz)

(2) L′ ≈ R′ as R′ −→β R′′ def= (ν c) (yz.uz) and L′ ≡ R′′.

And similarly for the remaining two cases. ¤

Proof A.2.2 (c〈ũx+ṽ〉 ≈ (ν c) (fw〈cx〉 | c〈ũc+ṽ〉)) We take a similarly structured ap-
proach to the preceding proof. Again, the names c, c1 and c2 are assumed fresh in all
cases.

1. m〈xy〉 ≈ (ν c) (fw〈cx〉 |m〈cy〉). Let L
def= xy, R

def= (ν c) (cz.xz | cy).

(1) L ≈ R as R −→β R′ def= (ν c) (xy) and L ≡ R′.

2. d〈xuv〉 ≈ (ν c) (fw〈cu〉|d〈xcv〉). Let L
def= xz.(uz |vz) and R

def= (ν c) (cz.uz |xz.(cz |vz)).

(1) Check L ≈ R.

¦ L
xy−→ L′ def= uy | vy matched by R

xy−→ R′ def= (ν c) (cz.uz | (cy | vy))

(2) Check L′ ≈ R′.

¦ L′ uy−→ L′′ def= 0 | vy matched by R′ def= R′′ uy
=⇒ (ν c) (0 | (0 | vy))

¦ L′ vy−→ L′′′ def= uy | 0 matched by R′ vy−→ R′′′(ν c) (cz.uz | (cy | 0))

(3) L′′ ≈ R′′ as L′′ ≡ R′′.
(4) L′′′ ≈ R′′′ as R′′′ −→β Riv(ν c) uz and L′′′ ≡ Riv.

The dual case where v is pushed out of the duplicator is proved in the same way.

And similarly for the remaining three cases, (fw〈xy〉, bl〈xy〉 and s〈xuv〉). ¤

Proof A.2.3 (ii)

This is a direct consequence of the preceding proof. Firstly, note that every c〈ṽi〉 ∈ Pccπ

satisfies at least one of the forms, c〈x−ṽ〉 and c〈ũx+ṽ〉. Then, by (i), we observe that each
c〈ṽi〉, including those with repeated parameters, can be expressed up to weak bisimilarity
as a parallel composition of forwarders and c〈w̃i〉 whose free names are fn(c〈ṽi〉), and
where the parameters of each constituent atomic agent are unique with respect to the
agent. As any restricted names generated due to (i) are chosen to be fresh with respect
to the entire term, these can be pushed out to the front of the resulting term by structual
comgruence. We then have the desired result. ¤

A.3 Proposition 3.3.4

Properties of input meta-prefix mapping

The input meta-prefix mapping for ccπ-terms exhibits the following properties for all
P,Q ∈ Pccπ .
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(i) xz.P ≈ x∗z.P .
(ii) P ≈ Q ⇒ x∗z.P ≈ x∗z.Q .
(iii) x∗z.P |m〈xv〉 −→≈ P{v/z} .

Proof A.3.1 (i) We give an inductive proof over the meta-prefix mapping rules given in
Table 3.3. This involves verifying the proposition for each case; we can conclude that if
the desired property is preserved by the single application of each individual rule, then it
is preserved by the mapping process as a whole.

(i) xz.(P |Q) ≈ x∗z.(P |Q)

x∗z.(P |Q) = (ν c1, c2) (d〈xc1c2〉 | c∗1z.P | c∗2z.Q) (Definition 3.3.3)
= (ν c1, c2) (xw.(c1w | c2w) | c∗1z.P | c∗2z.Q) (Definition 3.2.1)
≈ (ν c1, c2) (xw.(c1w | c2w) | c1z.P | c2z.Q) (IH, Lemma 2.4.16)

Let L
def= xz.(P |Q) and R

def= (ν c1, c2) (xw.(c1w | c2w) | c1z.P | c2z.Q).

(1) Check L ≈ R.

¦ L
xy−→ L′ def= P ′ |Q′ matched by R

xy−→ R′ def= (ν c1, c2) (c1y |c2y |c1z.P |c2z.Q),
where P

def= P{y/z} and Q
def= Q{y/z}.

(2) L′ ≈ R′ as R′ −→∗
β R′′ def= (ν c1, c2) (P ′ |Q′) and L′ ≡ R′.

(ii) xz.(ν c′) P ≈ x∗z.(ν c′)P

x∗z.(ν c′) P = (ν c)x∗z.P ′ (P ′ def= P{c/c′}, Definition 3.3.3)
≈ (ν c)xz.P ′ (IH, Lemma 2.4.16)

(1) Check L
def= xz.(ν c′) P ≈ R

def= (ν c)xz.P ′.

¦ L
xy−→ L′ def= (ν c′) P ′′ matched by R

xy−→ R′ def= (ν c) P ′′′,
where P ′′ def= P{y/z} and P ′′′ def= P ′{y/z}

(2) L′ ≈ R′ as L′ ≡ R′.

(iii) xz.0 ≈ x∗z.0

x∗z.0 = k〈x〉 (Definition 3.3.3)
= xz.0 (Definition 3.2.1)

(iv) xz.! P ≈ x∗z.! P

First show that Q
def= c∗z.(P |m〈cz〉) ≈ cz.(P |m〈cz〉).

Q = (ν c1, c2) (d〈cc1c2〉 | c∗1z.P | c∗2z.m〈cz〉) (Definition 3.3.3)
= (ν c1, c2) (d〈cc1c2〉 | c∗1z.P | fw〈c2c〉) (Definition 3.3.3)
≈ (ν c1, c2) (d〈cc1c2〉 | c1z.P | fw〈c2c〉) (IH, Lemma 2.4.16)

Let P ′ def= P{y/z}. Note that (!P ){y/z} =!P ′ by Definition 2.1.2.
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(1) Check L
def= (ν c1, c2) (cz.(c1z | c2z) | c1z.P | c2z.cz) ≈ R

def= cz.(P | cz)

¦ L
cy−→ L′ def= (ν c1, c2) ((c1y | c2y) | c1z.P | c2z.cz) matched by

R
cy−→ R′ def= P ′ | cy

(2) L′ ≈ R′ as R′ −→∗
β R′′ def= (ν c1, c2) (P ′ | cy) and L′ ≡ R′′.

An immediate consequence of this result is

(ν c) (! c∗z.(P |m〈cz〉) |m〈cy〉) ≈ (ν c) (! cz.(P |m〈cz〉) |m〈cy〉) (Lemma 2.4.16)

The next goal is to show (ν c) (! cz.(P |m〈cz〉) |m〈cy〉) ≈!P ′, where P ′ def= P{y/z}.
Let L

def= (ν c) (! cz.(P | cz) | cy) and R
def=! P ′.

(1) Check L ≈ R.

¦ L τ−→ L′ def= (ν c) (P ′ | cy | ! cz.(P | cz) | 0) matched by R =⇒ R

¦ R
l 6= τ−→ R′ def= P ′′ | ! P ′ matched by L l=⇒ L′′ def= (ν c) (P ′′ | cy | ! cy.(P | cz))

¦ R τ−→ R′′ def= P ′′′ | !P ′ matched by L =⇒ L′′′ def= (ν c) (P ′′′ | cy | ! cy.(P | cz))

(2) Check L′ ≈ R. However,

L −→β (ν c) (P ′ | cy | ! cz.(P | cz)) (Definition 3.2.6)
≡ L′ (Proposition 2.2.2)

And so, L ≈ L′ by Proposition 2.4.14 and Proposition 3.2.7.

(3) R′ ≈ L′′ by the IH and congruence of ≈ as R′ ≡ P ′′ |R and L′′ ≡ P ′′ | L.
(4) R′′ ≈ L′′′ by the IH and congruence of ≈ as R′ ≡ P ′′′ |R and L′′′ ≡ P ′′′ | L.

We have now shown (ν c) (! cz.(P | cz) | cy) ≈ ! P ′. Observe that,

x∗z.! P = (ν c) (xw.cw | ! c∗z.(P | cz)) (Definition 3.3.3, Definition 3.2.1)
xy−→ (ν c) (cy | ! cz.(P | cz)) (Definition 2.3.2)

which, together with xz.!P
xy−→ !P ′, implies xz.P ≈ x∗z.!P .

(v) xz.c〈v+w̃〉 ≈ x∗z.c〈v+w̃〉

m〈vw〉 is the only ccπ-atom of the form c〈v+w̃〉.

x∗z.m〈vw〉 = (ν c) (s〈xcv〉 |m〈cw〉) (Definition 3.3.3)

Let L
def= xz.vw and R

def= (ν c) (xz.ct.vt | cw).

(1) Check L ≈ R.

¦ L
xy−→ L′ def= vw matched by R

xy−→ R′ def= (ν c) (ct.vt | cw)

(2) L′ ≈ R′ as R′ −→β R′′ def= (ν c) vw and L′ ≡ R′′.
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(vi) xz.c〈v−w̃〉 ≈ x∗z.c〈v−w̃〉

By mechanical verification each of the six cases. We demonstrate the case for the
Duplicator, and the remaining five cases follow similarly.

1. x∗z.d〈vw1w2〉 = (ν c) (s〈xvc〉 | d〈cw1w2〉) (Definition 3.3.3)

Let L
def= xz.vs.(w1s | w2s) and R

def= (ν c) (xz.vt.ct | cz.(w1z | w2z)).

(1) Check L ≈ R.

¦ L
xy−→ L′ def= vs.(w1s | w2s) matched by R

xy−→ R′ def= (ν c) (vt.ct | cz.(w1z | w2z))

(2) Check L′ ≈ R′.

¦ L′ vy−→ L′′ def= w1y | w2y matched by R′ vy−→ R′′ def= (ν c) (cy | cz.(w1z | w2z))

(3) L′′ ≈ R′′ as R′′ −→β R′′′ def= (ν c) (w1y | w2y) and L′′ ≡ R′′′.

(vii) xz.m〈vz〉 ≈ x∗z.m〈vz〉

x∗z.m〈vz〉 = fw〈xv〉 (Definition 3.3.3)
= xz.m〈vz〉 (Definition 3.2.1)

(viii) xz.fw〈zv〉 ≈ x∗z.fw〈zv〉

x∗z.fw〈zv〉 = bl〈xv〉 (Definition 3.3.3)
= xz.fw〈zv〉 (Definition 3.2.1)

(ix) xz.fw〈vz〉 ≈ x∗z.fw〈vz〉

x∗z.fw〈vz〉 = br〈xv〉 (Definition 3.3.3)
= xz.fw〈vz〉 (Definition 3.2.1)

(x) xz.c〈w̃1z
+w̃2〉 ≈ x∗z.c〈w̃1z

+w̃2〉

x∗z.c〈w̃1z
+w̃2〉 = (ν c) x∗z.(fw〈cz〉 | c〈w̃1c

+w̃2〉) (Definition 3.3.3)
= (ν c, c1, c2) (d〈xc1c2〉 | c∗1z.fw〈cz〉 | c∗2z.c〈w̃1c

+w̃2〉) (Definition 3.3.3)
= (ν c, c1, c2) (d〈xc1c2〉 | br〈c1c〉 | c∗2z.c〈w̃1c

+w̃2〉) (Definition 3.3.3)
= (ν c, c1, c2) (d〈xc1c2〉 | br〈c1c〉 | c2z.c〈w̃1c

+w̃2〉) (IH, Proposition 2.4.16)

We can then verify that xz.c〈w̃1z
+w̃2〉 ≈ (ν c, c1, c2) (d〈xc1c2〉|br〈c1c〉|c2z.c〈w̃1c

+w̃2〉)
for all c〈w̃1c

+w̃2〉. However, it is possible to reduce the amount of work required
using β-equality.

Let L
def= xz.c〈w̃1z

+w̃2〉 and R
def= (ν c, c1, c2) (xz.(c1z|c2z)|c1z1.cz2.z1z2|c2z.c〈w̃1c

+w̃2〉).

(1) Check L ≈ R.
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¦ L
xy−→ L′ def= c〈w̃1z

+w̃2〉{y/z} matched by
R

xy−→ R′ def= (ν c, c1, c2) ((c1y | c2y) | c1z1.cz2.z1z2 | c2z.c〈w̃1c
+w̃2〉)

(2) Check L′ ≈ R′. However,

R′ −→∗
β R′′ def= (ν c, c1, c2) (cz.yz | c〈w̃1c

+w̃2〉) .

L′ ≈ R′′ can then be verified for each case. Note that L′ ≡ c〈w̃1y
+w̃2〉 for all cases.

(xi) xz.c〈z−w̃〉 ≈ x∗z.c〈z−w̃〉

Similar to the preceding rule.

(xii) xz.br〈vz−〉 ≈ x∗z.br〈vz−〉

x∗z.br〈vz〉 = (ν c1, c2, c3) x∗z.(d〈vc1c2〉 | s〈c1zc3〉 | br〈c2c3〉) (Definition 3.3.3)

Firstly, Definition 3.3.3 is used to expand out the meta-prefix by applying (i) twice,
(vi) twice, (xiii), . . . . Bisimilarity between the resulting term and xz.br〈vz〉 can
then be verified (the proof is ommitted due to length).

(xiii) xz.s〈uz−v〉 ≈ x∗z.s〈uz−v〉

Similar to the preceding rule.

This concludes this proof. ¤

Proof A.3.2 (ii) This is an immediate consequence of the preceding proof. Assume
P ≈ Q.

P ≈ Q ⇒ xz.P ≈ xz.Q (Lemma 2.4.16)
⇒ x∗z.P ≈ x∗z.Q (Proposition 3.3.4 (i), Definition 2.4.1)

This concludes this proof. ¤

Proof A.3.3 (iii) We again give an inductive proof over the meta-prefix mapping rules as
for (i), applying the reduction to the expanded prefix-terms before verifying the bisimilarity
result. Let P ′ def= P{y/z} and Q′ def= Q{y/z}.

(i) x∗z.(P |Q) |m〈xy〉 −→≈ (P |Q){y/z}

x∗z.(P |Q) |m〈xy〉 = (ν c1, c2) (xw.(c1w | c2w) | c∗1z.P | c∗2z.Q) | xy

(Definition 3.3.3, Definition 3.2.1)
−→ (ν c1, c2) (c1y | c2y | c∗1z.P | c∗2z.Q) (Definition 2.2.5)
≈ (ν c1, c2) (c1y | c2y | c1z.P | c2z.Q)

(Proposition 3.3.4 (i), Lemma 2.4.16)
≈ (P |Q){y/z} (Definition 2.2.2, Definition 2.1.2)
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(ii) x∗z.(ν c′) P |m〈xy〉 −→≈ (ν c′) P ′

x∗z.(ν c) P |m〈xy〉 = (ν c′) x∗z.P{c/c′} | xy (Definition 3.3.3, Definition 3.2.1)
≡ (ν c) (x∗z.P{c/c′} | xy) (Definition 2.2.2)

−→≈ (ν c) (P{c/c′}{y/z}) (IH, Lemma 2.4.16)
≈ (ν c′) (P ′) (Definition 2.2.2, Proposition 2.4.14)

(iii) x∗z.0 |m〈xy〉 −→≈ 0{y/z}

x∗z.0 |m〈xy〉 = xz.0 | xy (Definition 3.3.3, Definition 3.2.1)
−→ 0{y/z} (Definition 2.2.5)

(iv) x∗z.! P |m〈xy〉 −→≈! P{y/z}

This result was proved as part of the corresponding case in the proof of (i).

(v) x∗z.c〈v+w̃〉 |m〈xy〉 −→≈ c〈v+w̃〉{y/z}

x∗z.c〈v+w̃〉 |m〈xy〉 = (ν c) (xz.cz.vz | c〈c+w̃〉) | xy (Definition 3.3.3, Definition 3.2.1)
−→ (ν c) (cz.vz | c〈c+w̃〉) (Definition 2.2.5)

However, m〈vw〉 is the only ccπ-atom of the form c〈c+w̃〉. By Definition 3.2.6 and
Definition 2.1.2,

(ν c) (cz.vz |m〈cw〉) ≈ m〈vw〉{y/z} .

(vi) x∗z.c〈v−w̃〉 |m〈xy〉 −→≈ c〈v−w̃〉{y/z}

x∗z.c〈v−w̃〉 |m〈xy〉 = (ν c) (xz.vz.cz | c〈c−w̃〉) | xy (Definition 3.3.3, Definition 3.2.1)
−→ (ν c) (vz.cz | c〈c−w̃〉) (Definition 2.2.5)

We can then verify that (ν c) (vz.cz | c〈c−w̃〉) ≈ c〈v−w̃〉{y/z} for each of the six
cases. Note that c〈v−w̃〉{y/z} = c〈v−w̃〉 for all cases.

(vii) x∗z.m〈vz〉 |m〈xy〉 −→≈ m〈vz〉{y/z}

x∗z.m〈vz〉 |m〈xy〉 = xz.vz | xy (Definition 3.3.3, Definition 3.2.1)
−→ vz{y/z} (Definition 2.2.5)

(viii) x∗z.fw〈zv〉 |m〈xy〉 −→≈ fw〈zv〉{y/z}

Similar to rule (vii).

(ix) x∗z.fw〈vz〉 |m〈xy〉 −→≈ fw〈vz〉{y/z}

Similar to rule (vii).

(x) x∗z.c〈w̃1z
+w̃2〉 |m〈xy〉 −→≈ c〈w̃1z

+w̃2〉{y/z}
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x∗z.c〈w̃1z
+w̃2〉 |m〈xy〉 = (ν c) x∗z.(fw〈cz〉 | c〈w̃1c

+w̃2〉) |m〈xy〉
= (ν c, c1, c2) (d〈xc1c2〉 | c∗1z.fw〈cz〉 | c∗2z.c〈w̃1c

+w̃2〉) |m〈xy〉
= (ν c, c1, c2) (d〈xc1c2〉 | br〈c1c〉 | c∗2z.c〈w̃1c

+w̃2〉) |m〈xy〉
−→ (ν c, c1, c2) (m〈c1y〉 |m〈c2y〉 | br〈c1c〉 | c∗2z.c〈w̃1c

+w̃2〉)
−→β (ν c, c1, c2) (m〈c2y〉 | fw〈cy〉 | c∗2z.c〈w̃1c

+w̃2〉)
We can then verify that (ν c, c1, c2) (m〈c2y〉|fw〈cy〉|c∗2z.c〈w̃1c

+w̃2〉) ≈ c〈w̃1z
+w̃2〉{y/z}

for all c〈w̃1z
+w̃2〉. Note that the cases where z ∈ w̃2 and z 6∈ w̃2 must be considered

separately.

(xi) x∗z.c〈z−w̃〉 |m〈xy〉 −→≈ c〈z−w̃〉{y/z}

Similar to the preceding rule.

(xii) x∗z.br〈vz−〉 |m〈xy〉 −→≈ br〈vz−〉{y/z}

Firstly, Definition 3.3.3 is used to expand out the meta-prefix by applying (xii),
(i) twice, (vi) twice, (xiii), . . . , and the resulting term can be reduced, consuming
m〈xy〉. Bisimilarity between the reduced term and x∗z.br〈vz−〉{y/z} can then be
verified.

(xiii) x∗z.s〈uz−v〉 |m〈xy〉 −→≈ s〈uz−v〉{y/z}

Similar to the preceding rule.

This concludes this proof. ¤

A.4 Lemma 3.3.8

properties of [[· ]]ccπ

The translation from Pπ to Pccπ by the function [[· ]]ccπ exhibits the following properties
for all P,Q ∈ Pπ.

(i) P ≈ [[P ]]ccπ

(ii) P ≡ Q ⇒ [[P ]]ccπ ≈ [[Q]]ccπ .
(iii) P −→ Q ⇒ [[P ]]ccπ −→≈ [[Q]]ccπ .

Proof A.4.1 (i) We use structural induction over the syntax of the π-calculus.

Base cases (names are implicitly universally quantified in each case).

1. xz ≈ [[xz]]ccπ

[[xy]]ccπ = m〈xy〉 (Definition 3.3.7)
= xy (Definition 3.2.1)
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2. 0 ≈ [[0]]ccπ

[[0]]ccπ = 0 (Definition 3.3.7)

Inductive cases (P, Q ∈ Pccπ in all cases).

1. P |Q ≈ [[P |Q]]ccπ

P |Q ≈ [[P ]]ccπ | [[Q]]ccπ (IH)
= [[P |Q]]ccπ (Definition 3.3.7)

2. (ν z) P ≈ [[(ν z) P ]]ccπ

(ν z) P ≈ (ν z) [[P ]]ccπ (IH, Definition 2.4.1)
= [[(ν z) P ]]ccπ (Definition 3.3.7)

3. xz.P ≈ [[xz.P ]]ccπ

xz.P ≈ xz.[[P ]]ccπ (IH, Definition 2.4.1)
≈ x∗z.[[P ]]ccπ (Proposition 3.3.4)
= [[xz.P ]]ccπ (Definition 3.3.7)

4. !P ≈ [[!P ]]ccπ

!P ≈! [[P ]]ccπ (IH, Definition 2.4.1)
= [[!P ]]ccπ (Definition 3.3.7)

This concludes this proof. ¤

Proof A.4.2 (ii) One possible method would be to proceed as in Proof A.1.3; in fact,
the proofs would be indentical. However, we can show this result more directly using
Lemma 3.3.8 in a similar style to Proof A.3.2.

P ≡ Q ⇒ P ≈ Q (Proposition 2.4.14)
⇒ [[P ]]ccπ ≈ [[Q]]ccπ (Definition 2.4.1, Lemma 3.3.8)

This concludes this proof. ¤
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