PRINCIP

ES AN

ER5

D PRACTIESS

-SSION TYPES

Vasco I. Vasconcelos, University of Lisbon

and

Raymond Hu, Imperial College London

A tutorial at POPL
20 January 2014

OUTLINE

» Part | _ Fundamentals of session types, by Vasco

S eEn Specification and verification of
distributed applications using multiparty session

types, by Ray

SRS (fiese slides from
http://www.doc.ic.ac.uk/~rhu/popl | 4tutorial.pdf

MOTIVATION _ ITERATOR

* Met java.ufil.lterator?

interface Iterator {
boolean hasNext ();

Object next ();
void remove ();

J

COMMON MISTAKE

void commaSeparatedList (Iterator it) {
System.out.print(it.next());

while (it.hasNexi())
System.out.print(", " + it.next()); }

void filter (Iterator it, Object o) {
while (it.hasNext())
if (it.next().equals(o))
System.out.print(it.next()); }

void removerFirst (Iterator it) {
if (if.hasNext())
it.remove(); }

COMPILE AND RUN

lliiis code complles...

e ...and sometimes even runs

G corirectly use the iterator one must Feaaiifie
documentation

/**

* Returns <tt>true</tt> if the iteration has more elements. (In other
* words, returns <tt>true</tt> if <tt>next</tt> would return an element
* rather than throwing an exception.)
*
‘ | | ‘ * @return <tt>true</tt> if the iterator has more elements.
.74
boolean

;
‘ | \/ \ * Returns the next element in the iteration. Calling tha

repeatedly until the {@link #hasNext()} method

*
* return each element in the underlying collectio
*

‘ O ‘ '\ * @return the next element in the iteration.
*@ i1teration
78

e
UME

NTAT
|[ON

Removes from the underlying collection the last elemen
iterator (optional operation). This method can be called only
call to <tt>next</tt>. The behavior of an iterator is unspecified if
the underlying collection is modified while the iteration is in
progress in any way other than by calling this method.

@exception UnsupportedOperationException if the <tt>remove</tt>
operation is not supported by this Iterator.

I B G R

@ if the <tt>next</tt>
yet been called, or the <tt>remove</tt> meth
been called after the last call to the <tt>n
method.

* %X ¥ ¥

void 2

BOCKET COMMUNICATICHES

Socket client = new Socket("Charizard”, 2345);

ObjectOutputStream out = new ObjectOutputStream(
client.getOutputStream());

out.writeObject(1.1);

ServerSocket serverSocket = new ServerSocket(2345);
Socket server = serverSocket.accept();
ObjectlinputStream in = new

ObjectinputStream(server.getinputStream());
Integer i = (Integer) in.readObject();

bin — java — 80x10 .

i@ 0 O
charizard:bin vv$ java sockets/Server

000 (] bin — bash — 80x10

' charizard:bin vv$ java sockets/Client
charizard:bin vv$

IO 0 0 L] bin — bash — 80x10

charizard:bin vv$ java sockets/Server
Exception in thread "main" java.lang.ClassCastException: java.lang.Double cannot

be cast to java.lang.Integer
at sockets.Server.main{Server.java:15)

charizard:bin vv$

EVOULDN'T [T BE NICESSS

* ... to program In a language that makes
NoSuchElementException,
legalStateExcepftion,
ClassCastException unnecessary?

B ceced more expressive types..

WHAIT WE REALLY NEED

« Abstractions that allow to talk about continuous
interactions

* Languages and compilers that make sure code

follows the abstractions

SESSIONTYP

“STO THE

RESCUE

* Introduced by Kohel Honda et dlia in 1994-98

= Nlirtner reading)

« Abstract series of continuous interactions; abstract

communication protocols

* Originally associated to the pi-calculus; later

transposed to functional and OO languages

RUNNING EXAMPLE _ AN
ONLINE DONATION SERVICE

Three sorts of participants: server, clients, and
benefactors

» Clients create donation campaigns and send the
campaign link to benefactors

» Benefactors donate by providing a credit card
number and an amount to be charged to the card

* The server provides for the creation of campaigns
and forwards the donations to the bank

B alidl@

» Based on SePi, Sessions on Pi, http://gloss.di.fc.ul.pt/

sepl/

* A pi-calculus based language with (linearly refined)
session types

* We Introduce the various basic type and process
constructors

e CHANNEL CREATION; IINFESS
BUTPU T, PARALLEL COMPOSHICES

new ¢ s: !integer.end
cl2013 |
s?X. printIntegerlLn!x

M. CHOKS

new ¢ s: +{setDate: !integer.end, commit: end}
c select setDate. c!2013 |
case s of

setDate -> s?x. printlIntegerlLn!x

commit -> printStringlLn!"done!™

B RECURSIVE | YPES AT
PROCESS DEFINITIONS

type Donation = +{setDate: !integer.Donation, commit: end}

new ¢ s: Donation
c select setDate. c!2013.
c select setDate. c!2014. c select commit |

def server s: dualof Donation =
case s of
setDate -> s?x. printIntegerLn!x. server!s
commit -> printStringlLn!"done!”

server!s

V4 _ LINEAR CHANNELS THAT
BECOME UNRESTRICTED (I/I1)

type Donation = +{setDate: !integer.Donation, commit: Promotion}
type Promotion = un!(CreditCard, integer).Promotion
type CreditCard = string

new ¢ s: Donation

c select setDate. c!2013.
c select setDate. c!2014.
c select commit. {
c!("1234", 500) | c!("2434", 1000)
o

V4 _ LINEAR CHANNELS THAT
BECOME UNRESTRICTED (Il/Il)

def server s: dualof Donation =
case s of
setDate -> s?x. printlIntegerLn!x. server!s
commit -> acceptDonation!s

def acceptDonation s: dualof Promotion =
s?(card, amount).
printStringLn!"Received " ++ amount ++ "euros on card " ++ card.
acceptDonation!s

server!s

S MULTIPLE CLIEN TS (iSS

type Donation = +{setDate: !integer.Donation, commit: Promotion}
type Promotion = un!(CreditCard, integer).Promotion
type CreditCard = string

new client server: *?Donation

client?c.

c select setDate. c!2013. c select setDate. c!2014. c select commit. {
c!("1234", 500) | c!1("2434", 1000)

3

client?c.

c select setDate. c!2014. c select commit. {
c!("9876", 5000) | c!("879%", 10)

3

def donationServer server: *!Donation

o MULTIPLE CLIENTS CHESS

def setup s: dualof Donation =
case s of
setDate -> s?7x. setup!s
commit -> acceptDonation!s

def acceptDonation s: dualof Promotion
s?(card, amount).
printStringLn!"Charging '
acceptDonation!s

++ amount ++ on card " ++ card.

server!(new s: dualof Donation). // session initiation
setup!s.
donationServer!server

CONCLUSION _ FUNDAMENTALS
e SESSION TR Ee

» Session types describe continuous interaction, provide for

protocol description
» Work well with imperative, functional and OO languages

* When incorporated in programming languages session types
prevent a series of runtime errors

» May also be used to monrtor communication on applications
built with untyped (or non session typed) languages

NEXT

» Part Il _ Specification and verification of

distributed applications using multiparty session
types

The Scribble Protocol Language

Specification and verification of distributed applications using

multiparty session types

Raymond Hu (Imperial College London, Cognizant)
and the Scribble team

http://www.doc.ic.ac.uk/~rhu/popli4tutorial.pdf

1/42

Outline

» Background:

» Multiparty session types (MPST)
» The Scribble protocol language

» Active use case project: Ocean Observatories Initiative

» Scribble by examples

» Global protocol specification

» Multiparty protocol validation (well-formedness)
» Dynamic MPST verification by runtime monitoring of
conversation endpoints

» http://www.doc.ic.ac.uk/~rhu/poplidtutorial.pdf

2/42

Background: Multiparty Session Types (MPST) 1/2

G » Global session type
| » G=A—B - m:;:B—-C:my; C > A:m;
Projection
AN

7—-Alice 7--Bob TCaroI > Local SeSSion types

|
Type checking

4 J !
— | ?
PAIice 'DBob PCaroI > TA B'ml' C: ms

» Slice of global protocol relevant to each role
» Mechanically derived from global protocol

» Process language
» Execution model of 1/O actions by session participants
> Py = s(x).s!B(ml).s?C(x)

» (Static) type checking for communication safety

[POPLO8] Multiparty asynchronous session types. Honda et al.

[CONCURO08| Global progress in dynamically interleaved multiparty sessions.
Bettini et al.

3/42

Background: Multiparty Session Types (MPST) 2/2

» Specifying protocols involving more than two parties!
G=A—->B . m;B—>C:my; C—>A:m3

A B C

my

my3

m3

> Stronger safety than separate binary session types:
PA = SAC?X-SAB!ml TAB = B!ml, TAC = C7m3
PB = SBA?y-SBC!m2 TBA = A?ml, TBC = C|m2
PC = SCB?Z.Sclm3 TCB = B?mg, TCA = C!m3

x deadlock (due to lost causality between inter- (binary)
session actions)

4 /42

The Scribble protocol language

» Scribble: adapts and extends MPST as an engineering
language for describing multiparty message passing protocols

» Communication model: asynch., reliable, role-to-role ordering

global protocol MyProtocol(role A, role B, role C) {
ml(int) from A to B;
rec X {
choice at B {
m2(String) from B to C;
continue X;

} or {
m3() from B to C;

}r}

» Global and local protocol definitions

» Other features: parallel protocols, subprotocol composition,
parameterised protocol declarations, interruptible conversations

[COB12] Structuring communication with session types. Honda et al.

[ICDCIT11] Scribbling interactions with a formal foundation. Honda. et al.

5 /42

Industry collaborations

» JBoss Savara: Tool support for Testable Architecture
frameworks (Red Hat, Cognizant)

» Scribble: intermediate protocol language underneath
BPMN2/WS-CDL user interface

» Tooling: global-to-local projection, protocol/system
simulations:

> Requirements model (e.g. sequence diagram traces) against
service specification
> System outputs (e.g. log files) against requirements/service
model
[JBOSS] http://www.jboss.org/savara

http://www. jboss.org/scribble

TA| http://www.cognizant.com/InsightsWhitepapers/S0A_
p g g pap
Manifesto_WP1.2010.pdf

6/ 42

Ocean Observatories Initiative (OOl) 1/2

» NSF project ($400M, 5 years) to build a cyberinfrastruture for
the remote acquisition and delivery of oceanography data

() OcEAN OBSERVATORY INITIATIVE

| Flacabion

7/42

Ocean Observatories Initiative (OOI) 2/2

» COI: Python-based endpoint
platforms (Capability Containers),
AMQP-based messaging network

Interface Exchange Messaging Additional
Process/Agen Interface Process/Agent
|
E Subsystem
Process/Service

I%‘Iﬂm
t
i

b,

d

i
i

\ Services Services
Execution Resource COIl Capability
baiis Container
CEl Virtualization &
Contextualization
Figure 3: Observatory comprised of ships, aircraft and autonomous vehicles linked to assimilation - .
modeling capabilities on shore Ca pa b|||ty Container

8 /42

Scribble people

Matthew Arrott UCSD, Ocean Observatories Initative
Laura Bocchi Imperial College London

Gary Brown Red Hat

Tzu-Chun Chen L'Universita di Torino

Romain Demangeon Université Pierre et Marie Curie
Pierre-Malo Deniélou Royal Holloway, University of London

Kohei Honda Queen Mary, University of London
Raymond Hu Imperial College London
Rumyana Neykova Imperial College London
Nicholas Ng Imperial College London
Nobuko Yoshida Imperial College London

9/42

Scribble examples

» Basic scribble (OOl agent negotiation)

» Applied MPST framework:
Global well-formedness; local projection; FSM generation

» Parameterised protocols and subprotocols

» OOl RPC service composition
» Agent negotiation refactored

> Interruptible conversations: (OOl resource usage control)

» OOl endpoint code and runtime monitoring

» We demo the current status of Scribble

» The work on Scribble and the OOl integration (and other
applications of MPST) is ongoing

10 / 42

OOl agent negotiati

on1/5

Consumer Provider
Agent Agent
negotiale: requast(SAF_1) Tonhmm 15 The
Megotiation starting by & complementary accep
Co ki a ;
confimed by Canrsumar ; must accept for an
negotiate: confim(SAP 1) _.f""___-"'.__—l i i,
With a mutual accept, at
————————————————————————:S; least one commitment
AT g 2 on each side of the
- : negotiate: invitel SAP 1) araation resus
habon s2ari 1 -
il riiting i il negotiate: accept{SAP_1, details) (may be multiple). The
with a propasal, accepted by contract is as stated in
Consumer and canfrmed by negotiate; confirmiSAP_1)
Provider
ALT

negotiate: requast{SAP_1)

Megotiation staring by a
Consumes making a proposal.

negotiate: counter-propose{SAP_2)

] a counter-propose s a

e SAP, but it typically

The racipient {Previder) meakes
@ eounler-propossl. supplanling

negotiate: accept(SAP_2, details)

refines or partially
modifies the prior SAP,

SAP 1, which i then accepled
by Carsurmer aed canfirmad by
I Pravider.

neqotiate: confirmi(SAP_Z)

ALT

negotiate: request{SAP_1)

Any party can raject

MNegotalion stading by a
Consumer making & proposal,
rejeciad by the Provider erding

negotiate: reject(SAF_1)

———

instead of counter-
T propose (or accept)

the Megoliatian

» https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+0V+Negotiate+Protocol

11/ 42

OOl agent negotiation 2/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

Negatiatian starting by a
Carsumar making a propasal
then accepted by Frovider and

wcanfimnad by Cansumar

Wegatiabion staring by the
Prewidar inviling & Cansumar
with a propasal. accepled by
Cansumer and candrmed by

Provider

Megolistion stariing by &
Consuries msking & proposal.
The racipienl (Provider) makes.

@ counler-propasal. supplanting
EAP 1, which i then accepled
Ly Carsumer snd eanfirmed by

Ihe Provides.

Consumer Provider
Agent Agent
negotiate: requast{SAP_1) i
complementary accept
negoliate: accept{SAP_1, details) by thF: other p;yrty {both
negotiate: confirm(SAP 1) ‘ﬁ:_——l st accept fa; LU

-a-\..:__‘ With a2 mutual accept, at

least one commitment

negotiate: invite(SAP_1)

on sach side of the
conversation results

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

negotiate: confirm({SAP_1)

negotiate: request{SAP_1)

negotiate: counter-propose{SAP_2)

,.-J—J A counter-propose is a

new SAP, but it typically

negotiate: accept|SAP_2, details)

refines or partially
modifies the prior SAP.

negotiate: confirm(SAP_2)

MNegodation staring by &
Consumer makirg & propoesl,
rejecied by Be Provider ending
the Negoliafon.

negotiate: request{SAF_1)

Any party can reject
instead of counter-

negotiate: reject(SAP_1) —-#___‘ propose (or accept)
|

12/ 42

OOI agent negotiation 3/5 (choice)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {
propose(SAP) from C to P;

choice at P {
accept() from P to C;

Consumer Provider
confirm() from C to P; e | e
negotiate: requast{SAP_1) mis
} or { R ot accolSAP_1 detal) oo ey o
. C I A A negotiate: confim(SAP_1) .::i:_-—l mum;r -
reject() from P to C;
} or S . Y
R s ALT n.cgo.tiate_ invite(SAP_1) : tr%ﬁ;ﬁlfié?ﬁze
propose(SAP) from P to C; st reaRtale AP 1, el '

contract is as stated in
Cansumer and candrmed by negotiate: confirm{SAP_1)

Pravider
ALT negotiate: requast{SAP_1 =
got quash) _.J A counter-propose is a
o) it SAP, but it typlcally
Mesgotiati negotiate: counter-propose(SAP_2) fo
m..g.m::.'m"a"f.ﬂ:ﬂu. ot i refines or partially
Thes recipient (Provider) meakes iate. 7 madifies the prior SAP.
A sl St negotiate: accept(SAP_2, details) P
SAP_1, which i then accepied :
by C\;mml:r a:n:u“mu by negotiate: confirm({SAP_2)
b Provider.
ALT negotiate: request{SAP_1) Any party can reject
Megotalion starfing by a instead of counter-
Consumer making & propesal, negotiate: reject(SAP_1) —-=:__'.1___| coept
rejected by e Provider ending RRpOSR IO)
the Negoliafon. |

3

13/ 42

OOl agent negotiation 4/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;

choice at P {

accept() from P to C;

confirm() from C to P;
} oor {

reject() from P to C;
} or {

propose(SAP) from P to C;

choice at C {

accept() from C to P;

confirm() from P to C;
} or {

reject() from C to P;
} or {

propose(SAP) from C to P;

P r}

Consumer
Agent

negotiate: requast{SAP_1)

Provider
Agent

m s

negoliate: accept{SAP_1, details)

complementary accept
by the other party (bath

negotiate: confirm{SAP 1)

must accept for an
— agreement}

-a-\..:__‘ With a2 mutual accept, at

negotiate: invite(SAP_1)

least one commitment
on each side of the
conversation results

5ol B by
Previitdar inviling a Cansumar

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

with a propasal. accepled by
Cansumer and candrmed by
Provider

negotiate: confirm{SAP_1)

negotiate: request{SAP_1)

_.--—J A counter-propose is a

Megatiation starting by 3
Comsueines rnshing 4 proposal.

negotiate: counter-propose{SAP_2)

new SAP, but it typically

The recipienl (Provider) makes
@ counler-propasal. supplanting

negotiate: accept|SAP_2, details)

refines or partially
madifies the prior SAP.

SAP 1, which i then aceepied
by Carssumar snt eanfrmed by

negotiate: confirm({SAP_2)

Ihe Provides.

ALT

negotiate: request{SAF_1)

Any party can reject
instead of counter-

MNegodation staring by &
Consumer makirg & propoesl,
rejected by te Provider ending

the Negoliakon.

negofiate: reject(SAP_1) ——==———_ propose (or acoept)
|

14 / 42

OOl agent negotiation 5/5 (recursion)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;
rec X {
choice at P {
accept() from P to C;
confirm() from C to P;
+ or {
reject() from P to C;
} or {

propose(SAP) from P to C;

choice at C {
accept() from C to P;
confirm() from P to C;
} or {
reject() from C to P;

} or {

propose(SAP) from C to P

continue X;

}
+

negotiate: requast{SAP_1)

Provider

Agent

m s

negoliate: accept{SAP_1, details)

complementary accept
by the other party (bath

Consumer
Agent
Megatiatian starting by a
Cansumar making # proposal
then accegited by Provider and
canfimmad by Carsumar

negotiate: confirm{SAP 1)

must accept for an
— agreement}

-a-\..:__‘ With a2 mutual accept, at

negotiate: invite(SAP_1)

least one commitment
on each side of the
conversation results

5ol B by
Previitdar inviling a Cansumar

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

with a propasal. accepled by
Cansumer and candrmed by
Provider

negotiate: confirm{SAP_1)

ALT

negotiate: request{SAP_1)

_.--—J A counter-propose is a

Megatiation starting by 3

negotiate: counter-propose{SAP_2)

new SAP, but it typically

refines or partially

Comsueines rnshing 4 proposal.
The recipient (Provider) rakes

negotiate: accept|SAP_2, details)

madifies the prior SAP.

@ counler-propasal. supplanting
SAP_1, which i ihen accepied
Ly Carsumer snd eanfirmed by

negotiate: confirm({SAP_2)

Ihe Provides.

ALT

negotiate: request{SAF_1)

Any party can reject
instead of counter-

MNegodation staring by &
Consumer makirg & propoesl,

negofiate: reject(SAP_1) ——==———_ propose (or acoept)
|

rejecied by Be Provider ending
the Negoliakon.

15/ 42

The Scribble Framework

Specification

Global Protocol

(Scribble) Projection
N
B Local Local
Protocol Protocol
| |
Implementation (Python, Java, ..
! !
Endpoint Endpoint
Dynamic Code Code
Verification| | Conversation Conversation
Runtime Runtime
— Monitor Monitor

J

i

Safe Network

)

» Scribble global protocols

» Well-formedness validation

» Scribble local protocols

» FSM generation (for endpoint
monitoring)

» (Heterogeneous) endpoint
programs

» Scribble Conversation API
> (Interoperable) Distributed
Conversation Runtime

16 / 42

Global protocol well-formedness 1/2

global protocol ChoiceAmbiguous(role A, role B, role C) {
choice at A {
ml() from A to B; // X

m2() from B to C;
m3() from C to A;
} or {
mli() from A to B; // X
m5() from B to C;
m6() from C to A;
3

global protocol ChoiceNotCommunicated(role A, role B, role C) {
choice at A {
mli() from A to B;
m2() from B to C; // X
+ or {
m4() from A to B;
+ o}

17 / 42

Global protocol well-formedness 2/2

global protocol ParallelNotLinear(role A, role B, role C) {
par {
m1() from A to B; // X
m2() from B to C;
} and A
m1() from A to B; // X
m4() from B to C;
o}

global protocol RecursionNoExit(role A, role B, role C, role D) {
rec X {
mi() from A to B;
continue X;
+
m2() from A to B; // Unreachable for A, B
m3() from C to D;

}

18/ 42

Local protocol projection (Negotiation Consumer)

// Global
propose (SAP) from C to P;
rec START A
choice at P {
accept() from P to C;
confirm() from C to P;
} or {
reject() from P to C;
} or {
propose(SAP) from P to C;
choice at C {
accept() from C to P;
confirm() from P to C;
+ oor {
reject() from C to P;
} or {

propose(SAP) from C to P;

continue START;
3

// Projection for Consumer
propose(SAP) to P;
rec START A
choice at P {
accept() from P;
confirm() to P;
} or {
reject() from P;
} or {

propose(SAP) from P;

choice at C {
accept() to P;
confirm() from P;

+ or {
reject() to P;

} or {
propose(SAP) to P;
continue START;

}r}

19 / 42

20 / 42

(oo, g 1T s
SO CORN L
(ndasoeidl (haakrd ’ °

(asodoxd; 2N\ (hdasae g/ (Woabr g

(Jazodoad; g

(Jasodoxd; g

FSM generation (Negotiation Consumer)

RPC composition 1/4

s 2 Pra
?'2 Refir

RPC

> https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+0V+Conversation+Management

21 /42

RPC composition 2/4

global protocol Compl(role Client as C,
role Servicel as S1, role Service2 as S2,
role Service3 as S3, role Serviced4 as S4) {
ml() from C to Si1;
m2() from S1 to S2;
m2a() from S2 to S1; - ==
m3() from S1 to S3; RBG-mm [T
m4() from S3 to S4; 2
m4a() from S4 to S3;
m5() from S3 to S4;
mba() from S4 to S3; :
m3a() from S3 to S1; X A
mla() from S1 to C; & 4

+

» https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+0V+Conversation+Management

22 /42

RPC composition 3/4 (parameterised subprotocols)

global protocol RPC<sig M1, sig M2>(role Client as C, role Server as S)
M1 from C to S;
M2 from S to C;

+

global protocol Relay<sig M1, sig M2>(
role First as F, role Middle as M, role Last as L) {
M1 from F to M;
M2 from M to L;

} LB B

REC-=="771

global protocol Comp3(role C

role Serff’
role Ser’ o z

do Relay<mi(), m2()>(C as | RPC

do Relay<m2a(), m3()>(S2 a. ‘

do RPC<m4 (), md4a()>(S3 as \

do RPC<m5(), mba()>(S3 as 5 ~

do Relay<m3a(), mla()>(S2 as F1rsST, SL as MladIé, C as Last);

RPC

23 /42

RPC composition 4/4

global protocol RPC<sig M1,
M1 from C to S; _ REGaasd]
M2 from S to C; o

+

global protocol Relay<sig M1
role First as F, role Mic¢

M1
M2

+

global protocol Comp3(role Client as C,

do
do
do
do
do

from F to M;
from M to L;

RPC

RPC

RPC

RPC

role Servicel as S1, role Service2 as S2,
role Service3 as S3, role Serviced4 as S4) {
Relay<m1 (), m2()>(C as First, S1 as Middle, S2 as Last);
Relay<m2a(), m3()>(S2 as First, S1 as Middle, S3 as Last);
RPC<m4 (), m4a()>(S3 as Client, S4 as Server);
RPC<m5(), mba()>(S3 as Client, S4 as Server);
Relay<m3a(), mla()>(S2 as First, S1 as Middle, C as Last);

24 /42

Agent negotiation (refactored)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer, role Producer) {
propose(SAP) from Consumer to Producer;
do NegotiateAux(Consumer as Proposer, Producer as CounterParty);

+

global protocol NegotiateAux(
role Proposer as A, role CounterParty as B) {
choice at B {
accept() from B to A;
confirm() from A to B;
} or {
reject() from B to A;
} oor {
propose (SAP) from B to A;
do NegotiateAux(B as Proposer, A as CounterParty);

3

25 / 42

Resource Usage Control (interruptible)

» User, Resource Controller, Instrument Agent

» U registers with C to use a resource (instrument) via A for a
specified duration (or another metric)

U

req(int)
I—

C

start

A

daj

daj

2

ta

timeout

timeout

» https://confluence.oceanobservatories.org/display/CIDev/

Resource+Control+in+Scribble

26 / 42

Extending MPST with interruptible conversations

» Well-formed global types traditionally rule out any ambiguities
between roles in conversation instances

» Sent messages are expected and vice versa
» No messages lost or redundant

» Asynchronous interrupts: inherent
“communication races’

» Interruptible is a mixed choice,
also completely optional

» Concurrent and nested interrupts

» Asynchronous entry/exit of
interruptible blocks by roles

resume

A valid trace

27 / 42

RUC Scribble 1/5 (streaming)

global protocol RUC(

role User as U, role Controller as C, role Agent as A) {

rec Y {
data() from A to U;
continue Y;

}

(2)

u C

req(int)

(1)

U C A
(2)
—_____payse
ey
——respme
=y il
stop
—_—
timeout | timeout
l(___F E—

28 / 42

RUC Scribble 2/5 (interruptible stream)

global protocol RUC(

role User as U, role Controller as C, role Agent as A) {

interruptible {
rec Y {
data() from A to U;
continue Y;
T}
with {
pause() by U;
+

resume() from U to A;

(2)

u C A
req(int)
__start
Bl

data__—
i

data __—
o

(1)

(2

(1)

U C A
}
g
—_____payse
oy
—__resume
T—y
stop
—_—
timeout | timeout
l(—-—" e

29 / 42

RUC Scribble 3/5

global protocol RUC(

role User as U, role Controller as C, role Agent as A) {

interruptible {
rec X {
interruptible {
rec Y {
data() from A to U;
continue Y;
T}
with {
pause() by U;
+
resume() from U to A;
continue X;
)
with {
stop() by U;
timeout () by C;
T}

(2)

U C

req(int)

timeout |

| timeout
o)

o

(1)

30 /42

RUC Scribble 4/5

global protocol RUC(

role User as U, role Controller as C, role Agent as A) {

req(int) from U to C;
start() from C to A;
interruptible {
rec X {
interruptible {
rec Y {
data() from A to U;
continue Y;
o}
with {
pause() by U;
}
resume() from U to A;
continue X;
)
with {
stop() by U;
timeout () by C;
+ o}

(2)

U C

req(int)

timeout |

| timeout
B

o

(1)

31/42

RUC Scribble 5/5 (conversation scopes)

global protocol RUC(
role User as U, role Controller as C, role Agent as A) {
req(int) from U to C;
start() from C to A;
interruptible _1 {
rec X {
interruptible _2 { 1 C A U C A
rec Y { Teq(int) (2)

data() from A to U; _start ____ palse
continue Y; (1) T

V]\’Tiih { m________d_%"ia — B (1)

pause() by U;)
} [=y
resume() from U to A; | —-mmmm——oo-- e
continue X; vimeout | timeout
} } F i
with {

stop() by U;

timeout () by C;

3

32/42

MPST-based distributed protocol monitoring 1/3

req(int) to C;
interruptible _1 {

rec X { 17 2 - ﬂﬁ
interruptible _2 { : A?data |
rec Y { Clreq{int) . : r-}- :
data() from A; % r"m_n_ef‘%cflfgo |
| A - [|
continue Y; W A Ve
} } with { Alresume /Mpause
throws pause() to A; :1
¥ \. _ J
resume() to A; C7timeout J{C, A}!stop
continue X; f;ﬁi
} } with { Nt/

throws stop() to A, C;
catches timeout() from C;

¥

» Builds on formal MPST-FSM encoding
» Interruptible scopes modelled by dynamically nested FSMs

Projection and FSM for U

[ESOP12] Multiparty Session Types Meet Communicating Automata.
Deniélou and Yoshida.

33/42

MPST-based distributed protocol monitoring 2/3

with conv.join(’user’) as c:

c.send(controller, ’req’, 100) 1~ > . =,
. . . f §
with c.scope(’timeout’ ’stop’) as cl: | A?data |
while not self.enough_data(): : . -
)] Clreg{int) -
with cl.scope(’timeout’, ’stop’) as c2: —~ fﬂw‘ﬂEL$TTQ{i:> |
while not batch.full(): T anET)
next = c2.recv(agent, ’data’) A'resume /Mpmma
batch.append(next) 3
c2.interrupt (’pause’) 9 i P
process_data(batch) Criimscut) /40, AYistap
cl.send(agent, ’resume’) ﬁ:%
cl.interrupt(’stop’) hhﬁﬁ

» MPST monitoring requirements: complete mediation, Scribble
metadata (embedded in payload: msg. operator, source/dest.)

» Errors detected: non-conformance to protocol

» Local actions: bad /O, bad operator, bad source role, ...
» Remote: firewall exepected messages (operator, role)

34 /42

MPST-based distributed protocol monitoring 3/3

Untrusted typed

Untyped ~ N\ =
component {___'T./ ke qé : EORpnEn
|
|
|
|
|

|
X |
I I
I :
L
I | | ; = T - I
; : = #fi Monitored network Uitmsicd an: :
i 1 | Typed component |¢ |
| { typed component :
L
(| |

» Local monitoring of endpoint and environment conversation
actions

» Dynamic verification of MPST communication safety

[RV13] Practical Interruptible Conversations — Distributed Dynamic
Verification with Session Types and Python. Hu et al.

[FMOQODS13] Monitoring networks through multiparty session types. Bocchi
et al.

[TGC11] Asynchronous distributed monitoring for multiparty session
enforcement. Chun et al.

35 /42

Dynamic verification of MPST (with interruptible)

» MPST motivations:

» MPST type systems typically designed for languages with
first-class communication and concurrency features

» Distributed systems motivations:

» Heterogenous languages, runtime platforms, implementation
techniques, ...
» Unavailable source code

» OOl use case motivations:

» Python (untyped languages)
» OOl governance stack

» Interruptible:

» Dynamic creation of nested FSMs for fresh scope generation

36 /42

OOl Demo

37 /42

Static session type checking

» Session typing checks endpoint code against projections

» Built for a target language (extension) or API
» Mapping of protocol “constants” to program entities
» Conformance of control flow to protocol structure

session *s;
role *B, *Seller;
session_init(&argc, &argv, &s, "TwoBuyers_A.scr");
send_string(str_title, B, TITLE);
recv_int ("e, Seller, QUOTE);
while (true) {
probe_label (&label, B);
if (has_label(label, "accept")) {
vsend_string(result_str, 2, B, Seller);
break;
} else if (has_label(&label, "retry")) { continue;
} else if (has_label(&label, "quit")) { break;

I,

» C [TOOLS'12]|, OCaml [CSF'09], Java [COORD'10], others...

38 /42

Conclusion

» Scribble adapts MPST to practical distributed application
development

» Global protocol specification and validation
» Local projection and FSM generation
» Conversation APl and runtime endpoint monitoring

» Many future directions

» Extending Scribble/MPST to capture additional forms of

Interaction
» Integrating Scribble with other specification /programming

techniques
» Driven by use cases

» Reference list (from p18):
http://mrg.doc.ic.ac.uk/presentations/tgcl13/Augusti13.pdf

> https://github.com/scribble (demo’'d tools not fully available
just yet but soon)

39 /42

Binary Session Types Reading

» Honda, Vasconcelos and Kubo. Language Primitives and Type Discipline
for Structured Communication-Based Programming. In European
Symposium on Computing, volume 1381 of LNCS, pages 122-138.
Springer, 1998.

» Gay and Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2/3):191-225, 2005.

» Vasconcelos. Fundamentals of Session Types. Information and
Computation. Elsevier, 217:52-70, 2012.

» SePi, A pi-calculus based language with linearly refined session types,

http://gloss.di.fc.ul.pt/sepi/

» Caires, Pfenning and Toninho. Linear logic propositions as session types.

Mathematical Structures in Computer Science, 2013. To appear.

40 / 42

MPST Reading

» Multiparty asynchronous session types. Honda, Yoshida and Carbone.
POPL 2008

» Global progress in dynamically interleaved multiparty sessions. Bettini,
Coppo, D'Antoni, De Luca, Dezani-Ciancaglini and Yoshida. CONCUR
2008

» Scribbling interactions with a formal foundation. Honda, Mukhamedov,
Brown, Chen and Yoshida. ICDCIT 2011

» Asynchronous distributed monitoring for multiparty session enforcement.
Chen, Bocchi, Denilou, Honda and Yoshida. TGC 2011

» Structuring communication with session types. Honda, Hu, Neykova,
Chen, Demangeon, Denilou and Yoshida. COB 2012

41/ 42

MPST Reading

» Multiparty Session Types Meet Communicating Automata. Deniélou and
Yoshida. ESOP 2012

» Monitoring networks through multiparty session types. Bocchi, Chen,
Demangeon, Honda and Yoshida. FMOODS 2013

» Practical Interruptible Conversations — Distributed Dynamic Verification
with Session Types and Python. Hu, Neykova, Yoshida and Demangeon.
RV 2013

> More references (from p18):
http://mrg.doc.ic.ac.uk/presentations/tgc13/August13.pdf

42 / 42

	popl2014.key-bis
	main-bis

