
Explicit Connection Actions in
Multiparty Session Types

Raymond Hu and Nobuko Yoshida

Imperial College London

1 / 20



Outline
I Background: multiparty session types (MPST)

I Scribble: ongoing work on implementing and applying MPST to practice
× Standard MPST do not support sessions with dynamic or optional

involvement of participants

I MPST with explicit connection actions
I MP sessions as a dynamically evolving configuration of binary connections

I Modelling-based well-formedness for MPST protocols
I Session subtyping and role progress
I Multiparty correlation of binary connections

I Motivating examples
I Web services choreography (Travel Agency)
I Microservices industry use case (Supplier Info)
I Standardised application-layer protocol (FTP)

2 / 20



MPST (background)
I Standard presentation: three-layer framework

I Global type
G = A→ B :〈U1〉 . B → C :〈U2〉 . C → A :〈U3〉

Global description of multiparty message passing
protocol/choreography

Participants abstracted as roles
I Local types

TA = !〈B, U1〉 . ?〈C , U3〉
Localised view of the protocol for each role

I Endpoint processes
PA = a[A](x) . x !〈B, u1〉 . x?(C , y)

Perform I/O via special primitives on channels

I Communication safety is ensured for a parallel composition of well-typed
endpoints

[POPL08] Multiparty asynchronous session types. Honda, Yoshida and Carbone.
[CONCUR08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,

D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

3 / 20

G

TAlice TBob TCarol

PAlice PBob PCarol

Projection

Type checking



MPST (background)
I Standard presentation: three-layer framework

I Global type
G = A→ B :〈U1〉 . B → C :〈U2〉 . C → A :〈U3〉

Global description of multiparty message passing
protocol/choreography

Participants abstracted as roles
I Local types

TA = !〈B, U1〉 . ?〈C , U3〉
Localised view of the protocol for each role

I Endpoint processes
PA = a[A](x) . x !〈B, u1〉 . x?(C , y)

Perform I/O via special primitives on channels

I Communication safety is ensured for a parallel composition of well-typed
endpoints

[POPL08] Multiparty asynchronous session types. Honda, Yoshida and Carbone.
[CONCUR08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,

D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

3 / 20

G

TAlice TBob TCarol

PAlice PBob PCarol

Projection

Type checking



MPST (background)
I Standard presentation: three-layer framework

I Global type
G = A→ B :〈U1〉 . B → C :〈U2〉 . C → A :〈U3〉

Global description of multiparty message passing
protocol/choreography

Participants abstracted as roles
I Local types

TA = !〈B, U1〉 . ?〈C , U3〉
Localised view of the protocol for each role

I Endpoint processes
PA = a[A](x) . x !〈B, u1〉 . x?(C , y)

Perform I/O via special primitives on channels

I Communication safety is ensured for a parallel composition of well-typed
endpoints

[POPL08] Multiparty asynchronous session types. Honda, Yoshida and Carbone.
[CONCUR08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,

D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

3 / 20

G

TAlice TBob TCarol

PAlice PBob PCarol

Projection

Type checking



MPST (background)
I Standard presentation: three-layer framework

I Global type
G = A→ B :〈U1〉 . B → C :〈U2〉 . C → A :〈U3〉

Global description of multiparty message passing
protocol/choreography

Participants abstracted as roles
I Local types

TA = !〈B, U1〉 . ?〈C , U3〉
Localised view of the protocol for each role

I Endpoint processes
PA = a[A](x) . x !〈B, u1〉 . x?(C , y)

Perform I/O via special primitives on channels

I Communication safety is ensured for a parallel composition of well-typed
endpoints

[POPL08] Multiparty asynchronous session types. Honda, Yoshida and Carbone.
[CONCUR08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,

D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

3 / 20

G

TAlice TBob TCarol

PAlice PBob PCarol

Projection

Type checking



Web Services use case: Travel Agency
I W3C Choreography working group requirements use case

https://www.w3.org/TR/ws-chor-reqs/#UC-001

Client Agent Service

query(Str)

quote(Int)

pay(Str)

confirm(Int)

accpt(Int)

reject()

Loop

Alt

[ECOOP06] Session Types for Object-Oriented Languages. Dezani-Ciancaglini, Mostrous,
Yoshida and Drossopoulou. “Buyer-Seller-Shipper”

[CONCUR08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida. “Three-Buyer”

[FTPL16] Behavioral Types in Programming Languages. Ancona et al. “Customer-Agency”

4 / 20

https://www.w3.org/TR/ws-chor-reqs/#UC-001


Travel Agency in MPST (naive attempt)
I As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

× Not a valid global type
I “Unfinished role” error
I Ruled out by syntactic well-formedness:

Each involved participant must be present in all choice cases
I A session cannot have dynamic or optional involvement of participants

I MPST literature uses work arounds: e.g., adding extra messages,
decomposing into separate protocols, session delegation, ...

5 / 20



Travel Agency in MPST (naive attempt)
I As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

× Not a valid global type
I “Unfinished role” error
I Ruled out by syntactic well-formedness:

Each involved participant must be present in all choice cases
I A session cannot have dynamic or optional involvement of participants

I MPST literature uses work arounds: e.g., adding extra messages,
decomposing into separate protocols, session delegation, ...

5 / 20



Travel Agency in MPST (naive attempt)
I As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

× Not a valid global type
I “Unfinished role” error
I Ruled out by syntactic well-formedness:

Each involved participant must be present in all choice cases
I A session cannot have dynamic or optional involvement of participants

I MPST literature uses work arounds: e.g., adding extra messages,
decomposing into separate protocols, session delegation, ...

5 / 20



Travel Agency in MPST (naive attempt)
I As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

× Not a valid global type
I “Unfinished role” error
I Ruled out by syntactic well-formedness:

Each involved participant must be present in all choice cases
I A session cannot have dynamic or optional involvement of participants

I MPST literature uses work arounds: e.g., adding extra messages,
decomposing into separate protocols, session delegation, ...

5 / 20



Travel Agency in MPST (naive attempt)
I As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

× Not a valid global type
I “Unfinished role” error
I Ruled out by syntactic well-formedness:

Each involved participant must be present in all choice cases
I A session cannot have dynamic or optional involvement of participants

I MPST literature uses work arounds: e.g., adding extra messages,
decomposing into separate protocols, session delegation, ...

5 / 20



Travel Agency in MPST (naive attempt)
I As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

× Not a valid global type
I “Unfinished role” error
I Ruled out by syntactic well-formedness:

Each involved participant must be present in all choice cases
I A session cannot have dynamic or optional involvement of participants

I MPST literature uses work arounds: e.g., adding extra messages,
decomposing into separate protocols, session delegation, ...

5 / 20



Standard MPST operational semantics
I Session initation by a global atomic synchronisation
I Sender-asynchronous (non-blocking output), reliable, role-to-role ordering

C

A

S

I MPST safety: run-time session execution is safe from
I Reception errors
I Deadlocks
I Orphan messages

[CONCUR08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

6 / 20



Standard MPST operational semantics
I Session initation by a global atomic synchronisation
I Sender-asynchronous (non-blocking output), reliable, role-to-role ordering

C

A

S

I MPST safety: run-time session execution is safe from
I Reception errors
I Deadlocks
I Orphan messages

[CONCUR08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

6 / 20



Standard MPST operational semantics
I Session initation by a global atomic synchronisation
I Sender-asynchronous (non-blocking output), reliable, role-to-role ordering

C

A

S

I MPST safety: run-time session execution is safe from
I Reception errors
I Deadlocks
I Orphan messages

[CONCUR08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

6 / 20



Standard MPST operational semantics
I Session initation by a global atomic synchronisation
I Sender-asynchronous (non-blocking output), reliable, role-to-role ordering

C

A

S

I MPST safety: run-time session execution is safe from
I Reception errors
I Deadlocks
I Orphan messages

[CONCUR08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

6 / 20



Travel Agency in MPST (naive attempt)
I As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

× Not a valid global type
I “Unfinished role” error
I Ruled out by syntactic well-formedness:

Each involved participant must be present in all choice cases
I A session cannot have dynamic or optional involvement of participants

I MPST literature uses work arounds: e.g., adding extra messages,
decomposing into separate protocols, session delegation, ...

7 / 20

C

A

S



Travel Agency in MPST (naive attempt)
I As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

× Not a valid global type
I “Unfinished role” error
I Ruled out by syntactic well-formedness:

Each involved participant must be present in all choice cases
I A session cannot have dynamic or optional involvement of participants

I MPST literature uses work arounds: e.g., adding extra messages,
decomposing into separate protocols, session delegation, ...

7 / 20

C

A

S



Outline
I Background: multiparty session types (MPST)

I Scribble: ongoing work on implementing and applying MPST to practice
× Standard MPST do not support sessions with dynamic or optional

involvement of participants

I MPST with explicit connection actions
I MP sessions as a dynamically evolving configuration of binary connections

I Modelling-based well-formedness for MPST protocols
I Session subtyping and role progress
I Multiparty correlation of binary connections

I Motivating examples
I Web services choreography (Travel Agency)
I Microservices industry use case (Supplier Info)
I Standardised application-layer protocol (FTP)

8 / 20



Travel Agency in MPST with explicit connections
I Practical protocol specifications include explicit connection

request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

9 / 20

C

A

S



Travel Agency in MPST with explicit connections
I Practical protocol specifications include explicit connection

request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

9 / 20

C

A

S



Travel Agency in MPST with explicit connections
I Practical protocol specifications include explicit connection

request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

9 / 20

C

A

S



Travel Agency in MPST with explicit connections
I Practical protocol specifications include explicit connection

request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

9 / 20

C

A

S



Travel Agency in MPST with explicit connections
I Practical protocol specifications include explicit connection

request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

9 / 20

C

A

S



Validating MPST with explicit connection actions
I Dynamically established binary connections

I Role involvement guarded by initial connection accept
× Cannot apply standard (conservative) syntactic MPST well-formedness

I Previous works have studied MPST safety in terms of CFSM-based
well-formedness conditions (multiparty compatibility)

[ICALP13] Multiparty Compatibility in Communicating Automata. Deniélou and Yoshida.
[CONCUR15] Meeting Deadlines Together. Bocchi, Lange and Yoshida.

I Our approach: MPST protocol validation by a combination of syntactic
constraints and explicit error checking

I Adapt basic MPST syntactic constraints to our extended setting...
I ...that ensure soundness of checking a 1-bounded model of the protocol

10 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

I Global type grammar
I Role enabling
I Consistent external choices

choice at A {
1() from A to B;
1() connect A to C;
...

} or {
2() from A to B;
2() connect A to C;
...

}
I Globally-paired interactions
I Deterministic choices

11 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

I Global type grammar
I Role enabling
I Consistent external choices

choice at A {
1() from A to B;
1() connect A to C;
...

} or {
2() from A to B;
2() connect A to C;
...

}

11 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

I Global type grammar
I Role enabling
I Consistent external choices

choice at A {
1() from A to B;
//1() from A to C;
1() connect C to A; 7

} or {
2() from A to B;
2() connect A to C;
...

}

11 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

I Global type grammar
I Role enabling
I Consistent external choices

choice at A {
1() from A to B;
1() connect A to C;
...

} or {
2() connect A to C;
2() from A to B;
...

}

11 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

I Global type grammar
I Role enabling
I Consistent external choices

choice at A {
1() from A to B;
1() connect B to C;
...

} or {
2() from A to B;
2() connect B to C;
...

}

11 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

I Global type grammar
I Role enabling
I Consistent external choices

choice at A {
1() from A to B;
1() connect A to C;
...

} or {
2() from A to B;
2() connect B to C;
...

}

11 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

I Global type grammar
I Role enabling
I Consistent external choices

choice at A {
1() from A to B;
1() connect A to C;
...

} or {
2() from A to B;
2() from A to C;
...

}

11 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

12 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

12 / 20

G

TC TA TS

Projection



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

12 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

12 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

} or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

} }

12 / 20



Validating MPST with explicit connections
I Syntactic constraints
I MPST error checking

I MPST safety
I Reception errors, Orphan messages
I Unfinished roles, Connection/Disconnect/Unconnected errors

explicit global protocol Foo(role A, role B) {
connect A to B; ... disconnect A and B; do Foo(A, B); }

I MPST progress
I Eventual Reception, Role progress, Eventual Connection

I Soundness of 1-bounded MPST validation
Let S0 be the initial session of a wf(G) that is 1-safe and satisfies 1-progress.
Then S0 is safe and satisfies progress.

[ICALP13] Multiparty Compatibility in Communicating Automata. Deniélou and Yoshida.
[CONCUR15] Meeting Deadlines Together. Bocchi, Lange and Yoshida.

12 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {

new Travel_C_1(ep)

}

13 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {

new Travel_C_1(ep)
.

}

13 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =

new Travel_C_1(ep)
.connect(A, SocketChannelEndpoint::new,

host_A, port_A);

}

13 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =

new Travel_C_1(ep)
.connect(A, SocketChannelEndpoint::new,

host_A, port_A);
while (doQuery())

c2 = c2.

}

13 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =

new Travel_C_1(ep)
.connect(A, SocketChannelEndpoint::new,

host_A, port_A);
while (doQuery())

c2 = c2.send(A, query, getQuery())
.

}

13 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =

new Travel_C_1(ep)
.connect(A, SocketChannelEndpoint::new,

host_A, port_A);
while (doQuery())

c2 = c2.send(A, query, getQuery())
.receive(A, quote, buf);

}

13 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =

new Travel_C_1(ep)
.connect(A, SocketChannelEndpoint::new,

host_A, port_A);
while (doQuery())

c2 = c2.send(A, query, getQuery())
.receive(A, quote, buf);

c2.connect(S, SocketChannelEndpoint::new,
host_S, port_S)

.send(S, pay, "payment details")

.receive(S, confirm, buf)

.send(A, accpt, buf.val);
}

13 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =

new Travel_C_1(ep)
.connect(A, SocketChannelEndpoint::new,

host_A, port_A);
while (doQuery())

c2 = c2.send(A, query, getQuery())
.receive(A, quote, buf);

c2.connect(S, SocketChannelEndpoint::new,
host_S, port_S)

.send(S, pay, "payment details")

.receive(S, confirm, buf)

.send(A, accpt, buf.val);
}

13 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =

new Travel_C_1(ep)
.connect(A, SocketChannelEndpoint::new,

host_A, port_A);
while (doQuery())

c2 = c2.send(A, query, getQuery())
.receive(A, quote, buf);

c2.connect(S, SocketChannelEndpoint::new,
host_S, port_S)

.send(S, pay, 1234)

.receive(S, confirm, buf)

.send(A, accpt, b.val);
}

13 / 20



MPST endpoint implementation via API generation
I Validated MPST used to generate Java endpoint APIs

I Generated APIs promote hybrid approach to session safety [FASE16]
I Endpoint FSM structures captured as statically-typed call-chaining APIs
I Usage contract of API is to use every “state channel” instance exactly once
I Enforced by run-time channel linearity checks

try (ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =

new Travel_C_1(ep)
.connect(A, SocketChannelEndpoint::new,

host_A, port_A);
while (doQuery())

c2 = c2.send(A, query, getQuery())
.receive(A, quote, buf);

c2.connect(S, SocketChannelEndpoint::new,
host_S, port_S)

.send(S, pay, "payment details")
//.receive(S, confirm, buf)
.send(A, accpt, b.val);

}

13 / 20



“Naive” session subtyping
I The first naive attempt at Travel Agency is invalid

I (Non-explicit protocols checked by assuming all roles pre-connected)

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject from C to A;

} }

× S is “unfinished” in the reject case
× Role progress may also be violated for S in the query case

(without assuming some notion of fairness)

14 / 20



“Naive” session subtyping
I The first naive attempt at Travel Agency is invalid

I (Non-explicit protocols checked by assuming all roles pre-connected)

global protocol Travel(role C, role A, role S) {
choice at C {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject from C to A;

} }

× S is “unfinished” in the reject case
× Role progress may also be violated for S in the query case

(without assuming some notion of fairness)

14 / 20



Output choices and role progress
I Related to session subtyping

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; 1() from A to C; }

or { 2() from A to B; 2() from A to C; }
do Foo(A, B, C);

}

[ACTA05] Subtyping for session types in the pi calculus. Gay and Hole.
[MSCS16] Fair subtyping for multiparty sessions. Padovani.

15 / 20



Output choices and role progress
I Related to session subtyping

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; }

or { 2() from A to C; }
do Foo(A, B, C);

}

[ACTA05] Subtyping for session types in the pi calculus. Gay and Hole.
[MSCS16] Fair subtyping for multiparty sessions. Padovani.

15 / 20



Output choices and role progress

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; }

or { 2() from A to C; }
do Foo(A, B, C);

}

[ACTA05] Subtyping for session types in the pi calculus. Gay and Hole.
[MSCS16] Fair subtyping for multiparty sessions. Padovani.

I We implement two basic views:
I Fair output choices (as modelled so far)
I “Most unfair” – while still session type safe

I Endpoints commit to a single case in any output choice
(Extreme “naive” output choice subtyping)

I Modelled by a transformation on endpoint FSMs

15 / 20



Output choices and role progress

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; }

or { 2() from A to C; }
do Foo(A, B, C);

}

A

B!1

C!1

A :B!1

B :A?1 A :C!2
C :A?2

A :C!2
C :A?2 A :B!1

A :B?1

15 / 20



Output choices and role progress

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; }

or { 2() from A to C; }
do Foo(A, B, C);

}

A
B!1

B!1

C!2

C!2

A :B!1

B :A?1
A :B!1

A :C!2

C :A?2
A :C!2

15 / 20



Output choices and role progress

explicit global protocol Foo(role A, role B, role C) {
choice at A { 1() connect A to B; disconnect A and B; }

or { 2() connect A to C; disconnect A and C; }
do Foo(A, B, C);

}

A
B!!1

B#
B!!1

C!!2

C#
C!!2

B

A??1 A#

15 / 20



Output choices and role progress

I OK if fairness assumed
global protocol Foo(role A, role B, role C) {

choice at A {
1() from A to B;
do Foo(A, B, C);

} or {
2() from A to B;
2() from B to C;

} }

15 / 20



Multiparty correlation of binary connections
I Modelling based on a single session with one endpoint process per role

I Connection mechanism (in particular, addressing) left abstract
I In practice: correlation by session identifier tags, port coordination, . . .

connect A to B; .. connect A to C; .. connect B to C; ...

I Travel Agency (accpt case) with dynamic port forwarding

16 / 20



Multiparty correlation of binary connections
I Modelling based on a single session with one endpoint process per role

I Connection mechanism (in particular, addressing) left abstract
I In practice: correlation by session identifier tags, port coordination, . . .

connect A to B; .. connect A to C; .. connect B to C; ...

I Travel Agency (accpt case) with dynamic port forwarding
...
accpt() from C to A;
connect A to S;
port(Int) from S to A;
port(Int) from A to C;
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
...

16 / 20

C

A

S



Multiparty correlation of binary connections
I Modelling based on a single session with one endpoint process per role

I Connection mechanism (in particular, addressing) left abstract
I In practice: correlation by session identifier tags, port coordination, . . .

connect A to B; .. connect A to C; .. connect B to C; ...

I Travel Agency (accpt case) with dynamic port forwarding
...
accpt() from C to A;
connect A to S;
port(Int) from S to A;
port(Int) from A to C;
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
...

16 / 20

C

A

Sp

p



Multiparty correlation of binary connections
I Modelling based on a single session with one endpoint process per role

I Connection mechanism (in particular, addressing) left abstract
I In practice: correlation by session identifier tags, port coordination, . . .

connect A to B; .. connect A to C; .. connect B to C; ...

I Travel Agency (accpt case) with dynamic port forwarding
...
accpt() from C to A;
connect A to S;
port(Int) from S to A;
port(Int) from A to C;
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
...

16 / 20

C

A

S



Multiparty correlation of binary connections
I Modelling based on a single session with one endpoint process per role

I Connection mechanism (in particular, addressing) left abstract
I In practice: correlation by session identifier tags, port coordination, . . .

connect A to B; .. connect A to C; .. connect B to C; ...

I Travel Agency (accpt case) with dynamic port forwarding
...
accpt() from C to A;
connect A to S;
port(p:Int) from S to A; @"open=p:C"
port(p) from A to C;
connect C to S; @"port=p"
pay(Str) from C to S;
confirm(Int) from S to C;
...

[RV13] Practical interruptible conversations. Hu, Neykova, Yoshida, Demangeon and Honda.

16 / 20



Multiparty correlation of binary connections
I Modelling based on a single session with one endpoint process per role

I Connection mechanism (in particular, addressing) left abstract
I In practice: correlation by session identifier tags, port coordination, . . .

connect A to B; .. connect A to C; .. connect B to C; ...

I Travel Agency (accpt case) with dynamic port forwarding
...
accpt() from C to A;
connect A to S;
port(p:Int) from S to A; @"open=p:C"
//port(p) from A to C;
connect C to S; @"port=p" 7
pay(Str) from C to S;
confirm(Int) from S to C;
...

[RV13] Practical interruptible conversations. Hu, Neykova, Yoshida, Demangeon and Honda.

16 / 20



Multiparty correlation of binary connections
I Modelling based on a single session with one endpoint process per role

I Connection mechanism (in particular, addressing) left abstract
I In practice: correlation by session identifier tags, port coordination, . . .

connect A to B; .. connect A to C; .. connect B to C; ...

I Travel Agency (accpt case) with dynamic port forwarding
...
accpt() from C to A;
connect A to S;
port(p:Int) from S to A; @"open=p:C"
port(p) from A to C;
connect C to S; @"port=p"
pay(Str) from C to S;
confirm(Int) from S to C;
...

s_C.receive(A, port).connect(S, ..., host_S, pay, "payment details")...

s_A.receive(S, port).send(C, port)...

s_S.send(A, port).accept(C, pay, b)...

16 / 20



Multiparty correlation of binary connections
I Modelling based on a single session with one endpoint process per role

I Connection mechanism (in particular, addressing) left abstract
I In practice: correlation by session identifier tags, port coordination, . . .

connect A to B; .. connect A to C; .. connect B to C; ...

I Travel Agency (accpt case) with dynamic port forwarding
...
accpt() from C to A;
connect A to S;
port(p:Int) from S to A; @"open=p:C"
port(p) from A to C;
connect C to S; @"port=p"
pay(Str) from C to S;
confirm(Int) from S to C;
...

s_C.receive(A, port).connect(S, ..., host_S, pay, "payment details")...

s_A.receive(S, port).send(C, port)...

s_S.send(A, port).accept(C, pay, b)...

16 / 20



Multiparty correlation of binary connections
I Modelling based on a single session with one endpoint process per role

I Connection mechanism (in particular, addressing) left abstract
I In practice: correlation by session identifier tags, port coordination, . . .

connect A to B; .. connect A to C; .. connect B to C; ...

I Travel Agency (accpt case) with dynamic port forwarding
...
accpt() from C to A;
connect A to S;
port(p:Int) from S to A; @"open=p:C"
port(p) from A to C;
connect C to S; @"port=p"
pay(Str) from C to S;
confirm(Int) from S to C;
...

s_C.receive(A, port).connect(S, ..., host_S, pay, "payment details")...

s_A.receive(S, port).send(C, port)...

s_S.send(A, port).accept(C, pay, b)...

16 / 20



FTP (active/passive modes)
220 from S to C;
USER from C to S;
choice at S {

331 from S to C;
PASS from C to S;
choice at S {

230 from S to C;
choice at C {

PASV from C to S; // Passive mode
choice at S {

227(p:Int) from S to C; @"open=p:C"
...

} or {
...

}
} or {

PORT(q:Int) from C to S; @"open=q:S" // Active mode
choice at S {

200 from S to C;
...

}
} or {

...
} } }

17 / 20



Microservices use case
explicit global protocol InfoAuth

(role LoginSvc, role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {

connect Client to LoginSvc;
login(UserName, password) from Client to LoginSvc;
choice at LoginSvc {

loginfailure() from LoginSvc to Client;
} or {

loginsuccess() from LoginSvc to Client;
disconnect Client and LoginSvc;
connect Client to AuthSvc;
do Main(Client, AuthSvc, Filtersvc,

SupplierSvc, ContractSvc);
} }

aux global protocol Main
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {

choice at Client {
getsuppliers(UUID) from Client to AuthSvc;
do SuppInfo(Client, AuthSvc,

Filtersvc, SupplierSvc);
} or {

getcontracts() from Client to AuthSvc;
do ContractInfo(Client, AuthSvc,

Filtersvc, ContractSvc);
}
do Main(Client, AuthSvc, Filtersvc,

SupplierSvc, ContractSvc);
}

aux global protocol SuppInfo
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc) {

choice at AuthSvc {
deny() from AuthSvc to Client;

} or {
connect AuthSvc to SupplierSvc;
getsuppliers() from AuthSvc to SupplierSvc;
suppliers() from SupplierSvc to AuthSvc;
disconnect AuthSvc and SupplierSvc;
do FilterInfo

<Filtersuppliers(UserContext,
Filters, SupplierDetails)>

(AuthSvc, Filtersvc);
suppliers() from AuthSvc to Client;

}
}

aux global protocol ContractInfo
(role Client, role AuthSvc,
role Filtersvc, role ContractSvc) {

choice at AuthSvc {
...

} }

aux global protocol FilterInfo
<sig Query>
(role AuthSvc, role Filtersvc) {

Query connect AuthSvc to Filtersvc;
filtered() from Filtersvc to AuthSvc;
disconnect AuthSvc and Filtersvc;

}

18 / 20



Microservices use case
explicit global protocol InfoAuth

(role LoginSvc, role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {

connect Client to LoginSvc;
login(UserName, password) from Client to LoginSvc;
choice at LoginSvc {

loginfailure() from LoginSvc to Client;
} or {

loginsuccess() from LoginSvc to Client;
disconnect Client and LoginSvc;
connect Client to AuthSvc;
do Main(Client, AuthSvc, Filtersvc,

SupplierSvc, ContractSvc);
} }

aux global protocol Main
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {

choice at Client {
getsuppliers(UUID) from Client to AuthSvc;
do SuppInfo(Client, AuthSvc,

Filtersvc, SupplierSvc);
} or {

getcontracts() from Client to AuthSvc;
do ContractInfo(Client, AuthSvc,

Filtersvc, ContractSvc);
}
do Main(Client, AuthSvc, Filtersvc,

SupplierSvc, ContractSvc);
}

aux global protocol SuppInfo
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc) {

choice at AuthSvc {
deny() from AuthSvc to Client;

} or {
connect AuthSvc to SupplierSvc;
getsuppliers() from AuthSvc to SupplierSvc;
suppliers() from SupplierSvc to AuthSvc;
disconnect AuthSvc and SupplierSvc;
do FilterInfo

<Filtersuppliers(UserContext,
Filters, SupplierDetails)>

(AuthSvc, Filtersvc);
suppliers() from AuthSvc to Client;

}
}

aux global protocol ContractInfo
(role Client, role AuthSvc,
role Filtersvc, role ContractSvc) {

choice at AuthSvc {
...

} }

aux global protocol FilterInfo
<sig Query>
(role AuthSvc, role Filtersvc) {

Query connect AuthSvc to Filtersvc;
filtered() from Filtersvc to AuthSvc;
disconnect AuthSvc and Filtersvc;

}

18 / 20



Microservices use case
explicit global protocol InfoAuth

(role LoginSvc, role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {

connect Client to LoginSvc;
login(UserName, password) from Client to LoginSvc;
choice at LoginSvc {

loginfailure() from LoginSvc to Client;
} or {

loginsuccess() from LoginSvc to Client;
disconnect Client and LoginSvc;
connect Client to AuthSvc;
do Main(Client, AuthSvc, Filtersvc,

SupplierSvc, ContractSvc);
} }

aux global protocol Main
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {

choice at Client {
getsuppliers(UUID) from Client to AuthSvc;
do SuppInfo(Client, AuthSvc,

Filtersvc, SupplierSvc);
} or {

getcontracts() from Client to AuthSvc;
do ContractInfo(Client, AuthSvc,

Filtersvc, ContractSvc);
}
do Main(Client, AuthSvc, Filtersvc,

SupplierSvc, ContractSvc);
}

aux global protocol SuppInfo
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc) {

choice at AuthSvc {
deny() from AuthSvc to Client;

} or {
connect AuthSvc to SupplierSvc;
getsuppliers() from AuthSvc to SupplierSvc;
suppliers() from SupplierSvc to AuthSvc;
disconnect AuthSvc and SupplierSvc;
do FilterInfo

<Filtersuppliers(UserContext,
Filters, SupplierDetails)>

(AuthSvc, Filtersvc);
suppliers() from AuthSvc to Client;

}
}

aux global protocol ContractInfo
(role Client, role AuthSvc,
role Filtersvc, role ContractSvc) {

choice at AuthSvc {
...

} }

aux global protocol FilterInfo
<sig Query>
(role AuthSvc, role Filtersvc) {

Query connect AuthSvc to Filtersvc;
filtered() from Filtersvc to AuthSvc;
disconnect AuthSvc and Filtersvc;

}

18 / 20



Microservices use case
explicit global protocol InfoAuth

(role LoginSvc, role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {

connect Client to LoginSvc;
login(UserName, password) from Client to LoginSvc;
choice at LoginSvc {

loginfailure() from LoginSvc to Client;
} or {

loginsuccess() from LoginSvc to Client;
disconnect Client and LoginSvc;
connect Client to AuthSvc;
do Main(Client, AuthSvc, Filtersvc,

SupplierSvc, ContractSvc);
} }

aux global protocol Main
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {

choice at Client {
getsuppliers(UUID) from Client to AuthSvc;
do SuppInfo(Client, AuthSvc,

Filtersvc, SupplierSvc);
} or {

getcontracts() from Client to AuthSvc;
do ContractInfo(Client, AuthSvc,

Filtersvc, ContractSvc);
}
do Main(Client, AuthSvc, Filtersvc,

SupplierSvc, ContractSvc);
}

aux global protocol SuppInfo
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc) {

choice at AuthSvc {
deny() from AuthSvc to Client;

} or {
connect AuthSvc to SupplierSvc;
getsuppliers() from AuthSvc to SupplierSvc;
suppliers() from SupplierSvc to AuthSvc;
disconnect AuthSvc and SupplierSvc;
do FilterInfo

<Filtersuppliers(UserContext,
Filters, SupplierDetails)>

(AuthSvc, Filtersvc);
suppliers() from AuthSvc to Client;

}
}

aux global protocol ContractInfo
(role Client, role AuthSvc,
role Filtersvc, role ContractSvc) {

choice at AuthSvc {
...

} }

aux global protocol FilterInfo
<sig Query>
(role AuthSvc, role Filtersvc) {

Query connect AuthSvc to Filtersvc;
filtered() from Filtersvc to AuthSvc;
disconnect AuthSvc and Filtersvc;

}

18 / 20



Related work
I Dynamic participation in sessions/conversations

[ESOP09] Conversation types. Caires and Vieira.
[POPL11] Dynamic multirole session types. Deniélou and Yoshida.

[CONCUR12] Nested protocols in session types. Demangeon and Honda.

I Dynamic message sequence charts and communication automata
[FSTTCS02] Dynamic message sequence charts. Leucker, Madhusudan and Mukhopadhyay.

[LATA13] Dynamic communication automata and branching high-level MSCs. Bollig, Cyriac,
Hélou et, Jara and Schwentick.

I CFSM-based well-formedness of choreographies and MPST
[POPL08] Deciding choreography realizability. Basu and Bultan.
[ICALP13] Multiparty Compatibility in Communicating Automata. Deniélou and Yoshida.

[CONCUR15] Meeting Deadlines Together. Bocchi, Lange and Yoshida.
[PLACES16] Multiparty compatibility for concurrent objects. Perera, Lange and Gay.

I Implementations of session types
Java ([ECOOP08,SCP13,PPDP16,FASE16]), Scala ([ECOOP16,ECOOP17]),
Haskell ([PADL04,HASKELL08,PLACES10,POPL16,HASKELL16]),
OCaml ([JFP17,ESOP17,COORDINATION17]), SILL ([ESOP13,FoSSaCS15]),
Links ([ESOP15]), Python ([RV13]), Rust ([WGP15]), C ([TOOLS12]),
. . .

19 / 20



Conclusions and future work
I (We can finally do Travel Agency in MPST!)

I Practically-motivated extension for explicit connection actions in MPST
I Scribble toolchain for MPST validation and Endpoint API generation

I Integrating MPST with existing model checking techniques and tools
[TACAS16] Characteristic Formulae for Session Types. Lange and Yoshida.

I (The session type system – interplay with delegation)

I Other kinds of communication actions? e.g., SSL/TLS connection
wrapping (HTTPS, SMTP, FTPS, ...)

I Integration of further extensions from MPST theory
I e.g., time, asynchronous interrupts, nested subsessions, message value

assertions, role parameterisations, event handling, . . .

I Thanks!
I https://github.com/scribble/scribble-java
I https://www.doc.ic.ac.uk/˜rhu/scribble/explicit.html

20 / 20

https://github.com/scribble/scribble-java
https://www.doc.ic.ac.uk/~rhu/scribble/explicit.html

