Explicit Connection Actions in
Multiparty Session Types

Raymond Hu and Nobuko Yoshida

Imperial College London

Outline

» Background: multiparty session types (MPST)

> Scribble: ongoing work on implementing and applying MPST to practice
x Standard MPST do not support sessions with dynamic or optional
involvement of participants

» MPST with explicit connection actions

MPST (background)

» Standard presentation: three-layer framework

Projection

N,

i}
’ TBob ‘ ’ Tcarol
{

’ Thlice

Type checking

’ PAIice

’ Pgob ‘ ’ Pcarol

» Communication safety is ensured for a parallel composition of well-typed
endpoints

[POPLO8] Multiparty asynchronous session types. Honda, Yoshida and Carbone.

[CONCURO08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

MPST (background)

» Standard presentation: three-layer framework
> Global type
G=A— BZ<U1> .B— C<U2> . C—>A<U3>

Global description of multiparty message passing
protocol /choreography
Participants abstracted as roles

e

Projection

N,

’ Thlice

’ TBob ‘ ’ Tcarol
{

Type checking

’ PAIice

’ Pgob ‘ ’ Pcarol

» Communication safety is ensured for a parallel composition of well-typed

endpoints

[POPLO8] Multiparty asynchronous session types. Honda, Yoshida and Carbone.

[CONCURO08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,

D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

n

MPST (background)

» Standard presentation: three-layer framework

> Global type
G=A— BZ<U1> .B— C<U2> . C—>A<U3>
Global description of multiparty message passing
protocol /choreography
Participants abstracted as roles / Projection \
> Local types ’ TAIice ’ TBob ‘ ’ TCaroI
Ta=YB,U).72(C,Us) {
Localised view of the protocol for each role Type checking
’ PAIice ’ PBob ‘ ’ PCaroI

» Communication safety is ensured for a parallel composition of well-typed
endpoints

[POPLO8] Multiparty asynchronous session types. Honda, Yoshida and Carbone.

[CONCURO08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

o

MPST (background)

» Standard presentation: three-layer framework
> Global type
G=A— BZ<U1> .B— C<U2> . C—>A<U3>

Global description of multiparty message passing
protocol /choreography
Participants abstracted as roles

> Local types
Ta=YB,U).72(C,Us)
Localised view of the protocol for each role
» Endpoint processes
Pa = a[A](x) . x!{B, u1) . x?(C,y)
Perform 1/0 via special primitives on channels

e

Projection

N,

’ Thlice

’ TBob ‘ ’ Tcarol
{

Type checking

’ PAIice

’ Pgob ‘ ’ Pcarol

» Communication safety is ensured for a parallel composition of well-typed

endpoints

[POPLO8] Multiparty asynchronous session types. Honda, Yoshida and Carbone.

[CONCURO08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,

D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

Web Services use case: Travel Agency

» W3C Choreography working group requirements use case
https://www.w3.org/TR/ws-chor-reqs/#UC-001

Client Agent Service

Loop query (Str)
_ -

quote(Int)
-— "

Alt pay (Str)

confirm(Int)

accpt (Int)

[ECOOPOQ6] Session Types for Object-Oriented Languages. Dezani-Ciancaglini, Mostrous,
Yoshida and Drossopoulou. “Buyer-Seller-Shipper”

[CONCURO08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida. “Three-Buyer”

[FTPL16] Behavioral Types in Programming Languages. Ancona et al. “Customer-Agency”

https://www.w3.org/TR/ws-chor-reqs/#UC-001

Travel Agency in MPST (naive attempt)

» As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);
} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;
} or {
reject() from C to A;
o}

Travel Agency in MPST (naive attempt)

» As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);
}or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;
}or {
reject() from C to A;
} o3

Travel Agency in MPST (naive attempt)

» As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);
} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;
} or {
reject() from C to A;
r o

Travel Agency in MPST (naive attempt)

» As a Scribble global protocol (asynchronous MPST global type):

Travel (c, A, S) {
c{
query (Str) C A;
quote (Int) A C;
Travel(C, A, S);

} {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} {
reject() ¢ A;

Travel Agency in MPST (naive attempt)

» As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);
} or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;
} or {
reject() from C to A;
r o

Travel Agency in MPST (naive attempt)
» As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);
}or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;
} or {
reject() from C to A;
} o}

x Not a valid global type

Standard MPST operational semantics

» Session initation by a global atomic synchronisation

© 0

[CONCURO08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

6/20

Standard MPST operational semantics
» Sender-asynchronous (non-blocking output), reliable, role-to-role ordering

[CONCURO08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

6

20

Standard MPST operational semantics

» Sender-asynchronous (non-blocking output), reliable, role-to-role ordering

Q=

%ﬁ

[CONCURO08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

Standard MPST operational semantics

» Sender-asynchronous (non-blocking output), reliable, role-to-role ordering

Q=

%ﬁ

» MPST safety: run-time session execution is safe from

> Reception errors
> Deadlocks
> Orphan messages

[CONCURO08] Global progress in dynamically interleaved multiparty sessions. Bettini, Coppo,
D’Antoni, Luca, Dezani-Ciancaglini and Yoshida.

Travel Agency in MPST (naive attempt)

» As a Scribble global protocol (asynchronous MPST global type):
global protocol Travel(role C, role A, role S) {

query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

=
reject() from C to A; & y
}

x Not a valid global type
> “Unfinished role” error
> Ruled out by syntactic well-formedness:
Each involved participant must be present in all choice cases

n

Travel Agency in MPST (naive attempt)
» As a Scribble global protocol (asynchronous MPST global type):

global protocol Travel(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);

}or {
pay(Str) from C to S;
confirm(Int) from S to C; 4 K
accpt(Int) from C to A; ° e
}oor {

reject() from C to A; & y
o ©

x Not a valid global type

> “Unfinished role” error
> Ruled out by syntactic well-formedness:
Each involved participant must be present in all choice cases
> A session cannot have dynamic or optional involvement of participants

» MPST literature uses work arounds: e.g., adding extra messages,
decomposing into separate protocols, session delegation, ...

n

Outline

» MPST with explicit connection actions

» MP sessions as a dynamically evolving configuration of binary connections

> Modelling-based well-formedness for MPST protocols
> Session subtyping and role progress
> Multiparty correlation of binary connections

> Motivating examples

> Web services choreography (Travel Agency)
> Microservices industry use case (Supplier Info)
> Standardised application-layer protocol (FTP)

n

Travel Agency in MPST with explicit connections

» Practical protocol specifications include explicit connection
request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {

choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

}or {
connect C to S; (::) (i::>
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} oor { Ei:)
reject() from C to A;
ol

9/20

Travel Agency in MPST with explicit connections

» Practical protocol specifications include explicit connection
request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {

}

connect C to A;
do Main(C, A, S);

aux global protocol Main(role C, role A, role S) {

choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

}or {

connect C to S; o

pay(Str) from C to S;

confirm(Int) from S to C; '@

accpt(Int) from C to A;

. ()
reject() from C to A;

0,

/20

Travel Agency in MPST with explicit connections

» Practical protocol specifications include explicit connection
request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);
} or {

pay(Str) from C to S;

confirm(Int) from S to C; '@

accpt(Int) from C to A;

}or {
reject() from C to A; o
o}

connect C to S; o LI e

/20

Travel Agency in MPST with explicit connections

» Practical protocol specifications include explicit connection
request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);
} or {

connect C to S; o @

pay(Str) from C to S;

confirm(Int) from S to C; '@

accpt(Int) from C to A;

} or {
reject() from C to A; o
Yo}

Travel Agency in MPST with explicit connections

» Practical protocol specifications include explicit connection
request/accept (and disconnect) actions

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);
}or {

connect C to S; e L _F e
I

pay(Str) from C to S;

confirm(Int) from S to C; \@‘

accpt(Int) from C to A;

} or {
reject() from C to A; °
} 3

9/20

Validating MPST with explicit connection actions

» Dynamically established binary connections

> Role involvement guarded by initial connection accept
x Cannot apply standard (conservative) syntactic MPST well-formedness

> Previous works have studied MPST safety in terms of CFSM-based
well-formedness conditions (multiparty compatibility)

1 ultiparty Compatibility in Communicating Automata. Deniélou and Yoshida.
ICALP13] Mul C bill C A Deniél d Yoshid
[CONCUR15] Meeting Deadlines Together. Bocchi, Lange and Yoshida.

» Our approach: MPST protocol validation by a combination of syntactic
constraints and explicit error checking

» Adapt basic MPST syntactic constraints to our extended setting...
> ...that ensure soundness of checking a I-bounded model of the protocol

Validating MPST with explicit connections

» Syntactic constraints

» Global type grammar

choice at A {
1() from A to B;
1() connect A to C;

}or {
2() from A to B;
2() connect A to C;

}
> Globally-paired interactions
> Deterministic choices

11/20

Validating MPST with explicit connections

» Syntactic constraints

» Role enabling

choice at A {
1() from A to B;
1() connect A to C;

}or {
2() from A to B;
2() connect A to C;

11/20

Validating MPST with explicit connections

» Syntactic constraints

» Role enabling

choice at A {

1() from A to B;

//1() from A to C;

1() connect C to A; X
}or {

2() from A to B;

2() connect A to C;

11/20

Validating MPST with explicit connections

» Syntactic constraints

» Role enabling

choice at A {
1() from A to B;
1() connect A to C;

}or {
2() connect A to C;
2() from A to B;

11/20

Validating MPST with explicit connections

» Syntactic constraints

» Consistent external choices

choice at A {
1() from A to B;
1() connect B to C;

}or {
2() from A to B;
2() connect B to C;

11/20

Validating MPST with explicit connections

» Syntactic constraints

» Consistent external choices

choice at A {
1() from A to B;
1() connect A to C;

}or {
2() from A to B;
2() connect B to C;

11/20

Validating MPST with explicit connections

» Syntactic constraints

» Consistent external choices

choice at A {
1() from A to B;
1() connect A to C;

}or {
2() from A to B;
2() from A to C;

11/20

Validating MPST with explicit connections

» MPST error checking

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);

}

aux global protocol Main(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);
}or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;
}oor {
reject() from C to A;
} 3

12 /20

Validating MPST with explicit connections

» MPST error checking

Travel (role C, A, S) {

connect C to A;

do Main(C, A, S);

}
Main(role C, A, S) {

choice at C {
query (Str) C to A;
quote(Int) from A C;
do Main(C, A, S);

For A Projection
connect C to S; / \
pay(Str) C to S; T T T
confirm(Int) from S C; ’ c ‘ ’ A ‘ ’ S ‘
accpt (Int) C to A;

}or {
reject () C to A;

o7

12 /20

Validating MPST with explicit connections

» MPST error checking

role C
connect to A
do Main(C)

role C

choice at C {

query (Str) to A

quote(Int) from A

do Main(C)
} or {

connect to S

pay (Str) to S

confirm(Int) from S

accpt (Int) to A;
}or {

reject () to A;

|A!reject()

Alaccpt(Int)

12 /20

Validating MPST with explicit connections

» MPST error checking

explicit global protocol Travel(role C, role A, role S) {
connect C to A;
do Main(C, A, S);
}

aux global protocol Main(role C, role A, role S) {

choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

}or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

L

12 /20

Validating MPST with explicit connections

» MPST error checking

explicit global protocol Travel (r¢
connect C to A;
do Main(C, A, S);

aux global protocol Main(role C, 1

choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Main(C, A, S);

}or {
connect C to S;
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

} or {
reject() from C to A;

S2Cipay(Str)

AlC:quote(Int)

31Ccontfirm(Int)

273 confirm(Int)

Validating MPST with explicit connections

» MPST error checking
» MPST safety

» Reception errors, Orphan messages

» Unfinished roles, Connection/Disconnect/Unconnected errors

explicit global protocol Foo(role A, role B) {
connect A to B; ... disconnect A and B; do Foo(A, B); }

» MPST progress

> Eventual Reception, Role progress, Eventual Connection
» Soundness of 1-bounded MPST validation

Let So be the initial session of a wf(G) that is 1-safe and satisfies 1-progress.

Then Sq is safe and satisfies progress.

[ICALP13] Multiparty Compatibility in Communicating Automata. Deniélou and Yoshida.
[CONCUR15] Meeting Deadlines Together. Bocchi, Lange and Yoshida.

o

n

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once
> Enforced by run-time channel linearity checks

new Travel_C_1

Alreject()

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once
> Enforced by run-time channel linearity checks

new Travel_C_1(ep)

Alquery(Str)

@ connect(A role, Callable<? extends BinaryChannelEndpeint> cons, String host, int port) : Travel_C_2 - Travel C_1 ~

Stpay(Str)
Alreject()

S 2confirn(Int)

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once
> Enforced by run-time channel linearity checks

Travel_C_2 c2 =

.connect (4, SocketChannelEndpoint::new,
host_A, port_A);

Stpay(Str)

Alreject()

S 2confirn(Int)

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once
> Enforced by run-time channel linearity checks

(ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =
Travel_C_1(ep)
(A, SocketChannelEndpoint:: s
host_A, port_A);
(doQuery())
c2.

@ connect(5 role, Callable<? extends BinaryChannelEndpoint> cons, String host, int pert) : Travel _C_4 - Trav:

@ send(A role, reject op) : EndSocket - Travel C 2
@ send(A role, query op, String arg0) : Travel_C_3 - Travel C_2

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once
> Enforced by run-time channel linearity checks

c2.send(4, query, getQuery())

Stpay(Str)

@ receive(A role, quote op, Buf<? super Integer> arg1): Travel_C_2 - Travel_C_3

S 2confirn(Int)

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once
> Enforced by run-time channel linearity checks

c2 = c2.send(4, query, getQuery())
.receive(4, quote, buf);

Alreject()

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once

> Enforced by run-time channel linearity checks

(ExplicitEndpoint<Travel, C> ep = ...) {

Travel_C_2 c2

Travel_C_1(ep)
(A, SocketChannelEndpoint:: s

host_A, port_A);

(doQuery())
c2 = c2. (A, query, getQuery())

(A, quote, buf);
connect (S, SocketChannelEndpoint::new,
host_S, port_S)
.send(S, pay, "payment details")
receive(S, confirm, buf)
.send(4, accpt, buf.val);

c2.

Alreject()

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once

> Enforced by run-time channel linearity checks

(ExplicitEndpoint<Travel, C> ep = ...) {

Travel_C_2 c2 =
Travel_C_1(ep)
(A, SocketChannelEndpoint:: s
host_A, port_A);
(doQuery())
c2 = c2. (A, query, getQuery())
(A, quote, buf);
c2.connect (S, SocketChannelEndpoint: :new,
host_S, port_S)
.send(S, pay, "payment details")
.receive(S, confirm, buf)
.send(4, accpt, buf.val);

} | @ EndSocket Travel_C_6.send(A role, accpt op, Integer arg0) throws ScribbleRuntimeException, 10Excep
Alacept(Int)

Alreject()

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once
> Enforced by run-time channel linearity checks

(ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =

Travel_C_1(ep)

(A, SocketChannelEndpoint:: s
host_A, port_A);
(doQuery())
c2 = c2. (A, query, getQuery())
(A, quote, buf);

c2.connect (S, SocketChannelEndpoint: :new,

host_S, port_S)

i .;sgg(s, pay, 1234)

Stpay(Str)

Alreject()

<0 e Tost)

j 1 The method send(S, pay, 5tring) in the type Travel_C_4 is not applicable for the arguments (5, pay, int) .

===

Alacept(Int)

MPST endpoint implementation via API generation

» Validated MPST used to generate Java endpoint APls
> Generated APIs promote hybrid approach to session safety [FASE16]

> Endpoint FSM structures captured as statically-typed call-chaining APls
> Usage contract of APl is to use every “state channel” instance exactly once
> Enforced by run-time channel linearity checks

(ExplicitEndpoint<Travel, C> ep = ...) {
Travel_C_2 c2 =
Travel_C_1(ep)
(A, SocketChannelEndpoint:: s
host_A, port_A);
(doQuery())
c2 = c2. (A, query, getQuery())
(A, quote, buf);
c2.connect (S, SocketChannelEndpoint: :new,
host_S, port_S)
.send(S, pay, "payment details")
//.receive(S, confirm, buf)
i .§§B§(A, accpt, b.val);

Alreject()

| - The method send(A, accpt, Integer) is undefined for the type Travel_C_5

“Naive” session subtyping

» The first naive attempt at Travel Agency is invalid

> (Non-explicit protocols checked by assuming all roles pre-connected)

global protocol Travel(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);
}or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;
}or {
reject from C to A;

o3

x 8 is “unfinished” in the reject case

“Naive” session subtyping

» The first naive attempt at Travel Agency is invalid

> (Non-explicit protocols checked by assuming all roles pre-connected)

global protocol Travel(role C, role A, role S) {
choice at C {
query(Str) from C to A;
quote(Int) from A to C;
do Travel(C, A, S);
}or {
pay(Str) from C to S;
confirm(Int) from S to C;
accpt(Int) from C to A;

X Role progress may also be violated for s in the query case
(without assuming some notion of fairness)

Output choices and role progress

> Related to session subtyping

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; 1() from A to C; }
or { 2(0) from A to B; 2() from A to C; }
do Foo(A, B, C);

[ACTAOQS5] Subtyping for session types in the pi calculus. Gay and Hole.
[MSCS16] Fair subtyping for multiparty sessions. Padovani.

15 /20

Output choices and role progress

> Related to session subtyping

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; }
or { 2() from A to C; }
do Foo(A, B, C);

[ACTAOQS5] Subtyping for session types in the pi calculus. Gay and Hole.
[MSCS16] Fair subtyping for multiparty sessions. Padovani.

15 /20

Output choices and role progress

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; }
or { 2() from A to C; }
do Foo(A, B, C);

[ACTAOQS5] Subtyping for session types in the pi calculus. Gay and Hole.
[MSCS16] Fair subtyping for multiparty sessions. Padovani.

» We implement two basic views:
> Fair output choices (as modelled so far)
> “Most unfair” — while still session type safe

> Endpoints commit to a single case in any output choice
(Extreme “naive” output choice subtyping)
> Modelled by a transformation on endpoint FSMs

Output choices and role progress

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; }
or { 2() from A to C; }
do Foo(A, B, C);

15 /20

Output choices and role progress

global protocol Foo(role A, role B, role C) {
choice at A { 1() from A to B; }
or { 2() from A to C; }
do Foo(A, B, C);

A:B!1 A:Cl2

B:A?1 A:CI2

15 /20

Output choices and role progress

explicit global protocol Foo(role A, role B, role C) {
choice at A { 1() connect A to B; disconnect A and B; }
or { 2() connect A to C; disconnect A and C; }
do Foo(A, B, C);

15 /20

Output choices and role progress

» OK if fairness assumed

global protocol Foo(role A, role B, role C) {
choice at A {
1() from A to B;
do Foo(A, B, C);
} or {
2() from A to B;
2() from B to C;

15 /20

Multiparty correlation of binary connections

» Modelling based on a single session with one endpoint process per role
» Connection mechanism (in particular, addressing) left abstract
> In practice: correlation by session identifier tags, port coordination, ...

connect A to B; .. connect A to C; .. connect B to C; ...

» Travel Agency (accpt case) with dynamic port forwarding

16 /20

Multiparty correlation of binary connections

» Modelling based on a single session with one endpoint process per role
» Connection mechanism (in particular, addressing) left abstract
> In practice: correlation by session identifier tags, port coordination, ...

connect A to B; .. connect A to C; .. connect B to C; ...

» Travel Agency (accpt case) with dynamic port forwarding

accpt() from C to A;

X
r%

16 /20

Multiparty correlation of binary connections

» Modelling based on a single session with one endpoint process per role
» Connection mechanism (in particular, addressing) left abstract
> In practice: correlation by session identifier tags, port coordination, ...

connect A to B; .. connect A to C; .. connect B to C; ...

» Travel Agency (accpt case) with dynamic port forwarding

connect A to S;
port(Int) from S to A;
port(Int) from A to C;

16

20

Multiparty correlation of binary connections

» Modelling based on a single session with one endpoint process per role
» Connection mechanism (in particular, addressing) left abstract
> In practice: correlation by session identifier tags, port coordination, ...

connect A to B; .. connect A to C; .. connect B to C; ...

» Travel Agency (accpt case) with dynamic port forwarding

connect C to S; 0 4 Kk e
pay(Str) from C to S;

confirm(Int) from S to C; . .

16 /20

Multiparty correlation of binary connections

» Modelling based on a single session with one endpoint process per role
» Connection mechanism (in particular, addressing) left abstract
> In practice: correlation by session identifier tags, port coordination, ...

connect A to B; .. connect A to C; .. connect B to C;

» Travel Agency (accpt case) with dynamic port forwarding

port(p:Int) from S to A; @"open=p:C"
port(p) from A to C;
connect C to S; @"port=p"

[RV13] Practical interruptible conversations. Hu, Neykova, Yoshida, Demangeon and Honda.

16 /20

Multiparty correlation of binary connections

» Modelling based on a single session with one endpoint process per role
» Connection mechanism (in particular, addressing) left abstract
> In practice: correlation by session identifier tags, port coordination, ...

connect A to B; .. connect A to C; .. connect B to C;

» Travel Agency (accpt case) with dynamic port forwarding

port(p:Int) from S to A; @"open=p:C"
//port(p) from A to C;
connect C to S; @"port=p" X

[RV13] Practical interruptible conversations. Hu, Neykova, Yoshida, Demangeon and Honda.

16

20

Multiparty correlation of binary connections

» Modelling based on a single session with one endpoint process per role
» Connection mechanism (in particular, addressing) left abstract
> In practice: correlation by session identifier tags, port coordination,

connect A to B; .. connect A to C; .. connect B to C;

» Travel Agency (accpt case) with dynamic port forwarding

port(p:Int) from S to A; @"open=p:C"
port(p) from A to C;
connect C to S; @"port=p"

receive(S, port)

send (4, port)

16

20

Multiparty correlation of binary connections

» Modelling based on a single session with one endpoint process per role
» Connection mechanism (in particular, addressing) left abstract
> In practice: correlation by session identifier tags, port coordination,

connect A to B; .. connect A to C; .. connect B to C; ...

» Travel Agency (accpt case) with dynamic port forwarding

port(p:Int) from S to A; @"open=p:C"
port(p) from A to C;
connect C to S; @"port=p"

receive(4, port)

send(C, port)

16

20

Multiparty correlation of binary connections

» Modelling based on a single session with one endpoint process per role
» Connection mechanism (in particular, addressing) left abstract
> In practice: correlation by session identifier tags, port coordination, ...

connect A to B; .. connect A to C; .. connect B to C;

» Travel Agency (accpt case) with dynamic port forwarding

port(p:Int) from S to A; @"open=p:C"
port(p) from A to C;
connect C to S; @"port=p"

connect(S, ..., host_S, pay, "payment details")

accept(C, pay, b)

16

20

FTP (active/passive modes)

220 from S to C;
USER from C to S;
choice at S {
331 from S to C;
PASS from C to S;
choice at S {
230 from S to C;
choice at C {
PASV from C to S; // Passive mode
choice at S {
227 (p:Int) from S to C; @"open=p:C"

N
}
}or {

PORT(q:Int) from C to S; @"open=q:S" // Active mode
choice at S {
200 from S to C;

}
}or {

}r}

17 /20

Microservices use case

explicit global protocol InfoAuth
(role LoginSvc, role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {
connect Client to LoginSvc;
login(UserName, password) from Client to LoginSvc
choice at LoginSvc {
loginfailure() from LoginSvc to Client;
}or {
loginsuccess() from LoginSvc to Client;
disconnect Client and LoginSvc;
connect Client to AuthSvc
do Main(Client, AuthSvc, Filtersvc,
SupplierSvc, ContractSvc);

}}

aux global protocol Main
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSve) {
choice at Client {
getsuppliers(UUID) from Client to AuthSvc;
do SuppInfo(Client, AuthSvc,
Filtersvc, SupplierSvc);
}or {
getcontracts() from Client to AuthSvc;
do ContractInfo(Client, AuthSvc,
Filtersvc, ContractSvc);

do Main(Client, AuthSvc, Filtersvc,
SupplierSvc, ContractSvc);

aux global protocol SuppInfo
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc) {
choice at AuthSvc {
deny() from AuthSvc to Client;
}or {
connect AuthSvc to SupplierSvc
getsuppliers() from AuthSvc to SupplierSvc;
suppliers() from SupplierSvc to AuthSvc;
disconnect AuthSvc and SupplierSvc;
do FilterInfo
<Filtersuppliers(UserContext,
Filters, SupplierDetails)>
(AuthSvc, Filtersvc);
suppliers() from AuthSvc to Client;

¥

aux global protocol ContractInfo
(role Client, role AuthSvc,
role Filtersvc, role ContractSvc) {
choice at AuthSvc {

) }...

aux global protocol FilterInfo
<sig Query>
(role AuthSvc, role Filtersvc) {
Query connect AuthSvc to Filtersvc;
filtered() from Filtersvc to AuthSvc;
disconnect AuthSvc and Filtersvc;

20

Microservices use case

explicit global protocol InfoAuth
(role LoginSvc, role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {
connect Client to LoginSvc;
login(UserName, password) from Client to LoginSvc;
choice at LoginSvc {
loginfailure() from LoginSvc to Client;
} or {
loginsuccess() from LoginSvc to Client;
disconnect Client and LoginSvc;
connect Client to AuthSvc;
do Main(Client, AuthSvc, Filtersvc,
SupplierSvc, ContractSvc);

}}

aux global protocol Main
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc,
role ContractSvc) {
choice at Client {
getsuppliers(UUID) from Client to AuthSvc;
do SuppInfo(Client, AuthSvc,
Filtersvc, SupplierSvc);
}or {
getcontracts() from Client to AuthSvc;
do ContractInfo(Client, AuthSvc,
Filtersvc, ContractSvc);

do Main(Client, AuthSvc, Filtersvc,
SupplierSvc, ContractSvc);

aux global protocol SuppInfo
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc) {
choice at AuthSvc {
deny() from AuthSvc to Client;
}or {
connect AuthSvc to SupplierSvc;
getsuppliers() from AuthSvc to SupplierSvc;
suppliers() from SupplierSvc to AuthSvc;
disconnect AuthSvc and SupplierSvc;
do FilterInfo
<Filtersuppliers(UserContext,
Filters, SupplierDetails)>
(AuthSve, Filtersve);
suppliers() from AuthSvc to Client;

aux global protocol ContractInfo
(role Client, role AuthSvc,
role Filtersvc, role ContractSvc) {
choice at AuthSvc {

3

aux global protocol FilterInfo
<sig Query>
(role AuthSvc, role Filtersvc) {
Query connect AuthSvc to Filtersvc;
filtered() from Filtersvc to AuthSvc;
disconnect AuthSvc and Filtersvc;

}

18/20

Microservices use case

explicit global protocol InfoAuth aux global protocol SuppInfo
(role LoginSvc, role Client, role AuthSvc, (role Client, role AuthSvc,
role Filtersvc, role SupplierSvc, role Filtersvc, role SupplierSvc) {
role ContractSve) { choice at AuthSvc {
connect Client to LoginSvc; deny() from AuthSvc to Client;
login(UserName, password) from Client to LoginSvc; } or {
choice at LoginSvc { connect AuthSvc to SupplierSvc;
loginfailure() from LoginSvc to Client; getsuppliers() from AuthSvc to SupplierSvc;
}or{ suppliers() from SupplierSvc to AuthSvc;
loginsuccess() from LoginSvc to Client; disconnect AuthSvc and SupplierSvc;
disconnect Client and LoginSvc; do FilterInfo
connect Client to AuthSvc; <Filtersuppliers(UserContext,
do Main(Client, AuthSvc, Filtersvc, Filters, SupplierDetails)>
SupplierSvc, ContractSvc); (AuthSvc, Filtersvc);
} 3} suppliers() from AuthSvc to Client;
aux global protocol Main ¥
(role Client, role AuthSvc,
role Filtersvc, role SupplierSvc, aux global protocol ContractInfo
role ContractSve) { (role Client, role AuthSvc,
choice at Client { role Filtersvc, role ContractSvc) {
getsuppliers(UUID) from Client to AuthSvc; choice at AuthSvc {
do SuppInfo(Client, AuthSvc,
Filtersvc, SupplierSvc); ¥
}or {
getcontracts() from Client to AuthSvc; aux global protocol FilterInfo
do ContractInfo(Client, AuthSvc, <sig Query>
Filtersvc, ContractSvc); (role AuthSvc, role Filtersvc) {
Query connect AuthSvc to Filtersvc;
do Main(Client, AuthSvc, Filtersvc, filtered() from Filtersvc to AuthSvc;
SupplierSvc, ContractSvc); disconnect AuthSvc and Filtersvc;
}

18/20

Microservices use case

18/20

Related work

» Dynamic participation in sessions/conversations

[ESOPQ9] Conversation types. Caires and Vieira.
[POPL11] Dynamic multirole session types. Deniélou and Yoshida.
[CONCUR12] Nested protocols in session types. Demangeon and Honda.

» Dynamic message sequence charts and communication automata

[FSTTCS02] Dynamic message sequence charts. Leucker, Madhusudan and Mukhopadhyay.
[LATA13] Dynamic communication automata and branching high-level MSCs. Bollig, Cyriac,
Hélou et, Jara and Schwentick.

CFSM-based well-formedness of choreographies and MPST

[POPLO8] Deciding choreography realizability. Basu and Bultan.
[ICALP13] Multiparty Compatibility in Communicating Automata. Deniélou and Yoshida.
5 eeting Deadlines Together. Bocchi, Lange and Yoshida.
CONCUR15] M. Dead| Together. Bocchi, L d Yoshid
1 ultiparty compatibility for concurrent objects. Perera, Lange an ay.
PLACES16] Mul bility fc b P L dG

v

» Implementations of session types

Java ([ECOOP08,SCP13,PPDP16,FASE16]), Scala ([ECOOP16,ECOOP17]),
Haskell ([PADL04,HASKELLO08,PLACES10,POPL16,HASKELL16]),

OCaml ([JFP17,ESOP17,COORDINATION17]), SILL ([ESOP13,FoSSaCS15]),
Links ([ESOP15]), Python ([RV13]), Rust ([WGP15]), C ([TOOLS12]),

19/20

Conclusions and future work

» (We can finally do Travel Agency in MPST!)

» Practically-motivated extension for explicit connection actions in MPST

» Scribble toolchain for MPST validation and Endpoint API generation

> Integrating MPST with existing model checking techniques and tools
[TACAS16] Characteristic Formulae for Session Types. Lange and Yoshida.

> (The session type system — interplay with delegation)

» Other kinds of communication actions? e.g., SSL/TLS connection
wrapping (HTTPS, SMTP, FTPS, ...)

> Integration of further extensions from MPST theory

> e.g., time, asynchronous interrupts, nested subsessions, message value
assertions, role parameterisations, event handling, ...

» Thanks!

> https://github.com/scribble/scribble-java
> https://www.doc.ic.ac.uk/~rhu/scribble/explicit.html

https://github.com/scribble/scribble-java
https://www.doc.ic.ac.uk/~rhu/scribble/explicit.html

