
Type-Safe Eventful Sessions in Java

Raymond Hu∗, Dimitrios Kouzapas∗, Olivier Pernet∗
Nobuko Yoshida∗, and Kohei Honda†

∗Imperial College London †Queen Mary, University of London

Abstract. Event-driven programming is a major paradigm in concurrent and
communication-based programming, and a widely adopted approach to building
scalable high-concurrency servers. However, traditional event-driven programs
are more difficult to read, write and verify than their multi-threaded counterparts
due to low-level APIs and fragmentation of control flow across disjoint event han-
dlers. This paper presents a Java language extension and a novel type discipline
for type-safe event-driven session programming that counters the problems of tra-
ditional event-based programming with abstractions and safety guarantees based
on session types, while retaining the expressiveness and performance character-
istics of events. The type discipline extends session types and their primitives
with asynchronous input, session typecase and session set types, ensuring event-
handling safety and event progress in addition to the standard type soundness
and communication safety. The advantages, expressiveness and performance of
event-driven session programming are demonstrated through a range of examples
and benchmarks, including a session-typed SMTP server.

1 Introduction

Asynchronous event-driven programming is characterised by a reactive flow of con-
trol driven by the occurrence of computation events. It is one of the major paradigms
in concurrent and communication-based programming, where events are typically de-
tected by the arrival of messages on asynchronous channels. Primary motivations for
asynchronous event programming include performance and scalability, particularly for
high-concurrency applications such as Web servers [24, 36]. Unfortunately, the flexi-
bility and performance of traditional event-driven programming comes at the cost of
more complex programs: low-level APIs and the obfuscation of event-driven control
flow [3, 34] make programs difficult to read, write and verify, and hence potentially
unsafe to execute. Consequently, several recent works [25, 27, 35] have proposed sim-
pler thread-based programming interfaces that hide event-driven runtimes. In contrast
to these approaches, our aim in this paper is to develop a high-level, structured and safe
programming discipline for event-driven programming based on, and extending, session
types [19, 33]. We generalise the existing session types for asynchronous event-driven
programming, using which we obtain both formal safety guarantees and programmatic
benefits to overcome the problems of traditional event-driven programming.

Session types [19, 33] are one of the well-studied type-based methods for struc-
turing a series of distributed interactions. Previous works have studied the theory and
practice of session types in object-oriented languages [10, 12, 16, 21] that ensure the

so-called communication safety, meaning that communicating programs correctly in-
teract following the associated session type structures. However, typing asynchronous
event-driven programming is not possible so far, for the reasons outlined below.

A general mechanism underlying all event-based systems is the asynchronous de-
tection of heterogeneous events (i.e. of varied types) from a dynamic collection of
channels. This idea is embodied by e.g. the Unix select system call and the Java NIO
Selector API. In the context of session programming, this means we need a framework
where we collect multiple channels of different session types, asynchronously check for
the arrival of messages on these channels, and later retrieve and use the “ready” chan-
nels as directed by their session types. The preceding session type disciplines cannot
support these ideas because the lack of non-blocking input prohibits core event idioms
such as event loops, and because statically determined channel types make it impossible
to treat a collection of channels with heterogeneous types.

Contributions. This paper develops a framework for type-safe event-driven session pro-
gramming that integrates session types and asynchronous event programming in Java.
The key concepts of event-driven session programming are introduced through initial
motivating examples in § 2. The rest of the paper presents the following contributions.

(§ 3) We explore a theoretical basis of event-driven session programming using a small
process calculus based on [18, 19, 33]. The formalism captures the semantics of
asynchronous, event-driven sessions through two new constructs, the message ar-
rival predicate and session typecase. Combining the latter with the new session set
types allows us to treat dynamic collections of heterogeneously typed channels.

(§ 4) A type theory based on session set types for the extended session constructs. In
addition to type soundness and communication safety in the presence of dynami-
cally registered sessions, we prove a novel progress property which we call event
progress. The theory captures a wide range of event-driven programming idioms
(e.g event selectors, event loops and join patterns) via encoding, from which we
can derive sound typing rules for such complex constructs.

(§ 5) Building on the new theory, we present the design and implementation of a practi-
cal language, compiler and runtime support for event-driven session programming
as an extension to Java, on the basis of SJ (Session Java)[21]. The resulting Event-
ful SJ (ESJ) enjoys the formal properties and safety guarantees established by the
theory. We discuss an ESJ implementation of an SMTP server and show that ESJ
preserves the performance characteristics of traditional event-driven programming
by benchmarking the ESJ server against a multithreaded equivalent.

Our implementation of ESJ exploits the modular architecture of the SJ runtime [30] for
transport independence: the ESJ selector enables the event-driven execution of sessions
not only of different types but also over different transports, under a single programming
abstraction (§ 5.2). Implementing ESJ reveals further applications of the eventful ses-
sion theory. For example, runtime session type monitoring enables applications like the
SMTP server to execute sessions with non-SJ parties while protecting communication
safety (§ 5.3). Related work and future topics are discussed in § 6. Omitted definitions,
proofs, ESJ source code and benchmark results can be found at [30].

2 Event-driven Session Programming

This section introduces the key concepts of event-driven session programming through
examples, presented in the syntax of Eventful SJ (ESJ for short), illustrating both the
safety guarantees and practical programming benefits of our new event-driven program-
ming framework compared to the traditional one.

ESJ is built on SJ, an extension of Java for type-safe concurrent and distributed ses-
sion programming [21]. Session programming in SJ, as detailed in [21, § 2], starts with
the declaration of the intended communication protocols as session types. The commu-
nication actions comprising a session, such as message passing, branching and recur-
sion, are implemented as operations on session-typed channel endpoints called session
sockets, objects of type SJSocket. The SJ compiler statically checks session implemen-
tations against the declared protocols, ensuring correct communication behaviour. ESJ
extends SJ with facilities for session-typed asynchronous event handling.

Event loops. The core of any event-based system is the event loop [26], which waits
for event occurrences (i.e. messages) and dispatches them by invoking an appropri-
ate handler. The performance and scalability of event-based systems come from the
asynchronous decoupling of event handlers from the event source (e.g. the network in-
terface) through the event loop, which enables many concurrent sessions to be serviced
as a fine-grain sequential interleaving of actions within a single thread or a thread pool.

Our first example is a basic event loop that handles sessions of type

?(Data).?(Data).!<Result> (1)

which says: at this side of the session, we first receive (?) a message, a Java object of
type Data, then receive another Data message, and finish by sending (!) a Result. The
other side will conform to the dual protocol, !<Data>.!<Data>.?(Result).

We implement an event-driven server for handling multiple, concurrent sessions of
the above type. The standard event loop pattern is adapted to SJ session programming as
follows. The server registers the initialised session sockets with a session event selector
(a session typed version of e.g. the Java NIO Selector [22]) to monitor them for event
occurrences. By session typing, the first event on a new session will be the receipt of a
Data message. After handling this event, the session socket is returned to the selector
to await the second Data message. The functionality of the selector combines that of
a dynamic collection for session sockets with asynchronous event detection. The key
point, with respect to session typing, is that the selector is required to store not only
sessions of the initial type (1), but also the intermediary type (2) ?(Data).!<Result>.

Figure 1 outlines an ESJ program for the above server. Lines 1–2 declare a session
set type containing session types (1) and (2). Lines 3–4 then declare and initialise the
session event selector sel, an object of type SJSelector{pSelector}. This means sel

can store and monitor session sockets of the two types in the pSelector set type. In SJ,
the using statement has two main purposes. As in C#, the declared resources (sel) are
cleaned up after we leave the scope of the statement. In addition, session type checking
requires the session type to be completed within the using, as we describe below.

The initial sessions can be registered with the selector as on Line 5. The main event
loop then starts on Line 7. The first action in the loop is the select operation on Line 8,

1 protocol pSelector // A session set type containing the two event types.

2 { ?(Data).?(Data).!<Result>, ?(Data).!<Result> }

3 using(SJSelector{pSelector} sel // Create a selector of type pSelector.

4 = SJSelector.create(params)) {

5 sel.register(source); // Register event source session(s) with the selector.

6 ...

7 while(run) { // Main event loop.

8 using(SJSocket{pSelector} s = sel.select()) { // Select a session event.

9 typecase(s) { // Identify the type of the occurred event.

10 when(SJSocket{?(Data).?(Data).!<Result>} s1) {

11 Data d1 = s1.receive(); // Handle the first Data event and..

12 sel.register(s1); //..re-register the session with the selector.

13 }

14 when(SJSocket{?(Data).!<Result>} s2) {

15 Data d2 = s2.receive(); // Handle the second Data event, then..

16 s2.send(new Result(...)); // ..send the Result; session completed.

17 }

18 } } } }

Fig. 1. Combining a session typed event selector with session typecase in a basic ESJ event loop.

which blocks until the selector detects an event occurrence on one of the registered ses-
sion sockets. The returned session socket has type SJSocket{pSelector} — we know
only that the session is of either of the two pSelector types — and is assigned to the
variable s (enclosed by another using statement). To determine which event has oc-
curred, i.e. whether we have received the first or second Data message on s, we use the
session typecase starting on Line 9. The typecase selects the first when case for which
the specified type matches the current runtime session type of the session. Static type
checking ensures that the typecase covers all the cases of the pSelector set type, so at
least one case is guaranteed to match at runtime. The when case on Lines 10–13 handles
the first Data event, i.e. for session type (1). The session socket is rebound1 to the vari-
able s1 of type SJSocket{!<Data>.!<Data>.?(Result)}, and s1 is used to receive the
Data message on in Line 11. Since the second Data may not yet have arrived, Line 12
re-registers s1 with the selector (and then we loop to handle the next event). Similarly,
the other when case on Lines 14–17 handles the second Data when the runtime session
type of s is (2): following the session type, we receive the Data message and then send
a Result via s2. The session is now finished; we do not re-register the session socket.

Event streams. In this example, we implement a prevalent pattern where an event han-
dling party consumes streams of mixed events. This example extends the basic event
loop to support session initiation and branching events, and uses session recursion to
represent unbounded streams. We specify a simple event stream as sbegin.pStream

(sbegin represents the server-side session initiation action), with pStream declared as
protocol pStream rec X [?{NEXT: ?(Data).#X, QUIT: }]

where rec X [...] binds the recursion type variable X within the scope of the brackets.
Inside the recursion, the branch type ?{...} allows the opposing session party to select

1 typecase variable rebinding comes from dynamic typing in the λ -calculus [1], and ensures
type soundness. The following “event streams” example further demonstrates this point.

1 ... // Create a selector ‘sel’ and register a session server socket.

2 while(run) { // An event loop for recursive pStream event stream sessions.

3 using(SJChannel{pSelector2} c = sel.select()) {

4 typecase(c) {

5 when(SJServerSocket{sbegin.pStream} ss) { // Session initiation event.

6 using (SJSocket{pStream} s0 = ss.accept()) { // Accept the session.

7 s0.recursion(X) { // Unfold the recursion..

8 sel.register(s0); // ..and register the new session.

9 }

10 sel.register(ss); // Re-register the server socket.

11 } }

12 when(SJSocket{?{NEXT: ?(Data).pStream, QUIT: }} s1) {

13 s1.inbranch() { // Handle the branch event.

14 case NEXT: { sel.register(s1); } // Re-register the session.

15 case QUIT: { } // End of stream: no re-registration.

16 } }

17 when(SJSocket{?(Data).pStream} s2) {

18 Data d = s2.receive(); // Handle the arrived Data message.

19 s2.recursion(X) { // Unfold another recursion..

20 sel.register(s2); // ..and re-register the session.

21 } }

22 } } }

Fig. 2. Handling a stream of mixed event types, including session initiation and branching events.

one of the two paths, labelled NEXT and QUIT. If NEXT is selected, we receive a Data

and the recursion is enacted (denoted by #X). QUIT ends the stream, and the session is
completed. For our ESJ implementation, we declare the session set type pSelector2

protocol pSelector2 { sbegin.pStream, // Session initiation event.

?{NEXT: ?(Data).pStream, QUIT: }, // Branch event

?(Data).pStream } // Data message event.

which specifies three event types: the session initiation event that creates the stream,
the branch event when a branch label is received, and the message event when a Data

arrives. Figure 2 lists an event loop for the above event stream. The new features in
this program are as follows. The session initiation event described by sbegin.pStream

involves calling accept on the SJServerSocket (a session-typed server endpoint for
accepting client requests) [30, § 2] registered with the selector. Hence, the select op-
eration returns an object of class SJChannel, the common superclass of SJSocket and
SJServerSocket. Again, the type of the occurred event is determined using typecase,
which rebinds (i.e. casts) the SJChannel to the appropriate subclass: SJServerSocket
in the first when case, which handles the initiation event, and SJSocket in the other two
cases. The recursive session is unfolded using the recursion construct, e.g. on Line 7,
pStream is unfolded to ?{NEXT: ?(Data).pStream, QUIT: }. The branch type is im-
plemented by the inbranch construct (Lines 13–16), which receives a label and selects
the corresponding case; static typing ensures all specified cases are covered.

Benefits due to session types. The main source of difficulty in traditional event-driven
programming is the fragmentation of control flow across disjoint event handlers [3, 34].
Below we summarise how session types counteract this key issue.
(1) Delineation of control flow. A session type is an abstraction of control flow (se-
quencing, branching and recursion) for interactions. Using session types, events are
precisely defined by both the immediate action (e.g. the first ?(Data) in the first exam-
ple) and by the remaining session flow (?(Data).!<Result>). Traditional events lack
the latter information, often requiring burdensome manual state management [3] to dis-
tinguish ambiguous events (e.g. the first and second Data messages). The combination
of session set types and session typecase promotes clear structuring of event-driven
programs, elucidating their communication and event-handling behaviour.
(2) Event-handling safety and progress. In addition to the above programming ben-
efits, session types provide formal safety guarantees which traditional event-driven
programming lacks. Static session type checking ensures event-handling safety (Theo-
rem 4.3): each event is correctly handled as directed by the governing session type. The
type safety also entails that each session is either completed or re-registered with a se-
lector by the handler, ensuring that each session flow is faithfully preserved across sep-
arate event handlers. Combined with the standard linearity of session channels (which
prevents interference of events by other threads), we obtain a strong progress property
for asynchronous event programming, event progress (Theorem 4.6).

3 A Process Model for Eventful Sessions

We formalise the key programming ideas introduced in § 2 as a small process calculus.
The calculus, which we call ESP (Eventful Session Pi-calculus), is the π-calculus with
session primitives [19, 28] based on asynchronous communication semantics [18], to
which we add minimal extensions for event-driven session programming: the message
arrival predicate, session typecase, and session set types.

3.1 Syntax of the Eventful Session π-Calculus

Types. The type syntax of ESP extends the standard binary session types [19] with
session set types. This simple extension allows us to treat type-safe event handing for
an arbitrary collection of differently typed communication channels.

(Shared) U ::= bool | 〈S〉 | X | µ X.U (Value) T ::= U | {Si}i∈I

(Session) S ::= !(T);S | ?(T);S | ⊕{li : Si}i∈I | &{li : Si}i∈I | µ X.S | X | end
The shared types (U,U ′, . . .) are the booleans bool (we also use nat in examples), shared
channel types 〈S〉 (shared channels of this type are used to establish sessions whose
accepting side acts as S), type variables (X,Y,Z, . . .) and recursive types. The session
types (S,S, . . .) are standard [19, 28]. The output type !(T);S represents the output of a
value of type T followed by the behaviour represented by S; similarly for the dual input
type ?(T);S. The select type ⊕{li : Si}i∈I describes a behaviour that selects one of the
labels li followed by Si. The branch type &{li : Si}i∈I waits for a select decision with
I options, and behaves as the Si corresponding to the chosen li. We assume recursive

(Identifiers) u ::= a,b,c | x,y,z k ::= s, s | x,y,z (Values) v ::= tt,ff | a,b,c | s, s

(Expressions) e ::= v | x,y,z | arrived u | arrived k | arrived k h

(Processes) P,Q ::= u(x :S).P | u(x :S);P | k!〈e〉;P | k?(x).P | k / l;P | k .{li :Pi}i∈I

| if e then P else Q | (ν u :〈S〉)P | P | Q | 0 | def D in P | X〈~e〉
| typecase k of {(xi :Ti)Pi}i∈I | a [~s] | a〈s〉 | (ν s)P | k [S,i :~h,o :~h′]

(Agents) D ::= X1(~x1) = P1 and . . . and Xn(~xn) = Pn (Messages) h ::= v | l

Fig. 3. The syntax of ESP processes.

types µ X.S are contractive, i.e. that type variables are guarded in the standard way. end
represents session completion and is often omitted.

Value types for message values are the shared types and the session set types {Si}i∈I ,
where I is finite (can be empty) and all Si are closed (i.e. do not contain free type
variables). A session set type {Si}i∈I represents a behaviour capable of safely interacting
as any one of Si. For example, a session with type {!(bool),?(nat)} can safely interact
with a session of both ?(bool) and !(nat) types. Session set types are used to type the
typecase, and are so called for their set-like properties (derived from subtyping, § 4.1),
e.g. {S1,S2}= {S2,S1} and {S,S}= {S}. A singleton {S} is often written S. We write
T for the set of all closed types, and S for the set of closed session types.

Processes. Figure 3 gives the syntax for ESP processes. Terms that only appear at run-
time are shaded ; the other terms are user syntax. The new primitives are the message
arrival predicate arrived for non-blocking inspection of messages buffers, and the
session typecase typecase k of {...} for dynamically inspecting the runtime type of a
session. We also introduce asynchronous session initiation (cf. [19]).

Values v,v′, . . . include the constants, shared channels a,b,c, . . . , and session chan-
nels s,s′, A session channel s designates one endpoint of a session, and s the op-
posing end of the same session, with s = s.2 Branch labels range over l, l′, . . . , variables
over x,y,z, and process variables over X ,Y,Z. Shared channel identifiers u,u′ are shared
channels and variables; session identifiers k,k′ are session channels and variables. A
session message h is a value or a label. Expressions e are values, variables, and the mes-
sage arrival predicate: arrived u for session initiation requests, arrived k for session
messages, and arrived k h, which checks for the arrival of the specific message h at k.
We write~s and~h for their respective vectors, and ε for the empty vector.

The session initiation actions on shared channels are the request u(x : S);P and the
accept u(x : S).P. On an established session channel, output k!〈e〉;P sends the value of
e through channel k, input k?(x).P receives a value through k, selection k / l;P chooses
and sends the label l through k, and branching k .{li :Pi}i∈I follows the branch with the
label received through k. The (ν u : 〈S〉)P binds a shared channel u of type 〈S〉 to the
scope of P. The session typecase typecase k of {(xi :Ti)Pi}i∈I takes a session channel
k and a list of cases (xi :Ti), each binding a free variable xi of type pattern Ti in Pi.3

2 We simply say “session channel” rather than “session channel endpoints” (i.e. the program-
ming entities used to perform session actions) for brevity; similarly for shared channels.

3 The full typecase construct that supports typecase of general expressions e, matching variables
in type patterns, and the default case is given in the long version available from [30].

[Request1] a(x :S);P −→ (ν s)(P{s/x} | s [S,i :ε,o :ε] | a〈s〉) (s /∈ fn(P))
[Request2] a [~s] | a〈s〉 −→ a [~s·s]
[Accept] a(x :S).P | a [s·~s] −→ P{s/x} | s [S,i :ε,o :ε] | a [~s]
[Send] s!〈v〉;P | s [!(T);S,o :~h] −→ P | s [S,o :~h·v]
[Receive] s?(x).P | s [?(T);S,i :v·~h] −→ P{v/x} | s [S,i :~h]
[Sel], [Bra] s/ li;P | s [⊕{li :Si}i∈I ,o :~h] −→ Pi | s [Si,o :~h·li] (i ∈ I)

s.{l j :Pj} j∈J | s [&{li :Si}i∈I ,i : li·~h] −→ Pi | s [Si,i :~h] (i ∈ I∩ J)
[Comm] s [o :v·~h] | s [i :~h′] −→ s [o :~h] | s [i :~h′·v]
[Instance] def D in (X〈~v〉 | Q) −→ def D in P{~v/~x} | Q X(~x) = P ∈ D
[Arriv-req] E[arrived a] | a [~s] −→ E[b] | a [~s] (|~s| ≥ 1) ↓ b
[Arriv-msg] E[arrived s h] | s [i :~h] −→ E[b] | s [i :~h] (~h = h·~h′) ↓ b
[Typecase]

typecase s of {(xi :Ti)Pi}i∈I | s [S] −→ Pi{s/xi} | s [S] ∃i ∈ I.(∀ j < i.Tj 6≤ S∧Ti ≤ S)

Fig. 4. Selected reduction rules.

Our calculus incorporates two forms of asynchronous communication, asynchronous
session initiation [23] and asynchronous session communication (over an established
session). The former models the unordered transport of session request messages to
acceptors listening on a shared channel. We use a〈s〉 to represent a request message in
transit on shared channel a, carrying a fresh session channel s of type S. In real network
communications, messages are buffered for reading on arrival at the destination. This
mechanism is formalised by introducing a shared input queue a [~s], which represents an
acceptor’s input buffer at a containing the pending requests for sessions~s.

Communication in an established session is asynchronous but order-preserving, as
in TCP. For this purpose, each session channel s is associated with an endpoint config-
uration (or simply configuration) s [S,i :~h,o :~h′], which encapsulates both input (i) and
output (o) buffers. Sending a message first enqueues it at the source o-buffer before it
is eventually transferred to the destination i-buffer, signifying the arrival of that mes-
sage. For both unordered session requests and ordered session messages, decoupling
message transmission and arrival captures the intuitive semantics for arrived: only
messages that are present in the local input buffer can be detected, and not those still
in transit. The S in s [S,i :~h,o :~h′] is called the active type, and represents the remain-
ing session actions to be performed at this endpoint (representing a runtime session
monitoring mechanism). For brevity, one or more components may be omitted from a
configuration when they are irrelevant, written as e.g. s [S] or s [i :~h].

(ν s)P binds both session endpoints, s and s, making them private within P. The
remaining constructs, conditional, parallel composition, agent definition and instantia-
tion, and inaction, are standard. Type annotations and 0 are often omitted. The notions
of free variables and channels are standard [28]; we write fn(P) for the set of free chan-
nels in P. Terms in closed user syntax are called programs.

3.2 Operational Semantics

The reduction relation on closed terms −→ captures the communication and event
handling dynamics of ESP processes, and updates active types as session interactions
progress. Figure 4 lists the key rules. We use the standard evaluation contexts E[] de-
fined as E ::= − | s!〈E〉;P | if E then P else Q | X〈~vE~e〉. Structural congruence ≡
and the omitted reduction rules are standard; the full definitions are found at [30].

[Request1] issues a new request for a session of type S via shared channel a. A
fresh (i.e. ν-bound) session with endpoints s (acceptor-side) and s (requestor-side) and
the initial configuration at the requestor are generated, dispatching the session request
message a〈s〉. [Request2] enqueues the request in the shared input queue at a. [Accept]

dequeues the earliest session request, instantiates the session to the s in the request mes-
sage, and creates the acceptor-side configuration: the new session is now established.

[Send] enqueues a value in the o-buffer of the local configuration and removes the
prefix from the current active type, signifying the completion of this action. [Receive]

dequeues the first value from the i-buffer of the local configuration and updates the
active type accordingly. [Sel] and [Bra] similarly enqueue and dequeue a label, using the
label to select the appropriate case in the current active type. Note these rules manipulate
only the local configurations, and output actions are always non-blocking. The actual
transmission of a session message is embodied by [Comm], which removes the first
message from the o-buffer of the source configuration and enqueues it in the i-buffer at
the opposing configuration. [Instance] is a standard recursion rule for processes.

Although input actions block if no message is available in the corresponding in-
put buffer, blocking can be avoided using the message arrival predicates. [Arriv-req]

evaluates arrived a to tt if the queue is non-empty; similarly for arrived k (rule
omitted). [Arriv-msg] evaluates arrived s h to tt if the queue is non-empty and the
first message matches h. The notation e ↓ b means e evaluates to the boolean value b.
Lastly, [Typecase] is the key rule which enables dynamic inspection of the active type
of a session. The process continues the session s along the first Pi for which Ti can be
successfully matched against the current active type S up to subtyping (defined in § 4.1).

3.3 Representing High-level Event Constructs in ESP

Example 3.1 (Selector and Event Loops). The core functionality of SJSelector (il-
lustrated in § 2) can be distilled to three operations: create a new selector, register a
channel with the selector, and select (i.e. retrieve from the selector) a channel on which
a message has arrived. Session typecase is then used to type the selected channel. We
extend ESP with these operations, with the following reduction semantics.4 We omit
type annotations for selectors, which we shall discuss in § 4.

new sel r in P−→ (ν r)(P|sel〈r, ε〉) reg s to r in P|sel〈r,~s〉 −→ P|sel〈r,~s · s〉
select(r){(xi :Ti) : Pi}i∈I |sel〈r, s ·~s〉|s [S,i :~h]−→ Pi{s/xi}|sel〈r,~s〉|s [S,i :~h] (~h 6= ε)
select(r){(xi :Ti) : Pi}i∈I |sel〈r, s ·~s〉|s [i :ε]−→ select(r){(xi :Ti) : Pi}i∈I |sel〈r,~s · s〉|s [i :ε]

4 The selector semantics presented here is based on polling, which is suitable for our current
purpose (i.e. giving a semantic basis for selectors). For further discussion on the behaviour
and implementation of selectors, see § 5.2.

In the second line, S and Ti satisfy the condition for [Typecase] in Figure 4. We also
add structural rules, e.g. (ν r)sel〈r, ε〉 ≡ 0. Operator new sel r in P (binding r in P)
creates a new selector sel〈r, ε〉, named r, with the empty queue ε . reg s to r in P
registers the session channel with r, adding s to the queue~s. select(r){(xi :Ti) : Pi}i∈I
checks whether a message is available (i.e. an event has occurred) on the first session
in the queue, s. If so, we select the first Pi for which the type of s matches Ti (condition
omitted); otherwise, s is re-enqueued and the next session is tested.

We now show this behaviour can be easily encoded by combining the message ar-
rival predicate and session typecase. We again omit type annotations (until § 4).

[[new sel r in P]] def= (ν b)(b(r);b(r).[[P]] | b : [ε]) [[reg s to r in P]] def= r!〈s〉; [[P]]

[[select(r){(xi :Si) : Pi}i∈I]]
def= [[sel〈r,~s ·~s′〉]] def= r [o :~s′] | r [i :~s]

def Select(xx) = x?(y);if arrived y then typecase y of {(xi :Ti) : [[Pi]]}i∈I
else x!〈y〉;Select〈xx〉 in Select〈rr〉

The use of arrived is the key to avoiding blocked inputs, allowing the selector to
proceed asynchronously while handling any available messages. The operations on the
collection queue (via r and r) exchange session channels, hence session delegation [19]
is essential. We can easily check that this encoding is operationally faithful to the native
selector (i.e. the direct ESP extension) using a suitable bisimulation. Using the above
selector, a basic event loop similar to Figure 1 (§ 2) can be represented as:

new sel r in reg s1 to r in reg s2 to r in ...reg sn to r in
def Loop = select(r) {(x1 :?(U1); ?(U1); !(U2)) : x1?(y1).reg x1 to r in Loop

(x2 :?(U1); !(U2)) : x2?(y2).x2!〈v〉;Loop} in Loop

In § 4.4, we prove event progress for processes that use selectors, such as event loops.

Example 3.2 (Switch-receive). Join patterns [4, 13] are one mechanism for correlating
multiple event occurrences [11]. Programmers use join patterns as guards to handle
particular combinations (i.e. conjunctions) of message arrivals on one or more sessions.
The switch receive construct in Sing# [12] implements this mechanism for channel
contracts (a version of session types), which we can formalise as an ESP extension.

switch-receive{J1 :P1, ...,Jm :Pm} J j ::= s j1.l j1(x j1 : U j1)∧ ...∧ s jn j .l jn j (x jn j : U jn j)

Above we set m,n, j ≥ 1 and all s j1, ..,s jn j should be pairwise distinct for each j. Each
J j denotes a join pattern, a conjunction of expressions of the form s ji.l ji(x ji : U ji), where
l ji is a branch label expected at s ji, and (x ji : U ji) is a formal parameter for a message
of type U ji following l ji. The formal semantics of switch-receive can be found at [30];
here, we informally illustrate its behaviour through a simple example. Let R be:

R def= switch-receive{s.l1(x1) : P, s.l2(x2)∧ s′.l3(x3) : Q}
R listens on s (where l1 or l2 is expected) and s′ (for l3); by the above design, a message
is expected to follow each label. Suppose l1 and then v1 arrive: R will become P{v1/x1}.
On the other hand, if l2 and v2 arrive at s, and v2 and l3 and v3 at s′, then R becomes
Q{v2v3/x2x3}. In all other cases, R continues to wait for further messages on s and s′.

An inductive ESP encoding of switch-receive can be formulated using arrived.
We illustrate the idea of the encoding using R from above. Assuming that the commu-
nication of a branch label is always followed by a message: def SRLoop =

if (arrived s l1) then s . l1 : s?(x1).[[P]]
else if (arrived s l2 and arrived s′ l3) then s . l2 : s?(x2).s′ . l3 : s′?(x3).[[Q]]

else SRLoop in SRLoop

Above, the sequential branch notation si . li : P stands for a branch at si that omits the
superfluous branches ruled out by the preceding arrived. More complex join patterns
featuring predicates on received values are also encodable into ESP.

4 Typing Eventful Sessions

This section presents a type discipline for ESP and establishes its key properties: sub-
typing (Proposition 4.1); type safety (Theorem 4.2); communication and event-handling
safety (Theorem 4.3); soundness of the ESP encoding of a high-level event primitive,
selector (Proposition 4.4); and event progress (Theorem 4.6).

4.1 Subtyping from Composability
If P has a session channel s of type S, the ways in which P can use s are at most as S;
e.g. if S is &{l1 : S1, l2 : S2}, then P handles labels l1 and l2 but not any others, thus
P can interact with peers that select either one of these two labels. By this intuition,
for a process Q with session type S′ to be safely used in place of P (i.e. S′ ≤ S), Q
should be composable in the same or more ways (i.e. with more peers) than P; e.g.
if S′ is &{li : Si}1≤i≤3, then Q can also interact with peers that select l3. Formally,
the subtyping relation is defined on the set of all closed and contractive types T as
follows: T is a subtype of T ′, written T ≤ T ′, if (T,T ′) is in the largest fixed point of
the monotone function F :P(T ×T)→P(T ×T), where F (R) is given by:

{(bool,bool)}∪{(〈S〉,〈S′〉) | (S,S′),(S′,S) ∈R}
∪ {(µ X.U,U ′) | (U{µ X.U/X},U ′) ∈R}∪{(U,µ X.U ′) | (U,U ′{µ X.U ′/X}) ∈R}
∪ {(!(T1);S′1, !(T2);S′2) | (T2,T1),(S′1,S

′
2) ∈R} ∪ {(?(T1);S′1,?(T2);S′2) | (T1,T2),(S′1,S

′
2) ∈R}

∪ {(⊕{li :Si}i∈I ,⊕{l j :S′j} j∈J) | ∀i ∈ I ⊆ J.(Si,S′i) ∈R}
∪ {(&{li :Si}i∈I ,&{l j :S′j} j∈J) | ∀ j ∈ J ⊆ I.(S j,S′j) ∈R}
∪ {(µ X.S,S′) | (S{µ X.S/X},S′) ∈R}∪{(S,µ X.S′) | (S,S′{µ X.S′/X}) ∈R}
∪ {({Si}i∈I ,{S′j} j∈J) | ¬(|I|= |J|= 1),∀ j ∈ J,∃i ∈ I.(Si,S′j) ∈R}

Line 1 is standard: 〈S〉 is invariant on S since it supports both S and S (see duality
below). Lines 2 and 6 are the standard rules for recursion. In Line 3, the linear output
(resp. input) is contravariant (resp. covariant) on the message type following [28]. In
Line 4, a select that requires support for more labels means fewer peers can be safely
composed; dually for branching in Line 5. Finally, the ordering of set types says that
if every element in the set type {S′j} j∈J has a subtype in {Si}i∈I , then the latter is at
least as composable as the former. The condition ¬(|I|= |J|= 1) avoids the case where
{Si}i∈I = S and {S′j} j∈J = S′, which would make the relation universal.

We now clarify the semantics of ≤ using duality. The dual of S, denoted S, is de-
fined in the standard way: !(T);S =?(T);S, ?(T);S =!(T);S, µ X.S = µ X.S, X = X,
⊕{li :Si}i∈I = &{li :Si}i∈I , &{li :Si}i∈I = ⊕{li :Si}i∈I and end = end. The set of com-
posable types of {Si}i∈I is defined as: comp({Si}i∈I) = ∪i∈I{S′ | S′ ≤ Si}. We observe:

Proposition 4.1 (Subtyping Properties). (1)≤ is a preorder; (2) given T and T ′, T ≤
T ′ is decidable; and (3) (semantics of ≤) T1 ≤ T2 if and only if comp(T2)⊆ comp(T1).

Γ ·u :T ` u :T
(Shared)

Γ ` u :〈S〉
Γ ` arrived u :bool

(aReq)
Γ ,Σ ` arrived k h :bool

Γ ,Σ ` arrived k :bool
(aMsg)

Γ ` v :U
Γ ,Σ ·k :?(U);S ` arrived k v :bool

(aVal)
l ∈ {li}i∈I

Γ ,Σ ·k :&{li :Si}i∈I ` arrived k l :bool
(aLab)

Γ ` P.Σ ′ Σ ′ ≤ Σ
Γ ` P.Σ

(Subs)
Γ ` u :〈S〉 Γ ` P.Σ ·x :S

Γ ` u(x :S).P.Σ
(Acc)

Γ ` u :〈S〉 Γ ` P.Σ ·x :S
Γ ` u(x :S);P.Σ

(Req)

Γ ,Σ ` e :U Γ ` P.Σ ·k :S
Γ ` k!〈e〉;P.Σ ·k :!(U);S

(Send)
Γ ·x :U ` P.Σ ·k :S

Γ ` k?(x).P.Σ ·k :?(U);S
(Recv)

Γ ` P.Σ ·k :S
Γ ` k!〈k′〉;P.Σ ·k :!(T);S·k′ :T

(SSend)
Γ ` P.Σ ·k :S·x :T

Γ ` k?(x).P.Σ ·k :?(T);S
(SRecv)

1≤ i≤ n Γ ` P.Σ ·k :Si

Γ ` k / li;P.Σ ·k :⊕{li :Si}i∈I
(Select)

∀i.1≤ i≤ n Γ ` Pi .Σ ·k :Si

Γ ` k .{li :Pi}n .Σ ·k :&{li :Si}i∈I
(Branch)

Γ ,Σ ` e :bool Γ ` P.Σ Γ ` Q.Σ
Γ ` if e then P else Q.Σ

(If)
Γ ·a :〈S〉 ` P.Σ ·a
Γ ` (ν a :〈S〉)P.Σ

(Chan)
Γ ` P.Σ Γ ` Q.Σ ′

Γ ` P | Q.Σ ·Σ ′ (Par)

∀i ∈ I Γ ` Pi .Σ ·xi :Ti ∪i∈I Ti ≤ T
Γ ` typecase k of {(xi :Ti)Pi}i∈I .Σ ·k :T

(Typecase)
Σ end only

Γ ` a [ε].Σ ·a (Queue)
Σ end only
Γ ` 0.Σ

(Nil)

Fig. 5. Selected typing rules for ESP programs.

4.2 Program Typing

We first define a typing system for programs (§ 3.1). Program typing, which can be
considered a static typing phase performed by a compiler on user-level code before
execution, uses two environments:

Γ ::= /0 | Γ ·u :U | Γ ·X :~T Σ ::= /0 | Σ ·a | Σ ·k :{Si}i∈I

Γ is called the shared environment, which maps variables and shared channels to con-
stant types and process variables to sequences of message types; Σ is called the linear
environment, which maps session channels to set types (writing k : S for k : {S}) and
records the shared channels that have input queues (to ensure that each a has exactly
one queue). Σ ·a means a /∈ dom(Σ), and similarly for others. Subtyping is extended to
environments by Σ ≤ Σ ′ iff dom(Σ) = dom(Σ ′) and ∀k ∈ dom(Σ).Σ(k) ≤ Σ ′(k). The
typing judgements for processes and expressions are:

Γ ` P.Σ Γ ,Σ ` e :T

On the left, the program typing judgement says the program P, under shared environ-
ment Γ , features the channel usage specified by linear environment Σ ; similarly for the
expression typing judgement, which can be shortened to Γ ` e :T if Σ is not required.

Figure 5 presents selected typing rules for programs (the rules can be seen in full at
[30]). (Shared) is the standard rule for shared channel expressions (the Figure omits the
other standard expression typing rules, e.g. Γ ` tt :bool, Γ ·x :bool ` x :bool, etc.). The
next four rules check that the message arrival predicate is used appropriately. (aReq) is
for session request arrival on shared channels. (aVal) and (aLab) are respectively for the
arrival of a specific value and branch label on a session channel; (aMsg) is for either
kind and any value of session message. (Subs) is standard subsumption.

Although ESP has asynchronous session initiation and i/o-buffered communication
semantics, program typing for the basic session initiation and communication actions
remain standard. Rule (Acc) (resp. (Req)) says that the session implementation follow-
ing an accept (resp. request) should conform to the type annotation and the shared
channel type. (Send) and (Recv) check that the expected value types are communicated.
For an output, we check the session type prefix is !(U) where U is the message ex-
pression type; dually for input. Rules (SSend) and (SRecv) for session delegation are
similar. (Select) checks that the selection action chooses and follows one of the speci-
fied branches; (Branching) checks that branching offers at least the specified branches.
The (If) rule checks conditional expressions.

(Queue) records the presence of an empty shared input queue in the linear environ-
ment. (Par) disallows multiple queues for the same shared channel, and prevents the
composition of processes with the same session (i.e. linear) channels. (Chan) records
a : 〈S〉 in the shared environment after checking the presence of a (unique) shared queue
for a. (Nil) and the omitted rules for agent definition and instantiation are standard from
[19]. “Σ end only” means ∀k ∈ dom(Σ),Σ(k) = end. Finally, (Typecase) is an exten-
sion of dynamic types in the λ -calculus [1] to session types. It checks for each case that
the body Pi is typable under Σ with the session channel k “rebound” to xi as type Ti.
Then the whole process is typed with k set to T , which is a supertype of all Ti.

4.3 Type Soundness and Event-Handling Safety

This subsection establishes the fundamental safety properties of ESP program typing.
The proofs require additional mechanisms for runtime process typing, detailed in App-
pendix A. We note here that our approach extends [28] to support the new configuration
active types and the finer-grained i/o-buffers. We start with type soundness.

Theorem 4.2 (Type Soundness). (1) If Γ ` P.Σ and P≡ P′, then we have Γ ` P.Σ .
(2) If Γ ` P. /0 and P−→ Q, then we have Γ ` Q. /0.

Next we prove communication safety. An s-redex is a parallel composition of two pro-
cesses that has one of the following shapes:

(a) s!〈v〉;P | s [!(T);S,i :~h,o :~h′] (b) s/ l j;P | s [⊕{li :Si}i∈I ,i :~h,o :~h′] with j ∈ I
(c) s?(x).P | s [?(T);S,i :v·~h,o :~h′] (d) s.{l j :Pj} j∈J | s [&{li :Si}i∈I ,i : li′ ·~h] with i′ ∈ I∩ J
(e) s [S,i :~h1,o :v·~h′1] | s [S′,i :~h2,o :~h′2]
(f) E[arrived s v] | s [?(U);S,i :~h,o :~h′] with v of type U
(g) E[arrived s l j] | s [&{li : Si}i∈I ,i :~h,o :~h′] with j ∈ I
(h) typecase s of {(xi :Ti)Pi}i∈I | s[S] with ∃i ∈ I. Ti ≤ S

All redexes require the immediate action to correspond with the active type prefix in the
local configuration. (f–h) are for the new primitives for asynchronous event handing.
We say a process P is an error if up to structural congruence (following [20, § 5]), P
contains more than two s-processes which do not form an s-redex, or an expression in
P contains a type error in the standard sense. Then from Theorem 4.2 we obtain:

Theorem 4.3 (Communication and Event-Handling Safety). If P is a well-typed
program, then Γ ` P. /0, and P never reduces to an error.

4.4 Typing Event Selectors and Event Progress

Typing selectors. Typing rules for the extended ESP selector construct defined in Ex-
ample 3.1 naturally follow from the ESP-typing of the selector encoding (§ 3.3). We
restore the previously omitted selector type annotations: new sel〈T 〉 r in P creates a
selector that stores channels of type T . Then the type for a user of the selector is written
sel(T), and for the selector itself sel(T). For simplicity, we assume these types do not
occur as part of other types. The linear environment Σ is extended with two additional
type assignments, r :sel(T) and r :sel(T), the latter only used for runtime typing for
selector queues. The program typing rules for the selector operations are:

Γ ` P.Σ ·r :sel(T)
Γ ` new sel〈T 〉 r in P.Σ

(Selector)
Γ ` P.Σ ·r :sel(T) S≤ T

Γ ` reg s to r in P.Σ ·r :sel(T)·s :S
(Reg)

∀i ∈ I.Γ ` Pi .Σ ·r :sel(T)·xi :Si Si ≤ T
Γ ` select(r){(xi :Si) : Pi}i∈I .Σ ·r :sel(T)

(Select)

We omit the runtime typing rules. By setting [[Σ]] as the compositional mapping such
that [[r :sel(T)]] is given as r : Sr ·r : Sr when Sr = µ X.?(T);X, and otherwise identity,
as well as extending the notion of error to the internal typecase of the select operation,
we obtain, writing ESP+ for the extension of ESP with selectors:

Proposition 4.4 (Soundness of Selector Typing Rules).

1. (Type Preservation) Γ ` P.Σ in ESP+ if and only if Γ ` [[P]]. [[Σ]].
2. (Soundness) P≡ P′ implies [[P]]≡ [[P′]]; and P−→ P′ implies [[P]]−→∗ [[P′]].
3. (Safety) A typable process in ESP+ never reduces to an error.

(1, 2) are straightforward. (3) is a corollary from (1, 2) and Theorems 4.2 and 4.3. This
example demonstrates how the fine-grained typing rules of ESP can suggest and justify
sound typing rules for high-level event handling constructs through ESP encodings.

The typing rules for the switch-receive construct from Example 3.2 can also be
derived and justified by its encoding; the details are available from [30].

Event progress. The behaviour of the ESP+ selector implicitly features session dele-
gation (session channel passing) as get and put operations on channel collections. The
presence of delegation generally makes it impossible to guarantee progress in session
typed processes without specialised techniques [5].5 However, we observe that a selec-
tor does not use delegation in an arbitrary way; indeed, one of the key characteristics
of event-driven programs is their non-blocking nature. In the following, we show that
an ESP+-process driven by a selector does satisfy a strong form of progress.

Definition 4.5 (Selector Usage). We say a closed ESP+-process Γ ` P . Σ uses se-
lectors well if each select action at r is preceded by a register action at r, and each
register action at r is followed by a select action at r, both up to the unfolding of recur-
sion; moreover each select(r){(xi :Si) : Pi}i∈I in P satisfies: (1) (consumption) each Si
starts from a branching or linear input and Pi starts from the corresponding action on xi;
and (2) (exhaustiveness) in each Pi, no input or branching actions occur other than (1).

5 One approach is to impose an order on the channels stored via session channel passing; how-
ever, the standard ordering techniques cannot be applied to event selectors (see § 6), so progress
is difficult to establish in this way.

By the above conditions, all expected events will be handled on every registered chan-
nel: as far as the environment generates the events (i.e. produces the messages), the
selector will proceed to process them one by one.

We now introduce two conditions from [20]. A typable ESP+-process P is simple if
the session typings in the premise and conclusion of each prefix rule from Figure 5 in P’s
typing derivation are restricted to at most a singleton; and Σ = /0 in (Selector,Reg,Sel).6

We also say P is well-linked if P−→∗ Q implies whenever Q has an active prefix whose
subject is a (free or bound) shared name, then the dual active prefix always occurs in Q.

We use the refined reduction↘, defined as−→∗
s−→ns−→∗

s where−→s is the reduc-
tion induced by the last of the selector reduction rules in § 3.3; and −→ns=−→ \ −→s,
that is −→ns is the whole reduction minus −→s. We state the event progress theorem
in terms of ↘ because −→s can still occur in a deadlocked configuration: it does not
constitute a “progress step”.

Theorem 4.6 (Event Progress). We say an ESP+-process P is eventful if Γ ` P . /0, it
is simple and well-linked, and it uses selectors well in the sense of Definition 4.5. Then
we have: (1) if P is eventful and P−→Q then Q is eventful; and (2) if P is eventful then
either P≡ 0 or P↘ Q for some Q.

This result strictly extends progress for session types to support implicit, well-disciplined
usage of session delegation. In addition, all session actions registered with a selector
will indeed be processed in a non-blocking fashion, formally justifying the implicit as-
sumptions and expected behaviour of the standard event-driven programming patterns
found in practice.

5 Eventful SJ: Implementation and Evaluation

This section firstly discusses the design and implementation of Eventful SJ (ESJ). We
then report our experience of programming a substantial application in ESJ, a session-
typed SMTP server, and discuss benchmark results.

5.1 Event Primitives and ESJ Compilation

The theoretical inquiries in § 3 and § 4 give a firm formal basis for, and insight on,
potential primitives for event-based session programming. The current design of ESJ
is based on the selector construct, message arrival predicate and the session typecase.
Our selector enhances its untyped counterpart as found in Java NIO and Unix with
session-typed operations. In § 3, we have seen that such a selector is encodable using
the message arrival predicate through polling: however, polling is inefficient from the
performance viewpoint, favouring the introduction of this construct as a primitive.

ESJ is implemented using Polyglot [29], and currently comprises approximately 30
KLOC of Java. First, the compiler statically type checks and transforms ESJ-programs

6 This condition precludes the explicit use of delegation and the interleaving of sessions, but can
be relaxed to support nested sessions as in [5].

1 SJProtocol _sjtypecase0 = new SJProtocol(...); // sbegin.pStream

2 SJProtocol _sjtypecase1 = new SJProtocol(...); // ?{NEXT: ..., QUIT: }

3 SJProtocol _sjtypecase2 = new SJProtocol(...); // ?(Data).pStream

4 ... // Declaration and initialisation of the selector.

5 while(run) {

6 { // Braces delimiting the lexical scope of the using statement.

7 SJChannel c = null; // The using statement variable declaration.

8 try {

9 c = SJRuntime.select(sel); // ‘sel’ is the selector.

10 SJSessionType _sjtmp0 = c.remainingSessionType();

11 if(_sjtmp0.isSubtype(_sjtypecase0.getType())) { // Start of typecase.

12 SJServerSocket ss = (SJServerSocket) c; // "Rebind"..

13 c = null; // ..the typecase variable.

14 ... // Call accept on the server socket; register the new session.

15 ... // Re-register the server socket.

16 } else if(_sjtmp0.isSubtype(_sjtypecase1.getType())) {

17 ... // Translation of the inbranch for NEXT and QUIT cases.

18 } else if(_sjtmp0.isSubtype(_sjtypecase2.getType())) {

19 SJSocket s2 = (SJSocket) c;

20 c = null;

21 Data d = (Data) SJRuntime.receive(s2); // Cast inserted.

22 ... // Translation of the session recursion construct.

23 } else {

24 throw new SJIOException("Runtime session typecase error: " + ...);

25 } // End of typecase.

26 } finally {

27 SJRuntime.close(c);

28 } } }

Fig. 6. Compilation of the ESJ “event streams” example from Figure 2 to Java (extract).

into standard Java. The transformation serializes and embeds session type informa-
tion into the generated classes, and translates the SJ session constructs into transport-
independent SJ Runtime (SJR) operations. Then at runtime, the SJR (implemented as
a Java library) is used to perform the abstract session operations as actions on a “con-
crete” transport connection, such as TCP or shared memory: the transport is negotiated
at session initiation according to system and user parameters. In this way, the SJ frame-
work supports the execution of SJ programs on any compliant JVM while decoupling
type-safe session abstraction from specific modes of transport.

The new ESJ extensions replace the previous compiler with a generalised design
based on session set typing (singleton set types subsume the previous non-set types).
The use of SJSelector operations and typecase are checked as part of static session
type checking following § 4.2 to preserve the safety properties presented in § 4.3, 4.4.
Here, we illustrate the compiler translation of high-level session constructs into SJR
operations using the ESJ “event streams” example from § 2, focusing on the treatment
of typecase and SJSelector. Figure 6 extracts from the standard Java code generated
by the ESJ compiler for the main event loop. As in C#, using statements are translated
into try-finally statements with appropriate resource cleanup in the finally block,
and the lexical scope of using variable declarations is controlled by an outer pair of

block braces. Basic session operations like select (Line 9) and receive (Line 21) are
directly translated into SJR operations, passing the target references (respectively the
SJSelector sel and the SJSocket s2) as arguments; similarly for send and arrived.

We now explain the translation of the typecase. First, the session types guarding
each case are embedded into the parent class as serialized SJProtocol objects. We then
insert a remainingSessionType call to the typecase target c (Line 10) to determine the
runtime session type of the SJChannel when the typecase is performed. The structure of
the typecase is translated into an if-else statement. Following the formal semantics
of typecase (§ 3.2), the if-cases find the first typecase-case, according to their original
syntactic order, where the current session type of c is a subtype of the specified type. The
“rebinding” of the typecase variable in each case is achieved by inserting an appropriate
cast: to SJServerSocket in the first case, and to SJSocket in the second, as directed by
their corresponding session types. Note that the rebinding also sets c to null. Although
session types are embedded in their serialized forms, the first call to getType on an
SJProtocol decodes the type and caches the value for future use. The final else case
serves only as a security measure, since session typing guarantees that at least one of
the main cases will match.

5.2 Eventful SJ Runtime

SJ Runtime structure and the ESJ extensions. The SJ Runtime (SJR) provides an ab-
stract platform for executing the same high-level, typed session programs over different
transports. As described above, the SJ compiler transforms SJ classes into standard java
binaries, translating user-level session constructs into SJR operations. The SJR opera-
tions target specific Interaction Service (IS) components, which form the upper layer of
the SJR, encapsulating services such as session initiation, message serialization, branch
synchronisation and session delegation [30]. The IS components are implemented in
terms of actions on the Abstract Transport Interface (ATI), which specifies the commu-
nication actions of an idealised session transport: bi-directional, order-preserving and
reliable delivery of byte segments. The ATI is in turn implemented by Transport com-
ponents, encapsulating the concrete communication mechanisms of specific transports.

The new ESJ Runtime features several SJR extensions. To support the above trans-
lation of typecase (and following the formal semantics), we create an IS service for
runtime session type monitoring that tracks the progress of session execution (i.e. the ac-
tive type, § 3.1). The following focuses on the ESJ extensions related to the SJSelector

facilities. The challenge is to integrate the infrastructure for asynchronous event han-
dling underlying the SJSelector API in a way that (1) fits the transport-independent SJ
framework, and (2) gives the performance expected from event-based systems.

Runtime support for session event selectors. Figure 7 depicts the main IS and Transport
components involved in the execution of an event-driven SJ program implemented using
the SJSelector API. The key elements of the ESJ extensions are the event-driven ATI
extensions, the asynchronous message deserializers, and the abstract selector services.

Event-driven ATI. The ESJ ATI extensions export a TransportSelector interface for
detecting asynchronous communication events at the transport level. The implementa-

SharedMemorySelector

PipesSelector

c3

c2

...s3

Message Queue
...s2

Message Queue

...

s1

s2

s3

s1

SJSelector

s2

s3

ready

ready

accepting

Session Selector Service

S
e

le
c
ti
o

n
 Q

u
e

u
e Status

...

...

Asynchronous Deserializers

...s1

Serializers

...

c1

Message Queue

Read

Write

TCPSelector

SJ Runtime

User Programs

select

send

receive

write

enqueue buffer

Session (IS) Layer Transport LayerApplication Layer

notify

Transport Selectors

A
T

I

E
S

J

Fig. 7. The main ESJ Runtime components for executing event-driven session programs.

tion of each transport-specific selector is provided by the Transport component that im-
plements the ATI, e.g. the TCPSelector provided by the TCP component uses Java NIO.
On initialisation, the SJR creates and maintains one instance of the TransportSelector

for each ESJ-compatible transport available. As Figure 7 shows, the ESJ ATI decouples
the abstract session selector service (explained below) from the various transports over
which the registered sessions are being conducted.

Asynchronous deserializers. Sessions initialised in asynchronous I/O mode (i.e. for
event-driven execution via an SJSelector) specify an appropriate asynchronous deseri-
alizer component, which encapsulates the routines for converting transport-level binary
data into application-level messages. When a read event occurs at the transport-level,
the TransportSelector upcalls the deserializer to determine whether enough data for a
complete application-level message has been received. If so, the message is enqueued,
ready for user consumption, and any remaining data is re-buffered. Otherwise, the data
is similarly re-buffered for use on the next read event.

Session selector services. Each SJSelector is supported by an instance of an IS-level
SJSelectorService. This service maintains a record of the asynchronous sessions reg-
istered with the parent SJSelector, and in turn registers the ATI connection underlying
each session with the appropriate TransportSelector. The SJSelectorService is no-
tified by the TransportSelector when an application-level message has been deserial-
ized and enqueued; the SJSelectorService can then report this event when select is
called from the application-level.

Sending a message on an asynchronous session uses the serializer to directly enqueue
the binary data for writing at the transport-level (i.e. in the local o-buffer); the send
operation then immediately returns. Testing session message arrival in the upcalls from
the TransportSelector, as opposed to e.g. polling from the IS-layer, is important for
fair and efficient event detection in multi-transport contexts.

// Server-side SMTP.

protocol pSmtpServer {

!<Greeting>

.?(Ehlo)

.!<EhloAck>

.pBody

}

// SMTP session body.

protocol pBody {

rec LOOP [

?{ // SMTP commands.

MAIL: pMail.#LOOP,

RCPT: pRcpt.#LOOP,

DATA: pData.#LOOP,

...,

QUIT: !<QuitAck>

}] }

// MAIL command handler.

protocol pMail {

?(Address) // The sender.

.!{ // Reply codes.

RC250: !<AddrAck>,

RC550: !<AddrError>,

...

}

}

Fig. 8. Extracts from a server-side session type specification of SMTP.

5.3 An ESJ SMTP Server: Implementation Experience and Benchmarks

We implemented a session-typed event-driven SMTP server as a practical evaluation of
ESJ. We use this advanced example to further examine the expressiveness and benefits
of event-driven session programming and the performance of ESJ. SMTP [31] is an
Internet standard for e-mail transfer, used by Mail Transfer Agents (MTA) to accept,
route and deliver mails. Our implementation corresponds to a simplified MTA that does
not permit message relaying, i.e. it only accepts mail addressed to the local domain.
The full session type declarations and source code can be found at [30].

Session type specification. An SMTP session is a dialogue of client commands and
server responses that carries out a sequence of zero or more mail transactions. We first
declare a formal specification of SMTP using session types: the main structure of the
server-side SMTP session type is listed in Figure 9 as a collection of SJ protocols.
Following this specification, we now implement an event-driven server using ESJ.

Server implementation. The first step is to specify the SMTP server events by declaring
the session set type for the selector that drives the main event loop of the server:

protocol pSmtpEvents { // The events to be handled by the SMTP server.

sbegin.pSmtpServer, // SMTP session initiation event.

?(Ehlo).!<EhloAck>.pBody, // EHLO event.

pBody, // Mail transaction command event: MAIL, RCPT, DATA, QUIT, ...

pMail.pBody, // Sender address event for the MAIL command.

pRcpt.pBody, // Recipient address event for the RCPT command.

?(MessageData).!<MessageDataAck>.pBody, // All message data received.

... }

Figure 9 outlines the structure of the main event loop and the handler for MAIL events.
The mainEventLoop method takes the selector sel of the above type, and uses typecase
to handle and dispatch the event occurrences accordingly. The first listed when case

handles the EHLO event: the Server receives an Ehlo message, returns an EhloAck and
re-registers the session with sel to wait for the first command in the main session body.
The second when case, for the recursive type of the main session body (pBody), handles
the Client commands for mail transactions. The MAIL and RCPT branch cases directly re-
register the session for the subsequent Address message input. In the DATA branch case,

void mainEventLoop(SJSelector{pSmtpEvents} sel) throws ... {

while(run) {

using(SJChannel{pSmtpEvents} c = sel.select()) { // ‘sel’ is the SJSelector.

typecase(c) {

... // SMTP initiation event: accept and register a new session.

when(SJSocket{?(Ehlo).!<EhloAck>.pBody} s1) { // Received EHLO.

Ehlo ehlo = s1.receive();

s1.send(new EhloAck("250 Hello ..."));

sel.register(s1); // Register SMTP session for the first command.

}

when(SJSocket{pBody} s2) { // The main mail transaction loop.

s2.recursion(X) {

s2.inbranch() { // Handle an SMTP command event.

case MAIL: sel.register(s2); // Now expecting the Sender address.

case RCPT: sel.register(s2); // Now expecting the Recipient addr.

case DATA: handleData(sel, s2); // Handle the DATA command.

...

case QUIT: s2.send(new QuitAck("221 ...")); // SMTP session end.

} } }

when(SJSocket{pMail.pBody} s3) { // Received Sender address.

handleMail(s3); // Use the handler to perform the pMail subprotocol.

sel.register(s3); // Register for the next command.

}

... // Session typecase cases for the other SMTP command events.

} } } }

void handleMail(pMail s) throws SJIOException { // Handle MAIL command events.

Address addr = s.receive(); // ?(Address)

switch(checkAddress(addr)) { // !{RC250: !<AddrAck>, RC550: !<AddrError>, ...}

case ADDR_OK: s.outbranch(RC250) s.send(new AddrAck("OK")); break;

case UNAVAIL: s.outbranch(RC550) s.send(new AddrError("...")); break;

default: s.outbranch(...) ...; break;

} }

Fig. 9. The main event loop and the MAIL event handler from the ESJ SMTP server.

we pass the session to the omitted handleData method (which sends an RC354 reply
before similarly re-registering the session to await the message data). The QUIT branch
case sends an acknowledgement, but does not re-register the session since it has now
been completed. The final listed when case handles the arrival of the Address message
for the MAIL branch by passing the session to the handleMail method, which receives the
Address and returns one of the specified reply codes as appropriate. The pMail session
type prefix of the s3 argument at the point of the handleMail call corresponds to the
session type of the s parameter of the method: this prefix is consumed by the method
call and the remaining type of s3 when it is re-registered with sel is again pBody.

Taking advantage of SJ framework modularity, we implement the ESJ SMTP server
to be fully interoperable with non-SJ SMTP clients while retaining session type safety.
Firstly, we provide application-specific serialization components: we read and write
UTF-8, formatted according to the SMTP protocol, e.g. messages are terminated by

‘CRLF’. Each message class, including those for branch labels, provides its own dese-
rialization routine. The SJR uses the current type of each session (tracked by the runtime
session monitor) to determine the expected message type(s) and apply the appropriate
routine. Note that the operational semantics of enacting a session recursion does not
involve any underlying communications (see [Instance] in Figure 4), and hence does not
affect the non-SJ peer. Finally, the normal SJ peer compatibility check at session initia-
tion is not possible with non-SJ peers: full communication safety is instead guaranteed
through dynamic typing of non-SJ client actions by the session monitoring service.

ESJ programming experience. Our experience of implementing the SMTP server rein-
forces the following attributes of event-driven session programming.

1. Session types promote clear and safe implementation of complex, real-world pro-
tocols featuring branching and recursion. The ability to decompose protocols into
subprotocols (e.g. pBody, pMail) and explicit specification of system events (e.g.
pSmtpEvents) greatly facilitates the structuring of asynchronous event-driven code.
Session types ensure precise identification of event types when handling multiple,
concurrent sessions at different stages of execution.

2. Our implementation is guaranteed to conform to the session type specification of
SMTP through static typing, and all events will be handled correctly until session
completion. Together with session monitoring to verify client conformance (for
non-SJ clients), runtime communication safety is guaranteed; we have tested our
server against commercial clients such as Microsoft Outlook and Apple Mail.

3. The programmer controls the level of detail at which the protocol is represented
by session types. Due to space considerations, the presented SMTP specification
is relatively basic: it is fully possible to capture finer-grained details of the SMTP
protocol, such as the strict order for MAIL, RCPT and DATA commands, for verification
by static type checking. Session set type subtyping also offers a natural mechanism
for refining event-driven implementations to support additional event types.

4. The ESJ implementation is inherently cross-transport: the IS services for session
events and custom message serialization run above the ATI, and are hence re-usable
over different transports, e.g. TCP, TLS, transports for LAN messaging, etc.

We have re-used the above components to implement a type-safe SJ STMP client that
is similarly interoperable with existing SMTP servers [30]. Language facilities for the
formal declaration and static verification of protocols in communications-based pro-
grams will have significant impact on engineering application-level protocols. Richer
protocols can be specified with more precision and less effort, supported by automatic
static type checking that ensures compatibility between protocol implementations.

ESJ performance. We evaluate the performance of the event-driven ESJ SMTP server
against an equivalent multithreaded SJ implementation. The results show that event-
driven session programs exhibit the same performance characteristics (i.e. better scala-
bility under high concurrent loads) as traditional event-driven programming in compar-
ison to their multithreaded counterparts, while maintaining session type safety.

In this macro benchmark, we measure SMTP server throughput in terms of the total
number of messages handled by the server while engaged in a varied number of concur-
rent client sessions. The server is hosted on one machine (locked to one core), and the

248.9

273.4

282.8

289.6

351.4

355.7
359
362

1
0

1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

Number of clients

T
h

ro
u

g
h

p
u

t
(m

s
g

 /
 s

)

SE

ST

Fig. 10. Mean throughput and throughput standard deviation of multithreaded (ST) and event-
driven (SE) SJ SMTP servers under increasing client loads.

remote clients are set to run continuously repeating mail transaction loops, submitting
messages of certain sizes. The benchmark is conducted in a controlled cluster environ-
ment: each node is a Sun Fire x4100 with two 64-bit Opteron 275 processors at 2 GHz
and 8 GB of RAM, running 64-bit Mandrakelinux 10.2 (kernel 2.6.11) and connected
via gigabit Ethernet. Latency between each node is measured to be 0.5 ms on average
(ping 64 bytes). The benchmark applications are compiled and executed using the Sun
Java SE compiler and Runtime versions 1.6.0.

After server performance in the running benchmark configuration has stabilised,
the throughput of the server is measured across a series of 50 consecutive 15 second
windows; this process is repeated 10 times for each parameter combination, for each
the two server implementations. Figure 10 gives the mean throughput and the through-
put standard deviation (denoted by the vertical bars) for 10, 100, 300, 500, 700 and
900 concurrent clients and message size 1 KB: the multithreaded SJ server (ST) is the
red line, and the event-driven ESJ server (SE) is the blue line. As expected, the re-
sults show that the performance of the multithreaded server degrades as the number of
clients increases, i.e. mean throughput decreases while throughput variance increases,
whereas the throughput of the event-driven SJ server is consistently higher and more
stable across all client loads.

The full source code and raw results of this benchmark can be obtained from the SJ
homepage [30]. The SJ homepage also presents further micro and macro ESJ bench-
mark results, including comparisons with multithreaded and event-driven programs im-
plemented in standard Java: the results show that ESJ performs competitively against
“untyped event-programming” using NIO. Earlier benchmark results comparing multi-
threaded SJ against standard TCP sockets and RMI were presented in [21].

6 Related Work

Event-driven and event-based programming. Traditional event-driven programming is
known to attain performance and scalability at the cost of complex control flow and
manual stack management [3, 34]. Consequently, many works have sought to make
event programming easier by adding language features that raise the level of abstrac-
tion and/or facilitate code verification. Tame [25] introduces language features, similar
to the synchronisation mechanisms of futures, that allow control flow to be returned
from a blocked C++ function to the caller. The interface to the libeel library [9] is de-
signed to clarify the relationships between event registrations and callbacks to support
the accompanying tool suite for call graph analyses. The nesC language [14] promotes
an event-based component design, based on interfaces that specify callback as well as
event registration functions, to meet the requirements of sensor network programming.
EventJava [11] integrates advanced event correlation techniques with O-O program-
ming, providing high-level syntax for expressing complex patterns of predicated events
and a modular framework for implementing alternative semantics for event matching.
Combining these advanced event correlation facilities with session typed event pro-
gramming is an interesting future topic, particularly for an extension to multiparty ses-
sion types [20] which enable both multicasting and correlation over multiple sessions.
Whilst these works address many of the difficulties of event programming, none offer a
characterisation of communication events as enabled by structured sessions nor the as-
sociated static type safety by session types. A session type describes not only the pend-
ing event type, but also delineates the interaction flow in which the event has occurred.
This enables well-structured programming, for which strong type-based properties for
communications, such as communication-safety and progress, can be ensured.

Lauer and Needham presented the first study of the relationship between multi-
threaded and event-driven systems [26], arguing that (state-based) threads and (message-
based) events are dual to each other. Some works approach this duality by combining
multithreaded programming interfaces and event-based runtimes to obtain benefits from
both categories. A hybrid threads-events system has been embedded into Haskell [27]
where both multithreaded and event-driven components are implemented at the appli-
cation level. A trace over blocking system calls is inferred from the threaded code and
the scheduler invokes the user-supplied event handler when event points are reached in
the trace. The Scala actors library [17] offers both thread-blocking receive operations
and actor-based event handlers, decoupled from threads as closures, that “piggy-back”
event handling on the source thread that triggers the event. The Capriccio system [35]
uses compiler transformations of user-level thread code, replacing blocking I/O with
non-blocking equivalents, coupled with efficient runtime stack management to min-
imise thread overheads. Although these works offer much improved runtime support
for user-level threads, event-driven programming remains a fundamental programming
paradigm in terms of design and achieving performance and scalability in highly con-
current communications-based applications such as Web servers [24, 36]. In contrast
to the above works, the present paper aims not to circumvent, but rather to facilitate
event-driven programming through a structured and type-safe programming methodol-
ogy developed from a formal basis of session types.

Dynamic types. Dynamic typing with the typecase construct in the λ -calculus is studied
in [1, 2] where (1) typecase is applied for general expression e; (2) the type can be
matched against the type patterns with free type variables; and (3) the default case
can be selected if there is no matching (motivated by the use of untyped IO). Our work
differs in that we treat the typecase for types for communication flows, that we impose a
stronger constraint on the typecase through session set types dispensing with the default
case, and that we use non-trivial subtyping on session set types to control the typecase.
Below we outline how the type matching in (2) and the default case (3) can be easily
incorporated into our framework, using ESP (the full theory is found in [30]).

First we extend the syntax of the typecase to typecase e of {(~Xi)(xi : Ti)Pi}i∈I
where Xi binds free type variables in Ti. We first introduce the typing system for ex-
pressions similar to [1]. For type matching, we introduce a matching function from
type variables from closed types and uses the similar typing system from [1]. These are
simple additions, which do not change the basic nature of the type discipline.

For (3), the default case, we include a small, but important additional rule, end≤ S
for any S ∈S , to the construction of the subtyping relation in §4.1: this rule means that
under the asynchronous communication semantics, doing nothing (end) never leads to
a lack of composability (the process sends nothing at that channel, and a message from
its peer is just buffered). By encoding the type for “default”⊥ as {end}, we can type the
default case, since ⊥ can be raised to an arbitrary session type by (Subs). For example,
we can type typecase k of {T1 : P1, T2 : P2, ⊥ : P3} where the third branch is the
default case and the type ⊥ in the default case indicates that the type of k is unknown,
hence P3 is never allowed to use k except as a value of a message it may send through
another channel. Eventful SJ can treat mixed events and objects in the typecase, as seen
in Figure 2 in § 2. While the extensions in the theory are straightforward, our practical
choice is not to include either (2) or (3). This is because (2) may lead to relatively
inefficient type matching algorithm for typecase [1], while (3) breaks the progress
property (note 0 has an arbitrary session type). We believe that the default case is better
handled as a session exception [21] with clarity and flexibility.

Session typed programming languages and formalisms. Sing# [12], a systems-level
language with session types for inter-component interaction, features join constructs
for handling the arrival of various message patterns, on which we already discussed in
§3.3. A recent work [16] has studied a fine-grained integration of session programming
and object-orientation: one of the advantages is the ability to store session endpoints
as object fields. Their work does not treat either event-driven programming, progress
or implementation with session end-point passing (delegations). A few process typing
systems that guarantee advanced progress properties have been studied recently in the
context of Web services [5–8]. The present paper is the first to include the facility for
the type-safe detection of message arrival combined with dynamic inspection of session
types at runtime, using them to guarantee an advanced progress property that applies to
our extension of Java for communications-based event programming. We formalise and
prove a new progress property, event progress stated in Theorem 4.6, which in effect
includes delegations hence which cannot be proved using the typing systems in [5–8].
In our selectors, the order of session channels do not form a partial order, as they are
re-stored in the session queue (i.e. re-registered), depending on message arrival and

the type of the session: this complex causality with session delegations is not typable
in [5, 6]. The asynchronous communication semantics and recursive types are the key
features of event programming (as found in § 2 and SMTP servers in § 5.3), which
are not fully treated in [7, 8]. The key properties for event programming are ensured
by static checking (for safety properties) and simple usage rules (for progress) in our
integration of sessions and events in Java.

Future work. The theoretical basis and practical framework for event-driven session
programming presented in this paper opens up several directions for further research.
One is the extension of both the theory and implementation to support event handling
for multiparty sessions [20]: combining the advanced event correlation facilities of [11]
with multiparty session types would enable type-safe multicasting and correlation of
multiple, heterogeneous sessions. Our mechanisms for the type-safe storage and re-
trieval of sessions may also serve as a basis for other high-level facilities such as session
hibernation and process migration [32]. We are currently designing SJ Runtime exten-
sions for session event selector thread pools, where we assign particular event types (i.e.
session types) to specific threads. Session types can be exploited in this role for perfor-
mance gains (e.g. thread locality for event handling routines) and to facilitate system
profiling and load balancing. We are also continuing the practical evaluation of ESJ
through the implementation of event-driven applications and further benchmarks [30].
These investigations will assist future developments in the design of safe, high-level
language support for managing complex, asynchronous control flow in communication-
centred programming.

Acknowledgements. We thank the ECOOP referees for their comments. This work is
partially supported by EPSRC EP/F003757, EP/F002114, EP/G015635 and EP/G015481.

References

1. M. Abadi, L. Cardelli, B. C. Pierce, and G. D. Plotkin. Dynamic typing in a statically typed
language. TOPLAS, 13(2):237–268, 1991.

2. M. Abadi, L. Cardelli, B. C. Pierce, and D. Rémy. Dynamic typing in polymorphic lan-
guages. J. Funct. Program., 5(1):111–130, 1995.

3. A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur. Cooperative task manage-
ment without manual stack management or, event-driven programming is not the opposite of
threaded programming. In USENIX ATC 2002, pages 289–302. USENIX Association, 2002.

4. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#. TOPLAS,
26(5):769–804, 2004.

5. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR
2008, volume 5201 of LNCS, pages 418–433. Springer, 2008.

6. L. Caires and H. T. Vieira. Conversation types. In ESOP 2009, volume 5502 of LNCS, pages
285–300. Springer, 2009.

7. G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani. Foundations of session
types. In PPDP 2009, pages 219–230. ACM, 2009.

8. G. Castagna and L. Padovani. Contracts for mobile processes. In CONCUR 2009, volume
5710 of LNCS, pages 211–228. Springer, 2009.

9. R. Cunningham and E. Kohler. Making events less slippery with eel. In HOTOS 2005, pages
3–3. USENIX Association, 2005.

10. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session types
for object-oriented languages. In ECOOP 2006, volume 4067 of LNCS, pages 328–352.
Springer, 2006.

11. P. Eugster and K. R. Jayaram. Eventjava: An extension of java for event correlation. In
ECOOP, volume 5653 of LNCS, pages 570–594. Springer, 2009.

12. M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and S. Levi. Lan-
guage support for fast and reliable message-based communication in singularity os. In Eu-
roSys 2006, ACM SIGOPS, pages 177–190. ACM, 2006.

13. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join calculus. JLAP,
57(1-2):23–69, 2003.

14. D. Gay et al. The nesC Language: A Holistic Approach to Networked Embedded Systems.
In PLDI, pages 1–11, 2003.

15. S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Informatica,
42(2/3):191–225, 2005.

16. S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira. Modular session
types for distributed object-oriented programming. In POPL 2010, volume 45, pages 299–
312. ACM, 2010.

17. P. Haller and M. Odersky. Scala actors: Unifying thread-based and event-based program-
ming. Theoretical Computer Science, 410(2-3):202–220, 2009.

18. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In ECOOP
1991, volume 512 of LNCS, pages 133–147. Springer-Verlag, 1991.

19. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for
structured communication-based programming. In ESOP 1998, volume 1381 of LNCS, pages
122–138. Springer, 1998.

20. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In POPL
2008, pages 273–284. ACM, 2008.

21. R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in java. In
ECOOP 2008, volume 5142 of LNCS, pages 516–541. Springer, 2008.

22. Java New I/O APIs. http://java.sun.com/j2se/1.4.2/docs/guide/nio/.
23. D. Kouzapas. A session type discipline for event driven programming models. Mas-

ter’s thesis, Imperial College London, 2009. http://www.doc.ic.ac.uk/teaching/distinguished-
projects/2010/d.kouzapas.pdf.

24. M. Krohn. Building secure high-performance web services with okws. In USENIX ATC
2004, pages 185–198. USENIX Association, 2004.

25. M. Krohn, E. Kohler, and M. F. Kaashoek. Events can make sense. In USENIX ATC 2007,
pages 1–14. USENIX Association, 2007.

26. H. C. Lauer and R. M. Needham. On the duality of operating system structures. SIGOPS
Operating Systems Review, 13(2):3–19, 1979.

27. P. Li and S. Zdancewic. Combining events and threads for scalable network services imple-
mentation and evaluation of monadic, application-level concurrency primitives. SIGPLAN
Not., 42(6):189–199, 2007.

28. D. Mostrous and N. Yoshida. Session-based communication optimisation for higher-order
mobile processes. In TLCA 2009, volume 5608 of LNCS, pages 203–218. Springer, 2009.

29. Polyglot homepage. http://www.cs.cornell.edu/Projects/polyglot/.
30. SJ homepage. http://www.doc.ic.ac.uk/~rhu/sessionj.html.
31. The simple mail transfer protocol. http://tools.ietf.org/html/rfc5321.
32. A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host mobility. In MOBICOM

2000, pages 155–166. ACM, 2000.

33. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.
In PARLE 1994, volume 817 of LNCS, pages 398–413. Springer-Verlag, 1994.

34. R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea (for high-concurrency
servers). In HOTOS 2003, pages 4–4. USENIX Association, 2003.

35. R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer. Capriccio: scalable threads
for internet services. In SOSP 2003, pages 268–281. ACM, 2003.

36. M. Welsh, D. E. Culler, and E. A. Brewer. Seda: An architecture for well-conditioned,
scalable internet services. In SOSP 2001, pages 230–243. ACM, 2001.

A Typing Runtime Processes

This section gives the typing system for runtime processes. Our approach follows that
in [28]. The process typing judgement is extended as

Γ ` P.∆ with ∆ ::= Σ | ∆ ·s : [S,i :~T ,o :~T ′] | ∆ ·s :(S, [S′,i :~T ,o :~T ′])

where the configuration element [S,i :~T ,o :~T ′] records the active type S of the configu-
ration and types of values enqueued in the buffers. (S, [S′,i :~T ,o :~T ′]) pairs a type S for
the session s and the type information [S,i :~T ,o :~T ′] for the associated configuration at
s. We identify (S, [. . .]) with ([. . .],S). Expression typing judgements are as for program
typing, but modified to use ∆ -environments where needed.

The composition of ∆1 and ∆2, denoted by ∆1 ¯ ∆2 [28], is defined as:

∆1 ¯ ∆2 = {s :(∆1(s)¯∆2(s)) | s ∈ dom(∆1)∩dom(∆2)}∪∆1 \dom(∆2)∪∆2 \dom(∆1)

where S¯ [S′,i:~T ,o:~T ′] = [S′,i:~T ,o:~T ′]¯S = s:(S, [S′,i:~T ,o:~T ′]) if S≤ S′; otherwise
undefined. Next, we define the session type remainder S′ obtained by subtracting a
vector of message types ~T from a session type S, denoted by S−~T = S′, by: (1) S−ε =
S; (2) ?(T);S− T ·~T if S− ~T = S′; and (3) &{li : Si}i∈I − li ·~T = S′ if for all i ∈ I,
Si−~T = S′. Our session type remainder differs from that in [28] because we require the
stronger condition that a well-formed configuration with an output prefixed active type
cannot have a non-empty local i-buffer or be composed with an configuration with
a non-empty o-buffer. We say a ∆ -evnvironment is well-configured with respect to a
session s, written wc(∆ ,s), if the following is satisfied:

∆(s) = [S1,i :~T1,o :~T ′2], ∆(s) = [S2,i :~T2,o :~T ′1] implies S′i = Si− (~Ti·~T ′i) (i ∈ {1,2}), S′1 ≤ S′2

These conditions say that, at any stage of execution of an established session, the types
of the remaining session implementations on each endpoint, modulo any messages
buffered (i.e. to be consumed by pending input actions) at the local i-buffer and oppos-
ing o-buffer, should be subtypes of the active types in their respective configurations;
and that the dual of the active type at one endpoint should be a supertype of the active
type at the other. We say that ∆ is well-configured, wc(∆), iff ∀s ∈ dom(∆),wc(∆ ,s).

Γ ` P.∆ Γ ` Q.∆ ′

Γ ` P | Q.∆ ¯ ∆ ′
(Par’)

Γ ,{s :S} ` s : S
(Endpt)

Γ ` a :〈S〉
Γ ` a [〈S〉 :~s].∪s∈~s {s :(S, [S,i :ε,o :ε])},a (Queue’)

Γ ` a :〈S〉
Γ ` a〈s〉. s :(S, [S,i :ε,o :ε])

(AsynchReq)
Γ ` P.∆ s,s ∈ dom(∆) wc(∆ ,s)

Γ ` (ν s)P.∆ \{s,s} (Sess)

∀i≤ m.Γ ,Σi ` hi : Ti ∀ j ≤ n.Γ ,Σ ′j ` h′j : T ′j Σ = Σ0·Σ1 · · ·Σm ·Σ ′1 · · ·Σ ′n ct(Σ0)

Γ ` s [S,i :~h,o :~h′].Σ ¯ s : [S,i :~T ,o :~T ′]
(Config)

Fig. 11. Selected typing rules for runtime processes.

We now introduce ∆ -ordering, which represents how session environments are up-
dated as typable processes are reduced. We define:

1. s :!(T);S ¯ s : [!(T);S,o :~τ] < s :S ¯ s : [S,o :~τ ·T]
2. s :?(T);S ¯ s : [?(T);S,i :T ·~τ] < s :S ¯ s : [S,i :~τ]
3. s : [o :τ ·~τ] ¯ s : [i :~τ ′] < s : [o :~τ] ¯ s : [i :~τ ′·τ]
4. s :⊕{li :Si}i∈I ¯ s : [⊕{li :Si}i∈I ,o :~τ] < s :Si ¯ s : [Si,o :~τ ·li]
5. s :&{li :Si}i∈I ¯ s : [&{li :Si}i∈I ,i : li ·~τ] < s :Si ¯ s : [Si,i :~τ]
6. s :{Si}i∈I ¯ s : [Si] < s :Si ¯ s : [Si]
7. s : µ X.S ¯ s′ : [µ X.S,i :~τ1,o :~τ2] < s :S′ ¯ s′ : [S′,i :~τ ′1,o :~τ ′2]

if s :S{µ X.S/X} ¯ s′ : [S{µ X.S/X},i :~τ1,o :~τ2] < s :S′ ¯ s′ : [S′,i :~τ ′1,o :~τ ′2]

In (7), s′ is s or s. If ∆1 < ∆2 and ∆ ¯ ∆1 are defined, then ∆ ¯ ∆1 < ∆ ¯ ∆2. We also
make use of several environment properties such as if ∆1 < ∆2 and ∆ ¯ ∆1 is defined,
then ∆ ¯ ∆2 is defined; and if wc(∆) and ∆ < ∆ ′, then wc(∆ ′).

Figure 11 lists the rules for typing runtime processes. All, except for (Par’), are for
typing runtime entities that do not occur in programs. We omit only (Subs’) and (Chan’),
which are just the original rules modified for ∆ -environments. Expressions and terms
not covered by these rules are typed using the existing program typing rules.

The composition by (Par’) pairs up the types of each session endpoint with the
associated configurations to form (S, [S′,i :~T ,o :~T ′]). Rule (Queue’) creates a server-
side type for each of the buffered session request messages, as well as recording the
presence of the a-queue in the ∆ -environment like (Queue). Buffered session endpoints
(i.e. endpoints being delegated) are typed using (Endpt), which creates a Σ -context
holding the type of the endpoint; by typing each buffered message under a separate Σ -
context, the concatenation of these contexts ensures the linearity of buffered endpoints.
(AsyncReq) types the request at a as a freshly initiated server (S, [S,i :ε,o :ε]); although
the precise implementation of the server-side is unknown, it is sufficient to derive a
surrogate type from the 〈S〉 of the shared channel a. This is because program typing (the
(Accept) rule) guarantees the eventual implementation to be a subtype of the server-side
annotation, and that the annotation directly corresponds to 〈S〉.

(Sess) checks that the body of the session restriction is well-configured with respect
to the session, i.e. that the session implementations on each endpoint and the two ses-

sion configurations together constitute a valid runtime state in the consistent execution
of the session. Rule (Config) types all messages enqueued within the i- and o-buffers of
the endpoint configuration to construct the [S,i :~T ,o :~T ′] representation of the configu-
ration. Using the properties of the ordering between environments, ∆ < ∆ ′, we obtain:

Theorem 1.1 (Type Soundness) If Γ ` P . ∆ , wc(∆) and P −→ Q, then Γ ` Q . ∆ ′
and either ∆ = ∆ ′ or ∆ < ∆ ′.

B Switch-receive

Inductive encoding of the switch-receive We define the encoding as follows.

((s1.l1(x1)∧ ...∧ sn.ln(xn)))
def= arrived s1 l1∧ ...∧arrived sn ln

〈〈s1.l1(x1)∧ ...∧ sn.ln(xn) :P〉〉 def= s1 . l1 : s1?(x1); ...;sn . ln : sn?(xn);P

[[switch-receive{J1 :P1, ...,Jn :Pn}]] def=
def loop = if ((J1)) then 〈〈J1 : [[P1]]〉〉 else if ... else if ((Jn)) then 〈〈Jn : [[Pn]]〉〉 else loop

The ∧ operant can be encoded as follows:

if e1∧ e2 then P else Q def= if e1 then if e2 then P else Q else Q

The branch operator continuation is encoded as:

s1 . l1 : s1?(x1);s2 . l2 : s2?(x2);P def= s1 .{ l1 : s1?(x1);s2 .{l2 : s2?(x2);P, l1 : Dummy},
l2 : Dummy′}

Dummy,Dummy′ processes denote the correct corresponding type for each label in the
branch by convention, and they are not activated.
The rest of the encoding is homomorphic.

Below we let I = {1,2, ..,m} with m≥ 1.

switch-receive{Ji :Pi}i∈I −→ sr{Ji :Pi}1
i∈I

sr{Ji :Pi} j
i∈I | s j1 [i : l j1 · v1 ·~h1] | · · · | s jn j [i : l jn j · vn ·~hn j]−→ Pj{~v/~x} | s j1 [i :~h1] | · · · | s jn j [i :~hn j]

sr{Ji :Pi} j
i∈I | s j1 [i :~h1] | · · · | s jn j [i :~hn j]−→ sr{Ji :Pi}n′

i∈I | s j1 [i :~h1] | · · · | s jn j [i :~hn j]

where j ∈ I,J j = s j1.l j1(x j1)∧ ...∧ s jn j .l jn j(xn j), and n′ = j + 1 mod m. The third
reduction is matched if the condition in the second one is not satisfied.

Typing the switch-receive. The typing rules for the switch-receive from Example 3.2
are also directly suggested by its encoding, which we introduce below.

The fact that the switch-receive construct may leave sessions unimplemented or un-
processed presents difficulties in the correct typing of the switvc-receive process. This
suggests the introduction of a special type called Switch type. Every unimplemented
session has this type in the Join pattern implementation. So for example if:

J = s1.l1(x1)∧ ...∧ sn.ln(xn) :P,k > n

then sk has type Switch.
To complete the the theory we also define that

Switch≤ T

Meaning that Switch is a subtype of every type. This way we can use subtyping to type
the switch-receive construct.

We use an auxiliary sequent of the form Γ ;J ` P . Σ , which says that under Γ and
assuming a join pattern J, a process P has a session typing Σ . When J is empty, we
identify this sequent with the original Γ ` P.Σ . The rules follow.

Γ ,x :U j;J ` P.Σ ,s : S j j ∈ I

Γ ;s.l j(x : U j)∧ J ` P.Σ ,s : &[li :?(Ui);Si]i∈I
(Join)

∀i ∈ {1, ..,n}. Γ ,Ji ` Pi .Σ {J1, ..,Jn} is sound w.r.t. Σ .
Γ ` switch-receive{J1 :P1, ...,Jn :Pn}.Σ

(Switch-Receive)

The condition “{J1, ..,Jn} is sound w.r.t. Σ” says that, at the channels occurring in
{J1, ..,Jn}, these join patterns together should contain all branch labels of these channels
so that when all messages have arrived at these channels, at least one of the guards
becomes satisfiable.

The two typing rules are an organised version of step-by-step typing of the encoded
join patterns. It is straightforward to prove that the clauses (Type Preservation), (Sound-
ness) and (Safety) in Proposition 4.4 hold.

C Additional Appendix for Section 3

We give the definitions that were omitted from § 3.

C.1 Structural Congruence

The notion of bound and free identifiers is extended to cover the subject and objects
of arrived u, arrived k, arrived k h, typecase k of {(xi :Ti)Pi}i∈I , a〈s〉, a [~s], and
s [S,i :~h,o :~h′] in the expected way. We write fn(P) for the set of names that have a free
occurrence in P; fpv(P) for the set of free process variables in P; and dpv(D) for the set
of process variables declared in an agent definition scope, given by

dpv(X1(~x1) = P1 and ... and Xn(~xn) = Pn) = {X1, ...,Xn}
Then structural congruence is the smallest congruence on processes generated by the
following rules in Figure 12.

C.2 Reduction

Reduction relation. The binary single-step reduction relation,−→ is the smallest rela-
tion on closed terms generated by the rules in Figure 4 together with those in Figure 13.

P ≡ Q if P =α Q (α-renaming)

P | 0 ≡ P (Idempotence)

P | Q ≡ Q | P (Commutativity)

(P | P′) | P′′ ≡ P | (P′ | P′′) (Associativity)

(ν a :〈S〉)a[ε] ≡ 0 (Shared channels)

(ν a :〈S〉)P | Q ≡ (ν a :〈S〉)(P | Q) (a 6∈ fn(Q))
(ν a :〈S〉)def D in P ≡ def D in (ν a :〈S〉)P (a 6∈ fn(D))

(ν s)0 ≡ 0 (Session channels)

(ν s)(s : [ε] | s : [ε]) ≡ 0 (Session queues)

(ν s)P | Q ≡ (ν s)(P | Q) (s 6∈ fn(Q))
(ν s)def D in P ≡ def D in (ν s)P (s 6∈ fn(D))

def D in 0 ≡ 0 (Def scopes)

(def D in P) | Q ≡ def D in P | Q (dpv(D)∩ fpv(Q) = /0)
def D in (def D′ in Q) | Q ≡ def D and D′ in P (dpv(D)∩dpv(D′) = /0)

Fig. 12. Structural congruence.

D Appendix: Proofs

D.1 Proof of Proposition 4.1

(1) is mechanical; (2) the decidability of subtyping is proved in [15] except the set type.
Since I is finite and all elements are closed, checking two set types are in the subtyping
or not is decidable, by constructing the decidable algorithm along the line of [15].

D.2 Proofs of Basic Lemmas

The following lemmas and Subject Reduction Theorem are fully proved in [23, § 6]
(for the extended typecase) for all of the key cases. We list only the important cases,
referring the corresponding subsections in [23, § 6].

Lemma D.1 (Weakening Lemma). Let Γ ` P.Σ .

(i) If X /∈ dom(Γ), then Γ ·X :~T ` P.Σ .
(ii) If u /∈ dom(Γ), then Γ ·u :U ` P.Σ .

(iii) If k /∈ dom(Σ) then Γ ` P.Σ ·k :end.

Similarly for the runtime system by replacing Σ to ∆ .

Proof. See [23, § 6.2.3, § 6.2.4]. ut
Lemma D.2 (Strengthening Lemma).

(i) If X /∈ fpv(P), then Γ ·X :~T ` P.Σ implies Γ ` P.Σ .
(ii) If u /∈ fn(P)∪ fv(P), then Γ ·u :U ` P.Σ implies Γ ` P.Σ .

(iii) If k /∈ fn(P)∪ fv(P) then Γ ` P.Σ ·k :end implies Γ ` P.Σ .

e −→ e′ =⇒ E[e] −→ E[e′]
P −→ P′ =⇒ (ν a :〈S〉)P −→ (ν a :〈S〉)P′
P −→ P′ =⇒ (ν s)P −→ (ν s)P′

if tt then P else Q −→ P
if ff then P else Q −→ Q

P −→ P′ =⇒ P | Q −→ P′ | Q
P −→ P′ =⇒ def D in P −→ def D in P′

P≡ P′ −→ Q′ ≡ Q =⇒ P −→ Q

(Eval)

(Chan)

(Sess)

(If-true)

(If-false)

(Par)

(Def)

(Struct)

P | s [S{µ X.S/X},i :~h1,o :~h′1]−→ P′ | s [S′,i :~h2,o :~h′2]
P | s [µ X.S,i :~h1,o :~h′1]−→ P′ | s [S′,i :~h2,o :~h′2]

(Unfold)

X(~x) = P ∈ D
def D in (X〈~v〉 | Q)−→ def D in P{~v/~x} | Q

(Instance)

Fig. 13. The reduction rules omitted from § 3.2.

Similarly for the runtime system by replacing Σ to ∆ .

Proof. See [23, § 6.2.1, § 6.2.2]. ut

Lemma D.3 (Substitution Lemma).

(i) If Γ ·x :U,Σ ` e :U ′ and Γ ` v.U, then Γ ,Σ ` e{v/x} :U ′.
(ii) If Γ ,Σ ·x :S ` e :U and s fresh, then Γ ,Σ ·s :S ` e{s/x} :U.

(iii) If Γ ·x :U ` P.Σ and Γ ` v.U, then Γ ` P{v/x}.Σ .
(iv) If Γ ` P.Σ ·x :S, then Γ ` P{s/x}.Σ ·s :S.

Similarly for the runtime system by replacing Σ to ∆ . ut

Proof. The full proof is given in [23, § 6.2.5, § 6.2.6]. We select the two important cases.

Case arrived The most interesting case is e = arrived x v or e = arrived x l for
(ii). We prove the former. Suppose Γ ,Σ ·x : S ` arrived x v : bool. Then we can let
S = x!(U);S′ for some U and S′ such that Γ ` v : U by (Amsg). By the same rule, we
can derive Γ ,Σ ·s :S ` arrived s v :bool, as required.

Case typecase There are two cases: (1) x 6= k or (2) x = k. The case (1) is easy by the
inductive hypothesis. Thus we prove the case (2) x = k for the clause (iv) above.

Suppose Γ ` typecase x of {(xi :Ti)Pi}i∈I .Σ ·x:T . This is derived by Γ ` Pi .Σ ·xi :
Ti with ∪i∈ITi ≤ T . Note that x 6∈ dom(Σ) so that we can derive Γ ` typecase s of {(xi :
Ti)Pi}i∈I .Σ ·s :T from the exactly same premises by applying (Typecase). ut

Lemma D.4 (Subject Congruence). If Γ ` P.Σ and P≡ Q, then Γ ` Q.Σ .

Proof. See [23, § 6.2.7]. ut

Lemma D.5 (Environment Properties).
(i) ∆1 ¯ ∆2 = ∆2 ¯ ∆1

(ii) (∆1 ¯ ∆2) ¯ ∆3 = ∆1 ¯ (∆2 ¯ ∆3)
(iii) Σ1 ·Σ2 is defined then Σ1 ¯ Σ2 is defined and Σ1 ·Σ2 = Σ1 ¯ Σ2.
(iv) ∆ ¯ a is well configured then ∆ is well configured.
(v) ∆ ¯ a < ∆ ′ ¯ a then ∆ < ∆ ′.

(vi) If wc(∆) and ∆ < ∆ ′, then wc(∆ ′).
(vii) If ∆1 ¯ ∆2 defined and ∆2 < ∆3, then ∆1 ¯ ∆3 defined.

Proof. See [23, § 6.2.8]. ut
Lemma D.6 (Shared Environment Lemma). If Γ ` Q | a[〈S〉 :~s] . ∆ ¯ a, then Γ `
Q.∆ ′ with a 6∈ dom(∆ ′).

Proof. See [23, § 6.2.9]. ut

D.3 Proof of Theorems 4.2 and 4.3

Theorem 4.2 If Γ ` P . ∆ , wc(∆) and P −→ Q, then Γ ` Q . ∆ ′ and either ∆ = ∆ ′ or
∆ < ∆ ′.

Proof. Subsection 6.3 in [23] lists the full proofs. We only list the typecase.
Assume the reduction

typecase s of {(xi :Ti)Pi}i∈I | s [S]−→ Pi{s/xi} | s [S] (3)

with with i ∈ I, ∀ j < i.Tj 6≤ S and Ti ≤ S. Suppose also

Γ ` typecase s of {(xi :Ti)Pi}i∈I | s [S].Σ ·s : [S] (4)

The above (4) is derived by (Par’) in Figure 11 from

Γ ` typecase s of {(xi :Ti)Pi}i∈I .Σ1·s :T ′ (5)

and
Γ ` s [S].Σ2·s : [S] (6)

with T ′¯ [S] defined, i.e.
T ′ ≤ S (7)

The judgement (5) is derived by:

Γ ` Pi .Σ ′1·xi :Ti (8)

with
∪i∈ITi ≤ T ≤ T ′ and Σ ′1 ≤ Σ1 (9)

by (Subs) and (Typecase). From (8) by Substitution Lemma (vi), we have

Γ ` Pi{s/xi}.Σ ′1·s :Ti (10)

Note that by (7) and (9), we have Ti ≤ S, hence Ti¯ [S] is again defined. Hence applying
(Subs) and (Par’) to (6) and (10), we obtain the following required result:

Γ ` Pi{s/xi} | s [S].Σ · s : [S]

ut

Theorem 4.3 A more detailed error freedom (which subsumes this theorem) is stated
and proved in [23, § 6.4.1]. The proof is mechanical from Theorem 4.2 using the con-
tradiction. ut

D.4 Proof of Proposition 4.4

Proposition 4.4

1. (Type Preservation) Γ ` P.Σ in ESP+if and only if Γ ` [[P]]. [[Σ]].
2. (Soundness) P≡ P′ implies [[P]]≡ [[P′]]; and P−→ P′ implies [[P]]−→∗ [[P′]].
3. (Safety) A typable process in ESP+ never reduces to the error.

(2, Soundness) is mechanical. (3, Safety) is direct from (1) and (2) with Theorem
4.3. Hence we only prove (1, Type Preservation). We show the type preservation for
new selector.

Γ ` [[P]]. [[Σ]]·r :Sr ·r :Sr by (IH) Γ ,b :〈Sr〉 ` b : 〈Sr〉
Γ ,b :〈Sr〉 ` b(r).[[P]]. [[Σ]]·r :Sr

Γ ,b :〈Sr〉 ` b(r);b(r).[[P]]. [[Σ]]
Γ ,b :〈Sr〉 ` b(r);b(r).[[P]] | b : [ε]. [[Σ]]·b
Γ ` (ν b)(b(r);b(r′).[[P]] | b : [ε]). [[Σ]]

The last line is written as Γ ` [[new selector r in P]]. [[Σ]]. Similarly for the register.

We prove selector. First we infer the else branch in the body.

[[Σ]] end only Γ ′ = Γ ,Select : SrSr

Γ ′ ` Select〈rr〉. [[Σ]]·r :Sr ·r :Sr Sx = {Si}i∈I

Γ ′ ` r!〈x〉;Select〈rr〉. [[Σ]]·r :!(Sx);Sr ·x :Sx·r :Sr

Secondly we infer the if branch of the body.

[[Σ]] end only Γ ′ = Γ ,Select : SrSr

∀ i ∈ I,Γ ′ ` [[Pi]]. [[Σ]]·xi :Si·r :Sr ·r :Sr by (IH)
Γ ′ ` typecase x of {(xi : Si) : [[Pi]]}i∈I . [[Σ]]·x :{Si}i∈I ·r :Sr ·r :Sr

Then combining the both branching, we have:

Γ ′ ` if arrived x then . . . else [[Σ]]·x :{Si}i∈I ·r : µX.!({Si}i∈I);X·r :Sr

Γ ′ ` r?(x);if arrived x then [[Σ]]·x :{Si}i∈I ·r : µX.!({Si}i∈I);X·r :?({Si}i∈I);Sr

From this, by applying (Def) and Si ≤ T , we can derive the required judgement, Γ `
[[select(r){(xi :Si) : Pi}i∈I]]. [[Σ]]·[[r :sel(T)]].

Register construct. We first type the main process:

Γ ` [[P]]. [[Σ]]·[[r :sel(T)]] by (IH)
Γ ` r!〈s〉; [[P]]. [[Σ]]·[[r :sel(T)]]·s :S

At this point notice that [[r : sel(T)]] = r : Sr ·r : Sr where Sr = µ X.!(T);X and
!(T); µ X.!(T);X = µ X.!(T);X .

We now show the straightforward type preservation for switch−receive.

∀ i ∈ N ,Γ ` [[〈〈J1 : [[Pi]]〉〉]]. [[Σ]]·
s1 :&{l1 :?(U11);S11 . . . lm :?(U1m);S1m}·. . .·sn :&{l1:?(Un1);Sn1 . . . lm :?(Unm);Snm} by (IH)

Γ ` [[switch-receive{J1 :P1, ...,Jn :Pn}]]. [[Σ]]·s1 :S1·. . .·sn :Sn

Note that in the first typing judgement we used the assumption that Switch ≤ T to
type all Pi processes. Unimplemented sessions in Pi have the Switch type by convention
and they can be subsumed by the correct type in order to have correct overall typing.

D.5 Proof of Theorem 4.6 (event progress)

NB: We use the “well-linkedness” in the same form as in [20] (as seen in this updated
version, page 15). This property can be relaxed to what is given in the original submis-
sion, with a minor change in the formulation of the resulting property. Definition 4.5
is also refined (the condition for a select action to be preceded by a register action was
missing) in this new updated version.

Theorem 4.6 (Progress) An ESP+-process P is eventful if Γ `P. /0 and it is well-linked,
is simple, and uses selectors well in the sense of Definition 4.5. Then

(1) If P is eventful and P−→ Q then Q is eventful; and
(2) If P is eventful then either P≡ 0 or P↘ Q for some Q.

Proof. For (1), we observe that the well-linkedness is preserved by reduction by def-
inition, while simplicity is by the subject reduction. Hence the only issue is selector
usage. Definition 4.5 says the following: in the process, if reg k to r in R occurs,
then this action will be followed by zero or more register actions which should further
be followed by the selector at r, in the form say select(r){(xi : Si) : Pi}i∈I , up to the
unfolding of recursion, satisfying each Si should start from input or branching and so
should Pi and Pi has no other input and branching actions. By definition this property
holds under unfolding of recursions which is the only change in syntactic shape, hence
as required.

For (2), if P is eventful in this sense, the same reasoning as in [20] gives the required
result as far as selector is not involved. Suppose P has an active selector (a selector
which is in an evaluation context). There are two cases. Note that, by the condition on
a register action to precede a select action, the selector queue is never empty. Below we
say a session channel is active if its local input queue is not empty.

(a) If the selector queue has an active session channel, then we have zero or more
polling reductions −→s (the third reduction rule in Example 3.1, page 9), followed
by the selector’s “get” reduction (the second reduction rule in Example 3.1), in
which case the message will be processed, all consecutive output/selection actions
at this channel (by simplicity no actions at other channels are possible) will be done

by the typing, which do not interleave with input/branching by (exhaustiveness) in
Definition 4.5 (hence no deadlock by crisscrossed actions is possible). By typing
of a selector, a session channel should be registered at r in the end (if actions in Pi
is to terminate), followed by a selector at r by the selector usage in Definition 4.5,
hence as required.

(b) If the selector queue does not have any active channel, then it has only polling
reductions −→s (the third reduction rule in Example 3.1), without changing the se-
lector queue nor the shape of the process. In this second case, we show one of the
channels will eventually become active. Suppose no messages arrive at the regis-
tered channels. In this case, all channels are in input/branching modes. Hence corre-
sponding processes have output/selection modes. By simplicity and well-linkedness,
an output action is never suppressed except by the preceding input/branching ac-
tion at the same channel, which is impossible as we have seen in (a) above. Hence
a message will eventually arrive at one of the channels, as required.

Note the arguments assume, in (a) above, that we always register a new session channel,
which, if the actions at the current session channel are terminated (i.e. the corresponding
session type is end), then it should initiate a new session, possibly by acceptance. This
comes from the fact that the current typecase does not allow registration/selection of
shared channels, and does lose generality, as discussed in the remark below. 2

Remark D.7. Theorem 4.6 assumes an accept (or request) action at each Pi when the
“current” session needs to finish in Pi. By well-linkedness, this does not pause a prob-
lem in the present formulation. If we are to use the refined typecase (as in the current
eventful SJ), however, we can simply register, from the first, a shared channel, so that
the event loop is ready to always receive a new session request. In this case, (1) our
encoding of a selector changes accordingly, and (2) the selector typing itself does not
demand a register action to be done in each branch. Under the present restriction, the
similar behaviour is realised by the current typing and encoding of a select action.

E The Full Typecase: Value Types and Type Matching

This section defines the full typecase discussed in Dynamic types in Related Work of
Section 6.

Syntax and types We first extend the syntax to include typecase e of {(~Xi)(xi : Ti) Pi}i∈I

takes an expression e and a list of cases, where (~Xi) binds the type variables in Ti and
(xi :Ti) binds the free variable xi of type pattern Ti in Pi. The runtime type of the constant
or the session endpoint is matched against the type patterns (~Xi)Ti. where all free type
variables in Ti are bound by ~Xi. The parentheses are omitted when ~Xi is empty.

match(T,T) = /0 match(T,X) = {T/X}
match(S,S′) = σ

match(〈S〉,〈S′〉) = σ
match(T,T ′) = σ

match(µ X.T,µ X.T ′) = σ

match(T,T ′) = σ match(S,S′σ) = σ ′

match(!(T);S, !(T ′);S′) = σ ·σ ′
∀i.1≤ i≤ n,match(Si,S′i) = σi

match(⊕{li :Si}i∈I ,⊕{li :S′i}n) = σ1 · · ·σn

Fig. 14. The match function (the input and branching cases are omitted).

For types, we first extend T with {Ui}i∈I . For the subtyping, we include the atomic
subtyping. The ordering of the value types for session actions follow [28].

F(R) = ...
∪ {(nat, real)}
...
∪ {(!(U);S, !(U ′);S′) | (U,U ′),(S,S′) ∈R}
∪ {(?(U);S,?(U ′);S′) | (U ′,U),(S,S′) ∈R}
∪ {({Ui}i∈I ,{U ′

j} j∈J) | ¬(|I|= |J|= 1),∀ j ∈ J,∃i ∈ I.(Ui,U ′
j) ∈R}

Reduction The revised reduction rule for session with match function is defined as
follows:

∀ j < i. 6 ∃T ′.(T ′ ≤ S∧match(T ′,Tj)) ∃T ′.(T ′ ≤ S∧match(T ′,Ti))

typecase s of {(~Xi)(xi : Ti) Pi}i∈I | s [S]−→ Pi{s/xi} | s [S]
(i ∈ I) [Typecase-s]

In [Typecase-s], a process continues the session s along the first Pi for which Si can be
successfully matched against a subtype of the active type. The match function, defined
in Figure 14, takes T and a type pattern T ′, and returns a substitution σ where T =
T ′σ , if one exists; otherwise match fails. The concatenation of substitutions σ ·σ ′ is
undefined if X ∈ dom(σ)∩dom(σ),σ(X) 6= σ ′(X).

For value types, [Typecase-v] is defined following [1]. The process reduces if the
type of v is successfully matched with the first Ti up to subtyping.

∀ j < i. 6 ∃T ′.(U ≤ T ′∧match(T ′,Tj)) ∃T ′.(U ≤ T ′∧match(T ′,Ti))

typecase vU of {(~Xi)(xi : Ti) Pi}i∈I −→ Pi{v/xi}
(i ∈ I) [Typecase-v]

Typing Rules Finally the typing rules are extended as follows: First we extend Γ to
include mapping from identifier to a set type for U . Then we define:

∀i.i ∈ I,∀T ′i match(T ′i ,Ti). Γ ` Pi .Σ ·xi :T ′i , ∪i∈IT ′i ≤ T

Γ ` typecase k of {(~Xi)(xi : Ti) Pi}i∈I .Σ ·k :T
(Typecase-s)

The rule for the extended typecase for session checks that every possible substitution
for Ti, the body Pi of each case must be typed under the environment Σ with xi assigned
by T ′i . Then the whole process is typable under T such that T is a supertype of union
of T ′i . Note that the first premise is quantified over all matching substitutions, which

means that a proof of this premise requires an infinite number of separate derivations,
see [1]. The corresponding typing rule for the value type are defined as follows:

∀i.i ∈ I,∀T ′i match(T ′i ,Ti). Γ ,xi :T ′i ` Pi .Σ U ≤ ∪i∈IT ′i Γ ` e : U

Γ ` typecase e of {(~Xi)(xi : Ti) Pi}i∈I .Σ
(Typecase-v)

