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Abstract
Communications programming, involving complex message
exchanges over multiple transports, is an omnipresent ele-
ment in modern distributed applications. Existing engineer-
ing solutions however have considerable limitations: there is
no portability across differing transports. Programming ab-
stractions for communication are typically provided through
low-level APIs, bound to specific transports or application
domains, without offering either type or protocol safety.

This paper proposes an extensible Java-based language
and runtime framework which enables safe and efficient
virtualisation of communications programming across het-
erogeneous transports. Application programmers describe
communications in terms of high-level, structured sessions,
without concern for underlying transport mechanisms. After
type-checking, the compiler generates a transport-independent
intermediate form, which can be efficiently executed by the
runtime across different transports whilst ensuring commu-
nication safety. Through portable, abstract low-level com-
munication instructions defined by the Abstract Transport,
a new transport can quickly and seamlessly integrate with
existing session services. A case for transport independence
is made using concrete applications from widely different
domains, including parallel algorithms, a Web-based appli-
cation server, and Internet chat. The benchmark results show
this framework imparts significant gains in portability, safety
and productivity, as well as efficient utilisation of individual
transports through type-directed optimisation.

1. Introduction
Programming for multi-transport environments. Com-
munication is an increasingly fundamental element in pro-
gramming for an extensive range of application domains.
These include programs communicating within and between
SMP nodes in high-performance clusters; message exchange
across global financial networks; and applications integrat-
ing services distributed across the Internet and the Web.
Many of these applications exhibit complex, application-
specific interaction patterns that involve dynamic changes to
communication topology, e.g. the migration of an on-going
conversation to another process. Moreover, this interaction
can span over various transports with differing characteris-
tics, and even different protocol layers (e.g. TCP and HTTP).

VM platforms for object-oriented programming such as
the JVM and CLR provide hardware/OS independence and

type-safety. By abstracting away machine and OS details,
such platforms enable the portable execution of high-level
programs. Distributed applications, however, do not enjoy
a similar portability for communication across the diverse
transports employed in modern computing environments.
The separate application components may take advantage of
local machine virtualisation, but inter-component interaction
often relies on non-portable, low-level communication APIs
or domain-specific middleware.

Firstly, the majority of networking APIs (e.g. sockets) im-
plicitly couple programs to specific transports, hence expos-
ing all the functional details of these transports to the appli-
cation programmer. Working with raw byte streams/packets
without type-safety, whilst flexible, is too low-level: there
is no clear separation of the application-level interaction
from the underlying communication mechanisms. Secondly,
many communications APIs, including messaging middle-
ware, are designed for specific application domains, offer-
ing communication functions useful for specific applica-
tion tasks (e.g. corporate messaging, parallel programming,
P2P), but not general abstraction for portable communica-
tions programming [26, 27, 31]. Thirdly, RPC-based APIs
such as Java RMI, CORBA and their XML variants, de-
spite offering type-safety, blanketly restrict communication
to synchronous call-return patterns, which is too rigid for
capturing a variety of interaction structures. Call-return can
also limit the effective use of transport functionality, e.g. for
properties tied to connection, such as security through SS-
L/TSL. Thus, for applications that demand flexibility, the de-
veloper must be concerned with the details of specific trans-
ports, and the resulting code is not portable across different
network environments.

These issues severely impair not only productivity, but
also the potential for formal safety assurance, and the speedy
and effective exploitation of existing and new transports.

Transport independence. Against this background, the
present paper argues for the significance of portable commu-
nications programming in object-oriented languages through
transport independence. In transport-independent program-
ming, the programmer describes communications through
high-level, type-safe programming abstractions decoupled
from individual transports, just as programming in high-
level object-oriented languages such as Java and C] is de-
coupled from local hardware/OS details. The resulting de-
scription should then be executable through interactions be-
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tween the communication runtimes at the two ends over a
variety of network transports, just as the JVM and CLR sup-
port local execution of machine-neutral intermediate code
over a variety of hardware and operating systems.

Transport independence demands both language facil-
ity for flexible, type-safe communications programming
suited to all major application domains; and a runtime
design that enables effective exploitation of diverse trans-
ports. Runtime extensibility, through the integration of new
and specialised transports, is also essential for supporting
application-specific optimisation and for the adoption of
rapidly evolving networking technologies. Our argument for
the feasibility of transport-independent programming de-
rives from our observation that these goals can be achieved
by a language-runtime design centring on an abstraction for
communications, session [14, 22, 42].

A session can be viewed as an application-level abstrac-
tion for connection, as found in e.g. TCP, SMTP and DCCP
[28], which is a fundamental idea in network engineering
across diverse protocols [43]. A connection gives a unit of
flow control and QoS assurance: any widely used transport
requires some form of flow control (cf. [28]), demanding a
delineation of a beginning and an end of message exchanges
so that the protocol can (enumerate and) control these mes-
sages, giving rise to the notion of connection [43].

A session reifies this idea as a high-level, type-safe pro-
gramming abstraction, through language constructs and a
type theory. It organises communications into logical units
of structured conversations, or sessions, and offers an effi-
cient static validation through session types. The validation
assures both type and protocol safety — not only is the value
of each message correctly typed, but messages in a session
are exchanged according to the scenario specified by the as-
sociated session type, precluding communication mismatch,
a typical bug in communications programming. In this paper
we shall explore the role of session both as a natural abstrac-
tion for communications and as a basis of effective usage of
transports.

Use cases for transport independence. We substantiate
our vision of transport independence through typical scenar-
ios in communications programming. We start from a field
where communications are needed for performance.

Use case 1: parallel algorithms. A message-passing
parallel algorithm implementation needs to be exe-
cuted in (and across) varied computing environments
whilst using available transports effectively, e.g. TCP
(in LAN), RDMA (in HP clusters), and shared memory
in SMP machines and multicore CPUs.

Here, both portability and efficiency are important: we re-
quire the communicating processes to not only run over di-
verse transports but to also make the most of them. Further,
parallel algorithms often exhibit linear data usage, which
opens the potential for optimisation through suitable lan-
guage support.

SJ Runtime
...

Session ThreadSession ThreadMachine B
firewall

Session ProgramSession ProgramSJ Runtime Session ProgramSJ RuntimeMachine C(2) (3)(1) (4) (1) Pipes(2) TCP(3) HTTP/TCP(4) Shared Mem.SessionsSJ Runtime
NetworkMachine A

Figure 1. Sessions across heterogeneous nodes/transports.

Next we consider a typical distributed application, instant
messaging over the Internet.

Use case 2: Internet chat. Clients can communicate
via a chat server and also through direct connections.
Transport availability between the clients and server
may be restricted by e.g. firewalls; clients may also
impose additional security requirements. Hence, a va-
riety of transports (TCP, SSL/TSL, HTTP-tunnelling),
are required to meet application functionality.

Note that the message exchanges in a chat conversation natu-
rally form a session, which should be independent from spe-
cific transports and physical connections. Such applications
strongly motivate the decoupling of general purpose com-
munications programming from the underlying transports.

A final use case demonstrates an advanced application of
transport independence.

Use case 3: session-based Web services. A client con-
tacts a Web server through HTTP to start an appli-
cation session. The request is delegated to an appli-
cation server, and the session continues between the
client and the application server using e.g. TCP, SSL.

This is an instance of cross-transport session migration,
where a session endpoint is transparently migrated from one
peer to another across different transports, an interaction
pattern that arises naturally in many application scenarios.

Although these use cases are taken from significantly dif-
ferent domains, all share the need for high-level abstraction
from not only the local machine, but also the network: we
need a means for type-safe communications programming
over heterogeneous network nodes and transports. Figure 1
depicts a general scenario for collaborative tasks involv-
ing concurrent and distributed sessions. These sessions, im-
plemented through transport-independent session program-
ming, are now running over the different transports avail-
able in (moreover, most suited to) each context: sessions be-
tween threads and local processes use shared memory and
pipes, whilst distributed peers may use TCP, backed up by
HTTP/TCP for e.g. firewall traversal. Similarly, session del-
egation between these peers automatically adjusts for trans-
port binding. The key is that transport independence realises
this scenario whilst freeing the application programmer from
the manipulation of raw transports and connections.
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Challenges for transport independence. This paper presents
design, implementation and usage experiences on a language-
runtime framework that extends Java for transport-independent
object-oriented communications programming. We examine
the feasibility of such a framework from the requirements of
portability, safety and performance. Our work complements
other elements of distribution, such as object migration [7],
to focus on the key technical challenges for realising trans-
port independence. These include:
1. (Programming) Can we provide a practically expressive

and type-safe programming framework for a wide range
of concurrent and distributed applications?

2. (Transport Usage) Can we design a language-runtime
framework which can make the most of the performance
and features of concrete transports, and which can effec-
tively realise cross-transport functions (e.g. delegation)?

3. (Extensibility) Can we incorporate a new transport
quickly and seamlessly? Can the language and run-
time be extended to support significant transport-specific
functionality whilst retaining consistent semantics for
transport-independent communications programming?

In the subsequent sections we shall show how our frame-
work, centring on session abstraction, meets these chal-
lenges. The language-runtime is built on an existing ex-
tension of Java with sessions, SJ [24]. A benefit of using
Java is that portability and type safety of the local portion of
programs are provided by Java typing and the JVM. In or-
der to generalise these principles to the communication por-
tion of concurrent and distributed programming, the present
work extends SJ with new language constructs for expres-
sive, transport-independent communications programming,
integrated with an extensible runtime which enables effi-
cient virtualisation of communications over multiple con-
crete transports. We refer to this language-runtime frame-
work as the SJ Framework. To summarise, the main techni-
cal contributions of the present work include:
• A language and runtime framework that extends SJ

for transport-independent session-based communications
programming, including uniform alias control for objects
and session typing (§3). The SJ framework readily sup-
ports a wide range of applications, illustrated through
concrete implementations of the above Use cases (§3,4).

• A highly extensible runtime architecture that offers rich
high-level interaction services for executing transport-
independent programs, including type-safe cross-transport
session migration with transparent negotiation of optimal
transports. The current runtime implementation incor-
porates multiple concrete transports such as TCP, SSL,
shared memory, HTTP and HTTPS (§5). A key design
element is the Abstract Transport, which defines abstract,
low-level communication instructions efficiently imple-
mentable by diverse transports (§5).

• An empirical evaluation of the framework through both
micro and macro benchmarks. The results show the trans-

port independent design incurs very little overhead over
concrete transports whilst ensuring type safety (§6).

Additional contributions include new session programming
features that give greater expressiveness, such as session-
multicasting (§3.1), session-iteration chaining (§3.2), session-
thread spawning, session-recursion and higher-order service
passing (§4.1). The compiler and runtime, applications, and
omitted benchmarks are available at [41].

2. The SJ Framework: Overview
The SJ Framework aims to provide a highly extensible plat-
form for transport-independent object-oriented communica-
tions programming on the basis of session abstraction. The
framework design follows the standard end-to-end principle
in network engineering [36], where the required abstraction,
session-based interaction, is realised by communication ac-
tions performed at the endpoints, the SJ Runtime instances
running over JVMs. Unlike standard network layerings [43],
sessions are not tied to a fixed network layer, since the same
communication abstraction should be maintained over TCP,
HTTP, DCCP or even a link-layer protocol.

To simultaneously attain efficiency and extensibility in
this multi-transport setting, the SJ Framework places a thin
layer of abstraction on top of each concrete transport. This
abstraction, called Abstract Transport, specifies a set of
portable low-level communication instructions, to be im-
plemented by each concrete transport (see §5 for details).
The semantics of language constructs for session program-
ming is realised by (session) interaction services, which are
in turn defined over the Abstract Transport, and thus decou-
pled from individual transports. This decoupling is essential
for meeting the extensibility challenges in §1:
• A new service implemented over Abstract Transport in-

stantly runs over all existing and future transports, with-
out re-implementation for each transport.

• Symmetrically, a new transport can be seamlessly inte-
grated by implementing the Abstract Transport, instantly
available to all existing and future interaction services.

As an example, consider services which work across dif-
ferent transports, such as cross-transport session migration
(Use case 3 in §1). Implementing such a service over con-
crete transports would inevitably increase the amount of
plumbing required for each additional transport, resulting in
error-prone, delayed deployment of the new transport.

Compilation and execution life cycle. Figure 2 depicts
the compilation and execution stages of the SJ Frame-
work, which operate across the layered architecture (session
program, interaction services, abstract transport) discussed
above. We briefly describe each layer below.
SJ Application Layer: The SJ Framework offers the appli-

cation programmer a rich language facility for transport-
independent object-oriented session programming. The
SJ compiler, implemented using Polyglot [34], statically
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SJ Session Program
SJ Platform- and Transport-Independent Intermediate FormStatic session type checking and type-directed translation.Runtime mapping (interpretation) of abstract session operations to untyped communications over a concrete transport.Native Execution and Byte Stream/Packet Communication
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Figure 2. Compilation-execution stages of SJ Framework.

type checks SJ programs, and generates a transport-
independent Java-based intermediate form by translating
session operations into calls to the interaction services.

SJ Session Layer The SJ Runtime has two main responsibil-
ities. The first is performing the interaction services over
the Abstract Transport. Services are incorporated into the
SJ Runtime as SJ service components. Example services
include session initiation (which validates session peer
compatibility), the wire format and serialization for com-
municating session messages, and cross-transport session
migration for delegation as mentioned above.

SJ Abstract Transport Layer The second role of the SJ
Runtime is managing concrete connections, established
using available transports, to realise the semantics of the
Abstract Transport. The Abstract Transport operations
are executed as actions on the underlying transports as
directed by SJ transport module implementations. This
layer also includes transport negotiation between the SJ
Runtime instances of peers at session initiation, to agree
on a transport for the new session based on the execution
context and transport configuration parameters.

The following sections substantiate the effectiveness of this
layered architecture from three different viewpoints. First, §3
and §4 illustrate the key elements of session-based transport-
independent programming, through concrete implementa-
tions of the three use cases from §1. Then §5 presents high-
lights from the design and implementation of the SJ Run-
time, including virtualisation mechanisms and the utilisation
of type information. Finally, §6 reports performance results.

3. SJ for Parallel Algorithms
This section and the next illustrate the versatility of transport-
independent session programming, demonstrating how it of-
fers natural abstraction for communication in widely differ-
ing application domains. This section focuses on message-
passing parallel algorithms, substantiating Use case 1 in
§1. Parallel algorithms use communication for performance
gain, and can be characterised by their tightly-coupled, de-
terministic message-passing computation. We treat two rep-

Master ghost pointsWorker ghost points
Worker’s subgrid
Master’s subgrid

Update local subgrid (using ghost points). Whilst updating, reuse the ghost point container to prepare the next boundary values for sending,Ghost point containers exchanged using noalias types (transparent zero-copy transfer in shared memory, copy-on-send otherwise).
noalias double[] 1.

2.1.
1.2.

Figure 3. Master-Worker ghost points exchange.

protocol masterToWorker {

cbegin. // Request the Worker service.

!<int>. // Send matrix size.

![ // Enter main loop.

!<double[]>. // Send our boundary values.

?(double[]). // Receive Worker ghost points.

?(double) // Receive convergence data.

]*. // After the last iteration...

?(double[][]) // ...receive the final results.

}

Figure 4. Session type for the Master-Worker interactions
in the SJ implementation of the parallel Jacobi algorithm.

resentative parallel algorithms, a parallel implementation of
the Jacobi Method for solving the Discrete Poisson Equation
(referred to as “Jacobi”) and a standard simulation for the n-
Body problem (“n-Body”). Along the way we introduce the
basic elements of transport-independent session program-
ming in the SJ Framework, including the use of noalias
types. The integration of noalias types and session communi-
cation precisely captures linear data usage patterns typical in
scientific computing, and enables transparent, type-directed
runtime communication optimisations for such data. Perfor-
mance results for these algorithms and comparisons with a
Java implementation of MPI [1], are presented in §6.1

3.1 Jacobi Solution of the Discrete Poisson Equation
Poisson’s equation is widely used in many areas of the natu-
ral sciences, including electrostatics, thermal dynamics, and
climate computations. The discrete two-dimensional Pois-
son equation (∇2u)ij for a m× n grid can be written

uij =
1
4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − dx2gi,j)

where 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1, and dx = 1/(n + 1).
Jacobi’s method converges on a solution by repeatedly re-
placing each element of the matrix u by an adjusted average
of its four neighbouring values. adjusted by dx2gi,j ; for this
example, we set each gi,j to 0. Then from the k-th approxi-
mation of u, the next iteration calculates

1 A preliminary summary of the algorithms in this section was presented in
an informal online PLACES’09 workshop pre-proceedings (6 pages).
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noalias double[] ghost1 = new double[size], ...;

... // Grid values and ghost points initialised.

<mw1, mw2>.outwhile( // Main Master loop: ![..]*.

!converged(...) && iters++ < MAX_ITERS) {

mw1.send(ghost1); // (?) mw1: !<noalias double[]>

... // ghost1 variable becomes null.

ghost1 = mw1.receive(); // mw1: ?(double[])

... // Update subgrid and prepare next ghost points.

convergenceData = mw1.receive(); // mw1: ?(double)

}

noalias double[] ghost = ..., prev = ...;

... // Grid values and ghost points initialised.

<wm>.inwhile() { // Worker follows Master: ?[..]*.

prev = ghost;

ghost = wm.receive(); // wm: ?(double[])

...

wm.send(prev); // (?) wm: !<noalias double[]>

... // Subgrid and ghost points updated.

wm.send(convergenceData); // wm: !<double[]>

}

Figure 5. SJ implementation of the main loop in the parallel Jacobi algorithm.

uk+1
ij =

1
4
(uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1)

Termination may be on reaching a target convergence thresh-
old or on completing a certain number of iterations.

Parallelisation of this algorithm comes from the ability
to update each element independently (within one iteration).
The grid can be divided so that each subgrid is processed in
separate processes/threads. The processes with neighbouring
subgrids need to interact to exchange their subgrid boundary
values, and to reach a consensus for termination. The bound-
ary values cached by each process are termed ghost points.

To focus on the points of interest, we consider a one-
dimensional decomposition of a square grid into three non-
overlapping subgrids (of any size) for three separate pro-
cesses. The process managing the central subgrid is desig-
nated the Master (Figure 3), who controls the termination
condition for all three processes; the two end processes are
Workers who only directly interact with Master.

Jacobi protocols. Session programming starts from the
declaration of protocols for the intended interaction using
session types [24]. Figure 4 lists the session type for the
Master-Worker interactions from the perspective of the for-
mer. Master (the client) requests a session (cbegin) with
each Worker service. After the session is established, Master
sends the matrix size (!<int>), from which Worker deter-
mines its subgrid size and initializes the grid values. Master
and Worker then enter the main iteration loop ([..]*) of the
algorithm, under the control of Master (![). In each itera-
tion step, Master and Worker send and receive their updated
subgrid boundary values (the ghost points: !<double[]>.?(
double[])), and Master receives from Worker the conver-
gence data for the Worker subgrid (?(double).?(double)).
From the convergence data, Master decides to continue the
iteration or to terminate, at which point Worker returns the
final results of its complete subgrid (?(double[][])). Mas-
ter performs the same interactions with each Worker.

Jacobi implementation: using noalias types. SJ session
programming involves implementing the declared protocols
using the session communication operations and interaction
constructs, performed via session sockets (SJSockets) [24].
The SJ compiler statically type checks session implemen-
tations (e.g. the extracts in Figure 5) against the associated

session types (Figure 4), guaranteeing the correct interaction
behaviour for the program.

As explained above, the Master and Workers exchange
their subgrid boundary values, i.e. ghost-points, in each iter-
ation. Figure 3 depicts the scheme where, in each iteration
step, the new boundary values to be sent next iteration are
copied into the current ghost points “container” (i.e. double
[]) as the update proceeds. The key point is that, after send-
ing, the sender does not use this object again since a new
ghost points array is received each iteration: the sender is in
effect giving away this object, which satisfies the property of
unique ownership [2]. In the SJ Framework, such variables
can be declared through the noalias modifier. A noalias ref-
erence becomes null after being assigned and when passed
as a method argument, which includes communication via
session send. The SJ compiler enforces correct usage based
on a standard typing approach to ensuring alias freedom [2].
This linear data usage is a common pattern in message-based
parallel algorithms (for example, a similar treatment of com-
munication data is found in the n-body simulation below).

Figure 5 extracts from the implementations of the main
loops in Master and Worker. To synchronise with the Work-
ers, Master uses the multicast session-iteration, <mw1, mw2>.

outwhile(...){...}, where mw1 and mw2 are Master’s ses-
sion sockets to the two Workers; each Worker uses the dual
construct (inwhile) to follow the control flow of Master. In
Master, the noalias variable ghost1 is used to hold the cur-
rent ghost point array from Worker 1 (there would similarly
be a ghost2). The communication of this variable, i.e. send-
ing a noalias message (!<noalias double[]>), is marked
(?). The received ghost point arrays are implicitly noalias,
and hence can be assigned to the noalias variables.

Noalias and transport independence. Noalias typing im-
poses a precise abstraction for non-shared objects with cor-
rect usage enforced through static checking, whilst inher-
ently delivering the desired semantics for sending noalias
messages. This language facility, due to the integration of
object alias control and session communication, gives the
freedom to optimise the communication of noalias messages
transparently, regardless of the underlying transports:
1. If a session is executed in a shared memory context,

noalias messages can be delivered by reference passing.
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2. It facilitates asynchronous sending over synchronous
transports, and those with limited ability to buffer out-
bound messages, by precluding unnecessary copying.

The first can be exploited for sessions running on e.g. a mul-
ticore machine, now a standard hardware configuration. As
§5 discusses, the SJ Runtime (by default) arranges shared
memory as a session transport between peers in such a con-
figuration. Noalias messages can then be passed by reference
to the receiver, precluding any copying or serialization. Oth-
erwise, the SJR transparently falls back to copy-on-send: as
described, the semantics of noalias argument passing (the
argument becomes null) maintains consistent semantics for
noalias message passing in either case. The second optimisa-
tion will also be effective if the underlying transport supports
e.g. RDMA-like communication mechanisms.

The SJ Framework uniformly integrates noalias typing,
as a general purpose alias control mechanism, with ses-
sion abstraction. In addition to semantic transparency for
noalias communication over differing transports, session
typing utilises noalias properties to contribute towards en-
suring session linearity [14, 22], giving a natural treatment
of session delegation (§4.2). Other middlewares for high-
level communication, like CORBA, may offer zero-copy
transfer as a runtime configuration setting, but only by alter-
ing program semantics. In Sing] [17] (used for Singularity
OS) which first presented a similar use of linear messaging
over shared memory for systems-level programming, mes-
sages are restricted to scalar values coupled to a lower-level,
transport-specific mechanism, linear heap exchange (see §8).

3.2 Simulation of the n-Body Problem
The n-Body problem involves finding the motion, according
to classical mechanics, of a system of bodies (particles with
mass) given their initial position and velocities. The follow-
ing SJ implementation demonstrates how a complex collab-
oration pattern involving an arbitrary number of agents can
be naturally implemented using typed sessions, taking ad-
vantage of noalias types and requiring the new SJ constructs
for multiparty session-iteration chaining. Moreover, porta-
bility due to transport independence permits highly flexible
deployment for this single implementation: the agents can be
co-process threads, co-machine processes, and/or distributed
processes in any combination.

Parallelism in this algorithm is achieved by dividing the
particle set, and hence the associated computation, amongst
a collection of processes. As the following explains, the key
is that in each simulation step, each process needs to see the
current data of every other process exactly once: this is ac-
complished by forwarding the particle data of each process
around a circular Worker pipeline as noalias messages.

n-Body protocols. To form the circular pipeline, each
agent (Worker) creates the link to its right-hand neighbour
(Figure 6). This means each Worker is both a “client”, with
respect to the next Worker on the right, and a “server”, to

Worker 1 Worker pWorkers connect to their right-hand neighbours to form a circular pipeline.1. 2. The individual particle sets of each Worker are forwarded around the pipeline in parallel.
Shared Mem./TCPnoalias Particle[]2.

Figure 6. The p Workers in the n-Body pipeline.
the Worker on the left. However, once the pipeline formed,
the interactions between each pair of Workers is the same.
Following is the session type for these interactions from the
server side of each Worker (the client side is dual type).

protocol workerServerSide {

sbegin. // Accept link from left neighbour.

!<int>. // Forward initialisation token.

?[ // Enter main simulation loop.

?[ // Inner iterations within each sim. step.

?(Particle[]) // Receive next particle set.

]*

]*

}

After accepting a session (sbegin) to the right-hand neigh-
bour, the Worker forwards the initialisation token (an inte-
ger counter: !<int>). Then for each simulation step, as sig-
nalled by the left-hand neighbour (?[), the Worker enters the
inner iterations (?[) that forward the particles data of each
process anticlockwise (?(Particle[])) around the ring for
all Workers to see. For this client-server design, the circu-
lar pipeline is bootstrapped by designating two neighbours
to be the “first” and “last” pipeline units. This design works
independently of the pipeline length (p ≥ 2).

n-Body implementation. In the SJ implementation of the
above algorithm, each Worker opens a session server socket
to accept the link from the left-hand neighbour,

ss_l = // SJServerSocket.

SJServerSocket.create(workerServerSide, port);
... // Enter session-try scope for s_l.

s_l = ss_l.accept();

and makes the link to the right-hand neighbour,

s_r = c_r.request();

where c_r, of session type workerClientSide, is a SJService
[41] for the server socket of the right-hand neighbour. After
the pipeline links are established, the number of Workers in
the pipeline, p, is dynamically determined from the initial-
isation token. The Workers then enter the main simulation
loop, listed in Figure 7. To keep the Workers synchronised
with respect to the main simulation loop and the inner iter-
ations within each simulation step, the control flow at each
Worker is linked to both the left and right-hand neighbours
through session-iteration chaining. As Figure 7 shows, both
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noalias Particle[] current = ...;

s_r.outwhile(s_l.inwhile()) { // Session-iteration chaining: synch. with both n’bours at each sim. step.

current = ...; // Prepare our own particle data for sending.

s_r.outwhile(s_l.inwhile()) { // Session-iteration chaining: inner iterations within each sim. step.

... // (i) Add the current data to the running calculation.

s_r.send(current); // (ii) Forward the current data set (the ‘current’ variable becomes null).

current = (Particle[]) s_l.receive(); // (iii) Receive the next particle data set.

}

... // Calculate the final results for this simulation step and update our own particle data.

}

Figure 7. SJ implementation of the main simulation loop in each pipeline Worker for the parallel n-Body simulation.

the outer and inner loops are implemented by s_r.outwhile

(s_l.inwhile()){...}, where s_r (resp., s_l) is the session
socket for the link with the right-hand neighbour (resp., left-
hand neighbour). Hence, once the pipeline is fired up by the
“first” Worker, the Workers iterate in parallel following their
left-hand neighbours.

To propagate the particle data of each Worker to all other
Workers, each step of the simulation involves p − 1 inner
iterations. In the first inner iteration, each Worker calculates
the partial result from their own particle set, and sends their
particle data to the right-hand neighbour. In the n-th itera-
tion, each process adds the particle data set received in the
previous iteration to the running calculation (marked (i) in
Figure 7), forwards this data set on to the right-hand Worker
(ii), and receives the next data set from the left-hand Worker
(iii). The particle data originating from the right-hand neigh-
bour is received by the end of the final inner iteration: each
data set has now been seen by all Workers in the pipeline,
allowing the final results for the current simulation step to
be calculated. The current variable, which holds the cur-
rent particle set received in each inner iteration, is declared
noalias, enabling the particle data to be forwarded (ii and iii)
via zero-copy transfer between shared memory Workers.

The n-body program demonstrates, beside the usage of
noalias, how structured, type-safe session programming is
ideally suited to capturing such interaction structures in-
volving an arbitrary number of collaborating peers. As
mentioned earlier, the p Workers can be deployed in any
combination of co-process threads, co-machine processes,
and/or distributed processes — relying on the SJ Runtime
to dynamically negotiate the most suitable session transport
(shared memory, pipes, TCP) in each link context — without
requiring any modification of the source code. Such porta-
bility is becoming increasingly relevant with the rise in het-
erogeneous clusters and ad hoc networking environments,
which necessitate new, high-level abstractions for handling
diverse forms of concurrency, both inter-host and intra-host.

4. SJ for Distributed Applications

This section presents two larger size SJ applications, corre-
sponding to Use cases 2 and 3 described in §1. These appli-

SSL TCPTCPHTTPSHTTPClient Client
ChatServer Clientfirewall

Figure 8. TCP, SSL and HTTP(S)-tunnelling in Chat.

cations demonstrate SJ session programming for wide area
network domains, complementing the parallel algorithm ex-
amples in §3, which are primarily targeted at local area net-
work (or single machine) environments.

The first is a typical Internet application, a chat server,
that leverages SJ transport-independence between client-
server (e.g. HTTP, for Web-based servers or firewall restric-
tions) and client-client (e.g. SSL) connections, and demon-
strates SJ service passing, a complementary form of type-
safe, higher-order communication to session delegation [14]
which arises in many real-world protocols, such as FTP and
HTTP-CONNECT. Chat also features session recursion. The
second is a web-based corporate application portal. This ap-
plication incorporates SJ code into Java applets and servlets,
and demonstrates transport-independent session delegation,
which enables session migration across differing transports.

4.1 Chat
Chat is a client-server application for real-time Internet text
messaging. Like many Internet applications, it is sensitive to
connection restrictions due to firewalls. The SJ Framework,
however, decouples such concerns from the application it-
self: the SJ Runtime (SJR) includes a HTTP-based transport
module for traversing firewalls via a Java servlet proxy (see
§5), in addition to support for direct TCP connections.

In a simplified Chat (Figure 8), each Server maintains a
single global conversation channel on which all connected
Clients can read and write. Each Client also obtains from
the Server a list of the other Clients connected to the Server,
updated as Clients join and leave. A Client can use this
information to request a private conversation with another
peer: the request is made via the Server, but once estab-
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protocol clientToServer {

cbegin. // Client requests a session.

!<String>. // Send user name.

?(int). // Receive user ID.

?(cbegin.@(eventInStream)). // (i).
@(eventOutStream) // Start event out stream.

}

protocol serverToClient {

^(clientToServer) // Dual session type.

}

protocol eventInStream {

^(eventOutStream)

}

protocol eventOutStream {

rec X[ // Enter recursion scope for stream.

!{ // Select the event type.

JOIN: !<UserJoinEvent>.#X,

MESSAGE: !<MessageEvent>.#X,

PRIVATE_CONVERSATION: // Make request and...

!<PrivateConversationEvent>.?{ // ...get response.

ACCEPT: !<cbegin.@(clientToClient)>, // (ii).
REJECT:

}.#X,

QUIT: !<UserQuitEvent> // No recurse (stream end).

}

]

}

Figure 9. Session types for the Client-Server interactions of a basic chat application featuring higher-order service passing.

lished, the private conversation is conducted completely sep-
arately from the global channel. The basic Chat implemen-
tation comprises approximately 4K SLOC, with 40 SLOC
for protocol declarations and 600 SLOC of session code. We
explain the session types that specify the Chat interactions
and key implementation details below.

Chat protocol design. Chat comprises two main proto-
cols. The first describes the interaction between Clients and
Servers, as listed in Figure 9 from the Client perspective
(clientToServer). serverToClient is its dual (^ means
“dual”), i.e. in (?) and out (!) qualifiers inverted. The bulk
of a Client-Server session is given by the event stream pro-
tocols. eventOutStream allows the Client to signal the join
and leave actions, send a message, and make a private con-
versation request (for brevity, most of the messages have
been condensed into single Event types). eventInStream

is the dual to eventOutStream. The second main protocol
(clientToClient) is just a simpler version of the first that
excludes the JOIN and PRIVATE_CONVERSATION branch cases
for the private conversations between Clients.

The two key points are the declaration of the event
streams using recursion and the higher-order service passing
message types. Unlike the other session type constructors,
recursion (rec X[...#X]) does not specify an interaction
“direction”. Session recursion binds local control flow to a
separate, nested session construct, typically a branch ele-
ment: in eventOutStream, only the QUIT case of the nested
outbranch exits the recursion, terminating the stream.

The Client-Server interactions feature two instances of
service passing. Each Client-Server session encapsulates
a pair of dual event streams, to permit the Client and
Server to operate with full asynchrony: either can send an
event at any time. The first instance of service passing,
marked (i) in clientToServer, specifies that the Server send
the Client a SJService of type cbegin.@(eventInStream)

where @(eventInStream) is the SJ notation for referenc-
ing eventInStream. The Client uses this service to initi-

ate the Server-to-Client event stream (eventInStream from
the Client perspective). The Client-to-Server event stream is
commenced after (i) on the parent session. The second in-
stance of session passing marked (ii) in eventOutStream oc-
curs in the set-up for private conversations between Clients.

Chat implementation. We briefly outline the implementa-
tion of the key features described above, service passing and
session recursion. After a connection and the preliminary
exchange of user information (see clientToServer in Fig-
ure 9), the Server uses service passing (i) so the Client can
initiate a Server-to-Client event stream. Server first opens a
fresh port port, which is used to create an SJService.

SJService c = SJService.create(p_cs, serv, port)

where protocol p_cs is cbegin.@(eventInStream) (Fig-
ure 9) and serv is the address of the Server. Server then per-
forms the service passing action by sending the SJService

to Client:

s_sc.send(c); // !<cbegin.@(eventInStream)>

and binds a SJServerSocket to port of type sbegin.@(

eventOutStream), i.e. the dual session type to the type of
c. Client receives the SJService (cast included for clarity)
and makes the expected request (params specifies optional
transport preference parameters):

SJService c =

(cbegin.@(eventInStream)) s_cs.receive();

... = c.request(params); // Initiate in stream.

Server will accept the request in the usual way, and can then
close the dynamic server socket and port.

There are two ways to implement a session recursion.
One is the basic SJ session recursion construct, and the other
is using recursive session methods [41] through a recur-
sive method call, using method declaration for session im-
plementation. We show the former for the Client-to-Server
event out stream in the Client implementation:
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protocol appletToPortal { // End-user applet.

cbegin. // Request application session.

... // Preliminary exchange of parameters.

!{

WEBMAIL: @(appletToWebmail),

CALENDAR: @(appletToCalendar),

DATABASE: @(appletToDatabase),

...

}

}

protocol portalToWebmail { // Portal connects to Server.

cbegin.!<@(webmailToApplet)> // (iii).
}

protocol webmailToPortal { // Webmail is a Server.

sbegin.?(@(webmailToApplet)) // (iv).
}

protocol webmailToApplet {

^(appletToWebmail)

}

Figure 10. Session types for the core interactions, including session delegation, for an intranet application portal.

s_cs.recursion(X) { // rec X[

...

else if(...) { // Sending a message.

s_cs.outbranch(MESSAGE) { // !{ MESSAGE:..

s_cs.send(...); // !<MessageEvent>

s_sc.recurse(X); // Recursive jump: #X

} // }

}

else ...

} // ] Recursion scope exit.

As already discussed, transport independence gives Chat
greater portability across differing communication contexts,
such as traversing firewalls. As a further example, repack-
aging the Client application as a Webpage applet requires
very little work: again, the SJR can transparently negotiate
a HTTP-based session to connect to the parent Web-server.
Enabling Chat Clients to conduct private conversations se-
curely is a similar situation; due to SJ transport negotiation
(see §5), the Client will automatically reject a private conver-
sation request if either peer demands a secure transport that
the other does not support. Further extensions to the Chat ap-
plication that may introduce further transport requirements,
such as voice communications and file transfer, would simi-
larly benefit from development in the SJ Framework.

4.2 Application Server Portal
In this example, a developer presents a HTML embedded SJ
applet as an Application Portal frontend to the various ap-
plication servers hosted within the company network. The
hosted applications could include a company calendar ser-
vice, a Webmail client, and so on. On user request, the Por-
tal applet establishes a HTTP-based session with the parent
Web server from which applet originates. The parent server
processes the user commands, and depending on the user re-
quirements, delegates control (ownership) of the server-end
of the session over to the appropriate application server. In
addition to type-safety through higher-order session types,
this example demonstrates the ability to perform transparent,
cross-transport session migration using the SJ Framework.
Although the applet communicates with the parent server us-
ing HTTP, session delegation can establish a direct TCP con-
nection for better performance, or a secure session for han-

HTTPUserWebPortal EmailCalendardelegation SSLUserWebPortal EmailCalendar
Figure 11. A Web-based portal (HTTP) to various applica-
tion servers (TCP, SSL, etc.).

dling sensitive data, with the application server (Figure 11).
The key point is that the low-level and complicated machin-
ery behind transport-independent delegation is cleanly ab-
stracted away by high-level session programming, allowing
the developer to focus on the application-level logic rather
than the underlying transport and network details.

Application Portal protocols. Figure 10 lists the proto-
cols between Applet, Portal and Servers, simplified to high-
light the delegation actions at Portal. In the appletToPortal

protocol, Applet selects from a range of applications, cor-
responding to the cases of the outbranch element (!{...}
). The protocols between the Portal and each Server con-
tain a single higher-order send type, the delegation. In
portalToWebmail, for instance, the delegation marked (iii)
has type !<@(webmailToApplet)>. This type describes that
Portal delegates to Webmail the responsibility for complet-
ing the webmailToApplet session that Applet is expecting.

Application Portal implementation. The main SJ features
of interest are the delegation in Portal and the corresponding
session receive in each Server. At Portal:

noalias SJSocket s_pa; // To serve Applet.

... // Enter session-try scope for s_pa.

s_pa = ss_p.accept(); // ss_p: SJServerSocket

Then depending on the user commands, Portal establishes a
session to the target Server over which s_pa is delegated.

... if(...) { // Select application server.

... // Enter session-try scope for s_ps.

s_ps = c_s.request(); // Connect to Server.

s_ps.send(s_pa); // !<@(serverToApplet)>

}
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where server in serverToApplet could be webmail, etc. For
delegation, session typing requires s_pa to be noalias, which
fits the concept of linear session delegation very naturally,
i.e. Portal relinquishes this session (s_pa becomes null).

At the Server, the delegated Applet-Portal session is re-
ceived by

... // Enter session-try scope for s_sa.

s_sa = (@(serverToApplet)) s_sp.receive(params);

... // Use s_sa to serve the Applet client.

where s_sp is the session socket for the Server-Portal ses-
sion, and the optional params conveys transport preference
parameters, as for request.

Transport-independent delegation. As discussed above,
the end result of transport-independent delegation is the au-
tomatic negotiation of an available, and ideally the most
suitable (based on runtime configuration and user pref-
erences), transport for the delegated session. Firstly, this
enables cross-transport session migration: although the
Applet-Portal session may be HTTP-based, via the applet
Web server, the application servers themselves may not sup-
port this transport. Secondly, in addition to the inherent
performance benefits of reconnection-based delegation (as
opposed to indefinite-forwarding [24], see §6), migrating
the original session to, e.g. a direct TCP connection, in-
creases performance potential, avoiding the need for polling
by the applet (common in two-way HTTP-based communi-
cation) and reducing the load on the Web server. Thirdly,
the mechanism underlying transport-independent delegation
also provides the means to dynamically adopt/dispose of
complementary session functionality, e.g. security through
SSL/TLS, during the execution of a session.

5. SJ Runtime Design and Implementation
This section discusses the design and implementation of
the SJ Runtime (SJR). We focus on the aspects of SJR
architecture related to supporting the transport-independent
execution of SJ programs for communication portability.
The key design element is the Abstract Transport, which
decouples the SJR (session) interaction services from the
underlying transport mechanisms. In particular, we highlight
how the Abstract Transport promotes flexible modularity
and extensibility of both service and transport components
in the SJR.

5.1 General Structure of the SJ Runtime

Figure 12 depicts the general structure of the SJR and some
of the main components. Recalling the compilation and exe-
cutions stages of a SJ Program (outlined in §2), the SJR has
two main responsibilities. The first is to host the SJ interac-
tion services. The SJ compiler translates session interaction
in SJ programs into calls to these services. For example, the
SJ code

Thread A ...
TCP Named PipesHTTP/TCP Shared Mem.

Session Manager Session DelegatorSession Type Tracker ...Thread CThread B Session sockets
The SJ Runti
me SJ Transport ManagerJava VM

Non-session Threads
...

Session Initialiser Wire ProtocolMsg. Serializer
Figure 12. The structure and components of the SJR.

s.outwhile(...) {

s.send(t); // t is of type noalias T.

... = s.receive();

}

is roughly translated to the Java in Figure 13. Services are
interchangeably incorporated into the SJR as service com-
ponents, which implement, for example, the protocols for
initiation and delegation as well as the wire protocol and se-
rialization format for communicating messages.

The second task of the SJR is the management of trans-
port connections over which the interaction services are
performed. Support for specific transports is incorporated
through SJ transport modules, which implement the seman-
tics of the Abstract Transport in terms of the communication
mechanisms of the encapsulated “concrete” transport. The
SJ Transport Manager (SJTM) uses the transport modules to
open and close transport connections and perform the trans-
port negotiation protocol (explained below).

Session sockets. In terms of session programming, the ses-
sion socket is an endpoint abstraction for identifying ses-
sions and implementing session interaction. At runtime, the
SJR uses the corresponding SJSocket instances to record the
state maintained for session execution. This state identifies
the local and remote session connection endpoints (which
uniquely identifies the session), the type of the requested ses-
sion and the current progress, and optional transport config-
uration parameters. In addition, the SJR dynamically binds
each active SJSocket with a handle to the underlying trans-
port connection (explained further below). A SJSocket vari-
able is implicitly (automatically) noalias: hence each thread
conducting a session has complete ownership of the corre-
sponding SJSocket (Figure 13). We also have a SJService

which is a client-side end of a shared channel for session ini-
tiation, whereas a SJServerSocket serves as the server-side
end of a channel for session initiation.

5.2 Abstract Transport

The Abstract Transport is a central device by which the inter-
action services are decoupled from concrete transport mech-
anisms. It represents the minimum sufficient functionality of
a transport over which the session interaction services can be
implemented. The Abstract Transport is in turn implemented
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while (SJRuntime.outsync(s, ...)) {

{

T t_tmp = t;

t = null;

SJRuntime.pass(s, t_tmp);

}

... = (...) SJRuntime.receive(s);

}

Figure 13. Calls to the SJR generated by the SJ compiler.

over concrete transports, permitting the session services to
be performed over all compliant transports. For this purpose,
the design of the Abstract Transport observes the following
considerations.
Abstraction boundary. Provision of a clean abstraction

boundary between the interaction service protocols and
the properties of specific transports. This decoupling
is achieved through the Abstract Transport Interfaces
(ATI), which specify the functionality required from the
underlying transports. The communication characteris-
tics of the Abstract Transport are defined by the seman-
tics of the ATI operations.

Portability. Transport independence from portability over
diverse transports. A balance is required between the
level of functionality offered by the Abstract Transport
to the interaction services, and the ability to implement
this functionality efficiently. We identify a minimal sub-
set of the ATI as core operations to be implemented by all
transports. The additional operations represent optional
functionality (e.g. zero-copy transfer) for interaction ser-
vices to exploit if available. If not directed supported,
such functionality may be emulated within the Service
Layer (e.g. timeouts).

The resulting design choices and their consequences are
demonstrated below.

Communication characteristics. In the current SJ Frame-
work, the Abstract Transport is based on asynchronous, re-
liable and order-preserving message delivery along the line
of TCP and SCTP. This transport mode is one of the most
widely used transport semantics in practice, and fits the prac-
tice [24] and semantics [14] of session-based programming,
giving a simple and natural application-level semantics for
high-level session interaction. These factors are crucial for
effective portability of the Abstract Transport over diverse
concrete transports.

While session programming under this communication
characteristics can capture a wide range of applications (as
the use cases in §3,4 demonstrate), the layered design of
the SJ Framework readily allows a clean incorporation of
other transport semantics. A treatment of alternative trans-
port characteristics is discussed in §8.

Overview of the ATI. A compliant SJR transport module
must implement the core ATI, which comprises the follow-

ing three interfaces. A SJConnection represents an endpoint
handle to an active Abstract Transport connection that sup-
ports the basic operations for reading and writing bytes.
An important consideration is that the Abstract Transport
permits asynchronous connection close. A correct imple-
mentation of SJConnection must allow the opposing end-
point to detect the close action on at least a read operation,
which should return an I/O error. A SJConnectionAcceptor

is an open session port that queues connection requests. Ac-
cepting a request returns the local SJConnection endpoint
of the newly established connection. Lastly, SJTransport

is the master interface that completes the presentation of
the encapsulated transport as an implementation of the Ab-
stract Transport. A SJTransport provides the means to cre-
ate SJConnectionAcceptors and make connection requests,
and also specifies a mapping from SJ session-level port val-
ues to transport-specific entities (ports or otherwise).

Implementation of the core ATI provides sufficient func-
tionality to perform the essential interaction services; hence,
the SJR can be rapidly extended to incorporate additional
transports. The ATI also include optional interfaces that in-
dicate the encapsulated transport supports certain additional
functionality to be exploited by the SJR and relevant in-
teractions services. A good example is SJLocalConnection,
which extends SJConnection with operations for zero-copy
messaging transfer, which will be implemented by e.g. a
shared memory transport (see below).

ATI implementation. We discuss the ATI implementation
of some selected transports. The SJ Framework is designed
to concentrate such low-level communication details within
this layer, decoupling application-level interaction from the
underlying transport mechanisms. This frees the program-
mer to focus on the application-level, whilst experts can de-
velop additional and specialised transport modules.

TCP-like transports have similar properties to the Ab-
stract Transport. Thus, creating a compliant transport mod-
ule can take less than an hour, which is particularly useful
for domain-specific tuning of such transports.

A shared memory transport module was completed
in a few hours. The basic approach was to model the
asynchronous (full-duplex) communication of the Abstract
Transport using two FIFO buffers, one for each direction.
This automatically gives reliability and order-preservation,
provided access to the buffers by the two endpoints is cor-
rectly synchronised for blocking reads. Careful synchroni-
sation is also needed to correctly “shutdown” both buffers
and notify the opposing endpoint on connection close. The
shared memory connection implements SJLocalConnection
and performs zero-copy transfer by simply passing the mes-
sage reference through the FIFO. Ordinary writes copy the
data using serialization. The transport module internally
manages “port” usage by active connections and acceptors.

HTTP transport module is more complicated, involving a
couple of days work. There are two modes of operation: di-
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rect connection between the two endpoints, and connection
via a servlet proxy. The current design aims to treats both
modes as uniformly as possible. Session-level port values are
mapped to TCP ports offset by an internal constant. A con-
nection request first attempts a direct TCP connection to the
specified target address. If unsuccessful, a connection to port
80 (configurable) on the target host on is attempted, sending
a GET for the fixed resource path to the expected servlet. The
servlet obtains the address of the intended connection target
from the GET parameters and creates the proxy connection.
After a connection is established, writes are performed us-
ing POST, with compliance for connection persistence. For
direct connections, a read simply parses the first write POST
request received from the opposing side. For proxy connec-
tions, a read is also performed using POST: the servlet parses
the corresponding write from the opposing side and returns
a response to the read POST.

5.3 Transport Manager
The SJR uses the SJTM to manage to open and close
SJConnections and connection acceptor groups. The SJTM
uses the incorporated transport modules to open connections
based on the two-phase transport negotiation protocol. As
explained below, the concrete transport underlying a new
SJConnection is determined from the validity of the avail-
able transports for connecting to the specified destination,
and the transport preference parameters at both connection
endpoints. The SJTM can additionally intercept a connection
close, and cache the connection for later reuse.

As a rough description, a connection acceptor group col-
lects together the SJConnectionAcceptors for each transport
supported by a session server socket. The acceptors for the
transports for connection setup (explained below) are bound
to the transport-level port given by the provided session-to-
transport mapping. This permits a session server socket to
encapsulate, e.g. multiple TCP-based transports, as long as
the port mapping between the transports do not clash.

Transport negotiation. Creating a new SJConnection in-
volves two phases. The first is to establish contact with the
connection target by creating a preliminary setup connec-
tion between the requestor (R) and acceptor (A). The setup
connection is then used to negotiate a transport for the pend-
ing session that both parties agree on. For this purpose, the
SJR maintains separate preference lists for the setup (S)
and session transports (T ), which can be customised using
the SJR configuration methods, and through the parameters
to application-level session requests (c.request(params);)
and session server socket creation. The transport negotiation
protocol roughly proceeds as follows:
1. R attempts setup connections according to ordering of S

(below s denotes the established setup transport).
2a. R sends a flag to indicate whether R1) negotiation is

mandatory (s not in TR), R2) negotiation is unnecessary
(s first priority in TR); or else R3) start negotiation.

2b. At the same time, A says either A1) no negotiation is pos-
sible (only s is in TA), A2) the setup transport is sup-
ported for sessions (s in TA), or A3) the server supports
other session transports but not s (i.e. s is not in TA and
TA is not empty).

This scheme permits both fast agreement and flexible nego-
tiation. In the case of R2 or R3 paired with A1, the session
should directly proceed over the already established setup
connection; similarly for R2 and A2. The key is that both
parties can independently determine this outcome from the
initial exchange. In the case of further negotiation, A lists
TA and R can select a new transport or reuse the setup con-
nection. R1 and A1 signals connection failure.

In the current SJR, commonly used setup transports are
shared memory and TCP. However, it would be interesting to
investigate alternative, lightweight methods for distributed
transport negotiation, e.g. using UDP. The SJTM can ad-
ditionally cache the transport preferences of known hosts,
and whether previous connections using particular trans-
ports succeeded, to optimise the selection of setup trans-
ports. These optimisations “warm up” the SJR, akin to JIT
techniques in the standard JRE.

Recall that the SJR directly binds connection handles to
SJSockets. Once a session is established, the interaction ser-
vices can execute communication actions (e.g. send/receive)
through direct direct access to the underlying connection via
the session socket, incurring minimal cost, cf. §6.

5.4 Session Interaction Services
As illustrated in Figure 13, application-level session interac-
tion is executed at runtime via calls to the interaction ser-
vices, which carry out the interaction as Abstract Transport
communications. The key point is that, just as the addition
of a transport module immediately enables the session ser-
vices to be performed over the new transport, replacing or
adding service components to the SJR allows the new ser-
vices to perform transparently over all transports. The fol-
lowing describes some of the key services, highlighting de-
sign elements related to transport-independence. Other Ser-
vice Layer functionality includes session initiations, mes-
sage serialization and wire protocol, and dynamic monitor-
ing of messages (against the expected session types).

Noalias message passing. By default, the SJ compiler tar-
gets this service for all pass and send operations called
with noalias arguments. If the target session is bound to a
SJLocalConnection, this service uses the zero-copy trans-
fer operations to pass the message. Otherwise, this service
invokes the standard copy-on-send service. This is a simple
demonstration of how services can transparently make the
best use of the available transport functionality. Other such
services include emulating input timeouts, described below.

Delegation. Session delegation requires intricate coordi-
nation between the parties involved. Alternative protocols
for this coordination and their tradeoffs were studied in [24];
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their implementations are incorporated into the SJR as dele-
gation service components. The SJR is easily configured to
utilise a specific protocol by interchanging the relevant ser-
vice component. The reconnection-based delegation proto-
cols can directly reuse the SJTM transport negotiation mech-
anisms to perform cross-transport session migration (§4.2),
automatically fitting the delegated session to the most suit-
able transport (modulo user configuration) for the new exe-
cution context, cf. §6. Due to the Abstract Transport, adding
a transport module to the SJR automatically extends this ser-
vice to support session migrations to the new transport.

Input timeouts and non-blocking input. The read opera-
tion with timeout is part of the optional ATI in the current
Abstract Transport. However, this function can also be re-
alised as a service, giving a basic demonstration of how cer-
tain functionality can be emulated within the Service Layer
if the underlying transport does not support it directly. The
functionality can be achieved by spawning a worker thread
to perform the blocking, non-timeout read, and starting the
timer in the original thread. If a message is received before
the timer expires, the worker can notify the original thread
and return the message (or exception). Otherwise, the timer
cleans up the worker and raises the timeout exception. Sim-
ple as it is, observe that this scheme enables input timeouts
for all transports, including future ones.

Similarly a simple service, which internally uses a time-
out as above, can realise a non-blocking input, which, if a
session has already received a message, immediately returns
one: and the null if not. This service can easily support asyn-
chronous, event-based communication primitives in session
programming, e.g. selecting one session out of multiple ses-
sions based on the order of a message arrival (cf. [17]), under
the same type-based safety assurance.

6. Benchmarks
This section presents performance measurements for the SJ
Framework to demonstrate the feasibility and advantages
of transport-independent design. The first benchmark com-
pares the transport-independent SJ Framework against the
preceding TCP-based version of SJ, which was shown to
perform competitively against TCP sockets and RMI in [24].
The results show the new SJ Runtime, developed around the
Abstract Transport, incurs minimal overheads in compari-
son with the TCP-specific implementation. We also use this
benchmark to show the potential for significant performance
gain due to noalias types. The second benchmark demon-
strates the effectiveness of session delegation, particularly
when the application can take advantage of cross-transport
migration to more optimal transports.

Lastly, we present macro benchmarks featuring SJ im-
plementations of larger applications with complex and rep-
resentative interaction structures. A comparison of SJ with
MPJ Express [1], a reference Java messaging system based
on the MPI [31] standard, using the parallel algorithms in §3

yields further promising performance results for SJ. The re-
sults confirm that portability due to transport-independence
allows real applications to (1) transparently make the best
of available transports without code modification (§3.2), and
(2) exploit noalias types for optimising linear communica-
tion patterns, such as exchanging ghost points (§3.1).

We used the same machines in the same network environ-
ment for the following benchmark experiments. Each ma-
chine is a dual-core Intel Core 2 Duo (E8400) at 3GHz with
memory, running Ubuntu Linux 8.10 (kernel 2.6.27). The
machines were connected via gigabit Ethernet, and the la-
tency between two machines was measured using ping (64B)
to be on average 0.10ms. The SJ compiler and Runtime and
the benchmark applications were built and executed using
the standard Sun Java SE compiler and runtime versions
1.6.0 12. The complete results and full benchmark source
code can be found at [41].

6.1 Micro Benchmarks for Communication Overheads
Following the approaches taken in [29, 47], this set of micro
benchmarks is based on the communication of binary trees,
which represent a middle-ground in common data structures
(between sparsely-connected lists and densely-connected
graphs). Each benchmark was conducted for trees of increas-
ing depth (0, 1, 2, 4, 8) in sessions of length (session-while
iterations) 0, 1, 10, 100 and 1000. The SJR was configured
to use shared memory and TCP for both connection setup
and session execution; the old SJ is implicitly coupled to
TCP. Nagle’s algorithm was disabled for both. Each bench-
mark run was preceded by a full dummy run for stability,
and we present the average results of 1000 repeats for each
parameter combination.

Overhead of Abstract Transport. The aim of the first
benchmark is to determine the overheads introduced by the
ATI due to the decoupling of interaction services from trans-
port modules. We compare the performance of the new SJR
implementation to the preceding version of SJ [24] which is
directly coupled to TCP without Abstract Transport. Taking
this communication-dominated micro benchmark in a very
low latency environment emphasises the internal overheads
incurred by the SJR for session execution, whilst minimis-
ing the influence of other external performance factors; both
implementations use a similar wire format and serialization
protocol. Since the previous SJ was measured against TCP
and RMI, we can also compare the overheads against them.

We measure the time taken for the Client to complete
the following session with the Server after the session has
been established. The Client and Server are run on separate
machines, so the SJR negotiates TCP for the session. The
protocol from the Client side is

(1) cbegin.![!<BinTree>.?(BinTree)]*

and the Server implements the direct dual type. The Client
and Server repeatedly exchange (and update) a binary tree
for as long as the Client continues the iteration (session
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Figure 14. a) and b) new SJR vs. old TCP-based SJ; c) shared memory sessions with ordinary and noalias message passing;
d) (cross-transport) session migration from TCP to TCP and TCP to shared memory against non-delegation base case.

length). In addition to these messages, recall that session-
iteration involves implicit communication (performed by an
interaction service) between the peers.

Figure 14 a) and b) show for session lengths 1 and 1000
(as representatives of short and long sessions), the mean time
(y-axis) to complete the session for the varying tree sizes (x-
axis). These results show that the new SJ Framework with
Abstract Transport incurs very little additional overhead in
comparison to the preceding TCP-based version. For the
shorter session, the difference in performance is minimal.
The overheads are more visible for the longer session, but
still confirm the feasibility of our design.

Noalias types. To illustrate the impact of noalias types
for transparent zero-copy message transfer, we reuse the
first benchmark to run Client and Server as co-VM threads
(shared memory); this requires no changes to the original
source code, although a few lines of external code are used
to bootstrap the threads. We compare this multithreaded “or-
dinary” version against a version that uses noalias BinTrees.

Figure 14 gives the time to complete sessions of length
1000 for trees of depth 0, 1, 2 and 4. These results indeed
show that exploiting noalias types offers the potential for
greatly improved performance. For the version noalias, the
communication costs, i.e. passing messages by reference,
remain constant regardless of message size, whereas the cost
of copy-on-send (via serialization) naturally increases with
the tree size. The results for trees of depth 8 (18ms for
noalias, 1020ms for ordinary) confirm the above, but are
omitted from the graph for legibility. We also measured that
the overheads introduced by noalias types for TCP sessions
(i.e. zero-copy is not possible) are negligible, about 0.1%.

6.2 Cross-Transport Session Migration

This benchmark set demonstrates how transport-independence
augments the advantages of reconnection-based session del-

egation [24] versus the emulation of delegation via indefinite
forwarding. The common starting point for the benchmark
application is for Alice and Carol to establish the session (a),
and Bob and Carol the session (b). However, the bulk of the
communication in this application consists of the messages
passed between Alice and Bob (1000 BinTree exchanges).
This is a generalisation of both the Chat (the private Client-
Client conversations) and Application Portal (Applet-Server
application session) scenarios in §4. We measured the time
taken by Alice to complete her side of the session after (a) is
established for the following three configurations.

Control case. In the base case, Alice and Bob are clients
to the server Carol, each on a separate machine. The types
of (a) and (b) are both (1) as specified above from the
perspectives of Alice and Bob. Alice and Bob communicate
using Carol as an intermediary, who manually forwards on
the Alice-Bob messages in both directions. This scheme is
similar to the mechanism of Mobile IP [25].

Delegation over TCP. Here, rather than relaying the mes-
sages between Alice and Bob, Carol delegates (a) over (b) to
Bob. The type of (b) is now

(2) sbegin.!<?[?(BinTree).!<BinTree>]*>

from Carol’s perspective. After the delegation, Alice and
Bob perform the session communication over a direct TCP
connection, although the delegation is transparent to Alice at
the application-level (the type of (a) is unchanged).

Session migration from TCP to shared memory. The
delegation-based implementation was repeated with Alice
and Bob as co-VM threads. This means (a) and (b) are es-
tablished over TCP as above, but the SJR transparently mi-
grates the delegated session to a shared memory connection
between Alice and Bob. Similarly if Alice and Bob were
co-machine processes (session migration to e.g. pipes) or
machines in a HPC cluster (e.g. RDMA).
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(a) Time (ms)
Size Ordinary Noalias

100 1270 992
300 24436 19448

(b) Time (ms)
Size SJ MPJ

100 3713 4460
300 19501 19834

Figure 15. Jacobi: (a) “ordinary” vs. noalias versions
(shared memory); (b) SJ vs. MPJ Express (distributed).

Results. Figure 14 gives the results for the delegation
benchmarks for trees of depth 0, 1, 2 and 4 (depth 8 contin-
ues the trend but is omitted for legibility). As expected, the
control case is considerably slower due to the overheads of
redirecting the Alice-Bob messages via Carol; reconnection-
based delegation benefits from dynamically reconfiguring
communication topology to better reflect the evolving struc-
ture of the distributed application. The cross-transport mi-
gration to shared memory in turn improves on the TCP dele-
gation, demonstrating the ability of the SJR to transparently
migrate sessions to more optimal transports.

6.3 Macro Benchmarks: Parallel Algorithms

We present performance measurements for the parallel algo-
rithms from §3. The first benchmark shows that the SJ Run-
time, although an early implementation version with much
scope for further optimisation, can perform competitively
with MPJ Express [1]. MPJ Express adopts a pure Java
approach2which makes for interesting comparison with SJ
(as opposed to JNI wrapper libraries to C functions). These
benchmarks were conducted in the same environment as
above but using different machines: dual-core Intel Core 2
Duo (Conroe B2) at 2.13GHz with 2M L2 cache, 2GB main
memory, running Ubuntu Linux 4.2.3 (kernel 2.6.24).

Jacobi Poisson solution. The parallel Jacobi algorithm is
used to demonstrate (1) the effectiveness of SJnoalias types
for larger, more complex applications, and (2) compares
SJ performance to MPJ Express. Firstly, “ordinary” (i.e.
without noalias) and noalias versions of the Master and two
Workers were run as co-VM threads on a single machine.
We measured the time to complete the algorithm for square
matrices of size (the length of one side of the matrix) 100
and 300. In both cases, the noalias version is approximately
20% faster than the ordinary one (Figure 15a). Secondly,
the SJ Jacobi, running each process on a separate machine
(to use TCP, because MPJ Express does not support zero-
copy in shared memory) was compared to an equivalent
MPJ Express implementation: the SJ version performs better
than MPJ Express by 6% on average (Figure 15b). We also
implemented an extended version of SJ Jacobi which uses
a linear pipeline topology, rather than multicast session-
iteration, to support a dynamic number of Workers. This
version performed on average 20% slower than the above

2 Micro benchmarks comparing MPJ Express to other messaging systems
are presented in [37, Chapter 8]. Their results show package transfer time in
MPJ Express is slower than MPICH by an average 20% over fast Ethernet.

Num. of Mean execution time (ms)
Particles Threads Localhost Distributed
100 326 452 496
300 865 1144 1194
1000 6785 7497 7702

Figure 16. n-Body simulation: Threads vs. Localhost vs.
Distributed versions.

version with multicast iteration. Thus this new multicast
primitive can improve performance.

n-Body simulation. The parallel n-Body algorithm fea-
tures a complex collaboration pattern between a dynamic
number of session peers, implemented using session-iteration
chaining. We use this more advanced example (without
noalias types, for a direct transport comparison) to con-
cretely test portability due to transport-independence, in
particular for flexible application deployment. The same im-
plementation without source code modification was used to
run a two Worker simulation (100, 300 and 1000 particles
each Worker) in the following three configurations: as co-
VM threads using shared memory (Threads), as separate
processes on the same machine using TCP-loopback (Local-
host), and on separate machines using TCP (Distributed).

As expected, the results (Figure 16b) show the Threads
version is faster than Localhost: around 27% for 100 parti-
cles, 24% for 300, and 10% for 1000. The Localhost ver-
sion is in turn slightly faster (latency is very low) than Dis-
tributed: 9% for 100 particles, 4% for 300, and 3% for
1000. The relative performance gain between each version
decreases for larger particle sets because the local compu-
tation costs begin to dominate the communication costs for
this fixed number of Workers. Naturally, performance can be
improved for simulations of large particle sets by increasing
the degree of parallelism, i.e. using more Workers.

7. Related Work
Message-based parallel programming. MPI [31] is one of
the most widely-used APIs for parallel programming using
message passing. Implementations supply concrete language
and transport bindings, such as C, C++ and Fortran over
one or more specific transports. The present work focuses
on the integrated language-runtime design for transport-
independent communications programming, rather than a
supplementary API. In comparison to the standard MPI li-
braries [20, §4], the SJ Framework offers benefits in pro-
ductivity coming from natural abstraction of communica-
tion actions by typed sessions as well as associated static
assurance of type and protocol safety, as we discussed in
§3. The MPI API remains low-level, easily leading to syn-
chronisation errors, message type errors and deadlocks [20].
From our experiences, we found programming these and
other message-based parallel algorithms in the SJ Frame-
work through typed sessions based on Java much easier than
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programming based on the basic MPI functions, which, be-
side lacking in type checking for protocol/communication
safety, often requires manipulating numerical process iden-
tifiers and array indexes (e.g. for message lengths in the
n-body program) in tricky ways. On the other hand, the SJ
Framework integrates objects and sessions to support, e.g.
Java objects as high-level messages types with the facility
for remote class loading [24]. SJ is also able to exploit ses-
sion types to solve several MPI problems: a session is inher-
ently communication-safe and deadlock-free [22]. Further,
the benchmark results in §6 demonstrate how SJ programs
can exploit transport-independent, type-directed optimisa-
tions to outperform a Java-based MPI implementation [1].

OpenMP and PGAS Languages. OpenMP [33] is a com-
bination of pragma-based program transformation and li-
braries for extracting latent parallelism (shared memory
multithreading) from sequential code. X10 [49], Chapel
[12] and Fortress [18] are recent PGAS languages for HPC.
These libraries and languages focus on reducing program-
ming complexity for shared memory parallelism through a
range of annotations and high-level constructs for coordinat-
ing and synchronising thread behaviours. The SJ Framework
enables the abstraction and control of a collection of data
transfer as a single session, leading to an optimal transport
usage, and safety assurance through static type checking.

Multi-transport runtimes. APIs for object-based commu-
nications such as Java RMI and CORBA are typically tied to
a few specific transports. Motivated by the need for domain-
specific transports in distributed real-time and embedded
systems, the OMG Extensible Transport Framework (ETF)
[32] was developed to specify a transport plug-in frame-
work for CORBA platforms. The ETF prescribes a set of
interfaces to be implemented by the plug-in components in
order for ORBs to communicate via alternative transport
modes. The ATI and ETF interfaces define similar basic op-
erations for connection open and close and byte-level read
and write. However, certain aspects of the ETF are implicitly
tied to the GIOP, making it difficult to, e.g. employ different
marshalling schemes or extend communication beyond bi-
nary method calls [8]. Amongst other features, SJ supports
transparent, cross-transport session migration, which COR-
BA/ETF has no facility for.

JXTA [27] is a platform for P2P applications, provid-
ing basic P2P protocols such as peer discovery and adver-
tisement over multiple protocols (e.g. pipes can be imple-
mented over differing concrete protocols). JXTA abstracts
concrete transports to offer APIs for high-level P2P interac-
tions so that the application development over JXTA is in-
sulated from the low-level implementations involving con-
crete transports. Similarly messaging middlewares [3, 46]
which support multiple transports are restricted to domain-
specific functions and APIs, without general programming
support, while the SJ Framework fully exploits transport-

independence, advocating general typed communications
programming supported by extensible runtime.

Distributed objects. Emerald [7] is an object-oriented lan-
guage and system which supports object mobility in a net-
work environment: it integrates a system which includes
typed objects, their distribution-aware runtime environment,
and fine-grain (object-granularity) distribution transparent to
calls by other objects. It presents a fully-fledged design of
distributed objects and their implementation framework in-
cluding fine-grain object migration, while retaining the se-
mantics of method call for both local and remote communi-
cations. The aim of the SJ Framework is quite different, in-
vestigating the integration of expressive, type-safe commu-
nications programming and object-orientation, through the
enrichment by typed sessions – in particular, session mi-
gration is different from object and process migration. As
a means for communications programming, the session ab-
straction has several advantages over the fixed shape of a
synchronous method call.

Programming abstractions for communications. One of
the themes of the SJ Framework is the provision of effective
typed abstractions for concurrent and distributed program-
ming. Polyphonic C] [4] offers a typed language with a join-
based concurrency primitive [19] on the basis of C]. The in-
tegration of the actor model with Scala is studied in [21]. In
the context of functional languages, CML [35] offers a col-
lection of elegant primitives centring on the higher-order ab-
straction event. Recently the notion of events is extended by
adding a transactional property, called transactional events
[15], so that they satisfy standard isolation properties with
respect to communications and state change [16]. FoxNet
[6] studies typed and modular implementations of real-world
network stacks using standard ML’s module abstractions, re-
sulting in safe and competitive code base. Occam-π [48]
is a system-level concurrent language based on CSP and
the π-calculus, offering highly efficient channel-based syn-
chronous communication primitives as well as various lock-
ing and barrier abstractions.

Unlike the SJ Framework, these works do not (intend to)
provide typed programming abstractions which assure pro-
tocol safety for communications programming, nor do they
investigate the programming and runtime support for trans-
port independence. An integrated understanding of the inter-
play among these and other typed concurrency abstractions
will be an interesting topic for further study.

Zero-copy communication with linear types. The noalias
mode in SJ is similar to the unique annotation of [2] for
describing unshared references. Our contributions include
demonstrating how the integration of object alias control
and message passing programming can have significant per-
formance benefits whilst retaining semantic transparency.
SJ differs from [2] by directly capturing the semantics
of noalias assignment and argument passing operationally,
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rather than enforcing particular patterns for variable usage.
The above design choice of SJ, in contrast to [2], dispenses
with manual synchronization for field accesses and leads to
a different inference of noalias-compatible classes.

Sing#, a derivative of C# developed for Singularity OS
[17], uses a variant of session types called contracts to spec-
ify the interfaces between OS components, which commu-
nicate via channel-based message passing in shared memory
environments. Their approach is based on ownership trans-
fers to support message exchange via a specially designated
heap area in shared memory. Kilim [40] is an actor frame-
work for Java based on cooperatively-scheduled lightweight
threads which communicate by message-passing. By static
checking, a message can have at most one owner at any time,
allowing efficient zero-copy transfer. StreamFlex [39] is a
real-time stream API for Java guaranteeing sub-millisecond
response times and type safety. It makes use of a type-based
classification of heap objects which in effect ensures linear-
ity of messages carried through streams, leading to a high
throughput. The typing disciplines in these preceding works
are however designed for specifically restricted objects for
communication distinct from general objects.

The noalias type in SJ is a general mode declaration for
standard alias control, not restricted to the use of zero-copy
message passing in shared memory environments. Thus
our framework permits the same communication mecha-
nisms at the language-level with alias type checking, whilst
uniformly handling linearity of session communication in
a transport-independent manner. This means zero-copy or
other delivery mechanisms can be exploited in SJ for any
compliant transports without altering semantics, whereas
object transfer in the above work are tightly coupled with
their transport mechanisms.

While the aim of each work is different, controlling be-
haviour by linear types for efficiency and safety is common
in these and our work: we hope the efforts based on previ-
ous study of linear types, e.g. [17, 40, 45], can be applied to
both the safety assurance and performance of concurrency
and communication in programming languages.

Implementations of session types. A framework based on
F# for cryptographically protecting execution of sessions
from external attackers and malicious principals is stud-
ied in [5, 13]. Their session specification graphs are used
for modelling and validating the integrity of communica-
tion sequences between two or more network peers. Their
work focuses more on ensuring interaction properties, not
the realisation of the interaction over specific or transport-
independent mechanisms. The protocols for SJ session initi-
ation can be easily extended to incorporate security mecha-
nisms, such as peer authentication using certificate exchange
and key negotiation for encryption, on the basis of the cur-
rent SJ implementation of SSL and HTTPS. The above
works have not investigated a language-runtime support for
the range of features integrated in the SJ Framework, such

as transport independent, type-directed optimisations in con-
current and distributed environments.

8. Conclusions
This paper has argued for the significance of portability in
communications programming through transport indepen-
dence. Our new language-runtime framework recognises the
need for both suitable language facility and runtime support
to take full advantage of transport-independent program-
ming. The aim is not only to allow such programs to make
the best use of diverse transports, but to facilitate the task
of communications programming for the diverse applica-
tion domains that require these transports. The framework
hinges on the session-based abstraction for communica-
tions, complementing object-oriented abstraction for local
computation, offering accurate and flexible programming
abstractions for structured conversations, assuring type and
protocol safety, and functioning as a link between high-
level transport-independent abstraction and runtime exe-
cution. Transport-independence stems from the decoupling
of application-level interaction semantics from lower-level
communication mechanisms, linked by session abstraction.

We substantiated the significance of transport indepen-
dence in programming abstraction and execution, through
the implementations of several concrete applications with
complex session interactions based on use cases in differ-
ing domains, from algorithms to a large size of distributed
applications. The parallel algorithms in the SJ Framework
have clear, readable communication structures with protocol
safety ensured by session type checking, and are inherently
portable across transports available in e.g. SMP and clusters,
and transparently exploit zero-copy transfer in shared mem-
ory. Distributed applications, including the Internet chat and
application server portal, demonstrate how the SJ Frame-
work enables the opportunistic use of multiple transports in
the present-day network environments, including HTTP for
firewall traversal and Web-based deployment, SSL for se-
cure communications, and TCP, without needing any source
code modification. The application server portal also demon-
strates the use of transparent cross-transport session migra-
tion. These applications show the SJ Framework can have
considerable impact on productivity whilst enjoying type-
safety, deadlock-freedom and competitive performance.

The current SJ Framework is a basis of the investigation
of many further topics. Firstly, making full use of SJ Run-
time extensibility, we may integrate not only further trans-
ports (e.g. RDMA for HP clusters) but also alternative trans-
port modes, such as transports with order-preserving lossy
message delivery [28] or unambiguous unordered delivery
[3]. Secondly, the extensibility also applies to the addition
of new session interaction services to those extensions dis-
cussed in §5 for enriching the facility of session program-
ming: possible additions include session hibernation, fail-
ure recovery, and process migration [38], using the protocols
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closely related to session delegation [24]. These services will
also result from extensions to session types, e.g. distributed
exceptions [10], and multiparty extensions [9, 23]. Runtime
session type information can be exploited for many purposes
including user-level reflection, security and debugging, as
well as more fine-grained optimisation for e.g. serialization.
Session programming may also benefit from type-inference
for session and noalias types, combining the methods devel-
oped in [2, 30].

As industry-scale applications of the SJ Framework, we
are currently experimenting large distributed application
frameworks in collaboration with our industry colleagues,
through the use of the international standards for financial
and business protocols, WS-CDL and UNIFI [11, 44].
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join calculus. J. Log. Algebr. Program., 57(1-2):23–69, 2003.

[20] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. MIT, 1999.
[21] P. Haller and M. Odersky. Scala actors: Unifying thread-based and

event-based programming. TCS, 410(2-3):202–220, 2009.
[22] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and

type disciplines for structured communication-based programming.
In ESOP’98, volume 1381 of LNCS, pages 22–138. Springer, 1998.

[23] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous
Session Types. In POPL’08, pages 273–284. ACM, 2008.

[24] R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed
Programming in Java. In ECOOP’08, volume 5142 of LNCS, pages
516–541. Springer, 2008.

[25] IETF. Mobility for IPv4. http://dret.net/rfc-index/

reference/RFC3344.
[26] Java Message Service (JMS) homepage. http://java.sun.com/

products/jms/.
[27] JXTA homepage. https://jxta.dev.java.net/.
[28] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: congestion

control without reliability. SIGCOMM Comput. Commun. Rev.,
36(4):27–38, 2006.

[29] J. Maassen et al. Efficient Java RMI for parallel programming. ACM
TOPLAS, 23:747–775, 2001.

[30] L. Mezzina. How to infer finite session types in a calculus of services
and sessions. In COORDINATION’08, volume 5052 of LNCS, pages
216–231. Springer, 2008.

[31] Message Passing Interface (MPI). http://www-unix.mcs.anl.

gov/mpi/usingmpi/examples/intermediate/main.htm.
[32] Common object request broker architecture: Core specification. OMG

document formal/04-03-01, 2004.
[33] OpenMP homepage. http://openmp.org/wp/.
[34] Polyglot homepage. http://www.cs.cornell.edu/Projects/

polyglot/.
[35] J. H. Reppy. CML: A higher-order concurrent language. In PLDI,

pages 293–305, 1991.
[36] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in system

design. ACM Transactions in Computer Systems, 2(4):277–288, 1984.
[37] A. Shafi. Nested Parallelism for Multi-core Systems Using Java. PhD

thesis, University Of Portsmouth, 2006.
[38] A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host

mobility. In MOBICOM, pages 155–166, 2000.
[39] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: high-

throughput stream programming in Java. In OOPSLA, pages 211–228.
ACM, 2007.

[40] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for Java.
In ECOOP, volume 5142 of LNCS, pages 104–128. Springer, 2008.

[41] SJ homepage. http://www.doc.ic.ac.uk/~rh105/sessionj.

html.
[42] K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language

and its Typing System. In PARLE’94, volume 817 of LNCS, pages
398–413, 1994.

[43] A. S. Tannenbaum. Computer Networks. Prentice Hall, 1996.
[44] UNIFI. International Organization for Standardization ISO 20022

UNIversal Financial Industry message scheme. http://www.

iso20022.org, 2002.
[45] D. Walker. Advanced Topics in Types and Programming Languages,

chapter Substructural Type Systems. MIT Press, 2005. Editor
Benjamin C. Pierce.

[46] WebSphere homepage. http://www-01.ibm.com/software/

websphere/.
[47] M. Wegiel and C. Krintz. Xmem: type-safe, transparent, shared

memory for cross-runtime communication and coordination. In PLDI,
pages 327–338. ACM, 2008.

[48] P. Welch and F. Barnes. Communicating Mobile Processes:
introducing occam-pi. In 25 Years of CSP, volume 3525 of LNCS,
pages 175–210. Springer, 2005.

[49] X10 homepage. http://x10.sf.net.

18 2009/4/3


