
Session-Based Distributed Programming in Java

Raymond Hu1, Nobuko Yoshida1 and Kohei Honda2

1 Imperial College London
2 Queen Mary, University of London

Abstract. This paper demonstrates the impact of integrating session
types and object-oriented programming, through their implementation in
Java. Session types provide high-level abstraction for structuring a series
of interactions in a concise syntax, and ensure type-safe communications
between distributed peers. We present the first full implementation of a
language and runtime for session-based distributed programming featur-
ing asynchronous message passing, delegation, and session subtyping and
interleaving, combined with class downloading and failure handling. The
compilation-runtime framework of our language effectively maps session
abstraction onto underlying transports and guarantees communication
safety through static and dynamic session type checking. We have im-
plemented two alternative mechanisms for performing distributed session
delegation and prove their correctness. Benchmark results show session
abstraction can be realised with low runtime overhead.

1 Introduction

Communication in object-oriented programming. Communication is be-
coming a fundamental element of software development. Web applications in-
creasingly combine numerous distributed services; an off-the-shelf CPU will soon
host hundreds of cores per chip; corporate integration builds complex systems
that communicate using standardised business protocols; and sensor networks
will place a large number of processing units per square meter. A frequent pat-
tern in communication-based programming involves processes interacting via
some structured sequence of communications, which as a whole form a natu-
ral unit of conversation. In addition to basic message passing, a conversation
may involve repeated exchanges or branch into one of multiple paths. Struc-
tured conversations of this nature are ubiquitous, arising naturally in server-
client programming, parallel algorithms, business protocols, Web services, and
application-level network protocols such as SMTP and FTP.

Objects and object-orientation are a powerful abstraction for sequential and
shared variable concurrent programming. However, objects do not provide suf-
ficient support for high-level abstraction of distributed communications, even
with a variety of communication API supplements. Remote Method Invocation
(RMI), for example, cannot directly capture arbitrary conversation structures;
interaction is limited to a series of separate send-receive exchanges. More flexible
interaction structures can, on the other hand, be expressed through lower-level

(TCP) socket programming, but communication safety is lost: raw byte data
communicated through sockets is inherently untyped and conversation structure
is not explicitly specified. Consequently, programming errors in communication
cannot be statically detected with the same level of robustness as standard type
checking protects object type integrity.

The study of session types has explored a type theory for structured conver-
sations in the context of process calculi [12, 13, 27] and a wide variety of formal
systems and programming languages. A session is a conversation instance con-
ducted over, logically speaking, a private channel, isolating it from interference; a
session type is a specification of the structure and message types of a conversation
as a complete unit. Unlike method call, which implicitly builds a synchronous,
sequential thread of control, communication in distributed applications is often
interleaved with other operations and concurrent conversations. Sessions pro-
vide a high-level programming abstraction for such communications-based ap-
plications, grouping multiple interactions into a logical unit of conversation, and
guaranteeing their communication safety through types.

Challenge of session-based programming. This paper demonstrates the
impact of integrating session types into object-oriented programming in Java.
Preceding works include theoretical studies of session types in object-oriented
core calculi [8, 10], and the implementation of a systems-level object-oriented
language with session types for shared memory concurrency [11]. We further
these works by presenting the first full implementation of a language and run-
time for session-based distributed programming featuring asynchronous message
passing, delegation, and session subtyping and interleaving, combined with class
downloading and failure handling. The following summarises the central features
of the proposed compilation-runtime framework.

1. Integration of object-oriented and session programming disciplines. We ex-
tend Java with concise and clear syntax for session types and structured
communication operations. Session-based distributed programming involves
specifying the intended interaction protocols using session types and imple-
menting these protocols using the session operations. The session implemen-
tations are then verified against the protocol specifications. This methodol-
ogy uses session types to describe interfaces for conversation in the way Java
interfaces describe interfaces for method-call interaction.

2. Ensuring communication safety for distributed applications. Communication
safety is guaranteed through a combination of static and dynamic valida-
tions. Static validation ensures that each session implementation conforms
to a locally declared protocol specification; runtime validation at session ini-
tiation checks the communicating parties implement compatible protocols.

3. Supporting session abstraction over concrete transports. Our compilation-
runtime framework maps application-level session operations, including del-
egation, to runtime communication primitives, which can be implemented
over a range of concrete transports; our current implementation uses TCP.
Benchmark results show session abstraction can be realised over the under-
lying transport with low runtime overhead.

A key technical contribution of our work is the implementation of distributed
session delegation: transparent, type-safe endpoint mobility is a defining feature
that raises session abstraction above the underlying transport. We have designed
and implemented two alternative mechanisms for performing delegation, and
proved their correctness. We also demonstrate how the integration of session
types and objects can support extended features such as eager remote class
loading and eager class verification.

Paper summary. Section 2 illustrates the key features of session programming
by example. Section 3 describes the design elements of our compilation-runtime
framework. Section 4 discusses the implementation of session delegation and its
correctness. Section 5 presents benchmark results. Section 6 discusses related
work, and Section 7 concludes. The compiler and runtime, example applications
and omitted details are available at [26].

2 Session-Based Programming

This section illustrates the central ideas of programming in our session-based
extension of Java, called SJ for short, by working through an example, an on-
line ticket ordering system for a travel agency. This example comes from a Web
service usecase in WS-CDL-Primer 1.0 [6], capturing a collaboration pattern
typical to many business protocols [3, 28]. Figure 1 depicts the interaction be-
tween the three parties involved: a client (Customer), the travel agency (Agency)
and a travel service (Service). Customer and Service are initially unknown to
each other but later communicate directly through the use of session delega-
tion. Delegation in SJ enables dynamic mobility of sessions whilst preserving
communication safety. The overall scenario of this conversation is as follows.

1. Customer begins an order session s with Agency, then requests and receives
the price for the desired journey. This exchange may be repeated an arbitrary
number of times for different journeys under the initiative of Customer.

2. Customer either accepts an offer from Agency or decides that none of the
received quotes are satisfactory (these two possible paths are illustrated sep-
arately as adjacent flows in the diagram).

3. If an offer is accepted, Agency opens the session s′ with Service and delegates
to Service, through s′, the interactions with Customer remaining for s. The
particular travel service contacted by Agency is likely to depend on the
journey chosen by Customer, but this logic is external to the present example.

4. Customer then sends a delivery address (unaware that he/she is now talking
to Service), and Service replies with the dispatch date for the purchased
tickets. The transaction is now complete.

5. Customer cancels the transaction if no quotes were suitable and the session
terminates.

The rest of this section describes how this application can be programmed in
SJ. Roughly speaking, session programming consists of two steps: specifying
the intended interaction protocols using session types, and implementing these
protocols using session operations.

Customer Agency ServicesStringDoubleacceptRepeat until method of travel is decided
Address

s’?(Address).!<Date>
Date

sreject
s

Customer Agency

TslabsA BA BA BA BA
A requests session s with BA sends type T to B
A can choose to repeat this part of the session A selects lab at BA and B close ss’

1 2 3
4

52

Fig. 1. A ticket ordering system for a travel agency.

Protocol specification. In SJ, session types are called protocols, which are de-
clared using the protocol keyword. The protocols for the order session (between
Customer and Agency) are specified below as placeOrder, which describes the
interactions from Customer’s side, and acceptOrder, from Agency.3

protocol placeOrder {

begin. // Commence session.

![// Can iterate:

!<String>. // send String

?(Double) // receive Double

]*.

!{ // Select one of:

ACCEPT: !<Address>.?(Date),

REJECT:

}

}

Order protocol: Customer side.

protocol acceptOrder {

begin.

?[

?(String).

!<Double>

]*.

?{

ACCEPT: ?(Address).!<Date>,

REJECT:

}

}

Order protocol: Agency side.

We first look at placeOrder: the first part says Customer can repeat as many
times as desired (expressed by ![..]*), the sequence of sending a String (!<String
>) and receiving a Double (?(Double)). Customer then selects (!{...}) one of the
two options, ACCEPT and REJECT. If ACCEPT is chosen, Customer sends an Address
and receives a Date, then the session terminates; if REJECT, the session terminates
immediately. The acceptOrder protocol is dual to placeOrder, given by inverting
the input ‘?’ and the output ‘!’ symbols in placeOrder, thus guaranteeing a
precise correspondence between the actions of each protocol.

3 SJ also supports an alternative syntax for protocols (session types) that replaces the
symbols such as ‘!’ and ‘?’ with keywords in English [26].

Session sockets. After declaring the protocols for the intended interactions,
the next step is to create session sockets for initiating sessions and performing
session operations. There are three main entities:

– Session server socket of class SJServerSocket, which listens for session re-
quests, accepting those compatible with the specified protocol.

– Session server-address of class SJServerAddress, which specifies the address
of a session server socket and the type of session it accepts; and

– Session socket of class SJSocket, which represents one endpoint of a session
channel, through which communication actions within a session are per-
formed. Clients use session sockets to request sessions with a server.

SJ uses the terminology from standard socket programming for familiarity. The
session sockets and session server sockets correspond to their standard socket
equivalents, but are enhanced by their associated session types. Client sockets
are bound to a session server-address at creation, and can only make requests
to that server. Session server sockets accept a request if the type of the server is
compatible with the requesting client; the server will then create a fresh session
socket (the opposing endpoint to the client socket) for the new session. Once the
session is established, messages sent through one socket will be received at the
opposing endpoint. Static type checking ensures that the sent messages respect
the type of the session; together with the server validation, this guarantees com-
munication safety. The occurrences of a session socket in a SJ program clearly
delineate the flow of a conversation, interleaved with other commands.

Session server sockets. Parties that offer session services, like Agency, use a
session server socket to accept session requests:

SJServerSocket ss_ac = SJServerSocketImpl.create(acceptOrder,port);

After opening a server socket, the server party can accept a session request by,

s_ac = ss_ac.accept();

where s ac is an uninitialised (or null) SJSocket variable. The accept operation
blocks until a session request is received: the server then validates that the
protocol requested by the client is compatible with that offered by the server (see
§ 3 for details) and returns a new session socket, i.e. the server-side endpoint.

Session server-address and session sockets. A session server-address in the
current SJ implementation identifies a server by its IP address and TCP port.
At the Customer, we set:

SJServerAddress c_ca = SJServerAddress.create(placeOrder, host, port);

A server-address is typed with the session type seen from the client side, in
this case placeOrder. Server-addresses can be communicated to other parties,
allowing them to request sessions with the same server. Customer uses c ca to
create a session socket:

SJSocket s_ca = SJSocketImpl.create(c_ca);

and request a session with Agency:

s_ca.request();

Assuming the server socket identified by c ca is open, request blocks until Agency
performs the corresponding accept. Then the requesting and accepting sides
exchange session types, independently validate compatibility, and if successful
the session between Customer and Agency is established. If incompatible, an
exception is raised at both parties (see ‘Session failure’ below).

Session communication (1): send and receive. After the session has been
successfully established, the session socket s ca belonging to Customer (respec-
tively s ac for Agency) is used to perform the actual session operations according
to the protocol placeOrder. Static session type checking ensures that this con-
tract is obeyed modulo session subtyping (see § 3.2 later).

The basic message passing operations, performed by send and receive, asyn-
chronously communicate typed objects. The opening exchange of placeOrder

directs Customer to send the details of the desired journey (!<String>) and
receive a price quote (?(Double)).

s_ca.send("London to Paris, Eurostar"); // !<String>.

Double cost = s_ca.receive(); // ?(Double)

In this instance, the compiler infers the expected receive type from the placeOrder
protocol; explicit receive-casts are also permitted.

Session communication (2): iteration. Iteration is abstracted by the two
mutually dual types written ![...]* and ?[...]* [8, 10]. Like regular expres-
sions, [...]* expresses that the interactions in [...] may be iterated zero or
more times; the ! prefix indicates that this party controls the iteration, while its
dual party, of type ?[...]*, follows this decision. These types are implemented
using the outwhile and inwhile [8, 10] operations, which can together be consid-
ered a distributed version of the standard while-loop. The opening exchange of
placeOrder, ![!<String>.?(Double)]*, and its dual type at Agency can be im-
plemented as follows.

boolean decided = false;

... // Set journey details.

s_ca.outwhile(!decided) {

s_ca.send(journeyDetails);

Double cost = agency.receive();

... // Set decided to true or

... // change details and retry

}

s_ac.inwhile() {

String journeyDetails

= s_ac.receive();

... // Calculate the cost.

s_ac.send(price);
}

Like the standard while-statement, the outwhile operation evaluates the boolean
condition for iteration (!decided) to determine whether the loop continues or

terminates. The key difference is that this decision is implicitly communicated
to the session peer (in this case, from Customer to Agency), synchronising the
control flow between two parties.

Agency is programmed with the dual behaviour: inwhile does not specify a
loop-condition because this decision is made by Customer and communicated to
Agency at each iteration. These explicit constructs for iterative interaction can
greatly improve code readability and eliminate subtle errors, in comparison to
ad hoc synchronisation over untyped I/O.

Session communications (3): branching. A session may branch down one
of multiple conversation paths into a sub-conversation. In placeOrder, Cus-
tomer’s type reads !{ACCEPT: !<Address>.?(Date), REJECT: }, where ! signifies
the selecting side. Hence, Customer can select ACCEPT, proceeding into a sub-
conversation with two communications (send an Address, receive a Date); oth-
erwise, selecting REJECT immediately terminates the session.

The branch types are implemented using outbranch and inbranch. This pair
of operations can be considered a distributed switch-statement, or one may view
outbranch as being similar to method invocation, with inbranch likened to an
object waiting with one or more methods. We illustrate these constructs through
the next part of the programs for Customer and Agency.

if(want to place an order) {

s_ca.outbranch(ACCEPT) {

s_ca.send(address);
Date dispatchDate = s_ca.receive();

}

} else { // Don’t want to order.

s_ca.outbranch(REJECT) { }

}

s_ac.inbranch() {

case ACCEPT: {

...

}

case REJECT: { }

}

The condition of the if-statement in Customer (whether or not Customer wishes
to purchase tickets) determines which branch will be selected at runtime. The
body of ACCEPT in Agency is completed in ‘Session delegation’ below.

Session failure. Sessions are implemented within session-try constructs:

try (s_ac, ...) {

... // Implementation of session ‘s_ac’ and others.

} catch (SJIncompatibleSessionException ise) {

... // One of the above sessions could not be initiated.

} catch (SJIOException ioe) {

... // I/O error on any of the above sessions.

} finally { ... } // Optional.

The session-try refines the standard Java try-statement to ensure that multiple
sessions, which may freely interleave, are consistently completed within the spec-
ified scope. Sessions may fail at initiation due to incompatibility, and later at
any point due to I/O or other errors. Failure is signalled by propagating termi-
nal exceptions: the failure of one session, or any other exception that causes the

flow of control to leave the session-try block, will cause the failure of all other
ongoing sessions within the same scope. This does not affect a party that has
successfully completed its side of a session, which will asynchronously leave its
session-try scope. Nested session-try statements offer programmers the choice to
fail the outer session if the inner session fails, or to consume the inner exception
and continue normally.

Session delegation. If Customer is happy with one of Agency’s quotes, it
will select ACCEPT. This causes Agency to open a second session with Service,
over which Agency delegates to Service the remainder of the conversation with
Customer, as specified in acceptOffer. After the delegation, Agency relinquishes
the session and Service will complete it. Since this ensures that the contract of the
original order session will be fulfilled, Agency need not perform any further action
for the delegated session; indeed, Agency’s work is finished after delegation.

At the application-level, the delegation is exposed to only Agency and Ser-
vice; Customer will proceed to interact with Service unaware that Agency has left
the session, which is evidenced by the absence of any such action in placeOrder.
The session between Agency and Service is specified by the following mutually
dual protocols:

protocol delegateOrderSession {

begin.!<?(Address).!<Date>>

}

protocol receiveOrderSession {

begin.?(?(Address).!<Date>)

}

Delegation is abstracted by higher-order session types [8, 10, 13], where the spec-
ified message type is itself a session type; in this example, ?(Address).!<Date>.
The message type denotes the unfinished part of the protocol of the session be-
ing delegated; the party that receives the session will resume the conversation,
according to this partial protocol.

In terms of implementation, delegation is naturally represented by sending
the session socket of the session to be delegated. Continuing our example, Agency
can delegate the order session with Customer to Service by

case ACCEPT: {

SJServerAddress c_as = ... // delegateOrderSession.

SJSocket s_as = SJSocketImpl.create(c_as);

s_as.request();

s_as.send(s_ac); // Delegation: Agency has finished with s_ac.

}

and Service receives the delegated session from Agency by

SJServerSocket ss_sa = SJServerSocketImpl.create(..., port)
SJSocket s_sa = ss_sa.accept();

SJSocket s_sc = s_sa.receive(); // Receive the delegated session.

Service then completes the session with Customer.

Address custAddr = s_sc.receive();

Date dispatchDate = ... // Calculate dispatch date.

s_sc.send(dispatchDate);

The SJ runtime incorporates two alternative mechanisms for delegation: § 4
discusses in detail the protocols by which these mechanisms coordinate the ses-
sion parties involved a delegation.

The example covered in this section illustrates only the basic features of SJ.
The full source code, compiler and runtime are available at [26], as well as further
SJ programs featuring more complex interactions, including the implementation
of business protocols from [6].

3 Compiler and Runtime Architecture

3.1 General Framework

The compilation-runtime framework of SJ works across the following three layers,
in each of which session type information plays a crucial role.

Layer 1 SJ source code.
Layer 2 Java translation and session runtime APIs.
Layer 3 Runtime execution: JVM and SJ libraries.

By going through these layers, transport-independent session operations at the
application-level are compiled into more fine-grained communication actions on
a concrete transport. Layer 1 is mapped to Layer 2 by the SJ compiler: session
operations are statically type checked and translated to the communication prim-
itives that are supported by the session runtime interface. Layer 3 implements
the session runtime interface over concrete transports and performs dynamic
session typing. The compiler comprises approximately 15 KLOC extension to
the base Polyglot framework [21]. The current implementation of the session
runtime over TCP consists of approximately 3 KLOC of Java.

A core principle of this framework is that explicit declaration of conversation
structures, coupled with the static and dynamic type-based validations, provides
a basis for well-structured communication programming. We envisage program-
mers working on a distributed application first agree on the protocols, specified
as session types, through which the components interact, and against which
the implementation of each component is statically validated. Dynamic type
checking, performed at runtime when a session is initiated, then ensures that
the components are correctly composed: session peers must implement compati-
ble protocols in order to conduct a conversation. The mechanisms encapsulated
by the session runtime, which realise the major session operations (initiation,
send/receive, branch, loop, delegation) as well as additional features (eager class
downloading, eager class verification), are discussed in § 3.3 and § 4.

3.2 The SJ Compiler and Type-checking

The SJ compiler type-checks the source code according to the constraints of both
standard Java typing and session typing. Then using this type information, it
maps the SJ surface syntax to Java and the session runtime APIs. Type-checking

begin c.request(), ss.accept() // Session initiation.

!<C> s.send(obj) // Object ‘obj’ is of type C.

!<S> s1.send(s2) // ‘s2’ has remaining contract S.

?(T) s.receive() // Type inferred from protocol.

!{L:T,..} s.outbranch(L){...} // Body of case L has type T, etc.

?{L:T,..} s.inbranch(){...} // Body of case L has type T, etc.

![T]* s.outwhile(boolean expr){...} // Outwhile body has type T.

?[T]* s.inwhile(){...} // Inwhile body has type T.

Fig. 2. Session operations and their types.

for session types starts from validating the linear usage of each session socket,
preventing aliasing and any potential concurrent usage. On the basis of linear-
ity, the type-checker verifies that each session implementation conforms to the
specified protocol with respect to the message types and conversation structure,
according to the correspondence between session operations and type construc-
tors given in Figure 2. As we discuss below, protocol declarations include all the
information required for static type-checking of higher-order session communi-
cation (delegation).

We illustrate some of the notable aspects of static session verification. Firstly,
when session sockets are passed via session delegation and as arguments to a
method call (the latter is an example of integrating session and object types),
the typing needs to guarantee a correct transfer of responsibility for completing
the remainder of the session being passed. For this purpose, a method that
accepts a session socket argument simply specifies the expected session type in
place of the usual parameter type, e.g.

void foobar(!<int>.?(String) s, ...) throws SJIOException {

... // Implementation of ‘s’ according to !<int>.?(String).

}

Session passing is also subject to linearity constraints. For example, the same
session socket cannot be passed as more than one parameter in a single method
call. Similarly the following examples are ill-typed since they delegate the outer
session s2 multiple times.

while(...) { s1.send(s2); } s1.inwhile() { s1.send(s2); }

However, delegation of nested sessions within an iteration is typable.
The type checking in SJ fully incorporates session subtyping, which is an

important feature for practical programming, permitting message type variance
for send and receive operations as well as structural subtyping for branching
and selection [4, 12]. Message type variance follows the object class hierarchy,
integrating object types into session typing; intuitively, a subtype can be sent
where a supertype is expected. Structural session subtyping [3, 12] has two main
purposes. Firstly, an outbranch implementation only selects from a subset of
the cases offered by the protocol, and dually for inbranch; secondly, inbranch
(server) and outbranch (client) types are compatible at runtime if the former
supports a superset of the all cases that the latter may require. The following
demonstrates these two kinds of session subtyping.

Fig. 3. The structure of the SJ session runtime.

protocol thirstyPerson {

begin.!{

COFFEE: !<Euros>,

TEA: !<Euros>

}

}

...

if (...) { // Implemented...

s.outbranch(COFFEE) { ... };

}

else { // ...a coffee addict.

s.outbranch(COFFEE) { ... };

}

protocol vendingMachine {

begin.?{

COFFEE: ?(Money),

TEA: ?(Money),

CHOCOLATE: ?(Money)

}

}

...

s.inbranch() {

case COFFEE: { ... }

case TEA: { ... }

case CHOCOLATE: { ... }

}

This example demands the use of subtyping at both compilation and runtime.
Message subtyping is augmented by remote class loading, discussed in § 3.3.

3.3 The Session Runtime

The structure of the session runtime is illustrated in Figure 3. The SJ com-
piler translates the session operations, depicted as the upper-most layer of the
figure, into the communication primitives of the session APIs. The session run-
time implements these primitives through a set of interdependent protocols that
together model the semantics of the translated operations: these protocols ef-
fectively map the abstract operations to lower-level communication actions on
a concrete transport. In this way, the session APIs and runtime cleanly sep-
arate the transport-independent session operations from specific network and
transport concerns. The main components of the session runtime include:

– basic send/receive, which also supports in/outbranch and in/outwhile;
– the initiation protocol, class verifier and class downloader;
– the delegation protocol and the close protocol.

Session type information, tracked by the runtime as each session operation is
performed, is crucial to the operation of several of the component protocols. The
following describes each component, except for delegation which is discussed in
detail in § 4.

Basic send/receive. The properties of session types, such as strict message
causality for session linearity, require the communication medium to be reliable
and order preserving. This allows the session branch and while operations to be
implemented by sending/receiving a single message, i.e. the selected branch label
or loop condition value. Basic send/receive is also asynchronous, meaning a basic
send does not block on the corresponding receive; however, receive does block
until a (complete) message has been received. As depicted in Figure 3, our current
implementation uses TCP: each active session is supported by a single underlying
TCP connection. Session messages, either Java objects or primitive types, are
transmitted through the TCP byte stream using standard Java serialization.
Logically, we can use other transports; little modification would be required for
transports that also support the above properties, such as SCTP.

Session initiation and dynamic type checking. Session initiation takes
place when the accept and request operations of a server and client interact.
The initiation protocol establishes the underlying TCP connection and then
verifies session compatibility. The two parties exchange the session types which
they implement and which have already been statically verified, and each in-
dependently validates compatibility modulo session subtyping. If successful, the
session is established, otherwise both parties raise an exception and the session
is aborted. The runtime also supports monitoring of received messages against
the expected type. The initiation protocol can perform eager class downloading
and/or eager class verification, depending on the parameters set on each session
socket.

Class downloader and class verifier. Our runtime supports a remote class
loading feature similar to that of Java RMI. Remote class loading is designed to
augment message subtyping, enabling the communication of concrete message
types that implement the abstract types of a protocol specification. Session peers
can specify the address of a HTTP class repository (codebase) from which addi-
tional classes needed for the deserialization of a received message object can be
retrieved. By default, remote class loading is performed lazily, i.e. at the time of
deserialization, as in RMI. Alternatively, a party may choose to eagerly load, at
session initiation, all potentially needed classes as can determined from the ses-
sion type of the session peer (although, due to subtyping, lazy class loading may
still be required during the actual session). Similarly, session peers may choose
to perform eager class verification for all shared classes at session initiation;
class verification is currently implemented using the standard SerialVersionUID

checks for serializable classes.

The close protocol. SJ does not have an explicit session close operation in its
surface syntax; instead, a session is implicitly closed when a session terminates.

There are essentially three ways for this to happen. The first case is when both
parties finish their parts in a conversation and the session terminates normally.
The second is when an exception is raised at one or both sides in an enclosing
session-try scope, signalling session failure. In this case, the close protocol is
responsible for propagating a failure signal to all other active sessions within the
same scope, maintaining consistency across such dependent sessions. The third,
more subtle, case arises due to asynchrony: it is possible for a session party to
complete its side of a session before or whilst the peer is performing a delegation.
§ 4 discusses how the delegation and close protocols interact in this case.

4 Protocols for Session Delegation

Session delegation is a defining feature of session-based programming; transpar-
ent, type-safe endpoint mobility raises session abstraction above ordinary com-
munication over a concrete transport. This means that a conversation should
continue seamlessly regardless of how many times session peers are interchanged
at any point of the conversation. Consequently, each session delegation involves
intricate coordination among three parties, or even four if both peers simultane-
ously delegate the same session. This section examines implementation strategies
for delegation, focusing on the protocols for two alternative mechanisms that re-
alise the above requirements, and presents key arguments for their correctness.

In the rest of this section, we use the following terminology. The s-sender
stands for session-sender; the s-receiver for session-receiver; and the passive-
party for the peer of the s-sender in the session being delegated. Recall that
delegation is transparent to the passive party. Our design discussions assume
a TCP-like connection-based transport, in accordance with the communication
characteristics of session channels: asynchronous, reliable and order-preserving.

4.1 Design Strategies for Delegation Mechanisms

Indefinite redirection and direct reconnection. One way to implement
delegation is for the s-sender to indefinitely redirect all communications of the
session, in both directions, between the s-receiver and passive-party. This is
similar to Mobile IP [16]. The merit of this approach is that no extra actions
are required on the part of the runtime of the passive-party. At the same time,
communication overhead for the indirection can be expensive, and the s-sender
is needed to keep the session alive even after it has been logically delegated.
Thus, the s-sender is prevented from terminating, even if it has completed its
own computation, and a failure of the s-sender also fails the delegated session.

An alternative strategy is to reconnect the underlying transport connections
so that they directly reflect the conversation dynamics: we first close the original
connection for the session being delegated, and then replace it with a connec-
tion between the new session peers (the s-receiver and the passive-party). This
mechanism demands additional network operations on the part of the runtime
of the passive-party: at the same time, it frees the s-sender from the obligation

to indefinitely take care of the delegated session. Reconnection precludes (long-
running) rerouting of messages, which can have significant cost if many message
exchanges are expected after the delegation or the session is further delegated.

While indefinite redirection is relevant for fixed and reliable hosts, its design
characteristics discussed above make it unsuitable for dynamic network environ-
ments such as P2P networks, Web services and ubiquitous computing, where
the functionality of delegation would be particularly useful. Direct reconnection
gives a robust and relatively efficient solution for such environments, and treats
resources and failure in a manner that respects the logical conversation topol-
ogy. For these reasons, we focus on designs based on direct reconnection in our
implementation framework for delegation.

Reconnection strategy and asynchrony. The crucial element in the design
of a reconnection-based delegation mechanism is its interplay with asynchronous
communication (i.e. send is non-blocking). We illustrate this issue by revisiting
the Travel Agency example in § 2 (see Figure 1): if Customer selects ACCEPT,
Agency delegates to Service the active order session with Customer, and then
Customer should send the Address to Service, its new peer. Now Customer, op-
erating concurrently, may asynchronously dispatch the Address before or during
the delegation, so that the message will be incorrectly delivered to Agency. We
call such messages “lost messages”: because Customer and Service may have
inconsistent session states at the point of delegation, performing reconnection
naively can break communication safety. Thus, a reconnection-based delegation
requires careful coordination by a delegation protocol that resolves this problem.

Two reconnection-based protocols: key design ideas. Below we outline
the key design ideas of the two reconnection-based protocols implemented in the
SJ runtime. They differ in their approach to resolving the issue of lost messages.

Resending Protocol: (resend lost messages after reconnection) Here lost mes-
sages are cached by the passive-party and are resent to the s-receiver after
the new connection is established, explicitly re-synchronising session state
before resuming the delegated session. In Travel Agency, after the original
connection is replaced by one between Customer and Service, Customer first
resends the Address to Service before resuming the conversation.

Forwarding Protocol: (forward lost messages before reconnection) Here the
s-sender first forwards all lost messages (if any) received from the passive-
party, and then the delegated session is re-established. In our example, the
Address is forwarded by Agency to Service and then the original connection
is replaced by the new connection between Customer and Service.

4.2 Correctness Criteria for Delegation Protocols

For a delegation protocol to faithfully realise the intended semantics of session
delegation, it needs to satisfy at least the following three properties. Below “con-
trol message” means a message created by the delegation protocol, as opposed
to the actual “application messages” of the conversation.

Case 1: A is performing an input oper-
ation (i.e. receive, including higher-order
receive, inbranch or inwhile), waiting for
a value, a session or a label.

Case 2: A has finished its side of s, and
is waiting (in the separate close thread) for
the acknowledgement.

Case 3: A is attempting to delegate an-
other session s′′ to B via s, where s′′ is with
the fourth party D.

Case 4: A is also delegating the session s,
to the fourth party D. This case is called
simultaneous delegation.

Fig. 4. The scenarios of session delegation.

P1: Linearity For each control message sent, there is always a unique receiver
waiting for that message. Hence, each control message is delivered determin-
istically without confusion.

P2: Liveness Discounting failure, the delegation protocol cannot deadlock, i.e.:
– (Deadlock-freedom) No circular dependencies between actions.
– (Readiness) The server side of the reconnection is always ready.
– (Stuck-freedom) The connection for the session being delegated is closed

only after all lost messages can be correctly identified.
P3: Session Consistency The delegation protocol ensures no message is lost

or duplicated, preserving the order and structure of the delegated session.

4.3 General Framework for Reconnection-Based Protocols

We first describe the structure shared by the two delegation protocols, introduc-
ing the common notation and terminology along the way. We write A for the
passive-party, B for the s-sender; and C for the s-receiver. B will delegate the
session s to C via s′. In each protocol, B will inform A that s is being delegated s
via a delegation signal containing the address of C. Eventually the original con-
nection for s is closed and A reconnects to the delegation target C. Henceforth,
we say “A” to mean the “runtime for A” if no confusion arises.

We assume each delegation protocol uses the same (TCP) connection for both
application and control messages, as in our actual implementation. Since this
means ordering is preserved between the two kinds of messages, the delegation

1. B→C: “Start delegation”
2. C: open server socket on free port pC , accept on pC

3. C→B: pC

4. B→A: DSB
A(C) = 〈STB

A , IPC , pC〉
5. A→B: ACKAB

6. A: close s 6’. B: close s
7. A: connect to IPC:pC

8. A→C: LM(STA
B − STB

A)

Fig. 5. Operation of the resending protocol for Case 1.

signal from B will only be detected by the runtime of A when blocked expecting
some message from B, as dictated by the session type of s. The subsequent
behaviour of the delegation protocols depends on what A was originally expecting
this input to be. There are four cases, as illustrated in Figure 4 (the first picture
corresponds to Cases 1 and 2, the second Case 3 and the third Case 4). Case
3 comes from the fact that delegating a session is a compound operation that
contains a blocking input. Since A has to be waiting for an input to detect
the delegation signal, we need not consider the cases where A is performing an
atomic output operation (ordinary send, outbranch or outwhile).

As an illustration, we return to Travel Agency: Customer is attempting to
receive a Date (from Agency) when it detects the delegation signal, hence this
is an instance of Case 1. Taking Case 1 as the default case for the purposes of
this discussion, we shall illustrate the operation of the resending and forwarding
protocols in § 4.4 and § 4.5. The remaining three cases are outlined in § 4.6.

4.4 Resending Protocol

The operation of the resending protocol for Case 1, as implemented given our
existing design choices, is given in Figure 5. The key feature of this protocol
is the use of session types at runtime to track the progress of the two peers of
the delegated session: this makes it possible to exactly identify the session view
discrepancy (“the lost messages”) and re-synchronise the session.

The first phase of the protocol runs from Step 1 to Step 5, which delivers
the information needed for reconnection and resending to the relevant parties.
In Step 1, B informs C that delegation is happening. In Step 2, C binds a new
ServerSocket to a fresh local port pC for accepting the reconnection, and in Step
3, C tells B the value of pC . In Step 4, B sends the delegation signal (for target
C), denoted DSB

A(C), to A. As stated, this signal contains the runtime session
type of the session being delegated, from B’s perspective, denoted STB

A . As a
result A can now calculate the difference between its view and B’s view for this
session. The delegation signal also contains the IP address and open port of the
delegation target, IPC and pC . In Step 5, A sends an acknowledgement ACKAB

to B. This concludes the first phase.
The second phase performs the actual reconnection and lost message resend-

ing. Firstly, in Step 6 and Step 6’, A (immediately after sending ACKAB) and B

1. B→C: “Start delegation”
2. C: open server socket on free port pC

3. C→B: pC

4. B→A: DSB
A(C) = 〈IPC , pC〉

5. A→B: ACKAB 5’. B: enter f/w mode

6. A: close s 6’. B→C: Ṽ ::ACKAB

7. A: connect to IPC:pC 7’. B: exit f/w mode 7”. C: buffer Ṽ
8’. B: close s 8”. C: accept on pC

Fig. 6. Operation of the forwarding protocol for Case 1.

(after receiving it) close their respective socket endpoints for the original session
connection: any lost messages at B are simply discarded. In Step 7, A connects
to C to establish the new connection for the delegated session (C has been wait-
ing for reconnection at pC since Step 2). In Step 8, A resends the lost messages,
denoted LM(STA

B − STB

A), to C based on the session type difference calculated
above (after Step 4). A retrieves the lost messages from its cache of previously
sent messages (maintained by each party), and C buffers them. In our running
example, the runtime type STB

A (the view from B) is ...!{ACCEPT:!<Address>},
and the runtime type STA

B (the view from A) is ...?{ACCEPT: }. Hence the dif-
ference STB

A−STA

B is !<Address>, and the corresponding message is resent after
the reconnection. After Step 8, A and C can resume the session as normal.

4.5 Forwarding Protocol

In the forwarding protocol, A does not have to concern itself about lost messages
as they are automatically forwarded from B (the old endpoint of the delegated
session) to C (the new endpoint). The protocol works as listed in Figure 6.

The first phase of the protocol (Step 1 to Step 5) is precisely as in the
resending protocol, except that the delegation signal in Step 4 no longer needs
to carry the runtime session type STB

A .
In the second phase, reconnection is attempted in parallel with the lost mes-

sage forwarding. In Step 5’, which immediately follows Step 4 (sending the del-
egation signal to A), B starts forwarding to C all messages that have arrived
or are newly arriving from A. The actual delivery is described in Step 6’ where
Ṽ denotes all messages received by B from A up to ACKAB, i.e. the “lost mes-
sages”. The delegation acknowledgment ACKAB sent by A in Step 5 signifies
end-of-forwarding when it is received and forwarded by B to C in Step 6’: B
knows that A is aware of the delegation and will not send any more messages (to
B), and hence ends forwarding in Step 7’. Ṽ is buffered by C to be used when
the delegated session is resumed.

In Step 6, A closes its endpoint to the connection with B after sending ACKAB

in Step 5; since B may still be performing the forwarding at this point, the
opposing endpoint is not closed until Step 8’. In Step 7, A requests the new
connection to C using the address and port number received in Step 4. However,
C does not accept the reconnection until Step 8” (pC is open so A blocks) after

receiving all the forwarded messages in Step 7”. As in the resending protocol,
after the session is resumed C first processes the buffered messages Ṽ before
any new messages from A, preserving message order. Note Steps 5-7, Steps 5’-8’
(after Step 4) and Steps 7”-8” (after Step 6’) can operate in parallel with two
cross-dependencies, 6’ on 5 and 8” on 7.

4.6 Outline of Delegation Cases 2, 3 and 4

We summarise how the two protocols behave for the remaining three cases of the
description in § 4.3. The full protocol specifications are found at [26]. In both
protocols, each of the remaining cases is identical to Case 1 in most parts: the
key idea is that the role of the delegation acknowledgement ACKAB in Case 1 is
now played by some other control signal in each case.

In Case 2, A sends a special signal FINAB (due to the close protocol) to let
B know that it has completed its side of the session. Basically FINAB signifies
to B (instead of ACKAB) that the original session connection can be closed
immediately (hence Step 5 is not needed).

In Case 3, A is the s-sender for another session s′′ between A and the fourth
party D (the passive-party of s′′). In this case, B receives a “Start delegation”
signal (for the delegation of s′′) from A. In the resending protocol, this signal
is resent with LM(STA

B − STB

A) at Step 8 to C in order to start the subsequent
run of the delegation protocol between A and D. In the forwarding protocol,
this message simply replaces ACKAB as an end-of-forwarding signal after being
forwarded by B, and at the same time alerts C to the subsequent delegation.

In Case 4, instead of ACKAB at Step 5, B receives DSA

B(D) from A. In the
resending protocol, C then buffers the lost messages from A, closes this interme-
diate connection, and reconnects to the port at which D is waiting (C gets the
address of D from A). In the the forwarding protocol, the behaviour is similar
to that for Case 3.

4.7 Correctness of the Delegation Protocols.

Below we briefly outline the key arguments for the correctness of our delegation
protocols with respect to the three properties P1-3 in § 4.2, focusing on Case 1
of the resending protocol. For details and the remaining cases, see [26].

Property P1 is obvious from the description of the protocol. For P2, we
first observe concurrent executions only exist between Step 6-8 and Step 6’.
Note that deadlock arises only when a cycle (like A→B and B→A) is executed
concurrently, which is impossible from the protocol definition. Readiness holds
since the connection to pC (Step 7) takes place after its creation (as Step 2).
Stuck-freedom holds since Steps 6 and 6’ take place after all operations are
completed between A and B, ensured by ACKAB. The key property for the
correctness argument is P3. This holds since the sending action from C takes
place after the lost messages from Step 8 are stored at C, which in turn holds
since the sending action from C uses the same port pC. Hence the order of session
messages is preserved before and after the protocol.

5 SJ Runtime Performance

The current implementation of SJ [26] supports all of the features presented
in this paper, including implementations of both the forwarding and resending
protocols in § 4, called SJFSocket and SJRSocket. This section presents some
performance measurements for the current SJ runtime implementation, focus-
ing on micro benchmarking of session initiation and the session communication
primitives. Although the current implementation is as yet unoptimised, these
preliminary benchmark results demonstrate the feasibility of session-based com-
munication and the SJ runtime architecture: SJFSocket communication incurs
little overhead over the underlying transport, and SJRSocket, despite additional
costs, is competitive with RMI. The full source code for the benchmark applica-
tions and the raw benchmark data are available from the SJ homepage [26].

The micro benchmark plan. The benchmark applications measure the time
to complete a simple two-party interaction: the protocols respectively imple-
mented by the ‘Server’ and ‘Client’ sides of the interaction are

begin.?[!<MyObject>]* begin.![?(MyObject)]*

which basically specify that the Server will repeatedly send objects of type
MyObject for as long as the Client wishes. Recall that session-iteration involves
the implicit communication of a boolean primitive from the outwhile party (here,
the Client) to its peer. Although this protocol does not feature branching, the
SJ branch operations (communication of the selected label) are realised as the
send/receive of an ordinary object (String), hence perform accordingly.

The implementation of these protocols in SJ is straightforward, and simi-
larly for the “untyped” TCP socket implementation in standard Java (referred
to as Socket), which mimics the semantics of the session-iteration operations
using while-loops (with explicit communication of the boolean control value).
Socket serves as the base case (i.e. direct usage of the underlying transport) for
comparison with the SJ sockets. For the RMI implementation (RMI), the session-
iteration is simulated by making consecutive calls to a remote server method
with signature MyObject getMyObject(boolean b) (the boolean is passed to at-
tain the same communication pattern). Henceforth, a session of length n means
that the session-iteration is repeated n times; for RMI, n remote calls.

The benchmark applications specifically measure the time taken for the
Client to initiate a session with the Server and finish the session-iteration. For
Socket, session initiation simply means establishing a connection to the server.
For RMI, the connection is established implicitly by the first remote call (RMI
“reuses” a server connection for subsequent calls), but we do not include the
cost of looking up the remote object in the RMI registry. Each run of a session
is preceded by a dummy run of length one: this helps to stabilise the Server and
Client processes before the actual benchmark run, and removes certain factors
from the results such as class loading and verification. The RMI dummy run calls
an instance of the remote object hosted on the local machine, to avoid creating
a connection to the Server before the actual benchmark run.

0

10

20

30

40

50

60

70

0 1 10 100

0

50

100

150

200

250

300

350

400

450

500

1000

0

10

20

30

40

50

60

70

80

90

100

0 1 10 100

0

100

200

300

400

500

600

700
b) MyObject: 10 KBytesa) MyObject: 100 Bytes

Socket SJFSocket SJRSocket RMISession Length (iterations)

Se
ss

io
n

D
ur

at
io

n
(m

s)

0 1 10 100 1000 0 1 10 100 1000

Fig. 7. Benchmark results for MyObject sizes 100 Bytes and 10 KBytes.

The benchmarks were conducted using MyObject messages of serialized size
100 Bytes (for reference, an Integer serializes to 81 Bytes) and 10 KBytes for
sessions of length 0, 1, 10, 100 and 1000. We recorded the results from repeating
each benchmark configuration 1000 times in low (∼0.1ms) and higher latency
(∼10ms) environments. Nagle’s algorithm was disabled (TCP NODELAY is set to
true) for these benchmarks, for both the standard and SJ sockets. RMI was run
using the default settings for each platform. Runtime state tracking is disabled
(as a default) for SJFSocket.

The low latency environment consisted of two physically neighbouring PCs
(Intel Pentium 4 HT 3 GHz, 1 GB RAM) connected via gigabit Ethernet, running
Ubuntu 7.04 (Linux 2.6.20.3) with Java compiler and runtime (Standard Edition)
version 1.6.0. Latency between the two machines was measured using ping (56
Bytes) to be on average 0.10 ms. The higher latency benchmarks were recorded
using one of the above machines as the Client (the timer) and a Windows XP
PC (SP2, Intel Core Duo 3 GHz, 2 GB RAM) with an average communication
latency (56 Byte ping) of 8.70 ms.

Results. We first look at the low latency results: minimising the latency factor
emphasises the internal overheads of the SJ runtime. Graphs a) and b) in Figure 7
compare the results from the four benchmark applications over each session
length for each of the two MyObject sizes.

The results show that SJFSocket exhibits low runtime overhead in relation
to Socket, decreasing for longer sessions. Shorter sessions increase the relative
cost of SJ session initiation, roughly 2ms in the measured environment. Note
session initiation for both Socket and the session sockets involve establishing a
TCP connection, but the SJ sockets do extra work to check session compati-
bility. SJRSocket is slower than SJFSocket: the cost for session initiation is the
same for both, but SJRSocket employs (1) runtime state tracking and (2) a dif-

ferent routine for serialization and communication (in order to retain serialized
messages for the sent message cache, § 4). In fact, comparison of SJFSocket and
SJRSocket using sessions that communicate only primitive data types [26] show
that most of the overhead comes from (2) with runtime state tracking incurring
little overhead. Despite these additional overheads, SJRSocket performs better
than RMI for longer sessions.

The results from the higher latency benchmarks [26] also support these ob-
servations. We note a few additional points. The cost of session initiation, which
involves sending an extra message, increases accordingly. As before, the relative
overheads of the SJ sockets become smaller for longer sessions, although higher
communication latency appears to ameliorate these costs at a higher rate. This
means that the latency factor dominates the overheads of SJ, from both internal
computation and additional communication costs (such as SJ message headers
and extra control messages), under the present benchmark parameters. Indeed,
the differences in performance over the longer sessions are minimal.

Travel Agency benchmarks. Preliminary performance evaluation of session
delegation has also been conducted based on the Travel Agency example (§ 2).
We measured the time required to complete the transaction (10 iterations of the
order-quote exchange and Customer always accepts the quote) from the point
of view of Customer. For comparison, a purely forwarding-based (i.e. no recon-
nection) equivalent was implemented using standard sockets. Unlike the above
benchmarks, we now include the time needed to create the SJ socket objects
and close the session (in the SJ runtime, close involves spawning a new thread,
§ 4). The results for Socket, SJFSocket and SJRSocket using three machines in the
low latency environment (same specifications) were 3.8, 7.3 and 9.1 ms respec-
tively. We believe these figures are reasonable, given the overheads of delegation
(extra control messages and coordination, the cost of reconnection, resending
by SJRSocket, and others), and that the delegation mechanisms, like much of
the current runtime implementation, are as yet unoptimised. Note that Travel
Agency is in fact close to a worst case scenario for this kind of delegation bench-
mark: as discussed in § 4, reconnection-based protocols are advantageous when
there are a substantial number of communications after the delegation and/or
when the session is further delegated, especially if latency is high.

Potential optimisations. Firstly, many optimisations are possible exploiting
the information on conversation structure and message types given by session
types, including session-typed message batching (possibly based on the size of the
underlying transport unit), the promotion of independent send types (pushing
asynchronous sends earlier), tuning of I/O buffer sizes, and others. Knowing
the expected message types in advance can also be used to reduce the amount
of meta data (e.g. SJ message headers, class tags embedded by serialization)
for basic message passing. Secondly, sessions peers can exchange extra runtime
information at session initiation; for example, no delegation means SJRSocket

would not need to cache sent messages. We also envisage situations where the
duality check may only be needed whilst an application is being developed and

tested: once the application has been deployed in some trusted environment (e.g.
a company using an internal messaging system), this check can be disabled.

6 Related Work

Language design for session types. An application of session types in prac-
tice is found in Web services. Due to the need for static validation of the safety of
business protocols, the Web Services Choreography Description Language (WS-
CDL) is developed by a W3C standardisation working group [24] based on a
variant of session types. WS-CDL descriptions are implemented through com-
munications among distributed end-points written in languages such as Java or
WS4-BPEL. [3, 6, 14] studied the principles behind deriving sound and complete
implementations from CDL descriptions. Session types are also employed as a
basis for the the standardisation of financial protocols in UNIFI (ISO20022)
[28]. We plan to use our language and compiler-runtime framework as part of
the implementation technologies for these standards.

An embedding of session programming in Haskell is studied in [18]. More re-
cently, [22] proposed a Haskell monadic API with session-based communication
primitives, encoding session types in the native type system. A merit of these ap-
proaches is that type checking for session types can be done by that for Haskell.
Type inference for session types without subtyping has been implemented for
C++ [7]. In these works, a session initiation (compatibility check) for open and
distributed environments are not considered, and session delegation is not sup-
ported; type-safe delegation may be difficult to realise since their encoding does
not directly type I/O channels.

Fähndrich et. al [11] integrate a variant of session types into a derivative
of C] for systems programming in shared memory uni/multiprocessor (non-
distributed) environments, allowing interfaces between OS-modules to be de-
scribed as message passing conversations. Their approach is based on a com-
bination of session types with ownership types to support message exchange
via a designated heap area (shared memory): session communication becomes
basic pointer rewriting, obtaining efficiency suitable for low-level system pro-
gramming. From the viewpoint of abstraction for distributed programming, their
design lacks essential dynamic type checking elements and support for delega-
tion, and other features such as session subtyping. In spite of differences between
the target environments and design directions, our works both demonstrate the
significant impact the introduction of session types can have on abstraction and
implementation in objected-oriented languages.

A framework based on F# for cryptographically protecting session execution
from both external attackers and malicious principals is studied in [9]. Their
session specifications model communication sequences between two or more net-
work peers (roles). The description is given as a graph whose nodes represent
the session state of a role, and edges denote a dyadic communication and con-
trol flow. Their aim is to use such specifications for modelling and validation

rather than direct programming; thus, neither a type discipline nor a runtime
are implemented in their work.

Language design based on process calculi. The present work shares with
many recent works its direction towards well-structured communication-based
programming using types. Pict [20] is a programming language based on the
π-calculus with linear and polymorphic types. Polyphonic C] [2] is based on
the Join-calculus and employs a type discipline for safe and sophisticated object
synchronisation. Acute [1] is an extension of OCaml for coherent naming and
type-safe version change of distributed code. The Concurrency and Coordination
Runtime (CCR) [5] is a port-based concurrency library for C] for component-
based programming, whose design is based on Poly].

Occam-pi [19, 29] is a highly efficient concurrent language based on channel-
based communication, with syntax based on both Hoare’s CSP (and its practical
embodiment, Occam) and the π-calculus. Designed for systems-level program-
ming, Occam-pi supports the generation of more than million threads for a single
processor machine without efficiency degradation, and can realise various locking
and barrier abstractions built from its highly efficient communication primitives.
DirectFlow [17] is a domain specific language which supports stream processing
with a set of abstractions inspired by CSP, such as filters, pipes, channels and
duplications. DirectFlow is not a stand-alone programming language, but is used
via an embedding into a host language for defining data-flow between compo-
nents. In both languages, typing of a communication unit larger than a series of
individual communications or compositions is not guaranteed.

X10 [30] is a typed concurrent language based on Java, and designed for
high-performance computing. Its current focus is on global, distributed memory,
with sharing carefully controlled by X10’s type system. A notable aspect is the
introduction of distributed locations into the language, cleanly integrated with
a disciplined thread model. The current version of the language does not include
first-class communication primitives.

None of the above works use conversation-based abstraction for communi-
cation programming, hence neither typing disciplines that can guarantee com-
munication safety for a conversation structure, nor the associated runtime for
realising the abstraction are considered. The interplay between session types and
the design elements of the above works is an interesting future topic.

7 Conclusion and Future Work

There is a strong need to develop structured, higher-level and type-safe abstrac-
tions and techniques for programming communications and interaction. This
paper has presented the design and implementation of an extension of Java to
support session-based, distributed programming. Building on the preceding the-
oretical studies of session types in object-oriented calculi [8, 10], our contribution
furthers these and other works on session types with a concrete, practical lan-
guage that supports the wide range of session-programming features presented.

Communication safety for distributed applications is guaranteed through a com-
bination of static and dynamic type checking. We implemented two alternative
mechanisms for performing type-safe session delegation, with correctness argu-
ments, and showed that session types can be used to augment existing features
such as remote class loading.

We believe our language exhibits a natural and practical integration of ses-
sion type principles and object-oriented programming. The session-programming
constructs and accompanying methodology, based on explicit specification of
protocols followed by implementation through these constructs (with static type
checking), aid the writing of communications code and improve readability. Our
experience so far indicates that session types can describe a diverse range of
structured interaction patterns [6, 28]; further examples, such as file-transfer and
chat applications, are available from [26]. Future work includes detailed analysis
of how session-based programming can impact on the development of more com-
plicated and large-scale applications. Integration of session-based programming
with such languages as [17, 19, 25, 30] is also an open subject.

Preliminary benchmark results demonstrate the feasibility of session-based
communication and our session runtime architecture. Static and dynamic per-
formance optimisations that utilise session type information (see §5) are a topic
for future investigation. Other interesting directions include the incorporation of
transports other than TCP into the session runtime, possibly coupled with the
design of alternative abstractions to (session) socket. Session parties can dynam-
ically monitor messages received against the expected type according to agreed
protocol: however, our current work does not yet tackle deeper security issues
involving malicious peers [9].

This work and future directions, combined with theories from [3, 15], are be-
ing developed as a possible foundation for public standardisations of program-
ming and execution for Web services [6] and financial protocols [23, 28].

Acknowledgements. We thank the reviewers and Susan Eisenbach for their
useful comments, and our academic and industry colleagues for their stimu-
lating conversations. The work is partially supported by EPSRC GR/T04724,
GR/T03208, GR/T03215, EP/F002114 and IST2005-015905 MOBIUS.

References

1. Acute homepage. http://www.cl.cam.ac.uk/users/pes20/acute.
2. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#.

ACM Trans. Program. Lang. Syst., 26(5):769–804, 2004.
3. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Pro-

gramming for Web Services. In ESOP’07, volume 4421 of LNCS, pages 2–17.
Springer, 2007.

4. M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-Talbot. A
theoretical basis of communication-centred concurrent programming. Published in
[6], 2006.

5. CCR: An Asynchronous Messaging Library for C#2.0. http://channel9.msdn.

com/wiki/default.aspx/Channel9.ConcurrencyRuntime.

6. W3C Web Services Choreography. http://www.w3.org/2002/ws/chor/.
7. P. Collingbourne and P. Kelly. Inference of session types from control flow. In

FESCA, ENTCS. Elsevier, 2008. To appear.
8. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asynchronous Session Types

and Progress for Object-Oriented Languages. In FMOODS’07, volume 4468 of
LNCS, pages 1–31, 2007.

9. R. Corin, P.-M. Denielou, C. Fournet, K. Bhargavan, and J. Leifer. Secure Imple-
mentations for Typed Session Abstractions. In CFS’07. IEEE-CS Press, 2007.

10. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session
Types for Object-Oriented Languages. In ECOOP’06, volume 4067 of LNCS,
pages 328–352. Springer, 2006.

11. M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, , and
S. Levi. Language Support for Fast and Reliable Message-based Communication
in Singularity OS. In EuroSys’06, ACM SIGOPS, pages 177–190, 2006.

12. S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Infor-
matica, 42(2/3):191–225, 2005.

13. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
ciplines for structured communication-based programming. In ESOP’98, volume
1381 of LNCS, pages 22–138. Springer-Verlag, 1998.

14. K. Honda, N. Yoshida, and M. Carbone. Web Services, Mobile Processes and
Types. The Bulletin of the European Association for Theoretical Computer Science,
February(91):165–185, 2007.

15. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
In POPL’08, pages 273–284. ACM, 2008.

16. IETF. Mobility for IPv4. http://dret.net/rfc-index/reference/RFC3344.
17. C.-K. Lin and A. P. Black. DirectFlow: A domain-specific language for information-

flow systems. In ECOOP, volume 4609 of LNCS, pages 299–322. Springer, 2007.
18. M. Neubauer and P. Thiemann. An Implementation of Session Types. In PADL,

volume 3057 of LNCS, pages 56–70. Springer, 2004.
19. Occam-pi homepage. http://www.occam-pi.org/.
20. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-

calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

21. Polyglot homepage. http://www.cs.cornell.edu/Projects/polyglot/.
22. M. Sackman and S. Eisenbach. Session types in haskell, 2008. draft.
23. Scribble Project homepage. www.scribble.org.
24. S. Sparkes. Conversation with Steve Ross-Talbot. ACM Queue, 4(2), March 2006.
25. J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: high-throughput

stream programming in Java. In OOPSLA, pages 211–228. ACM, 2007.
26. SJ homepage. http://www.doc.ic.ac.uk/~rh105/sessionj.html.
27. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its

Typing System. In PARLE’94, volume 817 of LNCS, pages 398–413, 1994.
28. UNIFI. International Organization for Standardization ISO 20022 UNIversal Fi-

nancial Industry message scheme. http://www.iso20022.org, 2002.
29. P. Welch and F. Barnes. Communicating Mobile Processes: introducing occam-pi.

In 25 Years of CSP, volume 3525 of LNCS, pages 175–210. Springer, 2005.
30. X10 homepage. http://x10.sf.net.

