

Some Issues on Agent Ownership1
Alexander Yip & Jim Cunningham

{ay1, rjc}@doc.ic.ac.uk
COMMA Group, Department of Computing,

Imperial College of Science, Technology and Medicine,
Huxley Building, 180 Queen’s Gate, London SW7 2BZ, UK.

Abstract
Agent ownership is a complex issue that crosses legal domains. There are at least two different
dimensions to agent ownership. On one dimension, an agent is a piece of software and as such it is an
intellectual property which belongs to its owner and is governed by the law on intellectual property. On
another dimension, a software agent can act like a business agent. In this paper we discuss some of the
social and legal ramifications of software agents and highlight areas where agent ownership will be of
interest.

1. Introduction

As agent technology develops, it will be applied to more and more real world applications. However,
before this technology can be widely adopted by the general public, it is proper to consider its legal
aspects. One particular area is agent ownership.

There are at least two different dimensions to agent ownership. On one dimension, an agent is a piece
of software and as such it is an intellectual property which belongs to its owner and is governed by the
law on intellectual property. This raises a whole set of questions like “Who is the owner?”, “What is
owned?”, “How can an agent’s ownership be transferred?”, “How can an agent owner protect his/her
property?”, “What is the legal relationship between an agent, an agent user and an agent developer?”
and “What are the legal responsibilities of these principals?”. To support some of the issues, it seems
necessary to enhance the existing FIPA agent model [AMS00]. One such enhancement is the provision
of a more detailed agent authentication model.

On another dimension, a software agent can act like a business agent. There is a different set of laws
governing the legal relationship in which a human business agent deals with a third party on behalf of
some principal. One important issue addressed by the law of agency is the contract formation between
an agent and its principal. However, as the existing law did not foresee the arrival of software agents,
it may be necessary to adapt the law in this area to accommodate this new technology.

Thus agent ownership is a complex issue that crosses legal domains. Although some of the issues are
already addressed in network and software security, agent ownership introduces many new social and
legal challenges. In this paper we discuss some of the social and legal ramifications of software agents
and highlight areas where agent ownership will be of interest. Our conclusion will address the
improvements needed for the FIPA agent security model to support these findings.

2. Some missing links in current agent ownership model

It is naïve to expect that a customer will be able or willing to program a software agent from scratch.
Instead software companies can be expected to provide readily useable software agents for purchase or
“for hire”, thus presenting agents as products, not just a technology. Here we sketch three scenarios
through which we seek to probe the law and technology for agents.

1 In “The Law of Electronic Agents: Selected Revised Papers”, Proceedings of LEA Workshop,
CIRSFID, University of Bologna, July 2002, pp. 13-22

2.1. Multi-agent Service systems

Company X, a supermarket chain, has started to use software agents to handle orders from its online
customers. X has a large number of electronic sales agents available at a portal to welcome
customers’ personal agents…

1. When Amy’s personal agent visits this site on a weekly basis to purchase necessities for Amy,
it will encounter different software agents every time. It is important that they look past the
identity of each individual agent and recognise the authority they are representing.

2. Company X will have to replace or upgrade its pool of software agents from time to time

because of policy change and new software releases etc. But these new software agents will
still represent the company’s authority. Other software agents should have the same level of
trust for these new Company X agents without the need to build up the trust from scratch.

2.2. Trustworthy Information Agents

Amy bought a personal agent from Alpha Corporation. Amy sent her personal agent onto the web to
find the cheapest airfare to New York. Amy’s PA contacted a number of travel agents and asked for
the availability and price. The search came up with two possible companies, “National Prestige
Airways” (NPA) and “Here Today, Gone Tomorrow Airways” (HTGTA), although HTGT Airways’
ticket is much cheaper by far…

1. Alpha Corporation is a specialised software company and its business model depends on the
ability to sell software agents to customers. It is in its interest that it owns the software
agents’ mechanisms and prevents unauthorised distribution of its software agents.

2. Amy would like to maintain the ownership of her copy of the personal agent, because she has

trained it to recognise her preferences and more importantly, the personal agent contains her
personal information.

3. Can HTGTA really honour the cheap airfare to New York? When a software agent contacts

other software agents for information, it is necessary to verify the trustworthiness of the data.
Many research have already tried to model the trust in agent interaction purely in the agent
world. However, an agent can only be as trustworthy as the source of its information;
identifying the ownership of the agent can help to establish the level of trust among the
participants. Knowing who owns the agent that gives out information is vital in certain
situations.

4. Amy’ s PA is freshly created for Amy, it has not interacted with any software agents before.

How can it assign its trust to any software agent that it is going to encounter on a task?
Castelfranchi and Falcone [Castel.] suggest that trust can be described as a prediction of the
probability of something happening based on one’ s past experience. A human infant has a
long time to build up this experience but a software agent may be expected to behave perfectly
on the day it is installed. Moreover, human society has many aids to help with the decision: a
brand conveys more than just a name, it also has the reputation of the company behind it. The
Media helps to distribute information regarding companies’ trustworthiness and also trust in
the justice system which seeks to protect members of its society. Our existing agent models
lack the mechanism to distribute either brand or trustworthiness information throughout the
system.

2.3. Agents for hire

Amy needs some financial advices. As she only needs this service once, she thinks it is more economic
to hire the agent for the task rather than buying one. She has contacted EZ Financial Solutions for the
hire. A suitable agent is selected and delivered to her…

1. How can EZ Financial Solutions protect its interest by ensuring only Amy can use that agent?
A user of an agent system with the direct control over the agent code can pass the code to
other user.

2. Can EZ Financial Solutions protect its interest by imposing and enforcing more restricted

terms in the contract? For example, can only a single copy be allowed, can an agent be time
limited and action limited etc? In many current agent systems, a user also controls the
execution of the agent code and may create as many copies as he/she wants.

3. For sensitive information service e.g. financial advice, legal advice etc, there are laws

governing professional conducts of a human agent. Can a software agent satisfy these
requirements?

3. Agent management scenarios

3.1. The FIPA Agent Management System

Agent A can register itself with an FIPA AMS [AMS00] with the following agent description:

(request
 :sender
 (agent-identifier
 :name A
 :address (sequence iiop://foo.com/acc))
……
 :content
 (action
 (agent-identifier
 :name ams@foo.com
 :address (sequence iiop://foo.com/acc))
 (register
 (ams-agent-description
 :name
 (agent-identifier
 :name A@foo.com
 :addresses (squence iiop://foo.com/acc))
 :state active
 :ownership NoBody
)
))
)

1. Does agent A really belongs to NoBody? At this moment there is no defined protocol or

action associated with the ownership field. It is an optional field in the Agent Management
Ontology. For example, Eva can set the content of this field to make the agent looks like it is
owned by Bob.

2. What does it mean by NoBody owns this agent? At present the way an AMS will respond to

this request depends on the platform developer. However, as FIPA is promoting connectivity
between heterogeneous agent platforms, it is necessary to standardise this response to support
a coherent ownership model in the FIPA agent world.

3. It is possible that not all platforms will support ownership. In such a mixed environment,

agents still need to be able to reason about the concept of ownership e.g. the concept of
authority and delegation from owner etc. In order to support this, an agent needs a standard
ontology to provide a foundation for this reasoning.

4. There is no mechanism to verify a claim of ownership. It seems necessary for FIPA to specify

a management interface between the human world and the agent world so that information
like ownership can be conveyed between the two domains.

3.2. Trust and Agent Ownership

Many researchers treat ownership as a passive ingredient of trust. For example, Rahman and Hailes
[Rahman] propose a distributed trust model based on the assumption that an agent will be able to keep
a history of interaction with other agents and hence assign different level of trust to the peers.
However, as pointed out in the scenarios, it is not always possible to build up the necessary record to
decide the level of trust towards an agent, especially when there is no direct relationship between the
real world legal entity and the software agent representing it.

In other research [Castel, Mamdani, Dignum], it is argued that in the design of multi-agent systems, in
order to support rich collaborative behaviour it is essential to provide individual agents with various
forms of social awareness. Mamdani and Pitt have suggested that an agent should be able to express
the fact that an agent is owned by some human entity and be able to reason about the consequences and
responsibilities of the delegation.

Should ownership and trust be viewed as a mutual relationship? Ownership helps to sustain a trust
model by providing a legal foothold for trust to develop. For example, a consumer may prefer a
product from company A more than a product from company B. The consumer’ s explanation may be
that he/she trusts the product from company A more. This can be interpreted as the consumer trusting
the brand owned by company A more even though each individual item can be of different quality. At
the same time, to establish ownership requires trust on the underlying legal and technical systems. The
legal system must be trusted to support the benefit of ownership and the technical system trusted to
sustain ownership.

4. The Agent as a program – The Agent ownership life cycle

Mamdani and Pitt have used a motorcar analogy in their paper [Mamdani] to illustrate the relationship
between the principals in an agent world:

• A driver (= user) owns a vehicle (= agent and/or software) but pays road tax to drive it
(legally) on the roads (= third-party owned infrastructure);

• A driver registers ownership with Vehicle Licensing Authority (= trusted third party), needs to

pass a test to gain a license to drive a certain class of vehicles, and buys insurance;

• A driver fills up with gas (= buying CPU cycles), requires a yearly Roadworthiness
Certificate (= agent upgrade by self configuration), and may have the steering wheel on the
left or right (= communication protocol as either HTTP or IIOP).

One can extend this analogy to illustrate some ownership issues within the agent world:

• A car manufacturer designs and manufactures motorcars (= program and off-the-shelf agent
software). The manufacturer is the owner of the motorcar design and no one is legally
allowed to copy the design without obtaining his/her permission.

• A car manufacturer uses the same design (= agent design) to produce a large number of

vehicles (= packaged agent software), which are identical except the unique serial number
assigned to each copy. However, when a user acquires a vehicle, the user may want to choose
the fittings and decor (= customising the software agent).

• A driver (= user) buys a vehicle (= software agent) from the manufacturer or hires a vehicle

from the car rental company (= software rental/agency)

• If a driver buys the vehicle from the manufacturer, he only owns a single vehicle (= an
executable instance of the agent) and not the design. The driver is not allowed to
manufacturer the vehicle for other people even if he has the necessary technical skills.

• If a driver hires the vehicle from a car rental company. The driver (= user) is the beneficial

owner of the vehicle (= software) under the terms set out in a contract between the driver and
the rental company.

Although this analogy is useful for illustrating some principles of agent ownership, but there exists a
serious limitation in this analogy – software processes do not have the same constraints as physical
objects:

i) If suitably written, one piece of code can be executed concurrently by one or more physical
processors

ii) Code duplication is an important technology for mobility and distributed processing.

Following the analogy, a user may be allowed to create a pool of agents from the single copy of agent
code he/she purchased (subject to contract and not for resale) but it is not possible to turn a single car
into a fleet in the real world.

Despite these discrepancies between software and physical objects, they still share some common
concepts. Five principle entities can be identified in the agent ownership life cycle, they are: User,
Owner, Beneficial Owner, Agent code and the Active agent (or Agent process instance). This is a
summary of their relationships:

• The ownership of an agent can begin when a designer invents the software that can be
executed as an agent. The programmer or the programmer’ s employer is the copyright owner
of the agent code.

• Through a sale or hire contract, the copyright owner of the code can license the right to other

beneficial owners. A beneficial owner is a person who will enjoy the benefit derived from the
copyrighted material under the terms set in the contract.

• A user purchases or hires the program and executes it on a computer. The person will be the

owner of the active instance or instances of the software or the beneficial owner of the agent
code. During the “ life” of the software agent, it belongs to the user.

• Upon the termination of a software agent execution, the beneficial ownership of the User of

that particular active agent will come to an end.

5. The Software Agent as Legal entity: Business Agents

A common application for agent-based technologies is to provide services for their owners. Human
business agent models are being re-applied to the computer network and software agents are replacing
human agents.

The problem is, existing law did not foresee the development of software agent technologies. The legal
position of software agents is not defined in the existing law system; one way to solve this problem is
to try to make software agents that will satisfy the existing legal requirements.

5.1. Legal entity

A legal entity is an entity that is authorised by law to enter into a contract with other legal entities.
Generally an entity must have two attributes to qualify as a legal entity:

1) It must have a well-defined decision making authority.

2) It must have the ability to bond its contracts credibly.

A natural person, who is rational, satisfies these two requirements so can be a legal entity. A firm with
a well defined decision-making structure and with a pool of assets that the managers can offer as
satisfaction for the firm’ s obligations can also be a legal entity.

Based on these general requirements, existing software agents cannot be classified as legal entity
because:

1) There is no well-defined decision making authority. This requires two mechanisms:

a) the ability to audit an agent’ s decision and actions. There are research in this area
like the enhancement proposed in the EU MIAMI project [MIAMI] but there is no
effort to make this a standard

b) the ability to identify the authority that an agent is representing.

2) An agent generally does not have asset that can be used to bond its contract credibly.

If a standard framework supports agent ownership, it should be possible to improve this situation
because identifying the agent owner will complete the chain of decision-making authority and the
owner will be able to provide the necessary asset to bond with an agent’ s contractual obligations.
However, the issue on how to limit the liability of an agent owner is outside the scope of this paper.

5.2. Business Agents

In law, an agent is a legal entity who is employed to bring his principal into contractual relations with
third parties and various forms of agency, regulated by law.

The term Agency means the relationship that exists when one person or party (the principal) engages
another (the agent) to act for him. The law of agency thus governs the legal relationship in which the
agent deals with a third party on behalf of the principal. On the one hand, the law of agency is
concerned with the external business relations of an economic unit and with the powers of the various
representatives to affect the legal position of the principal. On the other hand, it rules the internal
relationship between principal and agent as well, thereby imposing certain duties on the representative.

5.3. Can a software agent act as a business agent?

Under the current law system, agent and agency is based on the interaction between legal entities and
the whole definition is to assign the legal responsibilities between the entities. In our existing law these
entities are expected to be human and each rational individual is expected to take responsibility for his
own actions. If such an entity is a software agent:

i) it is necessary to determine that the software agent was functioning according to its
specification (under the same scrutiny as any software system)

ii) it is necessary to identify the entity responsible for delegating the action to the software

agent, hence taking legal responsibility of the action.

6. Owning an agent

As presented in the scenarios, it is possible to exert two different types of ownership on an agent. On
one hand, an agent can be treated as a piece of software hence its intellectual property can be owned.
On the other hand, the user of an active software agent owns the agent’ s service. However, this
introduces a legal hurdle because existing law does not support the ownership of an active software
instance.

The most common way to protect software is copyright. In this form of protection, a piece of software
is being treated as a creation and the owner is the creator/programmer of that piece of code. As a
software agent is a piece of software, the source code (agent code) can be protected by copyright.
There are two main forms of proof of ownership – the proof can be applied externally or be integrated
into the software. An example of external proof is Signed Java Code. In Java, the software
components can be packaged into a type of archive file called JAR. A developer can then digitally sign
the JAR file to protect the integrity of the contents. This mechanism is supported by Java in the system
level so that the Java system will refuse to execute a piece of software that has an invalid signature. In
the case of integrated proof, some research have been done in this area. Collberg and Thomborson
[Collberg] suggest an algorithm for watermarking a piece of software so that the program will function
as normal but each copy will carry a unique signature. The mechanism protects the watermark so it is
detectable even after a distorting attack

Thus a digital signature and digital watermarking can protect the integrity of a piece of software and
provide proof in case of a dispute. In order to protect the secrecy of a piece of software, there is
research in the field of Function hiding. An example is Sander and Tschudin’ s work [Sander], their
paper presents a generic algorithm to transform and hide functions inside a program so that the
program can be executed to obtain the desired result without disclosing the internal algorithms.

However, how can a user maintain his/her ownership of an active instance of the software agent?
Traditionally when software ownership is discussed, there is no distinction between a piece of software
and an active/executing instance of that piece of software. This is partly due to the legal definition of
copyright – only creation recorded on a tangible media can be copyrighted. Also traditional programs
do not distinguish between different instances. When a program is executed a hundred times, the
different copies should behave the same. However, an instance of a software agent will differ from
another instance because the agents’ behaviour is not fixed. An agent’ s beliefs (data collection) are
constantly being modified by the environment and by its interactions with other entities. In turn these
beliefs modify an agent’ s goal and the plans to achieve the goal.

When trying to solve the problem of how to “ own” an active instance of a software agent, it may be
possible to treat it as two separate issues:

When an agent is active in the system’ s memory, if the agent is designed to maintain ownership
information and if it is possible to prove that agent is executing correctly, then it is possible to query
the agent to obtain its owner’ s information. There is research to create software that is tamper-
resistant. Aucsmith [Aucsmith] presents a software architecture in his paper that can dynamically

inspect its integrity to ensure it is executing correctly. However, at this moment not all agents will
maintain ownership information and it may be necessary to mandate such a requirement in standard
likes FIPA.

When an agent is going into an inactive state, e.g. the suspend state in the FIPA agent life cycle or the
transit state in the FIPA mobile agent life cycle, an agent may stay in this suspended animation for a
long period of time. To maintain agent ownership over a long period of time, it is necessary to be able
to capture an agent’ s internal states and be able to restore those states upon the agent’ s resurrection. In
order to capture the internal states of an agent, the mechanism must be supported by the whole software
system. Truyen, Robben, Vanhaute, Coninx, Joosen and Veraeten [Truyen] propose an extension to
the existing Java model so that the internal states of a Java object can be captured and preserved. As
Java is the underlining architecture for many software agent systems, this is a potential solution to the
persistence problem. Once an agent is put into a suspended animation, the software data can be
protected using traditional means: using encryption to maintain the secrecy and digital signature for
ownership and integrity.

7. FIPA specification and Agent ownership

7.1. Current FIPA specification

In the FIPA 1998 specification, there were a series of fields in the AMS Agent Management
description related to the ownership of the agent system. These include the ownership field in the
Directory Facilitator description (fipa-df-description) to name the owner of an agent service; the
ownership field in the platform profile (fipa-platform-profile) naming the owner of an agent platform
and the ownership field in the Agent AMS description (fipa-agent-ams-description) denoting the legal
entity responsible for the actions of the agent.[AMS98] However, these fields were declared obsolete
in the subsequence releases of the FIPA AMS specification and replaced by the two optional ownership
fields in the Agent management system agent description and Service description.

7.2. Proposed enhancements to the FIPA specification

The main motivation behind FIPA is to create a standard to allow heterogeneous multi-agent platforms
to interact. FIPA specification has mandated essential issues such as agent life cycles, communication
languages, communication protocols, interaction protocols and agent management system to facilitate
the interactions. However, FIPA currently lacks a standard to express ownership information
coherently in this open heterogeneous multi-agent system. There are three main areas that we suggest
FIPA should address:

Human Agent Interaction
Currently there is no well-defined interface to convey ownership information between the human world
and agent world. Since the withdrawal of the Human-Agent Interaction [HAI98] specification from
FIPA 2000 specification, FIPA has removed all the links between human world and agent world. It
may be necessary to reintroduce a specification to standardise the Human Agent Ownership
Interaction. The FIPA Abstract Architecture may provide a suitable grounding for such specification.

FIPA should mandate a minimum set of requirements for legal agents. For example, a legal agent will
need to be a legal entity; to be a legal entity it must be able to prove it has a well defined decision
making structure. In other word, for a FIPA agent to become a legal agent, its action must be auditable
(auditing service), its algorithms must be verifiable so that software error is accountable (through the
agent developer ID) and its authority must be identifiable (through the agent user ID).

Standard Ontology
A standard ontology is needed to define the meaning of terminologies related to ownership e.g.
platform owner, agent owner and agent user, etc. Efforts have been made to create standard ontology
to describe trust [UMBC], and indeed they have referred to the concept of “ owner” . However, the
main objective of this ontology is for describing the trust relationship. It is necessary to extend the
ontology in order to support the five principle entities in the proposed agent ownership life cycle.

Standard Protocols
Currently an agent’ s registration is initiated by the FIPA Request [Request] interaction protocol.
However, this protocol does not support the concept of ownership. In order to support the registration
of a legal agent, the protocol at least needs to be able to interact with the proposed Human Agent
Interface to verify the ownership information. Furthermore, during agent interactions, an agent may
need to query about another agent’ s ownership. Further studies and field trials are required to evaluate
the effectiveness of the existing Query [Query] communication protocol in supporting this type of
query.

8. Conclusion and Future work

This paper has raised a number of issues regarding software agent ownership. It has tried to address
the issues from both legal and a technical point of view. In order to give a more thorough evaluation to
these issues, it would be beneficial to conduct a field trial in an open agent environment. As the
authors are members of the EU Agentcities.RTD project (IST-2000-28385), it is their hope to conduct
such experiment by implementing an architecture to support agent ownership in an open heterogeneous
agent network architecture provided by the Agentcities project.

This paper is also intended as a reply to the FIPA Security workgroup request for information, as a
contribution towards the FIPA Security workgroup white paper.

9. Acknowledgments
The research described in this paper is partly supported by the EC project Agentcities.RTD, reference
IST-2000-28385. The opinions expressed in this paper are those of the authors and are not necessarily
those of the Agentcities.RTD partners.

10. Bibliography

[AMS98] Foundation for Intelligent Physical Agent, FIPA Agent Management System

Specification 1998, http://www.fipa.org/repository/fipa98.html

[AMS00] Foundation for Intelligent Physical Agent, FIPA Agent Management System

Specification 2000, XC00023F,
http://www.fipa.org/repository/managementspecs.html

[Aucsmith] D. Aucsmith, Tamper Resistant Software: An Implementation, In Information

Hiding, volume 1174 of Lecture Notes in Computer Science, pages 317--333.
Springer-Verlag, 1996

[Busetta] P. Busetta & K. Ramamohanarao, An architecture for mobile BDI agents, Technical

Report 97/16, The University of Melbourne, Department of Computer Science,
Melbourne, Australia, 1997, http://citeseer.nj.nec.com/busetta97architecture.html

[Castel.] C. Castelfranchi & R. Falcone, Socio-Cognitive Theory of Trust, ALFEBIITE

Deliverable report D1, 2001

[Collberg] C. Collberg & C. Thomborson, Software Watermarking: Models and Dynamic

Embeddings, In Conference Record of POPL ’99: The 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Jan. 1999),
http://citeseer.nj.nec.com/collberg99software.html

[Dignum] F. Dignum, D. Morley, E.A. Sonenberg & L. Cavedon, Towards socially

sophisticated BDI agents, In Proceedings of the ICMAS 2000, pages 111-118, 2000,
http://citeseer.nj.nec.com/dignum00towards.html

[Georgeff] M. Georgeff, B. Pell, M. Pollack, M. Tambe & M. Wooldridge, The Belief-Desire-

Intention model of agency, Proceedings of the 5th International Workshop on
Intelligent Agents {V} : Agent Theories, Architectures, and Languages ({ATAL}-
98), Springer Publishers, 1998,
http://citeseer.nj.nec.com/georgeff99beliefdesireintention.html

[HAI98] Foundation for Intelligent Physical Agent, FIPA Human Agent Interaction

Specification 1998, http://www.fipa.org/repository/fipa98.html

[Hansmann] H. Hansmann & R. Kraakman, The essential role of organisational law, The Yale

Law Journal, Dec 2000

[Mamdani] A. Mamdani and J. Pitt, Responsible Behaviour for Networked Agents – A

Distributed Computing Perspective, IEEE Internet Computing, Vol. 4, No. 5,
Sept./Oct. 2000, pp. 27-31.

[MIAMI] Deliverable report D5, Revised MIAMI Specification and Evaluation, Mobile

Intelligent Agent for Managing Information Infrastructure, EU ACTS project
(AC338), http://www.fokus.gmd.de/research/cc/ecco/miami/public/doc

[Poslad] S. Poslad and M. Calisti, Towards improved trust and security in FIPA agent

platforms, Proceedings of AA2000, Barcelona, Spain, June 2000

[Query] Foundation for Intelligent Physical Agent, FIPA Query Communication protocol

specification, XC00027, http://www.fipa.org/repository/ips.html

[Rahman] A. Abd ul-Rahman & S. Hailes, A Distributed Trust Model, New Security Paradigms

97, http://citeseer.nj.nec.com/347518.html

[Request] Foundation for Intelligent Physical Agent, FIPA Request Communication protocol

specification, XC00026, http://www.fipa.org/repository/ips.html

[Sander] T. Sander & C.F. Tschudin, On Software Protection via Function Hiding, Submitted

to the 2nd International Workshop on Information Hiding,
http://citeseer.nj.nec.com/sander98software.html

[Sartor] G. Sartor & E. Pelino, Software Agents and the Law, an ALFEBIITE project

presentation in the Agentcities.NET meeting, Lausanne Feb 2002

[Security] FIPA Security Workgroup, FIPA Security Workgroup Request For Information,

http://www.fipa.org/activities/security.html

[Truyen] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen & P. Verbaeten, Portable

Support for Transparent Thread Migration in Java, Proceedings of ASA/MA2000,
http://www.cs.kuleuven.ac.be/~tim/MOS/brakes.html

[UMBC] UMBC Trust ontology, http://www.daml.org/ontologies/182

