
Achieving Common Interaction Protocols in Open Agent
Environments

Shamimabi Paurobally
University of Southampton

Southampton SO17 1BJ, UK

sp@ecs.soton.ac.uk

Jim Cunningham
∗

Imperial College, London
London SW7 2BZ, UK

rjc@doc.ic.ac.uk

ABSTRACT
In this paper, we discuss the challenges of specifying and
implementing agent interaction protocols with the same in-
terpretation by all parties in an open system. This raises
the issue of what it means for a group to follow and com-
ply with a protocol. Resolving such questions is essential for
facilitating agent interactions, interoperability, and trust be-
tween independently developed agents. To this end, we aim
for clear and complete protocol specifications, executable
protocols, and ways in which a group may adopt a common
protocol for realistic agent interactions.

Keywords
Agent interaction, protocol specification and implementa-
tion

1. INTRODUCTION
Protocols for English, Dutch, sealed bid auctions, and con-
tract nets are a few examples amongst the many protocols
for possible use in agent interaction. There are even proto-
cols for agreeing on a protocol. An interaction protocol de-
fines possible sequences of messages that interacting agents
must follow in order to achieve their goals. For each agent
to follow the protocol, it must be common knowledge for the
group of agents. Yet it is remarkably difficult to specify a
protocol completely, in a way so that there can be no differ-
ence in interpretation amongst the agents. A recent thesis
of the first author [7], and several joint papers have shown
that many, if not the majority of, published agent inter-
action protocols are flawed in this respect. The trust of an
agent in the outcome of an interaction depends on published
protocols being well defined and complete, with known prop-
erties. This is even more critical for an open environment.
The protocol must also be correctly implemented in each
agent. There is a major challenge in achieving this. We
need specification methods which can be understood by de-
signers, yet be strong enough to ensure proven properties,
and we need implementation methods, or ways of execut-
ing common protocols library which do not introduce new
errors.

In principle, protocols that have not been predefined could
emerge in flexible societies of agents which can adapt to un-
expected events. However, agents with current technology

∗A member of the Agentcities.rtd project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS ’02 Melbourne, Australia
.

are not intelligent enough to learn new non-trivial proto-
cols. At present non-trivial agent conversations rely on pre-
determined interaction protocols. Even in this case, there
remain several open issues in pre-arranging protocols.

This paper identifies some of the challenges for expedit-
ing agent interaction through protocols in an open system.
We provide an outlook from both designer’s and developer’s
points of view when developing interaction protocols. We
believe that realistic interactions need not only adequate
expressiveness, but also a consistent shared interpretation
of the specification language between groups of agents. Such
shared understanding raises issues about attaining and main-
taining knowledge about a common protocol and attaining
compliance with the common protocol. We seek to focus on
these issues. The beginnings of our solutions can be found
in [11], [10] and [7].

Section 2 of this paper provides an overview of current
methods for specifying protocols, their drawbacks and some
means to overcome them. Section 3 discusses the problem of
a group following a common protocol given an unpredictable
environment. Section 4 examines having executable libraries
of protocols. Section 5 presents our conclusions.

2. SPECIFYING PROTOCOLS
A protocol defines the “rules of procedure” for a conversa-
tion. Even though there are a number of well-known pro-
tocols like auctioning protocols, normally a protocol has to
be conveyed to each participant in order to serve as a point
of reference. For example, a user foreign to English customs
may not know the protocol for an English auction offhand.
On the other hand, a protocol can also be customised accord-
ing to the application domain. Furthermore, a well-specified
protocol helps all participants to abide by the same rules
and progress towards a consensus. This in turn depends on
the specification methodology used. A vague or incomplete
protocol, resulting from lack of expressiveness in the spec-
ification language, may allow different interpretations and
breakdown in interaction. To avoid such misunderstand-
ings, the specification methodology has to exhibit clear se-
mantics and adequate expressiveness. This section discusses
how published protocols can be flawed because of the spec-
ification method used. It also outlines our approach, based
on extended statecharts and PDL, for protocol specification,
and highlights remaining issues.

2.1 Current Methodologies
There are three methodologies predominantly used for spec-
ifying protocols – AUML, Petri nets and statecharts. We
briefly discuss each of them. A more detailed critique can
be found in [7] and [9].

AUML [1] extends UML sequence diagrams to represent
asynchronous exchange of messages between agent roles along
timelines. The advantages of AUML are its visual represen-
tation along timelines and reuse of UML constructs. How-
ever, expressing protocols of realistic complexity in AUML



requires substantial efforts for developing, debugging and
understanding. This can yield cluttered diagrams that are
easy to misinterpret. One of the main problems is that,
because both roles and timelines are used, identifying an
agent requires a new timeline. If each agent sends a dif-
ferent message, then as many timelines are needed as the
number of agents. So even with a set of n agents, if there
are m different messages, where each agent must be iden-
tified and may send any of the messages, the diagram has
to show n timelines and m messages on each timeline. An
AUML diagram becomes hard to read when three or more
timelines are shown with at least two different non-terminal
messages possible at decision points. The problem escalates
when broadcasting messages to the different timelines, ex-
pressing iterative actions or messages possible at any point
such as timeouts or rejections. AUML protocols thus do
not capture the multi-lateral nature of agent interactions in
open systems.

Petri nets are another candidate for graphically modeling
interaction protocols and have tools for detecting conflicts
and their properties. However the notion of an agent execut-
ing an action is not explicit in the notation [2]. A different
Petri net can be assigned to each agent role [13], raising
questions about how the entire protocol is inferred and the
reachability and consistency of shared places. It can be seen
that the Petri net in [12] for the FIPA request protocol, even
though showing only the initiator role, is more complex than
in AUML [6]. If a single Petri net is partitioned for each
role [5], this leads to a complex diagram where a partition
is required for each agent identified. In each case, there is
redundancy in repeating the same parts of a protocol for dif-
ferent agents or roles. Furthermore, alternative actions and
states such as either agree or reject but not both, cannot be
expressed in standard Petri nets.

Statecharts [4] are an extension of conventional finite-state
machines. In their original form, statecharts do not portray
the agents in the exchanged messages and triggered states.
It is also difficult to show compound transitions for nested
protocols and their results. There are situations where un-
defined states and conflicts between states may arise. Yet we
find that it is easier to express protocols in statecharts than
in AUML or Petri nets. The statecharts are less cluttered
diagrams. Augmenting the statechart notation to represent
multi-agent interactions is relatively simple and identifying
the agents in a dynamic environment is easier than in the
other notations. Statecharts do not suffer from a drastic
rise in complexity with increase in the number of identified
agents. Futhermore, states and processes are treated equally
allowing reasoning about an interaction. This also allows us
to refer to a point or a path of an interaction.

2.2 Extended Statecharts and PDL
A specification methodology must be expressive enough to
provide clear and understandable protocols and be amenable
to mechanised verification and symbolic reasoning. Nest-
ing of protocols must be possible. We propose a combined
graphical and logical approach by extending both state-
charts and propositional dynamic logic (PDL [3]). Protocols
in extended statecharts are easy to comprehend visually and
protocols in extended PDL offer the benefits of a formal ap-
proach – more machine readable, verifiable and executable.

The syntax, semantics and application of the extended
form of PDL can be found in [7], [10]. Here we provide a
brief description of the additional constructs that are used
in both extended statecharts and extended PDL. The stat-
echarts are extended with graphical representation of the
constructs that we add to PDL. Together they provide a uni-
fied logical and graphical specification language. We treat
an agent (with an optional role) as capable of atomic ac-

tions or complex processes. Each atomic action constitutes
a primitive process that may be combined into more complex
ones. The processes performed by an agent trigger states of
interaction which themselves can be organised into a hierar-
chy of parent and sub-states. Groups of agents are treated
with set notation. In the following summary, let α denote a
process and S a state:

Description Syntax Example

Agent and role Agent : role {ann:seller,ted:buyer}
Agent(s) doing α Agent.α roger.bid
Parameterising state

S with agent(s) S(Agent) agreed(roger)
Testing a state S S? offered?;agree
Process types α1 :: α2 E-bay ::English-auction
Process composition α1; α2 offer ; agree

An example of the application of extended PDL in speci-
fying the contract net protocol can be found in [9]. Figure 1
expresses the FIPA request protocol [6] in extended state-
charts. Let In denote an initiator role and Par denote a
participant role. As can be seen, actions like cancel can be
expressed from the open parent state and do not need ad-
ditional meta-protocols as proposed by the latest version of
the FIPA request protocol. A meta-protocol is essentially a
higher-level sequence diagram without the details of a par-
ticular protocol.

refused(P)

cancelled

Done(P)

failed(P)
open

interaction

requested(I)

closed

P:Par.agree

agreed(P)

P:Par.refuse

cancel

P:Par.(done;
inform−result)

P:Par.fail

I:In.request

Figure 1: Request Protocol in extended statecharts.

The extended PDL theory of the request protocol is found
in [9]. The graphical, in extended statecharts, and logical, in
extended PDL, protocols are complementary to each other.

2.3 Issues in Protocol Specification
This section discusses open issues in protocol specification.

Providing an adequate methodology with clear se-

mantics. Petri nets, AUML and statecharts are mostly
used, but these notations are either continuously evolving
or are personally adapted by each developer. As errors are
found in the protocols or the methodology, the protocols
and notation are patched in an ad-hoc manner. Thus, there
is no widely-used methodology that has a stable specifica-
tion, with clear semantics and most importantly enough ex-
pressiveness for multi-agent interactions. Our approach is
to provide clearly specified and verifiable protocols and li-
braries for executable forms of these protocols. In an open
environment, instead of the protocols being coded in the
agents and then establishing similarities between personal
protocols, the participants can choose protocols from li-
braries according to their needs, before downloading a rele-
vant implementation of the protocol.

Incompleteness of protocols. Many protocols suffer from
incompleteness for various reasons including the following:

• The specification of a protocol in a particular method-
ology does not meet its natural language specification.
For example, as opposed to the given informal descrip-
tion of the protocol, the English auction protocol in
AUML [6] does not model (1) storing the last highest
bidder, (2) termination if no buyers send a proposal
and the auctioneer no longer sends revised call for pro-



posals and (3) termination if the auctioneer rejects all
proposals.

• A state may be undefined. Some agents may interpret
it as true, while other agents interpret the unknown
state as false. So the agents may take contradictory
actions. For example, an incomplete protocol may al-
low a state like agreed to be undefined after a sequence
of actions. Some agents may believe an agreement has
been reached and send payment for a service, while
others believe the state is not agreed and not deliver
the service.

• Conditions may be undefined or not reset for recursive
actions. Conditions for sending a message may depend
on previous states, need to be initialised, set and reset,
otherwise for some agents the conditions may hold, but
not for others.

• The protocol actions may be vague or have only partial
information e.g. when using tokens such as ax. This
should be covered by the semantics of the protocol.

• The protocol does not specify how to deal with er-
ror messages. How do agents deal with lost, delayed,
unordered or corrupted messages? Interaction proto-
cols usually do not address these issues. Error recovery
protocols are another issue. How do interacting agents
recover from errors in message exchange, timeouts and
crashes? How is the interaction saved and restored
and the consistency between the agents’ mental states
maintained?

• The protocol does not specify the case when an agent
receives unexpected messages such as wrong or ghost
messages.

• Termination may not be obvious, or a protocol may
not terminate.

Libraries of protocols. Given acceptable specification
methods, there can be libraries of protocols from which de-
velopers or more flexible agents may choose depending on
their needs. These libraries can in turn be organised into
classes of protocols located in a market-place or a reposi-
tory.

Verifiable protocols. There is also no accepted notation
for expressing formal protocols which can be verified before
being released in the public domain. Verifiable protocols
allow providers of protocols to also endorse their protocols
with proofs of properties. We presume that fewer risks are
involved in an interaction with a well-defined and verified
protocol and so users would be more willing to cooperate
and trust the multi-agent system.

To help choose between protocols. An increase in speci-
fied protocols may lead to large libraries, from which it is
hard to choose a protocol. To help choose between protocols,
their properties could be published, such as liveness, com-
pleteness, stability, complexity, fairness, Pareto optimality,
etc. The frequency with which a protocol has been used and
ratings from other users may also help.

Properties of protocols. The proof that a protocol ex-
hibit certain properties should ideally be made available to
users, as a guarantee. Security properties and those that dis-
courage malicious behaviour are important. The extended
PDL can be used to specify axioms for the properties of a
protocol. It can also be used as a program logic to show how
a protocol expressed in extended PDL satisfies a safety or
liveness property [8]. Complexity and scalability properties
of protocols need to be published to avoid the problem of
explosion in the state space. Common multi-lateral proto-
cols like English auctions exist because they are efficient and

scalable. An open issue remains about whether a user can
trust a claim that a protocol satisfies a desirable property,
even if shown the proof. Does a user have enough expertise
to check a proof?

Other issues arise in an environment where agents are
trying to interact with other unknown agents and where the
protocol may be the only reliable information. If agents
may act irrationally or fail to comply to the protocol, what
should be done?

3. COMMON PROTOCOLS
A common protocol ensures that all participants following
it will coordinate meaningfully and can expect certain re-
sponses from others. But what does it mean for a protocol
to be common and how does it become so? A common pro-
tocol for a group would ideally mean that all agents know
the protocol, and know that others know the protocols, and
know that others know they know the protocol and so forth.
Such common knowledge about the protocol can be hard to
attain. On the other hand, compliance with the protocol
must also be commonly known. Ideally, all agents comply
with the protocol, know that everyone complies with the
protocol and know that everyone knows everyone complies
and so forth. This seems to be even more difficult to ascer-
tain.

There are a number of ways to gain knowledge about a
protocol, for example the protocol may be dynamically pre-
arranged upon entering an interaction. The protocol may
be coded in the agents, the agents may obtain a protocol
from a repository of published protocols or from a library of
protocols as mentioned in the above section or an institution
may dictate the protocol. Two agents prefering different
protocols may agree on a sub-protocol which is a common
subset of each protocol. However there are also issues about
gaining such a level of knowledge.

3.1 Common Knowledge and Beliefs
In open environments, common knowledge about a proto-
col would be hard to achieve and require that agents spend
significant resources on exchanging messages just to set the
grounds for attaining a common protocol. Even more ef-
fort would be needed for explicitly determining compliance
to a common protocol. A solution would be to start the
interaction when everyone knows the protocol and assumes
compliance, with an increasing level of knowledge attained
as the interaction progresses. For example, in an open mar-
ket, an agent may decide to sell a service and to broadcast
the future sale around. It may then choose a protocol or
accept a suggested protocol and broadcast the protocol. A
number of other participants then announces that they are
joining the group, and that they know and will comply with
the protocol. From these premises, the open group of agents
can start to negotiate. Those taking active part in the pro-
cess are those who know the protocol and follow it. Gradu-
ally, it becomes known which agents are taking part in the
negotiation. In this way, cooperation and organisation for
executing a negotiation emerges.

One important issue remains: achieving and maintaining
consistency between the agents’ beliefs about the state of
the interaction. An interaction state at some instance is
entailed from the propositions believed by the group about
that interaction. For example, an agent sends an offer to
the rest of the group and a receiving agent then believes the
interaction state to be offered, from which it can reply with
an agreement.

3.2 The Interaction State
What happens when messages get lost or delayed over the
network? It is then hard to achieve a global interaction



state. An agent may believe the state to be agreed, while
another believes it to have timed out. The differences be-
tween the beliefs in the group of agents lead to inconsistency
between beliefs. Such differences in beliefs are acceptable
while messages are being relayed, but eventually the group
has to share the same beliefs about the interaction state
before progressing to the next state. That is, before pro-
gressing to an agreement state, the group must share the
belief that an offered state has been triggered.

To address this issue, we can have synchronisation pro-
tocols which lie underneath interaction protocols. While
interaction protocols define possible sequences of high-level
communicative acts, synchronisation protocols specify how
the messages are exchanged at a lower-level and how the
group revise their beliefs about the interaction state. For
example, one such synchronisation protocol in [11] specifies
that an agent can repeatedly send a message until receiv-
ing an acknowledgement and only a receiver, and not the
sender, updates its beliefs. In [11] we specify such proto-
cols and prove the safety they achieve in the progress and
termination of a bilateral interaction. More discussion and
examples of synchronisation protocols can be found in [11].
Protocols for multi-lateral interactions are harder and raise
lots of issues.

4. IMPLEMENTING PROTOCOLS
In open environments, agents with protocols hardcoded into
them are not flexible and it may not be feasible to encode a
large number of protocols into an agent. Knowing the spec-
ification of a protocol does not necessarily mean correctly
implementing it. There should be methods for ensuring and
proving the sound implementation of a protocol.

4.1 Executable Protocols
The problem of each user ensuring that a protocol is cor-
rectly implemented may be circumvented by placing the re-
sponsibility on the provider of a protocol. By this we mean
that libraries of specified protocols could be accompanied
with libraries of executable protocols. Agents could arrive
in a market and download executable protocols from those
libraries. The properties such as soundness and complete-
ness of both specified and implemented protocols could be
ensured by providers, who could probably have tools for do-
ing so automatically.

Even with different agents downloading the same exe-
cutable protocol, there is no guarantee that they share the
same interpretation of the code. Thus we come to the idea
that agents may run on a common framework that have
libraries of protocols and mechanisms for executing them.
The extended form of PDL for developing protocols may be
a candidate for turning interaction protocols into an exe-
cutable form.

4.2 Open Issues
There are a number of challenges to providing agents with
executable forms of a protocol. Assuming there may be a
provider of executable protocols, we mention some of these
below:

• How does an agent ensure a sound implementation of
a protocol by a provider?

• How does an agent choose between different executable
forms of similar specifications from different providers?

• Does an agent trust a provider enough to execute a
protocol in its personal environment?

• Can privacy of information of different users be pro-
tected in an open environment?

• How does a framework provider create the executable
forms?

• Can an agent avoid unexpected relationships or side-
effects between protocols when executing them in par-
allel?

• How is concurrency handled in real-time?

• Are error conditions covered by the protocol? For
example, when there are timeouts, network failures or
an agent has crashed.

Given these features, the implementation of protocols may
benefit from research on mobile code and mobile agents.

5. CONCLUSIONS
Pre-determined interaction protocols may not seem a flexi-
ble approach given open agent systems, but complex forms
of interactions and reasoning may emerge from such types
of interaction. This paper has discussed some issues to be
addressed for facilitating agent interaction through proto-
cols. We need well-defined and complete protocols and no-
tations/methodologies with enough expressiveness for the
multi-agent domain, along with clear semantics and illus-
tration. Implementations of protocol should also be verifi-
able and their properties validated. To this end, we have
provided an overview of currently used methodologies for
specifying protocols and discussed the challenges in having
a group of agents know and comply with a common protocol.

6. REFERENCES
[1] B. Bauer, J. P. Muller, and J. Odell. Agent UML: A

Formalism for Specifying Multiagent Software Systems. In
AOSE, pages 91–104, 2000.

[2] R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng.
Modeling agent conversations with colored petri nets. In
Workshop on Specifying and Implementing Conversation
Policies, pages 59–66, 1999.

[3] R. Goldblatt. Logics of Time and Computation. CSLI,
1987.

[4] D. Harel and M. Politi. Modeling reactive systems with
statecharts. McGraw-Hill, 1998.

[5] M. Nowostawski, M. Purvis, and S. Cranefield. A layered
approach for modelling agent conversations. In 2nd Work.
on Infrastructure for Agents, MAS, and Scalable MAS,
Agents 2001.

[6] J. Odell, H. Parunak, and B. Bauer. Representing Agent
Interaction Protocols in UML. In AOSE, pages 121–140,
2001.

[7] S. Paurobally. Rational Agents and the Processes and
States of Negotiation. Imperial College, Ph.D. Thesis, 2002.

[8] S. Paurobally and J. Cunningham. Safety and liveness of
negotiation protocols. In AISB2002 Intelligent Agents in
virtual market track., 2002.

[9] S. Paurobally and R. Cunningham. Verification of protocols
for negotiation between agents. In ECAI-15, pages 43–48,
2002.

[10] S. Paurobally, R. Cunningham, and N. R. Jennings.
Developing agent interaction protocols using graphical and
logical methodologies. In Workshop on Programming MAS,
AAMAS, 2003.

[11] S. Paurobally, R. Cunningham, and N. R. Jennings.
Ensuring consistency in joint beliefs of interacting agents.
In 2nd Int. Joint Conf. on Autonomous Agents and
Multi-Agent Systems, 2003.

[12] M. K. Purvis, S. Cranefield, M. Nowostawski, and M. A.
Purvis. Mas interaction protocols in a dynamically
changing environment. In Work. Toward Application
Science: MAS Problem Spaces and their implementation to
achieve globally coherent behaviour. AAMAS, 2002.

[13] M. K. Purvis, S. Cranefield, M. Nowostawski, R. Ward,
D. Carter, and M. A. Oliveira. Agentcities interaction using
the opal platform. In Work. on Challenges in Open Agent
Systems, AAMAS, 2002.


