Developing Agent Interaction Protocols Using Graphical
and Logical Methodologies

Shamimabi Paurobally
University of Southampton
Department of Electronics and
Computer Science
Southampton SO17 1BJ, UK

sp@ecs.soton.ac.uk

ABSTRACT

Although interaction protocols are often part of multi-agent
infrastructures, many of the published protocols are semi-
formal, vague or contain errors. Formal presentations can
counter such disadvantages since they are amenable to ver-
ification of correctness. On the other hand, a diagrammatic
representation of system structure is easier to comprehend.
To this end, this paper bridges the gap between formal spec-
ification and intuitive development by: (1) proposing an ex-
tended form of propositional dynamic logic for expressing
protocols completely, with clear semantics, that can be con-
verted to a programming language for interaction protocols
and (2) developing extended statecharts as a diagrammatic
counterpart.

Keywords

interaction protocols, Propositional Dynamic Logic, state-
charts, ANML

1. INTRODUCTION

Shared protocols and conversations facilitate interaction and
coordination between agents towards achieving their goals.
In this context, an interaction protocol defines the possible
sequences of message exchange between agents in a group.
Interaction protocols need to be clearly specified, validated
and correctly implemented to enable reliable agent interac-
tions. In the agent community, protocols are mostly speci-
fied in a diagrammatic or semi-formal methodology. Given
this situation, there remains a need for formal specification
and implementation tools for protocols, and for methods to
verify, validate and reason about interaction protocols [12].
These methods should allow agents to be able to define, in
a shared methodology, the protocols they are willing to en-
gage in and to recognise other agents’ protocols. Such a
basis may also enable existing protocols to be extended into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS 03, Melbourne, Australia

Jim Cunningham
Imperial College, London
Computing Department

London SW7 2BZ, UK

ric@doc.ic.ac.uk

Nicholas R. Jennings
University of Southampton
Department of Electronics and
Computer Science
Southampton SO17 1BJ, UK

nri@ecs.soton.ac.uk

new and more detailed versions, or to be combined in order
to better suit the prevailing context.

To this end, this paper proposes an extended form of
Propositional Dynamic Logic (PDL) for presenting interac-
tion protocols. The extended form of PDL that we outline
is called ANML (Agent Negotiation Meta-Language). Inter-
action protocols in ANML are in the form of multi-modal
theories, leading to an abstract theory of an interaction in
a group. More specifically, we propose a program logic that
can be used for specifying and validating the properties of a
protocol [13]. From another angle, the ANML logic can be
treated as close to an executable programming language for
correctly implementing and executing interaction protocols.
At the same time, we acknowledge that developers can un-
derstand the essence of an interaction protocol more quickly
from a diagrammatic notation, given the human capacity
for visual processing of spatial presentation. Therefore we
accompany our extended PDL with extended statecharts to
represent protocols diagrammatically. The aim is that pro-
tocols can be translated from extended statecharts to ANML
and vice versa. ANML protocols facilitate verification, vali-
dation and other forms of reasoning including symbolic ex-
ecution. We choose to extend statecharts for visual repre-
sentation because they seem to exhibit the most adequate
expressiveness, readability and intuitiveness for our purpose.
To illustrate this point, we study the expressiveness of cur-
rently used notations like AUML and Petri nets. Although
our work can also be applied to distributed systems pro-
tocols, there are two main distinctions between the latter
protocols and interaction protocols. The first difference con-
cerns the representation of an agent sending a message or
executing a process, not found in program logic. The sec-
ond difference is with respect to the state of an interaction
which we consider as part of the beliefs of an agent and
the agent’s group. The interaction protocol indicates how
an agent’s beliefs changes with state transitions. In [15] we
use our methodology to ensure the consistency in a shared
interaction state.

Against this background, this paper advances the state of
the art by identifying and answering the need for agent inter-
action protocols to be defined more formally than at present.
ANML seems able to scale up and portray interactions be-
tween several agents while still fully specifying the details
of a protocol. This, in turn, means that different agents
may now represent, implement and interpret the same pro-
tocol without the risk of inconsistency between their men-

tal states. At the same time, developers may use extended
statecharts to convey a protocol to other users. We are also
progressing towards executable libraries of protocols, which
has not yet been achieved in multi-agent systems. In this
combined logical and graphical approach, there is a set of
constructs that occurs in both the graphical and logical lan-
guages, implying an intersection between specification and
implementation. In effect we are proposing a unified model-
ing and implementation language which reduces the amount
of effort on the part of designers and programmers.

The remainder of the paper is organised in the following
way. Section 2 discusses the requirements of a language for
specifying protocols using a multi-lateral protocol for rais-
ing, amending and voting on motions as an example. Section
3 presents the syntax and semantics of ANML and its ap-
plication in specifying the multi-lateral protocol. Section 4
compares diagrammatic notations such as AUML, Petri nets
and statecharts. Section 5 presents extended statecharts as
a graphical notation. Section 6 studies the translation be-
tween the logical and the graphical notation in a combined
approach for specifying and implementing interaction pro-
tocols. Section 7 presents our conclusion.

2. AGENT INTERACTION PROTOCOLS

A group of rational agents complies with an interaction pro-
tocol in order to engage in task-oriented sequences of mes-
sage exchange. Thus, when an agent sends a message, it can
expect a receiver’s response to be among a set of messages
indicated by the protocol and the interaction history. With a
common interpretation of the protocol, each member of the
group can also use the “rules” of the interaction in order to
satisfy its own goals. In order to reach an implicit consen-
sus about the possible states and actions in an interaction,
it is necessary for the protocol itself to be correct (e.g. no
contradictory states), unambiguous (e.g. possible actions
are not vague), complete (e.g. no states are undefined) and
verifiable (e.g. correctness properties can be verified). If
a protocol does not exhibit these features, then with the
difference in the participants’ private beliefs, experience, in-
tuition or culture, the agents may perform contradictory and
unexpected actions leading to the possible breakdown of the
interaction, or the group, or encourage malicious behaviour
and cause discontent.

The ability to express correct protocols depends in turn
on the specification language or tool used to model the pro-
tocol. There are a number of requirements for a specifica-
tion/implementation language or methodology for an inter-
action protocol. One of them is a formalisation which lends
itself to verification, validation and execution tools.

2.1 Examplar Protocol

To illustrate the requirements of a specification methodol-
ogy, we consider conventional rules of (formal) procedure
as a protocol between two or more agents. The protocol
presented here is of sufficient complexity for illustrating re-
alistic interactions. It highlights the required expressiveness
of a specification language. It is a multi-lateral protocol
presenting the rules of procedure for submitting motions in
a quorum, for seconding and amending these motions and
for subsequent voting within a community of two or more
agents.

An agent initiates such a multilateral interaction, say pro-
cess-m1, into a pending state of interaction, by raising mo-

tion m1. The initiator can withdraw its motion m1 or the
motion may time out leading to a withdrawn state. Other-
wise, from a pending state, a seconded state may be trig-
gered by another participant seconding mi. In the seconded
state, a countdown to a vote timeout is activated. Any user
may invoke the amend transition in the seconded state to
replace the motion mj by mso or may call a transition to the
voting state. The amend and call transitions are compound
transitions (not atomic actions) themselves spawning sub-
processes. On invoking an amend to replace m1 by ma, the
group enters into a new instance of a multi-lateral process
between the same agents, say process_mso, with the motion
of whether to replace mi with meo. If the multi-lateral in-
teraction process_mso succeeds in an agreed state, then the
seconded state is re-entered in process-mi, but with a new
motion ms and the countdown to wvoting reinitialised. If
the interaction process_ms fails, then the amendment of m;
with mao fails and the state remains seconded without any
change. Similarly if the complex transition call to voting
fails, the current state remains seconded. The call transi-
tion itself launches a separate multi-lateral process. In the
voting state, vote processes occur until the time for voting
is over or all the participants have voted. If the proportion
of “yes” votes is greater than the ceiling, then the proto-
col terminates successfully in an agreed state, otherwise the
motion is rejected.

2.2 Requirements for a Protocol Language

The above natural language description of a multi-lateral
protocol is hard to understand and is prone to misunder-
standings, even when using variable names for clarity. We
consider that a language for developing protocols is needed
which can ideally meet the following requirements:

1. Provide a graphical representation for ready percep-
tion of structure by developers.

2. Have an unambiguous formal specification language
with clear semantics for verification.

3. Be close to an executable language for implementation
purposes.

4. For relative tractability, maintain a propositional form
for a formal language.

5. Provide a well-defined program logic for ensuring com-
plete protocols and validating the properties of a pro-
tocol.

6. Allow a state automata like methodology for compati-
bility with existing methodologies and interaction pro-
tocols. For the sake of referring to a part of an interac-
tion, the modeling language has to represent both the
possible states and the possible actions.

7. Exhibit enough expressiveness for agent interactions
and nested interactions.

8. Allow ease of reuse and abstraction of protocols.

3. DYNAMIC LOGIC: ANML

ANML is a language for specifying agent interaction proto-
cols. It is based on Propositional Dynamic Logic (PDL), but
without program assignment (similar to Hennessey-Milner

logic [8] and related modal action logics). Dynamic logic
[16] enables reasoning about the effect of programs on states
of affairs, although in its primitive form it lacks process ab-
straction. However, Propositional Dynamic Logic (PDL) [4]
does allow the properties of complex processes to be ex-
pressed in terms of their constituent processes through con-
nectives. This allows reasoning about the effect of processes
on interaction states, and so PDL is adopted in our work.
A minimal syntax of PDL with basic Boolean, Modal, and
process connectives is:

Au=p|L]A—-A|[a]A]| ...
a t=w|ajo | aiUas | o | A? | null

Formulae:
Processes:

One can assume the usual Boolean forms of propositional
logic since they can be defined from the minimal set, e.g.
—A is equivalent to A — 1, T equivalent to =1, AV B =
-A— B, ANB=-(-AV-B) and A<~ B= (A— B)A
(B — A). In the usual semantics of PDL each possible world
can be considered a program state subject to classical rea-
soning. The formula [a]A has the intended meaning: A
holds after executing process . This is the weakest precon-
dition for a to terminate with A. The modal formula <c@>A
is equivalent to —([a]—A). The meta-variables p and w de-
note, respectively, atomic formula (i.e. propositions) and
atomic programs. The complex process (a1; az) denotes the
sub-process a; followed by a2, the process (a1 U ag) is ei-
ther a; or as non-deterministically, a* denotes zero or more
iterations of process a. A state test operator “7?” allows se-
quential composition to follow only if successful. A null pro-
cess represents no execution while an abort process results
in a failed state. More conventional sequential program con-
structs can be defined using the basic formulae and process
connectives.

3.1 Extensions to PDL

The syntax of ANML is an adaptation of the program logic
described in [16] and of PDL, with extensions to express
multi-agent interactions. We treat an agent as capable of
atomic actions or complex processes. Each atomic action
constitutes a primitive process that may be combined into
more complex ones. The processes performed by an agent
trigger states of interaction which themselves can be organ-
ised into a hierarchy of parent and sub-states. This allows
representation of complex actions and reasoning about com-
putational aspects such as properties of protocols. ANML is
defined over the types propositions, atomic processes, agents
and roles. We assume throughout that each atomic formula,
agent and instance of an atomic process can be denoted by a
distinct identifying term. Classical logic operators, list and
set notation (e.g. U and N) are also used. The connectors
in ANML in addition to the above minimal set of PDL op-
erators are as follows:

An agent: oneAg ::= agent | agent : role

One agent or a group: Ag_group :=oneAg | grp

Sets of agents grp =€ | {oneAg} | grp1 U grps

Set of states: States ::={A} | {A} U States:

Formulae: A = A(Ag_group) | a1 :: az |
none_of (States) | one_of(States)

Processes: a = Ag_group.a | a?

3.2 Informal Semantics of ANML

An agent group, Ag_group, is one agent or a set of agents,
where an agent may be typed with roles, for example {roger:
retailer, bill:buyer}. The state of a process, such as an in-
teraction, at an instance can be inferred from a formula over
propositions, processes and agents holding at that instance.
Simple and double implications between states define the re-
lation between parent and possibly multiple sub-states. For
example, in the formula (rejected — closed), the state re-
jected is a sub-state of closed. States may be hierarchical,
groups of agents are not hierarchical but set operations may
be applied to them. A state A can be parameterised by an
agent or a set of agents as in the formula A(Ag_group) (or
rejected ({roger,bill})).

The formula A holding after executing a process « is rep-
resented as the formula [a]A (e.g. [offer]offered is read as
the state offered always holds after the process offer). In ad-
dition to testing atomic states (PDL allows tests on atomic
states only), the process A? may also be defined when A is
a compound formula and therefore in our methodology the
test operator is used in its full generality over formulae. The
meaning of a state parameterised by an agent depends on
the rules and parameterisation of the protocol it occurs in.
For example, state A2 is parameterised in the protocol rule
A1(Y) < [X.a]Ax(X).

The formula (o :: @) is true when process «; is con-
strained to be of the same type as as. That is, all the states
and transitions allowed in process a; can also be inferred
from ap (e.g. E-bay-auction :: English-auction). The pro-
cess « is a different instance of the same class of process as
Q9.

The operators none_of and one_of return true if, respec-
tively none of and exactly one of the states in their given
sets of states are valid. They are used to express exclusivity
between states and actions.

The executor of a process and that process are separated
with a full stop (e.g. r:retailer.display is a process when
retailer r executes a display process). The role may be
omitted and a joint process between two parties is denoted
by the set of the two parties performing the process as
in {¢, r}.shopping. A process may be decomposed into a
sequence of sub-processes, each possibly coupled with the
agent or agents executing that sub-process, using the com-
position operator “;” . For example, a negotiation process
can be decomposed into the sub-processes of browsing, bar-
gaining and paying. The process (browsed(c)?; c.choose) is
the process c.choose if the test on browsed(c) succeeds, oth-
erwise it fails. The test a? leads to the world holding after
the execution of «, if the process a succeeds.

3.3 Formal Semantics of ANML

The semantics of ANML can be modelled through accessi-
bility relations between possible worlds [12]. As for PDL,
worlds are viewed as process states and accessibility rela-
tions as processes for state transitions. A formula can ex-
press a proposition. It may be interpreted as the set of basic
process states (worlds) on which it is true. By introducing
syntax for the union of states, ANML enables the state ab-
straction of statecharts (section 4.3).

The semantics of the additional operators in ANML are
based on a model denoted by M = (W, Ra, V). The set
of worlds in the model are denoted by W. R, is a binary
relation on W for each process o and reflects the intended

meaning of process «, resulting in a uniquely determined
standard model by inductively defining R, for non-atomic
processes . For example, the relation Rag group.o maps
world w; to world w2 through an agent or a group execut-
ing process a. The function V represents an assignment of
sets of possible worlds to propositions, where V(p) is the set
of worlds where atomic formula p holds, as an interpreta-
tion of the atoms in the model. The semantics of the ANML
connectors are as follows, where PROP is the set of propo-
sitions:

M,wkEp iff weV(p),p € PROP
M, w = [a]A iff Vwq (wRaw1 implies M, wil=A)
M,w E A(X) iff M,wpE Aand X € Ag_group

M,wE= (a1 a2) iff Ra, C Ra,

M,w = none_of(S1) iff VA(A € S; implies M, w = A)

M,w Eoneof(S1) iff 3JA1(A1 € S1 and M, w E A1)
and JA2((Az2 € SiandM,w = As)

1mphes Al > Ag)

RAg_g'roup a g Ra

Rar = {(w,w) : M,w = A}

Ray = {(w1,w2) : (w1, w2) € Ra}

For the formula M,w = A(X), the meaning of a state
parameterised by an agent depends on the rules and syn-
chronisation of the protocol it occurs in. The semantics
of M,w [= (a1 :: a2) states that all the worlds obtained
through execution of process «i are elements of the set
of worlds possible through performing az. The relation
Rag_group.a maps world w; to wz through an agent or a
group executing process a. The set of worlds in the image
of relation Rag_group.a is a subset of the set of worlds in the
image of R,. In the case of a process executed by two groups
gp1 and gp2, where gp1 C gp2, if the process « is the same
instance, then Rgp,.« = Rgp,.o On the other hand, if the
two groups are performing different instances of process a,
then no relation between the two processes gpi.a and gps2.«
is derivable before execution. The success of a process is
tested in a? by checking whether its consequential end state
holds.

ANML inherits the axioms of a normal modal system.
The underlying modal logics are decidable. In addition, we
have the axiom (A(X) — A) (e.g. offered(X) — offered).
The complexity of ANML and its decidability needs further
analysis. We assume that groups of agents in an interaction
are finite sets and therefore our formalism does not embody
quantification.

3.4 A Multi-Lateral Protocol in ANML

The logical theory in figure 1 shows the application of ANML
to represent the multi-lateral protocol in section 2.1. This
theory can form the basis for further customisation for ap-
plication or domain specific interactions. Here, axiom (1)
ensures that a group of agents G adheres to the following
multi-lateral protocol in a process instance called multilat-
eral_process to vote on a motion m. Double implication in
the action-condition rules allows an agent to infer the history
of an interaction.

Axioms (2) to (7) define the relations between parent and
sub-states. For example, the state of a multi-lateral inter-
action is either motioned or closed, but not both (axiom 1).
A closed state is either agreed, rejected or withdrawn (axiom
2). Axioms (5) to (7) ensure that when a parent state is

- multi_interaction < [G.multilateral_process,,| closed (1
multi_interaction < one-of ({motioned , closed}) (2
closed < one-of({agreed , rejected , withdrawn}) (3
motioned < one-of({pending, seconded, voting}) (4
= multi_interaction < none-of({motioned , closed}) (5
= closed—mnone-of ({ agreed,rejected, withdrawn}) (6
- motioned < none-of({pending, seconded, voting}) (7
= multi_interaction < [X.motiony,] pendingn (X) (8
pendingm (X) < ([Y.secondm] seconded, (Y)
V [timeout]withdrawn,,

V [X. withdraw,, Jwithdrawn,,) A— (X=Y) (9)
Ye G« (Y.amendn, :: G.multilateral_processy,) (10)
Ye G (Y.callm, :: Gmultilateral_processm,) (11)

secondedy (X) < ([timeout; G.vote, Jvotingm, (G) V
([Y.amendp,, ;agreedn,, ?;reinitialise/secondednm, (Y)) V
([Y.callm, ;agreedn,, ?; G.voter, Jvoting. (G)))

A=(X=Y) (12)
votingm (G) < [G.count,; (Syes-votes > 3)?] agreedn,
V [G.count,,; (Syes-votes < %)9/ rejectedn, (13)

Figure 1: Multi-lateral Protocol in ANML

false, none of its sub-states are true. An agent initiates a
multilateral process into a pending state by raising a motion
m (Axiom 8), ensuring the interaction cannot be arbitrar-
ily re-started. The initiator can withdraw its motion m or
the motion may time out into a withdrawn state (axiom 9).
Otherwise from a pending state, a seconded state is triggered
by another participant seconding the motion m (axiom 9).

Axioms (10) and (11) define the processes amend,,, and
cally,, as complex processes each launching a new multilat-
eral_process, involving group G, with motions m; and mg
respectively. In the seconded,, state, when the countdown
to voting has elapsed, the group votes on the motion m in
the state votingm (G) (axiom 12). In the seconded,, state,
any agent may also invoke the complex amendn,, transition
to replace the motion m by m;. If the multi-lateral in-
teraction spawned by the amend,,, process fails, then the
state of the process multilateral_process,, remains seconded,,
without any change. Otherwise if the amendment of mo-
tion m succeeds by multilateral_processy,, terminating in an
agreed., state, then the secondedn, (Y) state is entered in
the multilateral_process,, interaction. The new motion is
ms and the countdown to voting is reinitialised (axiom 12).
Similarly the Y.call,, process launches a multi-lateral inter-
action (G.multilateral_processm,) with the motion mgy being
whether to vote immediately on the motion m.

In the wvoting, (G) state, depending on the number of
“yes” votes, the multilateral interaction terminates success-
fully in an agreed,, state, otherwise the motion m is rejected
(axiom 13).

3.5 Analysing the Multi-Lateral Theory

The theory in figure 1 is essentially propositional and may
be analysed for completeness using tools such as model-
checking or theorem proving. The logical theory of the above
protocol in ANML is complete if it is consistent and all states
are well-defined (either ¢rue or false). Here, we do not give
the completeness proof for the ANML multi-lateral protocol,
since this is not an objective of the paper. A completeness
proof for a similar protocol can be found in [12].

The axiom (A(X) — A) in our framework ensures that
there are no conflicts between a parent and its various sub-

states, and in iterative actions, as found when using primi-
tive statecharts in section 4.3. ANML also inherits the ax-
ioms and properties of PDL for decidability, soundness and
completeness. We can thus use an axiomatisation of PDL
when analysing and reasoning about protocols in ANML.

ANML is also a program logic, where the properties that
a protocol can exhibit are defined as ANML axioms and the
sequences of actions inferred from the theory of the protocol
are analysed to show whether a property holds [13].

3.6 Extended ANML

The specified form of ANML remains propositional and al-
lows the application of logic-based theorems. As presented
here, ANML does not support concurrency and process syn-
chronisation. This can be achieved by extending ANML
with similar operators as in concurrent PDL. We also have
not clarified whether the parameters in a state may be in-
creased dynamically and must be finite. For example, it is
not clear whether a state may or should store more than
one set of agents and whether the order of the parameters
matter. There remains thus particular applications where
ANML may not have enough expressiveness although we
have found it to be adequate for most usual protocols. Of
course, in case of lack of expressiveness, the notation may
be further augmented.

4. GRAPHICAL METHODOLOGIES

The ANML theory of the multi-lateral protocol in figure 1
defines all the possible states and actions in an interaction
and therefore embodies the full details of the multi-lateral
protocol. In addition, combined with a parser, ANML can
act as a programming language for executing interaction
protocols. However, as can be seen, although the theory
facilitates automatic verification and validation, its struc-
ture may be hard to grasp. To assist comprehension, we
propose the translation from a logical theory of a protocol
into a diagrammatic notation for more intuitive human un-
derstanding.

From our experience in expressing and verifying proto-
cols, we provide an analysis of the expressiveness of vari-
ous currently-used methodologies for our purpose, including
AUML, Petri nets and statecharts. This analysis also stands
as a comparison between the different notations and our ap-
proach for representing agent interaction protocols.

4.1 Specifying Protocols in AUML

Bauer et al. [2] have proposed AUML, (Agent Unified Mod-
eling Language), as an extension of UML to define inter-
action protocols between agents. AUML is intended to be
a graphical specification technique, which relies partly on
FIPA ACL by using a subset of its communicative acts as
messages.

An AUML Interaction Protocol (IP) diagram expresses a
protocol in the form of a UML sequence diagram with ex-
tensions specific to AUML (as shown in Figure 2). Agents
are assigned to roles, belong to classes and an IP diagram
shows interactions between these agents along a timeline.
An arrow indicates an unnested, asynchronous communica-
tion while a diamond means a decision point that can result
in zero or more communications being sent (no diamonds —
all threads are sent concurrently, an empty diamond — zero
or more messages may be sent and a crossed diamond —

exactly one message may be sent).

multi-lateral protocol
initiator

’—“ motion
I ‘motion
timeout

| timeout
% withdraw :
| H ithdra

second cond

amend v L N multi-lateral
u,
T amend o

N
-

I
V-

Lt
—_

multi-lateral
sub-protocol
[amended] : :
D Trejected]null Eu; = I D D\ o
mended] ' [agreed]rexinialise | I
¢ Tk : i ‘ ‘
i " e H "
[agreed]re-inftialise | D | i —_— b
s ; call N [called]
multi-lateral [alled] o call s
sub-protocol ﬂ f i [F= lrejectedinylt ®) sub-protocol
— : 1 Tagreedivote
SIf= Ell ‘
& Al il j
. = : i -
i) i Trefectea]nu ™
) Tfeceamn !
! call :

vote

count
vdte

I cplint ‘
‘ vote

I i

{
!
] count =1
count 1 ﬂ
' agleed] [agreed] D
D‘ [agreed : T T
< s ecteq [re:ected]D

Figure 2: The Multi-Lateral Protocol of Section 2.1
in AUML.

| ——

411 Advantagesof AUML
The benefits of using AUML include the following:

e The process of an interaction over time is explicitly
expressed through timelines, allowing a visual repre-
sentation of events over time.

e The exchange of messages between the different roles
are shown explicitly as arrows.

e UML users are already familiar with most of AUML
features.

4.1.2 Disadvantages of AUML

Despite both our understanding of the multi-lateral protocol
from extensive analysis and past experience with the AUML
notation [12], it took four hours to draw up the multi-lateral
protocol in AUML using the zfig graphical tool. In this vein,
we notice the following drawbacks of specifying protocols in
AUML:

e Cluttered AUML diagrams are easy to misinterpret
and a large amount of time and effort is required for
developing and understanding reasonable interaction
protocols in AUML.

e In fact, figure 2 is incomplete because we did not ex-
press several aspects including 1) the other agents in
the protocol are passive, but vote; 2) agents sending
a motion, its seconding, amendment, call and timeout
may all be different. To do so would have led to six
timelines and doubled the complexity of figure 2.

e A major drawback of AUML is the inability to bind
roles, cardinalities, access agent identities or interact-
ing as in a forum. As many timelines may be needed
as the maximum number of identified participants.

e Conditions at some decision points are undefined be-
cause an AUML diagram does not show states.

e Redundancy is hard to debug and modify. Actions
that are possible by any agent have to be expressed on
all the timelines.

e There is no easy way to express time-dependent actions
such as timeouts, deadlines or ubiquitous messages like
rejections at any time.

e There is no notion of history because states are not
identified.

e Termination of the interaction is not obvious, espe-
cially when the threads of interaction are abbreviated
to a single timeline.

Of course, there are ways to correct some of the deficien-
cies, but it remains hard to capture the m-n nature of agent
interactions in a graphical notation like AUML. For exam-
ple, the latest version of AUML, branches are introduced
at a timeline to identify an agent, but at the expense of in-
creased complexity. OCL [19] has been proposed as a textual
representation of UML and could be extended for AUML di-
agrams. However OCL is essentially a constraint language
and has met several criticisms amongst which its lack of for-
mality [18]. See [14] and [12] for a more detailed critique of
AUML protocols.

4.2 Specifying Protocols in Petri Nets

Petri nets are another candidate for graphically modeling
interaction protocols. In Petri nets, tokens are used to sim-
ulate and synchronise dynamic and concurrent activities and
algebraic equations can be derived from Petri nets. The dy-
namics of a Petri net are a sequence of transition firings
where tokens are taken away from input places to output
places. Petri nets are used in a variety of applications in-
cluding communication networks. However a weakness of
Petri nets is the complexity problem; Petri-net-based models
tend to become too large for analysis even for a modest-size
system [9].

Interaction protocols expressed in Coloured Petri nets can
be found in [3], [10] and [17]. The latter expresses in Petri
nets some of the protocols proposed in AUML by FIPA [1].
Figure 3 is a coloured Petri net of the multi-lateral interac-
tion according to the notation used in [10] and [3]. We have
not shown the full details of the protocol so as not to render
the diagram illegible.

4.2.1 Advantages of Petri Nets

Petri nets exhibit a number of useful features of which some
worth mentioning are given below:

e Petri nets allow concurrency and synchronisation in
the execution of threads.

e A large array of tools have been developed to detect
conflicts and properties such as deadlocks or liveness
and evaluate performance.

o
,

Vithdraw

Agent (ole) initiator

withdraw

Agent (role) seconder

- éd"'nmeiin,,
CromB Ty >

“withdraw

Agent (ole) amender

msg(m1)

Figure 3: The Multi-Lateral Protocol of Section 2.1
in Petri net (notation according to [10]).

e There is a representation of states.

e Petri nets make less cluttered diagrams than AUML.

4.2.2 Disadvantages of Petri Nets

However, we find that there are still limitations to the Petri
net notation.

e Interaction protocols in Petri nets are still hard to read
as can be seen in figure 3, in [3], [10] and [17] for a
contract net protocol, a KQML register performative
or a pair-wise negotiation.

e In figure 3, the dotted hexagons and bold “?” indi-
cate parts of the Petri net where alternative actions
and states cannot be simply expressed in the notation.
For example, at the seconded place, an agent either
executes an amend, call or vote action, but not all of
them as indicated in the Petri net. The logical “v” and
ANML “U” operators cannot be expressed in standard
Petri nets. Thus, the ANML rule R < [cUe]S V [d]T
cannot be expressed.

e Multiple Petri nets can be used for a protocol. In
this case, a Petri net is assigned to each agent role,
for example an initiator and a participant agent fol-
low different Petri nets [17]. The collection of individ-
ual Petri nets associated with all the roles represents
the entire interaction protocol, but this leads to issues
about how the Petri nets are merged. There are also
questions regarding reachability, consistency and mu-
tually exclusive access to shared places between two or
more Petri nets.

e A single Petri net can be used for a protocol by par-
titioning according to the role or identity of an agent
(as shown with the horizontal dotted lines in figure 3)
[10]. This still leads to a complex diagram. This raises
the same problem as timelines in AUML where, here, a
partition is required each time it is necessary to show

a particular agent doing an action. Here ideally we
should have five partitions for five different messages
that can be sent by five different agents, yielding the
same worst-case scenarios as for AUML.

e In each of the above cases, there is redundancy in re-
peating the same parts of a protocol for different agents
or roles. This leads to diagrams which are unduly com-
plicated and hard to read and suggests poor scalability.

e The notion of agents and execution of an action by an
agent is not explicit in the notation.

e [t is not easy to replace a piece of protocol by another
Petri net [12] and thus Petri nets are not suitable for
reusability and abstraction of protocols, including the
replacement of sub-protocols.

It may seem that the Petri net in figure 3 is wrong, but this
exactly reflects our comments regarding the disadvantages of
using Petri net notation for our purpose. More specifically,
the lack of an established notation in Petri net to simply ex-
press process alternation gives rise to several errors in figure
3. These errors are compounded by the need to replicate the
effects of transitions for each sub-net representing an agent
or its role. For example, for agent rolel, the transitions from
the state seconded, an agent with that role can either amend
the motion, call a vote, or the voting process can begin after
a countdown, but not more than one of them. We do not
know how to represent this alternation in the Petri net and
we show a “?” at this point. Our endeavour to nonethe-
less represent the multi-lateral protocol while having these
open issues may bring about the remark that the protocol
is wrong. It is effectively wrong since as shown here vote,
call and amend all happen at the same time and trigger both
the states seconded and wvoting. But we do not know how
to correct this with the current notation. Likewise another
error in the Petri net raises the question of how we stop two
agents (rolel and role2) from each sending an amend, or for
one agent to send a call while the other sends an amend. To
represent disjunction, the notation can be augmented with
keywords or new constructs.

The multi-lateral protocol does not only involve sending
messages between two parties, but also broadcasting a mes-
sage to the entire group. This is why we show that a message
from an agent (or role) is sent to the rest of the agents in the
other partitions. Thus amends and calls may be sent by any
one agent to all the other agents. For example, agent rolel
sends an amendment to agent role2 and agent role3 and sim-
ilarly agent role2 may send amendment to agent rolel and
agent role3. The same applies to the call for a vote where
agent rolel sends a call to agent role2 and agent role3 or
agent role2 may send a call to agent rolel and agent role3.
These involve extensive crossing of the arrows representing
all the possible messages and give rise to confusion, and
make it hard to understand and debug, giving the intuition
that figure 3 is incorrect. In fact, we have omitted certain of
these broadcast messages so as not to render the Petri net
illegible. Thus, our conclusion is that Petri nets (including
high-level or coloured) are not ideal for representing agent
interaction protocols because of weaknessess in expressive-
ness and scalability.

4.2.3 Petri Charts

Petri charts are presented in [7] and are based on Petri net
and statechart notations. Petri charts introduce hierarchical
net construction in Petri nets with subnets and super-places,
allowing net refinements and composition. The approach in
[7] focusses on Petri nets, but adding to them the abstrac-
tion capabilities of statecharts. However, how a Petri net
adds to a statechart is not analysed. Even though Petri
charts facilitate a modular approach to the construction of
protocols, the above issue about the complexity of Petri nets
for representing realistic protocols remain, as can be seen in
the Petri charts in [7]. The issues about representing agent
roles with partitioning or separate Petri nets still hold in
Petri charts. Furthermore, to represent alternative actions
at several states would require for each transition in a Petri
net to contain a statechart, again increasing the complexity.

4.3 Specifying Protocols in Statecharts

Statecharts [6] are a graphical method to illustrate reactive
behaviour and are an extension of conventional finite-state
machines and state transition diagrams. This section dis-
cusses the desirability of statecharts for illustrating inter-
action protocols. To this end, figure 4 is a statechart of
the multi-lateral protocol. From our experience with stat-
echarts, we mention some general issues about using state-
charts for interaction protocols.

call | count

[o) pending] (seconded voting]

motion T
second vote

amend

motioned

timeout

withdraw
multi_interaction

Figure 4: The Multi-Lateral Protocol of Section 2.1
in Statechart (from [11])

4.3.1 Advantages of Satecharts

The statechart notation possesses a number of advantages
of interest for expressing protocols. Some of them are listed
below:

e Figure 4 is clearer than its AUML and Petri nets coun-
terparts.

e When we augment statechart to parameterise actions
and states with agents, identifying agents in statechart
is relatively simple and does not require new timelines
(as in AUML), partitions or new Petri nets. Thus the
statechart does not suffer from the drastic rise in com-
plexity and redundancy with increase in the number
of agents identified, contrary to AUML and Petri nets.

e States and processes are treated equally in statecharts,
allowing an agent to refer and reason about the state
of an interaction.

e Statechart notation is more amenable for extension
to express agent interaction protocols graphically by
adding in ANML constructs.

4.3.2 Disadvantages of Satecharts

Figure 4 does not show the full multi-lateral protocol be-
cause of the lack of expressiveness of the statechart notation
in its original form.

e Statecharts do not portray the agents that are involved
in exchanging messages and states that become valid
do not contain information about which agent trig-
gered the state.

e Compound transitions such as amend, call and vote
that are themselves new multi-lateral processes are not
shown in detail, nor how their results affect the parent
interaction shown.

e Incompleteness arises when a parent state can be valid
without being in its sub-state [12].

e [t must be ensured that entry actions are not possible
once the interaction has begun, to prevent arbitrary
restarting of the interaction.

Our choice for a graphical notation would be between
Petri nets and statecharts. The factors that have influenced
our choice of statecharts over Petri nets, with respect to our
requirements, include: 1) alternative actions are often part
of an interaction and are readily expressible in statecharts
but not in standard Petri nets 2) representing agents re-
quires less effort in statecharts 3) hierarchies of states in stat-
echarts facilitate abstraction, reuse and expressing nested
protocols.

It may be remarked that the Petri net notation still has
the ability to express concurrent actions and synchronisa-
tion between threads for firing a transition. In this paper,
we specify the core syntax and semantics of ANML and
extended statecharts for expressing realistic and sequential
agent interactions. Both ANML and statechart can be ex-
tended as needs be for more expressiveness. In a more pow-
erful ANML embracing the concurrent and synchronisation
capabilities of Petri nets, places, transitions and arcs in Petri
nets are respectively analogue to states, intermediate states
and processes in ANML. The rules in ANML translate how
the places and transitions are connected with arcs. Concur-
rent ANML reuses the operators from concurrent PDL [4].
The concurrent execution of processes a and (3 is expressed
as “anB”. More details on concurrent ANML can be found
in [12].

Therefore we accompany our logical notation of extended
PDL with extended statecharts as a graphical notation. Af-
ter all, statecharts stem from the same researcher (David
Harel) who has contributed extensively to propositional dy-
namic logic. Statecharts have been given formal semantics
[5], but the standard semantics is not based on PDL. One
might think that a statechart is a natural graphical rep-
resentation of PDL, but we need ANML-like extensions to
capture the state abstraction of statecharts. The contribu-
tion here is to extend these two notations for representing
agent interaction protocols and fulfil the needs and open
issues found in section 4.

5. EXTENDING STATECHARTS

We render the portrayal of protocols in statecharts more
complete by providing additional constructs to the state-
chart notation. Moreover, we add to statecharts, ANML

constructs for dealing with agents performing actions, trig-
gering states and with nested protocols. Our extended stat-
echart notation thus benefits from the same semantics as
ANML because they both share a set of constructs. This al-
lows developers to learn only one semantic specification for

both the graphical (specification) and the logical (implementation-

related) methodologies. To this end, figure 5 presents the
additional constructs for extending statecharts. The arcs
in the original statechart notation represent alternative ac-
tions, i.e. only one of the arcs is executed. Figure 5 shows
how we augmented statecharts with ANML-like formulas
and processes.

progy- :protocol p; cond P

@ (b) ©

o

Figure 5: Extended Statechart Notation

Contrary to what may be perceived, the notations we add
to statecharts are entirely new and derive from neither Petri
nets nor Petri charts. These extensions do not occur in any
of the notations in section 4. They are graphical and an-
notational patches derived from PDL in order to make the
statecharts adequate for expressing agent interaction proto-
cols.

In more detail, figure 5(a) shows the parameterisation of
the states A and B and the process b, where X and Y are
two different agents or groups of agents. The process (Y o
b) changes the state A(X) to B(Y), if the test (X # Y)?
succeeds.

Figure 5(b) shows the nesting of protocols. The process
procm, leading from state A(X) to B(Y), is a complex pro-
cess that is constrained by the process protocol.,. The state
B(Y) is triggered if the condition cond, holds (which can
be brought about by the process procy,). The right hand
side of the diagram 5(b) abstractly defines protocoly,.

In Figure 5(c), we solve the conflicts when two actions
may lead to the same state, but with different agent param-
eters. Here the notation [X\Y] is read as the parameter X
is replaced by the agent Y in state A, leading to the state
A(Y).

Figure 5(d) solves conflicts when a parent state consists
of two different sub-states with different parameters. Here,
from the condition (A(X)?; C(X))?V(B(Y)?C(Y)), the par-
ent state is C(X) if the sub-state A(X) holds, otherwise
C(Y) if B(Y) holds.

Figure 5(e) resolves the incompleteness in statecharts when
a parent state can be valid without being in any of its sub-

Yeb ; [X\Y]

states. Here the arrow with a negation explicitly expresses
that the process X.b leads to the parent state B(X), but not
to the sub-state A(X).

Figure 5(f) shows the subscripting of states (A and B) and
process b with an identifier m or m1. This notation is useful
in dealing with instances of a process that can occur several
times in a single interaction as a result of nested processes.

Z.call . .G.multi_process agreed 2;G.vote
m2 u m2 ™ G.count ;
- - (#yes> 1/2)?
o—| endin xj (seconded Y)) [votmg (G) » agreed
X.moti mp 0,09 of m_J 9reeCm
(X=Y)?; G.vote ,,
Y.second
motioned G.countm, m
(#yes<1/2)?
Z.amend g’ T G.multi_process ,p;
agreed,,; ?; reinitialise;[Y\Z] N[m\m1] .
timeout N
- withdrawn
X.withdraw,
m \closed

multi_interaction

~multi_interaction | G-multi_process rl(multi_interaction « agreed ,a

Figure 6: The Multi-Lateral Protocol of Section 2.1
in Extended Statechart.

We can now represent all the details of the multi-lateral
protocol in our extended statechart notation, as shown in
figure 6. Even though figure 6 is complete, while figures
2 and 3 are incomplete, it can be seen that the extended
statechart is by far less cluttered and more readable, thus
justifying our choice for extending statecharts.

6. A COMBINED APPROACH

Our combined approach consists of the extended forms of
PDL and statecharts presented in the previous sections. In-
teraction protocols between agents can be specified and im-
plemented using these methodologies, where a major advan-
tage is the sharing of a set of constructs and their seman-
tics for executing processes and triggering interaction states.
This stands as a bridge between theory and application or
specification and implementation of protocols. In this sec-
tion, we discuss the combined approach.

6.1 Meeting the Requirements

We analyse whether the combined approach meets the re-
quirements for a language for agent interaction protocols
discussed in section 2.2. The aim stated in the premises of
the paper is to propose an approach that specifies verifiable
interaction protocols clearly and completely, and yet is close
to an executable form. The extended statecharts notation
fulfils the first requirement for a diagrammatic notation. In
addition, figure 6 is an example of the conciseness of the
extended statecharts notation over AUML and Petri nets.
ANML is a formal language with specified syntax and se-
mantics and verification and model checking may be applied
on ANML protocols (requirement 2). Furthermore, imple-
mentation tools such as a parser and interpreter or modal
prolog systems could allow the execution of protocols in
ANML (requirement 3). ANML is essentially propositional
and useful logic-based theorems are applicable (requirement
4). Properties of a protocol can be specified as axioms in

ANML and ANML protocols can be validated against these
properties [13] (requirement 5).

Both extended statecharts and ANML essentially adopt
a state automata representation and express processes and
states of an interaction (requirement 6). Furthermore, in
both notations, we parameterise the processes and states
with the agents or groups of agents performing and trig-
gering them respectively. Generic actions may be typed
with roles or the roles may be bound to identified agents
without significant increase in complexity. The combined
approach is thus suitable in a multi-agent domain (require-
ment 7). Nested interactions are represented by the :: oper-
ator in both ANML and extended statecharts (requirement
7). Hierarchies of states allow abstraction and reuse of pro-
tocols(requirement 8).

6.2 Translating between Methods

Using a unified modeling/implementation language reduces
the amount of effort on the part of designers and program-
mers. ANML and extended statecharts are linked through
the ANML constructs used inside the statecharts. We can
translate statecharts to ANML (corresponding to a transla-
tion from specification to an implementation-like language
for execution, automated verification and validation) and
from ANML to statecharts (for visual understanding). Fig-
ure 6 and the theory in figure 1 are complementary; the for-
mer represents the multi-lateral protocol in extended state-
charts and the latter in ANML.

- Bidder.bid
posted(Auctioneer) bidded(bidder)

auctioned

Figure 7: Extended Statechart of a Simple Auction-
ing Protocol

In essence, a protocol in extended statecharts is a graph-
ical visualisation of the set of rules in an ANML theory,
itself an extension of PDL for agents. ANML rules between
states (parent and sub-states) correspond to the hierarchy
of states in statecharts. ANML action-condition rules are
translated into state transitions. For example, in figure 7,
the relation between the parent states is translated in the
ANML rule auctioned(X) < one—of({posted, bidden}) and
the state transition is expressed as posted(Auctioneer) «
[Bidder.bidbidded(Bidder) in ANML. Similarly a reverse
translation from the ANML theory yields the correspond-
ing statecharts. Thus, we find the translation is relatively
straightforward between the two methodologies.

6.3 Modular Translation between Methods

We first provide a general translation from each extended
statechart in figure 5 to ANML. A translation from ANML
to extended statecharts is similarly performed from the rules
in this section to figure 5. The general PDL rule A — [b|B
represents a state transition in statecharts. Our new con-
structs translates literally from ANML rules to annotations
on the corresponding statecharts.

Table 1: From Extended Statecharts to ANML

5 | ANML representation

(a) | A(X)— ([YBBY) ANX £Y)

(b) | 2O — [protocoly,](procm, terminaly,)
(defining the overall protocol)

Procm, :: protocol,
(procm is a process according
to a protocol,, protocol)

A(X) — [procm; cond,?|B(Y)
(execution of procy,)

© [AX) — (V5 [X\Y]ATY)

ie A(X) — ([Y-BJA(Y)
(dynamic role swapping)

(d) | O(X) < one—of(A(X), B(X))
A(X) = (YO BY)AX £Y)
(e) | A(X) — B(X)
[X.a]A(X)

[X.5(B(X) A —~A(X))
@ [An(X) = (VB (V)

7. CONCLUSIONS

This paper has addressed the need for formalised and more
expressive logical and graphical methodologies for precisely
specifying and validating protocols and their properties for
interaction between rational agents. Towards this end, we
propose a combined approach consisting of extended PDL
and extended statecharts. We specify a formal language,
called ANML, based on PDL for representing and reasoning
about agent interaction protocols. ANML can be developed
into a language for programming libraries of protocols and
logic-based theorems can be applied to ANML theories. The
notations can also be applied to protocols other than multi-
agent interactions, but our extensions allow us to consider
the domain of agent executing actions.

We show the application of our language using an exam-
ple multi-lateral protocol. Case studies of AUML, Petri nets
and statecharts convince us that of all methods, statecharts
are the closest to a completely expressive graphical nota-
tion. It seems that we can now enhance statecharts to match
the ANML formalism. Future work includes analysing the
complexity and soundness of ANML and a comparison with
other logics such as action logics, event calculus and the
mu-calculus.

8. REFERENCES

[1] Foundation for intelligent physical agents, fipa. agent
communication language. In hitp://www.fipa.org.

[2] B. Bauer, J. P. Muller, and J. Odell. Agent UML: A
Formalism for Specifying Multiagent Software Systems. In
AOSE, pages 91-104, 2000.

[3] R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng.
Modeling agent conversations with colored petri nets. In
Workshop on Specifying and Implementing Conversation
Policies, pages 59—66, 1999.

[4] R. Goldblatt. Logics of Time and Computation. CSLI,
1987.

[5] D. Harel and A. Naamad. The STATEMATE semantics of
statecharts. ACM Transactions on Software Engineering
and Methodology, 5(4):293-333, 1996.

(6] D. Harel and M. Politi. Modeling reactive systems with
statecharts. McGraw-Hill, 1998.

[7] T. Holvoet and P. Verbaeten. Petri charts: an alternative

B

(10]

(11]
(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

technique for hierarchical net construction. In Proceedings
of IEEE Conference on System, Man, and Cybernetics,
October, 1995.

R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

T. Murata. Petri nets: Properties, analysis, and
applications. IEFEE, 77(4):541-580, 1989.

M. Nowostawski, M. Purvis, and S. Cranefield. A layered
approach for modelling agent conversations. In 2nd Work.
on Infrastructure for Agents, MAS, and Scalable MAS,
Agents 2001.

OMG. Negotiation Facility Specification. The Object
Management Group, Inc., http://www.omg.org, 2002.

S. Paurobally. Rational Agents and the Processes and
States of Negotiation. Imperial College, Ph.D. Thesis, 2002.
S. Paurobally and J. Cunningham. Safety and liveness of
negotiation protocols. In AISB2002 Intelligent Agents in
virtual market track., 2002.

S. Paurobally and R. Cunningham. Verification of protocols
for negotiation between agents. In ECAI-15, pages 43—48,
2002.

S. Paurobally, R. Cunningham, and N. R. Jennings.
Ensuring consistency in joint beliefs of interacting agents.
In 2nd Int. Joint Conf. on Autonomous Agents and
Multi-Agent Systems, 2003.

V. R. Pratt. Semantical considerations on Floyd-Hoare
logic. In Proceedings of 17th IEEE Symposium,
Foundations of Computer Science, pages 109-121, 1976.
M. K. Purvis, S. Cranefield, M. Nowostawski, R. Ward,

D. Carter, and M. A. Oliveira. Agentcities interaction using
the opal platform. In Work. on Challenges in Open Agent
Systems, AAMAS, 2002.

M. Richters and M. Gogolla. On formalizing the UML
object constraint language OCL. In Proc. 17th
International Conference on Conceptual Modeling (ER),
volume 1507, pages 449-464. Springer-Verlag, 1998.

J. Warmer and A. Kleppe. Ocl: The constraint language of
the uml. Journal of Object-Oriented Programming, 1999.

