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Abstract. X-ray fluoroscopically-guided cardiac catheterization procedures are 
commonly carried out for the treatment of cardiac arrhythmias, such as atrial 
fibrillation (AF) and cardiac resynchronization therapy (CRT). X-ray images 
have poor soft tissue contrast and, for this reason, overlay of a 3D roadmap 
derived from pre-procedure volumetric image data can be used to add 
anatomical information. However, current overlay technologies have the 
limitation that 3D information is displayed on a 2D screen. Therefore, it is not 
possible for the cardiologist to appreciate the true positional relationship 
between anatomical/functional data and the position of the interventional 
devices. We prose a navigation methodology, called cardiac unfold, where an 
entire cardiac chamber is unfolded from 3D to 2D along with all relevant 
anatomical and functional information and coupled to real-time device tracking. 
This would allow more intuitive navigation since the entire 3D scene is 
displayed simultaneously on a 2D plot. A real-time unfold guidance platform 
for CRT was developed, where navigation is performed using the standard 
AHA 16-segment bull’s-eye plot for the left ventricle (LV). The accuracy of the 
unfold navigation was assessed in 13 patient data sets by computing the 
registration errors of the LV pacing lead electrodes and was found to be 2.2 ± 
0.9 mm. An unfold method was also developed for the left atrium (LA) using 
trimmed B-spline surfaces. The method was applied to 5 patient data sets and 
its utility was demonstrated for displaying information from delayed 
enhancement MRI of patients that had undergone radio-frequency ablation. 

1 Introduction 

Minimally-invasive catheter-based interventions have become the treatment of choice 
for patients with many forms of cardiovascular disease. The cardiac catheterization 
laboratory is the primary treatment environment for these procedures and X-ray 
fluoroscopy is the main imaging modality that is used for interventional guidance. 
Interventional devices, such as catheters, have been specifically designed to be  
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highly-visible using fluoroscopy. However, navigation can be difficult because the 
target structures, such as the cardiac chambers and the great vessels, are not well-
visualized using fluoroscopy without the use of repeated contrast agent injection. 
Long procedure times, high radiation dose and large contrast agent burden have lead 
to the introduction of image-guided navigation solutions. The use of this technology is 
exemplified in the case of electrophysiology (EP) procedures and cardiac 
resynchronization therapy (CRT). Examples of such technology include the EnSite 
Velocity (St. Jude Medical, USA), CARTO 3 (Biosense Webster, USA) and EP 
Navigator (Philips Healthcare, The Netherlands) systems. In each of these systems, 
three-dimensional (3D) anatomical models of the target cardiac chambers are used to 
guide the interventions. In the case of EnSite Velocity and CARTO 3, these models 
are reconstructed using tracked catheters that are moved inside the target chamber to 
generate the anatomy. In the case of EP Navigator, pre-procedural computer 
tomography [1], magnetic resonance imaging (MRI) [2], or rotational X-ray 
angiography [3, 4] of the heart are used to generate the anatomical models which are 
then registered to and overlaid onto X-ray fluoroscopy to provide a roadmap image. 

Recently, the use of cardiac MRI to guide cardiac resynchronization therapy (CRT) 
for patients with heart failure has been proposed and demonstrated [5-7]. CRT involves 
the placement of a pacemaker device with pacing leads being inserted endocardially into 
the right atrium (RA) and right ventricle (RV), and epicardially into the left ventricle 
(LV) through the coronary venous system. There is potential to reduce the high failure 
rate (30%) of this procedure using advanced image-guidance. Cardiac MRI can be used 
to obtain all the critical information necessary for successful lead placement during 
CRT: (a) cardiac chamber anatomy; (b) coronary venous anatomy; (c) ventricular scar 
distribution; and (d) dyssynchrony information. Using a prototype version of the EP 
Navigator, we were previously able to place the LV pacing lead to target pre-selected 
segments of the LV based on the MRI information [5, 6].  

One limitation of current navigation approaches is that the critical information 
required by the cardiologist for navigation is always displayed as a projection from 
3D to 2D, i.e. on the computer display screen. In the case of anatomical overlay 
systems, such as EP Navigator, this means that the relationship between the position 
of interventional devices, such as the pacing leads, and the anatomical and functional 
information in the roadmap cannot easily be appreciated. In the case of 
electroanatomical mapping systems, such as EnSite Velocity or CARTO 3, there is 
frequent need to rotate the 3D anatomical models to obtain the correct view. 

One way to overcome this limitation is to unfold the 3D information to 2D, 
something that has been applied extensively for the brain [8]. 2D representation of the 
LV using the American Heart Association (AHA) 16-segment bull’s-eye plot is a 
well-established technique. Furthermore, it has been shown how additional 
information can be added to this. For example, Termeer et al. [9] presented 
combination of the coronary artery centreline and scar information on a bull’s-eye 
plot. In this paper, this concept is extended for the use of interventional guidance by 
coupling the bull’s-eye representation with real-time device tracking. A complete 
unfold guidance platform was developed for specific guidance of CRT procedures. 
Secondly, in order to extend the unfold concept for the guidance of radio-frequency 
ablation of atrial fibrillation, an unfold method for the left atrium (LA) surface was 
developed using trimmed B-spline surfaces. These unfolding techniques, termed 
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cardiac unfold, were applied to patient data: 13 data sets from patients undergoing 
CRT were used for off-line accuracy validation of the LV unfolding and real-time 
testing of the augmented navigation approach was used in 5 live CRT cases; for LA 
unfolding, only proof-of-concept is presented using 5 data sets from patients that 
underwent radiofrequency ablation for atrial fibrillation. 

2 LV Unfolding Method 

Cardiac MRI (Philips 1.5T Achieva, Phillips Healthcare, Best, The Netherlands) was 
performed prior to the pacemaker implants for 18 patients being treated for heart 
failure using CRT. Cardiac MRI consisted of a combination of anatomical and 
functional scans such as steady-state-free-precession (SSFP) and delayed 
enhancement (DE) scans. 3D SSFP whole-heart image data was automatically 
segmented to yield the endocardial surfaces of the RV, LA and RA and the 
endocardial and epicardial surfaces of the LV using a model-based segmentation 
algorithm [10]. The coronary veins and any myocardial scar were segmented from the 
MR images and dyssynchrony was quantified (see [6] for further details). Then the 
unfolding is carried out using the following methods: 

2.1 3D to 2D Bull’s-Eye Transformation 

A transformation was designed to map the 3D anatomical/functional information to a 
2D bull’s-eye plot based on the standard AHA 16-segment model of the LV. An 
automatic method was designed using only the LV and RV surfaces which are 
extracted from the automatic segmentation results. A cubic Bezier curve is used to 
model the LV long axis. The cubic Bezier curve is defined as: 
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where iP  are the control points. 0P  is the apex of the LV. 1P , 2P  and 3P  are the 

center points of cross sections perpendicular to the long axis. To search for the 
locations of the control points of the Bezier curve, the following 4 steps were used: 
Step (1): use the automatic whole-heart segmentation algorithm to segment the LV 
and RV from the whole-heart MRI data and extract the LV and RV surfaces using the 
marching cubes algorithm; Step (2): use a linear regression algorithm to calculate the 
principal axis of the LV surface (figure 1A). The principal axis is defined as the first 

eigenvector of the positive definite matrix pdM , where AAnM T
pd )/1(= . n is the 

number of vertices in the LV surface.  Matrix A is defined as VVA −= , where V is 

the vertex array of the LV surface and V is the mean of all vertices; Step (3): project 
all vertices of the LV surface to the principle axis and find the lowest vertex. The 
lowest vertex is used as the apex of the LV; Step (4): calculate the center points of 
cross sections.  
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[11]. The edge length rule labels any triangle with any of its edges larger than a 

threshold as outside. The threshold is set to 3 times the voxel size in the 3D MR 

image. 3 was chosen based on the marching cubes algorithm, which states that the 
longest edge of a triangle is the diagonal of the voxel cube. After removing  
the outside triangles, the 2D model of the CS is generated (see figure 2B). Next, the 
binarized scar map, which represents the scar locations on the LV surface, is mapped 
into 2D. The 2D representation of scar is as a 2D mesh. Figure 2C gives an example 
of 2D representations of the CS and scar map.  

 

 

Fig. 2. (A) 2D Delaunay triangulation. (B) After removing the outside triangles. (C) The 2D 
bull’s-eye plot with the CS (blue lines) and scar (transparent white mesh). 

3 LA Unfolding Method 

MR imaging was performed on 5 patients (mean age 60±10, 4 male) after 
radiofrequency ablation treatment for treatment of paroxysmal atrial fibrillation. This 
included Gadolinium-enhanced MR angiography (MRA) and DE imaging. The LA 
was automatically segmented from the MRA data using [12] followed by manual 
corrections by a clinical expert, when required. The LA surface was unfolded using 
the following steps: 

3.1 Generation of B-Spline Contours 

B-spline contours are obtained by scanning the LA segmentation in a raster-like 
fashion (see figure 3A) in the head-to-foot direction. Each scan line generates a 
contour. It is ensured that no multiple disjoint contours are generated for a single scan 
line. This can be a problem especially if the pulmonary veins (PVs) are not truncated 
at the ostium (see PV cut planes in figure 3A). Thus by carefully selecting appropriate 
cut planes to remove each pulmonary vein, each scan line only generates a single 
contour. For each contour, a distance-minimizing B-spline curve with 100 control 
points is then fitted through points sampled on the contour. B-spline curve fitting of 
these contours is important as it significantly reduces the noise within contour points.  
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V Unfolding Navigation 
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4.2 LA Unfolding Accu
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information in a single 2D representation. It could also be useful if coupled to a 
robotic catheter system to reduce the degrees of freedom in the control interface. 

In conclusion, cardiac unfold techniques are promising for augmenting image-
based navigation for catheter-based cardiac interventions. Further, validation and 
testing of these will be required to prove clinical utility. 
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