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Abstract—Knowledge of left atrial (LA) anatomy is important
for atrial fibrillation ablation guidance, fibrosis quantification and
biophysical modelling. Segmentation of the LA from Magnetic
Resonance Imaging (MRI) and Computed Tomography (CT)
images is a complex problem. This manuscript presents a
benchmark to evaluate algorithms that address LA segmentation.
The datasets, ground truth and evaluation code have been
made publicly available through the http://www.cardiacatlas.org
website. This manuscript also reports the results of the Left Atrial
Segmentation Challenge (LASC) carried out at the STACOM’13
workshop, in conjunction with MICCAI’13. Thirty CT and 30
MRI datasets were provided to participants for segmentation.
Each participant segmented the LA including a short part of the
LA appendage trunk and proximal sections of the pulmonary
veins (PVs). We present results for nine algorithms for CT and
eight algorithms for MRI. Results showed that methodologies
combining statistical models with region growing approaches
were the most appropriate to handle the proposed task.

The ground truth and automatic segmentations were standard-
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University of Lübeck, Germany; Institute of Medical Technology, Hamburg
University of Technology, Hamburg, Germany.— R. Razavi is with Division
of Imaging Sciences & Biomedical Engineering, King’s College London,
London, UK and Department of Cardiology, Guy’s and St. Thomas’ NHS
Foundation Trust, London, United Kingdom.

This research was supported by the National Institute for Health Re-
search (NIHR) Guy’s and St Thomas’ Biomedical Research Centre, and,
the NIHR University College London Hospitals Biomedical Research Centre
(NIHR BRC UCLH/UCL High Impact Initiative-BW.mn.BRC10269). The
views expressed are those of the author(s) and not necessarily those of
the NHS, the NIHR or the Department of Health. This research was also
supported by the German BMBF grant (01EZ1140A), the British EPSRC grant
(EP/H046410/1), the French CardioUSgHIFU grant (ANR-2011-TecSan-004),
the Microsoft Research PhD scholarship programme and the ERC advanced
grant MedYMA.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

ised to reduce the influence of inconsistently defined regions (e. g.
mitral plane, PVs end points, LA appendage). This standardisa-
tion framework, which is a contribution of this work, can be used
to label and further analyse anatomical regions of the LA. By
performing the standardisation directly on the left atrial surface,
we can process multiple input data, including meshes exported
from different electroanatomical mapping systems.

I. INTRODUCTION

A. Clinical motivation
Atrial fibrillation (AF) is the most common cardiac electri-

cal disorder [1]. Ablation therapies attempt to disrupt electri-
cal reentry pathways that cause the arrhythmia. It has been
shown that ectopic beats from within the pulmonary veins
(PVs) commonly initiate AF [2]. The most common ablation
procedure aims to electrically isolate the PVs from the left
atrium (LA) body by inducing circumferential lesions. Some
patients may require other types of lesions, such as linear
lesions (e. g. along the roof or the isthmus), or complex
localised lesions (e. g. targeting the autonomic ganglionated
plexi) [1]. Traditionally, the ablation procedure has been
guided with X-ray fluoroscopy. With the advances of clinical
imaging systems, a preoperative CT or MRI scan is prescribed
for most patients. This allows one to obtain a preoperative
anatomical representation of the LA. This LA anatomy can
be integrated into electroanatomical mapping systems. Such
integration reduces fluoroscopy time and improves patient
outcome [1]. A correct anatomical representation of the LA
is, therefore, crucial for the success of the intervention.

Apart from therapy guidance, LA segmentations can help
automate LA fibrosis quantification from late gadolinium
enhancement datasets. The presence of LA fibrosis is highly
associated with post-ablation AF recurrence [3]. Additionally,
LA anatomical models have been employed for cardiac bio-
physical modelling [4]. These models aim at understanding
the mechanisms of AF and, eventually, at predicting optimal
therapy.

B. Technical motivation
Segmentation is required to extract the LA anatomy from

the preoperative scans. Segmenting the LA is challenging
due to several reasons. The LA has a very thin myocardial
wall (⇠2-3 mm) [5] making it challenging to image at even
the best resolutions available. As a result, most algorithms
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rely on extracting the blood pool to segment the LA which
leads to another complication. The LA is surrounded by other
anatomical structures that appear with similar image intensity
as the blood pool. These structures, including other cardiac
chambers, the descending aorta and the coronary sinus, often
mislead purely image driven algorithms. Additionally, the PV
arrangement varies greatly between subjects. The topological
variants include four veins (⇠74%), five veins (⇠17%) or three
veins (⇠9%) [5]. The LA appendage (LAA) also varies in
shape and size between subjects. Such anatomical variations
limit the use of approaches with full statistical constraints.
Finally, the mitral valve (MV) leaflets can be either at different
opening positions or barely visible in the images. This hampers
the definition of the boundary between the LA and the left
ventricle.

Several approaches have been proposed to segment the LA
from CT and/or MRI datasets. They have evolved from purely
data driven methods, like region growing [6] or graph cuts
[7], to more advanced methods using prior information. Prior
information has mostly been included as an image atlas or a
shape atlas. Zhuang et al. [8] used local affine and deformable
registration to propagate a single atlas to an unseen image.
This approach was extended to include multiple atlases which
are fused to obtain a final segmentation [9]. Ecabert et al. [10]
used a whole heart shape model trained with advanced image
features [11]. This approach was extended to include multiple
shape models with different PV topologies [12]. Zheng et al.
[13] used a shape model approach which is automatically
initialised using marginal space learning. Recent approaches
tend to combine model based methodologies with image driven
methodologies [14]–[17].

C. Benchmark and challenge

This manuscript presents a benchmark to evaluate algo-
rithms that address LA segmentation. Benchmarking of al-
gorithms is a very important activity to encourage clinical
translation of image processing methods. It allows one to
evaluate the algorithms using a unified database by an unbiased
evaluator. In the last few years, several conferences have
endorsed such benchmarks in the context of challenges. This
manuscript also reports the results of the Left Atrial Seg-
mentation Challenge (LASC) carried out at the STACOM’13
workshop, in conjunction with MICCAI’13 [18]. A second
call for participants was issued after the workshop to ex-
pand the range of evaluated algorithms. Consequently, this
manuscript presents segmentation results from seven research
groups covering a wide range of methodologies: thresholding
with shape descriptors, statistical shape models with/without
region growing, multi-atlas segmentation with/without region
growing, snakes with region growing, and random decision
forests. For further details, see Sec. III-B.

Performing an unbiased evaluation of different LA segmen-
tation algorithms is a challenging task. Even for a human
observer, it is difficult to define regions of the LA, such as
the MV plane, the PVs and the LAA. To ensure that the
calculated metrics are not negatively affected by inconsistent
definitions of these regions, we developed a standardisation
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Fig. 1: Examples of datasets provided for the benchmark. A high and a
low quality dataset is displayed for each modality. Colour contours show the
manual ground truth (LA body = white, LAA = green, PVs = other colours).
For more details see Sec. II-A.

framework. First, we extract a 3D mesh from the binary masks.
We then compute the MV plane and use it to truncate the
meshes. Subsequently, we automatically find the PV ostia and
label the PVs accordingly. We use these automatic labels1 to
truncate the PVs distally to the LA body ensuring at least
10 mm coverage. Finally, the LAA is labelled and discarded
from metric computation. The standardisation framework was
executed both on the ground truth and the automatically
segmented binary masks. This framework is an important part
of the contribution of this work and can be used to label
and further analyse anatomical regions of the LA. For further
details, see Sec. II.

II. EVALUATION FRAMEWORK

A. Datasets
Thirty CT and 30 MRI datasets were provided to par-

ticipants for segmentation. Ten data sets per modality were
provided with expert manual segmentations for algorithm
training (SET-A). The other 20 data sets per modality were

1Labels are commonly used in image processing to identify different regions
in a segmented mask. By displaying each label with a different colour, each
region is easily visually identified.
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used for evaluation (SET-B). Datasets were limited to the
most common topological variants showing four PVs (present
in ⇠74% of the population). The datasets were provided by
Philips Technologie GmbH, Hamburg, DE, and King’s College
London, London, UK (see Fig. 1).

1) CT datasets: Retrospectively ECG-gated cardiac multi-
slice CT images were acquired with Philips 16-, 40-, 64- and
256-slice scanners (Brilliance CT and Brilliance iCT, Philips
Healthcare, Cleveland OH, USA) typically at end-systole. All
images were reconstructed using a 512⇥ 512 matrix with an
in-plane voxel resolution ranging from 0.30⇥ 0.30 to 0.78⇥
0.78mm2 and with a slice thickness ranging from 0.33 to
1.00 mm. All scans were acquired after injection of ca. 40–
100 ml contrast media. Acquisition times for a complete CT
volume ranged from 4 s on modern iCT scanners to 20 s for
the older 16-slice scanners. Each dataset represents a single
cardiac phase 3D volume image. The datasets were selected to
provide a variety of quality levels in the following proportions:
8 high contrast, 15 moderate contrast, 3 low contrast and 4
high noise datasets.

2) MRI datasets: MRI acquisition was performed on a
1.5 T Achieva scanner (Philips Healthcare, Best, The Nether-
lands). A 3D whole heart image was acquired using a 3D
balanced steady state free precession acquisition [19]. The
sequence acquired a non-angulated volume covering the whole
heart with voxel resolution of 1.25⇥ 1.25⇥ 2.7mm3. Images
were acquired during free breathing with respiratory gating
and at end diastole with ECG gating. Typical acquisition time
for a complete volume was 10 min. Each dataset represents
a single cardiac phase 3D volume image. The datasets were
selected to provide a variety of quality levels in the following
proportions: 9 high quality, 10 moderate quality, 6 local
artefacts and 5 high noise datasets.

B. Ground truth generation

In order to obtain a set of ground truth (GT) segmentations
consistent across modalities, we started by performing an
automatic model based segmentation with a method which
is optimised for both CT and MRI modalities. After the
automatic segmentation, manual corrections were performed.
This algorithm was not included in the evaluation to avoid
statistical bias. Details are provided next.

1) Automatic segmentation: The automatic segmentation
used in this study was described in [10], [20], [21]. The seg-
mentation uses shape constrained deformable models. These
are based on a mesh representation of surfaces of cardiac
chambers and the attached great vessels. The automatic adapta-
tion starts by a localisation step using the Generalised Hough
Transform [22] to place the mesh model close to the heart
(Fig. 2-a). Several adaptation steps with increasing degrees
of freedom refine the model’s pose and shape. Each step
uses trained boundary detectors to detect each chamber’s
boundaries in the image. Using the detected boundaries, a
first step adjusts the global pose of the complete model by
performing a rigid adaptation with scaling that minimises
the squared distances of the model surface to the detected
boundaries (Fig. 2-b). Subsequent steps add more degrees of
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Fig. 2: Automatic segmentation pipeline on a CT image for ground truth
generation. Different colours represent different parts of the deformable
model. Green and magenta regions correspond to the LA and the PVs,
respectively (for details see Sec. II-B1).

freedom by subdividing the model into mesh regions and
adapts these parts via individual affine transformations (Fig. 2-
c). Finally, a deformable adaptation step leads to a locally
accurate segmentation in which each mesh vertex is free to
move under the image forces that pull the mesh triangles
to the detected boundaries while internal forces regularise
the adaptation and penalise strong deformations of the model
shape (Fig. 2-d). After adaptation of the model is complete,
the regions enclosed by the surfaces are converted into a
label image with region-specific labels. In our study, labels
not covering the LA and the PVs were discarded.

2) Manual correction criteria: Each automatic segmenta-
tion was manually corrected by an experienced observer to
obtain the final GT segmentation. Additionally, a second ob-
server (OBS-2) performed the manual corrections to estimate
interobserver variability. Manual corrections were performed
using Philips in-house editing tools and/or ITK-SNAP [23].
PVs were followed distally to the LA body ensuring at least
10 mm coverage. They were truncated at the first branching
point when there was no clear main PV to follow. Editing
was performed on all orthogonal slices. Observers also itera-
tively generated isosurfaces of the segmentation to ensure 3D
consistency and to remove surface irregularities. The amount
of time dedicated to a dataset ranged between 2 and 6 hours.

Each GT segmentation consisted of five labels: one label
for the LA body including the LAA and one label for each of
the four PVs. The LAA was truncated relatively close to the
body to ease GT generation. These labels were used only for
standardisation purposes (see Sec. II-C1).

C. Standardisation

Even for a human observer, it is difficult to define regions
of the LA, such as the MV plane, the PVs and the LAA. To
ensure that the calculated metrics are not negatively affected
by inconsistent definitions of these regions, we standardised
all the manual GT and all submitted segmentations. The
framework was implemented using the Visualization Toolkit
(VTK),2 the Vascular Modeling Toolkit (VMTK),3 and MAT-
LAB Toolbox graph.4

1) Mitral valve plane: The boundary between the atrium
and the ventricle can be inconsistent due to different levels
or opening/closure of the MV leaflets. To compute the mitral
plane, we generate a surface mesh from the GT label images

2www.vtk.org
3www.vmtk.org
4www.ceremade.dauphine.fr/⇠peyre/matlab/graph/content.html
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using marching cubes followed by volume preserving smooth-
ing. We define a local coordinate system using the centroid of
the LA body (BC) and the centroid of the four PV ostia (PVC).
The first axis is the vector connecting the BC and the PVC.
The second axis is computed perpendicularly to the first axis
and the vector connecting left and right PVC. The third axis is
computed perpendicularly to the first and second axes. These
three axes are combined using empirically determined weights.
The clipping plane is set normal to the combined vector and
centred at a point below the BC. Segmentations are truncated
below the MV plane (Fig. 3-a). We verified the accuracy of
this clipping approach in the original images.

2) Pulmonary veins ostia: Due to a lack of clear anatomical
landmarks, defining the boundary between the LA body and
each PV is not trivial (i. e. ostia). In this study, we developed
an automatic approach to obtain a consistent and 3D sound
definition of the PV ostia. This approach makes use of a
Voronoi diagram extracted from the surface mesh and its
corresponding centrelines [24]. To extract the source and
target seeds for centreline construction, we compute the Gauss
curvature on the surface [25], [26]. For each PV we select
the high curvature patch furthest from the body and store its
centroid as a PV seed. From the patches belonging to the body,
we keep the largest patch and store its centroid as a LAA seed
(red spheres in Fig. 3-b).

For each PV, we generate a pair of centrelines that connect
the PV seed to the two opposite PV seeds, as displayed in
Fig. 3-b. We split the centrelines into branches [27] and create
cross sections perpendicular to the centreline. As the clipping
section enters the LA body, the maximum diameter increases
significantly, providing the ostium point (Fig. 3-c). We clip the
surface at the ostium point and use the isolated PV to relabel
the original surface (Fig. 3-d).

3) Left atrial appendage: The great variation of the LAA in
the population makes it difficult to segment. To label the LAA,
we reconstruct a simplified version of the original surface
based on a smooth Voronoi diagram (Fig. 3-e) [28]. We then
compute the distance between the original and the simplified
reconstructed surface (Fig. 3-f). We evaluate large distance
patches as candidate LAA regions. We select the patch closest
to the previously computed LAA seed (Fig. 3-g).

4) Pulmonary vein truncation: For this benchmark, we
wish to retain only the proximal sections of each vein.
Truncation is performed by clipping the PV with a plane
perpendicular to its corresponding centreline (Fig. 3-h). The
clipping point is computed by measuring 10 mm from the
ostium along the centreline.

D. Evaluation metrics

To test segmentation accuracy we used two metrics: surface-
to-surface distance (S2S) and Dice coefficient (DC). S2S gives
the distance in mm of each point in the automatically seg-
mented mesh to the GT surface. Low values of S2S represent
higher accuracy. We computed S2S between each standardised
GT mesh and each standardised automatic mesh, and vice
versa. To normalise the contribution of each case to the
average S2S metric, distance measurements were subsampled
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Fig. 3: Standardisation framework. A surface mesh is computed from the
GT label images. The mesh is clipped at the MV plane. The centroids of the
high curvature areas are used as seed points for centreline extraction. The
ostium of each PV is automatically defined based on the change of diameter
(fewer diameter sections are displayed). New labels are assigned to the mesh
representing each PV. To label the LAA, the Voronoi diagram is smoothed
along the centrelines and a simplified surface is reconstructed. By computing
the distance from the original surface to the simplified surface, we extract the
LAA region. Each PV is isolated and clipped with a plane perpendicular to the
centreline and located 10 mm away from the ostia (for details see Sec. II-C).

to 2000 random samples (per case and per region) using a
bootstrapping approach.

DC summarises volumetric overlap between two sets of
binary segmentations. Values of 0 indicate no overlap between
the result and the GT. Values of 1 indicate complete overlap
(higher accuracy). To calculate the DC, we generated a blank
image with the same resolution as the input datasets. We then
isolated each region from the standardised meshes and marked
the voxels inside the surface with its corresponding GT label
value. We computed the overlap between the new GT label
images and the automatic images.

In our experience, S2S best reflects segmentation accuracy
for the LA body, while DC best reflects segmentation ac-
curacy for the PVs. We combined these two metrics into a
unified score representing relative deviation from the mean.
To equalise the contribution of both metrics, we normalised
each error measurement such that:

Zreg,p =
xp � µ

�

(1)
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TABLE I: Summary of algorithms evaluated in this benchmark.

METHODOLOGY PREPROC.
PROC.

TIME (s) STRENGTHS LIMITATIONS
CT MRI

BECHAR
Region growing +
snakes

Axial slice
span} 900† -

Simple and fast;
Automatic initialisation of the snake;
High accuracy in selected slices.

Strongly dependent on image quality;
2D implementation.

INRIA Random decision forest Histogram
normalisation⌥ 1500 60

Few assumptions;
Learning directly from image - label pairs.

May not adapt to cavity contours;
PVs often missed or misclassified;
Requires large training set for improved performance.

LTSI-VRG
Multi-atlas +
multi-voting +
region growing

None 4700‡ 3100‡
Apriori anatomical information;
Robust due to multiple atlases information.

Global measure in atlas ranking unfavourable for PVs;
Global criterion in region growing unfavourable for
intensity inhomogenities;
Computationally expensive.

LTSI-VSRG
Multi-atlas +
STAPLE
+ region growing

None 4700‡ 3100‡
Specialised fusion step;
Apriori anatomical information;
Robust due to multiple atlases information.

Global measure in atlas ranking unfavourable for PVs;
Global criterion in region growing unfavourable for
intensity inhomogeneities;
Computationally expensive.

LUB-SRG
Single-atlas +
region growing

LA ROI
detection⌥

467 16 Handles anatomical variations of PVs. LV leakage if valve is open or barely visible.

LUB-SSM Statistical shape model LA ROI
detection⌥

248 27
Robust against different mitral valve states;
Robust to different contrast distributions.

Dependent on morphology of training set;
Miss-segmentation of rare PVs variations;
Large training set required to cover shape variability.

SIE-PMB Part model based None 3[ -
Robust to image noise and artefacts (i. e. C-arm CT);
Very efficient;
Determines the position of mitral valve.

Requires large training set;
Does not extract proximal side branches of PVs;
Handles major anatomical variations of the PVs,
but not extremely rare ones⇤.

SIE-MRG
Model based +
region growing None 10[ -

Handles rare anatomical variations⇤;
Extracts proximal side branches of PVs;
Determines the position of mitral valve plane.

Needs sufficient contrast inside the LA and PVs.

TLEMCEN
Threshold +
circular shape descriptors

Sagittal
slice span}
threshold
value}

- 50†
Simple;
Good accuracy on the middle of the LA body.

Lower part of the LA often over segmented;
PVs often missed;
2D implementation.

UCL-1C
Multi-atlas +
multi-voting (1 chamber) None 4200‡ 1200‡ Robust due to multiple atlases information.

Dependent on quality and morphology of training set;
Miss-segmentation of rare PVs variations;
Computationally expensive.

UCL-4C
Multi-atlas +
multi-voting (4 chamber) None - 1200‡

Robust due to multiple atlases information;
Robust due to other chamber information;
Determines the position of mitral valve plane

Dependent on quality and morphology of training set;
Miss-segmentation of rare PVs variations;
Computationally expensive.

PROC. = processing; } = manual; ⌥ = automatic; † = based on 100 slices; ‡ = based on 10 atlases; [ = optimised implementation for multi-score CPUs;
⇤ = not included in this benchmark; Processing times not directly comparable due to different types of CPUs.

where reg is the anatomical region (body, PVs), xp is the
median metric of each participant (p), µ is the mean of
the median metric of all participants, and, � is the standard
deviation of the median metric of all participants. We used
the complement of the DC (1-DC) previous to normalisation
so that, similarly to S2S, lower values translate into higher
accuracy.

After normalisation, the unified score Sp for each participant
p was computed as:

Sp =
ZS2S

body

,p + Z(1�DC)
pvs

,p

2
(2)

III. CHALLENGE RESULTS

To simplify the segmentation task, participants were pro-
vided with a single value mask combining all structures for
training. They were asked to segment the LA including a short
part of the LAA and the proximal sections of the PVs as a
single-valued mask. The LA body should have reached into
the funnel of the MV. To encourage submissions with more
incipient segmentation techniques, we stated in the call that
errors corresponding to the LAA would be excluded. Since
the standardisation procedure was stated upon data request,
participants were aware that evaluation metrics would not
punish long PVs or LV leakage.

A. Automatic segmentations
From each binary mask we generated a surface mesh using

marching cubes followed by volume preserving smoothing (to
correct marching cubes artefacts). Next, we clipped the mesh
with the MV plane generated from the GT mesh (Sec. II-C1),
discarding unconnected regions. We then transferred the au-
tomatic PVs and LAA labels of the GT mesh to their closest
points in the automatically segmented mesh (Sec. II-C2 and
Sec. II-C3). For each label, we ensured a single connected
region to avoid transferring PV labels to neighbouring areas.
Finally, using the automatic labels, we clipped the PVs using
the planes computed automatically from the GT (Sec. II-C4).

B. Evaluated algorithms
We received 11 submissions from seven international

groups. Table I details the characteristics of each algorithm.
Due to the use of different types of CPUs for execution,
we could not directly compare the execution time of the
different algorithms. We provide below a brief description of
their underlying methodology. Note that all operations were
performed in 3D unless stated otherwise.

a) University of Bechar, Algeria (BECHAR):
Daoudi et al. [29] proposed an algorithm based on active
contours. It started by enhancing image contrast using
an adaptive histogram equalisation method. Each image
(SET-B) was then thresholded to roughly localise a seed
point inside the LA. The region around the seed point was
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gradually grown to produce a preliminary segmentation. This
preliminary segmentation was used to initialise a Gradient
Vector Flow snake model which was attracted to the borders
of the LA. This is a 2D approach and requires a preselection
of the axial slices spanning the LA. Only CT datasets were
processed.

b) Inria, Sophia-Antipolis, France (INRIA):
Margeta et al. [30] proposed an algorithm based on random
decision forests. The algorithm had an offline training phase
in which binary decision trees were optimised to separate
the atrial voxels from the background voxels (SET-A). The
decision trees used several features such as: local intensity,
long-range intensity relationship, distance to blood pool
contours and tubularity. During the online segmentation phase
(SET-B), each voxel was assigned a probability of belonging
to the LA based on these trees. The final segmentation was
obtained by thresholding the probability map. Postprocessing
included a hole filling step and extraction of the largest
connected component. Both modalities were processed.

c) LTSI - Inserm Rennes, France (LTSI): Sandoval et al.
[16] proposed one algorithm based on multi-atlas segmentation
followed by region growing. It started by performing affine
registration between the unseen image (SET-B) and each atlas
intensity image (SET-A). A subset of top-ranked atlas intensity
images were selected according to the final similarity measure
value. The subset were registered to the unseen image using
elastic registration. The obtained transformations were used to
propagate the atlas label images to the unseen image space.
The propagated atlas labels were merged using fusion rules.
Finally, this fused label image was eroded and used to initialise
a region growing procedure. The same fused label image
was dilated to spatially constrain the region growing. Both
modalities were processed using two different fusion rules:
majority-voting (LTSI-VRG) and STAPLE (LTSI-VSRG).

d) University of Lübeck, Germany (LUB): Stender et al.
[15] proposed two algorithms. The first algorithm was based
on statistical shape models (LUB-SSM). This algorithm used
an average image constructed from SET-A which was used
to construct a modality-specific statistical shape model. To
initialise the segmentation, the unseen image (SET-B) was
registered to the average image using affine registration. The
obtained transformation was used to propagate the average
mesh. The mesh was subsequently adapted along the surface
normals of each vertex following gradient features of the
unseen image. A valid instance of the deformed mesh was
obtained using the statistical constraints of the model. Both
modalities were processed.

The second algorithm was based on statistical region grow-
ing (LUB-SRG). In this algorithm the unseen image (SET-B)
was registered to the average image using affine and elastic
registration. The voxels with high probability of being inside
the LA were used as seed points for the region growing
procedure. The final segmentation was obtained after a hole
filling procedure. Both modalities were processed.

e) Siemens Corporate Technology, Princeton, NJ, USA
(SIE): Zheng et al. [13], [17] proposed two algorithms. The
first algorithm was based on a multi-part model (SIE-PMB)
divided into six-parts: LA body, LAA and four PVs. Each part

was detected and segmented using marginal space learning.
To improve detection robustness, statistical shape constraints
were enforced during marginal space learning pose estimation.
Finally, all parts were merged into a consolidated mesh. The
algorithm was previously trained on 457 cardiac CT scans.
Only CT datasets were processed.

The second algorithm was based on shape models followed
by region growing (SIE-MRG). In this approach the LA body
and LAA were segmented using marginal space learning. The
PVs were segmented using region growing. Based on the LA
body segmentation, the parameters for region growing were
adaptively determined for each volume. Finally, graph cuts
postprocessing was used to remove leakage. For the graph
cuts, the tissues outside the region growing segmentation were
negative seeds and the LA body and LAA were positive seeds.
The graph cuts were performed on a down-sampled volume to
reduce computational cost. Only CT datasets were processed.

f) University of Tlemcen, Algeria (TLEMCEN): Am-
mar et al. [31] proposed an algorithm based on threshold
localisation and circularity shape descriptors. This algorithm
processed sagittal slices since on this view the LA appears
ellipsoidal. Each slice was thresholded and each separate
region was analysed for shape features, including: circularity,
elongation, area, centre of mass. The optimal distinguishing
features were trained from SET-A. This is a 2D approach and
requires a preselection of the sagittal slices spanning the LA.
Only MRI datasets were processed.

g) University College London, United Kingdom (UCL):
Zuluaga et al. [9] proposed one algorithm based on multi-atlas
segmentation propagation. In this algorithm, the unseen image
(SET-B) was registered to each atlas intensity image using
affine and elastic registration. The obtained transformations
were used to propagate the atlas label images to the unseen
image space. The propagated labels were fused using the
STEPS algorithm [32]. The propagated atlas images were
ranked based on Local Normalised Correlation Coefficient
Criterion ranking strategy. Only the top-ranked atlas images
were used to obtain the final segmentation. Both modalities
were processed using SET-A as input atlas set (UCL-1C). MRI
datasets were also processed using a four-chamber in-house
atlas set (UCL-4C).

IV. RESULTS

Visual results of the segmentation outputs are displayed
for each algorithm and both modalities in Fig. 4 to Fig. 7.
Fig. 4 and Fig. 6 show axial slices from CT and MRI datasets,
respectively. The standardised meshes were intersected by the
image plane to generate contours. Fig. 5 and Fig. 7 show a
rendering of the output meshes from CT and MRI datasets,
respectively. The original meshes are displayed with trans-
parency, while the standardised meshes are opaque and colour
mapped according to anatomical region. The GT is placed on
the top row as reference. For each modality, we present a
high quality and a low quality dataset. Additional figures are
included as supplementary material.
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Fig. 4: Axial slices from the CT datasets are displayed from the mitral to the PVs plane. The standardised meshes were intersected by the image plane
to generate contours. They are colour mapped according to anatomical region (LA body = white, LAA = green, PVs = other colours). Case B007 is a high
quality dataset. Common failures included joining of the left inferior PV with the LAA, and, leakage into the left ventricle, the aorta and/or the right atrium.
Case B013 is a low quality dataset. For this case, region growing introduced irregularities on the final segmentation. Decision forest algorithm (INRIA) failed
on this dataset.
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Fig. 5: Results for each algorithm on the CT datasets. The original meshes are displayed with transparency. The standardised meshes are colour mapped
according to anatomical region (for details see Sec. III-A). Case B007 is a high quality dataset. Common failures included joining of the left inferior PV with
the LAA, and, leakage into the left ventricle, the aorta and/or the right atrium. Case B013 is a low quality dataset. For this case, region growing introduced
irregularities on the final segmentation. Decision forest algorithm (INRIA) failed on this dataset.
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Fig. 6: Axial slices from the MRI datasets are displayed from the mitral to the PVs plane. The standardised meshes were intersected by the image plane to
generate contours. They are colour mapped according to anatomical region (LA body = white, LAA = green, PVs = other colours). Case B003 is a high quality
dataset. Case B006 is a low quality dataset. For this case, region growing introduced irregularities on the final segmentation and decision forest retrieved a
only few pixels inside the body.
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Fig. 7: Results for each algorithm on the MRI datasets. The original meshes are displayed with transparency. The standardised meshes are colour mapped
according to anatomical region (for details see Sec. III-A). Case B003 is a high quality dataset. Case B006 is a low quality dataset. For this case, region
growing introduced irregularities on the final segmentation and decision forest retrieved a only few pixels inside the body.
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Fig. 8: Box plots of S2S (a+c) and DC (b+d) metrics for each algorithm. The corresponding region is represented with vignettes: LA body without LAA
(left) and all four PVs (right). The dotted line represents the mean of the median metrics of all participants. Maximum whisker corresponds to ⇠99.3%
coverage if the data were normally distributed.
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The evaluation metrics were grouped in two sets of errors:
the LA body after LAA removal and the four PVs combined.
Fig. 8-a and Fig. 8-c show the results of the surface-to-surface
distances as box plots. Each box plot was computed from
40000 samples corresponding to 2000 samples per case. Fig. 8-
b and Fig. 8-d show the results for the Dice coefficient as box
plots. Each box plot was computed from one value for the body
and four values for the PVs per case. Errors corresponding to
the LAA were not included in metric computation. The metrics
corresponding to interobserver variability were also included
in the plot. The median and standard deviation values for both
metrics are summarised in tables attached as supplementary
material.

Fig. 9 shows the unified scores computed using Eq. 1 and
Eq. 2 for both modalities. Note that metrics corresponding to
OBS-2 were not included in the normalisation. The normali-
sation values used to compute CT scores were: µS2S = 0.99,
�S2S = 0.44, µ(1�DC) = 0.27, �(1�DC) = 0.11. The normal-
isation values used to compute MRI scores were: µS2S = 1.52,
�S2S = 0.68, µ(1�DC) = 0.46, �(1�DC) = 0.16.

V. DISCUSSION

A. Overview

Although each algorithm is different in underlying method-
ology and implementation, we can find a few overall ten-
dencies: (1) a preprocessing procedure such as histogram
normalisation, volume of interest selection or atrial body lo-
cation; (2) obtaining an initial segmentation using a statistical
approach (multi-atlas or shape model); (3) optimisation of
the segmentation using region growing or snakes (overall or
limited to PV regions); (4) a post processing procedure such
as hole filling to regularise the segmentation or graph cuts to
reduce the leakage introduced by region growing.

To select a segmentation approach, one should take into
account the characteristics of each algorithm (Table I) and
the clinical context. For therapy guidance, either with elec-
troanatomical fusion/merging or fluoroscopy overlay, the error
induced by registration and respiratory motion alone is typi-
cally 1-2 mm [33]. For patient follow-up, the goal is to have
a segmentation that represents the LA anatomy to automate
scar quantification in late gadolinium enhancement datasets.
A common approach is to probe pixels around the LA border
for presence of fibrosis. If the search is bounded to ±3 mm
from the edge of the segmentation [34], a segmentation results
<3 mm from the actual LA wall would retrieve similar scar
information. For cardiac biophysical modelling, one could
trade anatomical accuracy to obtain a smoother surface.

B. CT datasets

Except in cases of poor image contrast, CT datasets allowed
for a clear visualisation of the LA body and PVs. This is
evident from the low interobserver variability (OBS-2). For
this modality, statistical atlas/shape approaches with/without
region growing obtained the best results. As can be seen in
Fig. 9-a, these methods obtained above average accuracy (neg-
ative scores): LTSI-VRG, LUB-SRG, SIE-PMB, SIE-MRG,
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Fig. 9: Unified scores computed using Eq. 1 and Eq. 2. The score combines
the S2S distance for the LA body and the DC for the PVs (1-DC). Lower
values represent higher accuracy. Zero represents the average accuracy of all
evaluated methods. The black bar represents interobserver variability (OBS-2).

UCL-1C. In low SNR images, region growing introduced ir-
regularities on the final segmentation (see Fig. 5-B013). Other
common failures included joining of the left inferior PV with
the LAA, and, leakage into the left ventricle, the aorta and/or
the right atrium. Left ventricular leakage was removed by
our standardisation process, hence they were not penalised
by the evaluation metrics. However, to be implemented as a
feasible clinical tool, the region growing should be somewhat
constrained. For instance, a postprocessing step using graph
cuts (SIE-MRG) proved to successfully contain unwanted
leakage into the right pulmonary artery after region growing.
Alternatively, limiting the region growing process to the PV
regions and/or to the surroundings of the initial segmentation
could serve the same purpose.

As can be seen in Fig. 9-a, these methods obtained below
average accuracy (positive scores): BECHAR, INRIA, LTSI-
VSRG, LUB-SSM. BECHAR shows potential since the slices
that were processed obtained good accuracy. Unfortunately,
due to the large amount of missing slices (especially on
the lower part of the LA body) the performance metrics
were heavily punished. A 3D extension of the approach able
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to handle the whole span of the LA would increase the
feasibility of the methodology. The generality of INRIA’s
decision forests comes at the cost of rather large training
sets, with typically several hundred subjects. The current
disparity in error metrics may be due to the large variation
of intensities and shapes across the given dataset with ten
training subjects in each modality. Improvements could be
expected with larger training sets. The method could also
benefit from using specific shape constraints based on the
LA anatomy. LTSI-VSRG obtained lower accuracy than its
counterpart (LTSI-VRG) by introducing a different fusion rule.
Both of these approaches (LTSI-VRG and LTSI-VSRG) can
benefit from increasing the number of atlases and optimising
the region growing parameters on a case-by-case fashion.
LUB-SSM obtained valid shape instances of the LA due its
statistical constraints. However, it obtained lower accuracy
than its counterpart (LUB-SRG). In order to capture a large
range of shape variability, the training set needs to be extensive
(e. g. SIE-PMB was previously trained with 457 datasets).

C. MRI datasets

MRI datasets proved more challenging to segment due to
their lower spatial resolution and intensity inhomogeneities.
This is evident on the higher interobserver variability (OBS-2).
In fact, the task with lowest overall accuracy was PV segmen-
tation from MRI datasets. In this sense, atlas based approaches
are advantageous. As can be seen in Fig. 9-b, these methods
obtained above average accuracy (negative scores): LTSI-
VRG, LUB-SRG, UCL-1C, UCL-4C. We noticed increased
inaccuracies on cases with a left common trunk. Ideally, these
models should be trained with a large dataset including all
anatomical variations. LTSI-VRG and LUB-SRG approaches
behaved similarly than for CT datasets (see Sec. V-B). UCL-
4C obtained lower accuracy than its counterpart (UCL-1C).
This could be due to different labelling on the in-house atlas
set.

As can be seen in Fig. 9-b, these methods obtained be-
low average accuracy (positive scores): INRIA, LTSI-VSRG,
LUB-SSM, TLEMCEN. INRIA often obtained good results
despite its few methodological assumptions. However, when
the segmentation failed the errors were rather large resulting
in a large dispersion of error metrics. A possible improvement
of this approach could be similar to CT, i. e. increase the
size and variability of the training dataset, and, include shape
constraints on the raw output of the forest. PV segmentation
performance could be improved by using the complete label
map (LA, PVs and background) and by increasing weights of
the less represented PV voxels in the decision forest training.
LTSI-VSRG and LUB-SSM approaches behaved similarly to
the CT datasets (see Sec. V-B). TLEMCEN’s algorithm is
based on circular shape descriptors from the sagittal plane.
Thus, similar to more complex approaches, it obtained good
accuracy on the middle of the LA body. However, the PVs
were often missing and the lower part of the LA body (closer
to the MV) was often over segmented. Similarly to BECHAR,
a 3D extension could improve its feasibility for a clinical
application.

D. Limitations and Future work

This benchmark includes a limited number of training cases
(SET-A) representing ⇠74% of the PV anatomical variants. In
this sense, more mature methodologies with previous training
had an advantage over algorithms implemented specifically for
this evaluation.

Generating a GT is a non-trivial task for which one needs
to balance control vs. realism. A highly controlled GT (e. g. a
phantom) will generate less realistic images. A highly realistic
image (e. g. patient data) will generate less controlled GT. For
this benchmark we chose to include only clinically available
datasets. As such, the true underlying structure of the LA
is unknown. To have a reference segmentation, we carefully
obtained an expert manual segmentation that we consider
our GT. Such a GT is inherently dependent on observer
subjectivity and ease of use of the manual segmentation tool.
We made the effort to enforce the consistency of the GT
by initialising the manual editing process with an automatic
approach optimised both for CT and MRI [10], [20], [21]
(not evaluated in this benchmark to avoid statistical bias).
We also enforced consistency by standardising the GT and
segmentation results. Detail of the PV tree or the LAA (such
as the one obtained by SIE-PMB and SIE-MRG) was not
included in the GT and therefore was not evaluated.

Regarding the evaluation metrics, we chose to report stan-
dard metrics of segmentation accuracy, such as Dice coefficient
and surface-to-surface distance. However, these metrics do not
readily translate into meaningful clinical metrics to allow an
electrophysiologist to gauge the accuracy or fidelity of a left
atrial segmentation. In fact, electrophysiologists commonly
use low fidelity anatomical models that are derived from
electroanatomic mapping systems to guide left atrial ablation
procedures. The relationship between the performance metrics
and the clinical usability of the anatomical models derived
from the algorithms presented in this manuscript should be
investigated in future work by carrying out a subjective grading
of the results.

Other future work may include: (1) complementing this
benchmark with in-silico and/or in-vitro phantom data for
which the GT is known by construction; (2) extending the
datasets to include more topological variants; (3) computing
motion from cine images of the LA.

VI. CONCLUSIONS

This manuscript presents a benchmark of current algorithms
that segment the left atrium from CT and MRI datasets.
Considerable effort was dedicated to implementing a standard-
isation framework for left atrial surfaces. Using the framework,
the boundaries of the LA were consistently identified on all
datasets. The location of LA landmarks (PV ostia, MV plane
and LAA) was visually confirmed with the original image
data. Some atlas based segmentation techniques may provide
an implicit standardisation by labelling each structure in the
atlas. By performing the standardisation directly on the left
atrial surface, we open the door to multiple applications. We
have recently used the framework on meshes from different
electroanatomical mapping systems with very positive results.
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The framework is, therefore, a major contribution of this work
and can be used to label and further analyse anatomical regions
of the left atrium.

Algorithms combining an atlas/model based approach with
a region growing approach perform best in segmenting the
left atrium from CT and MRI datasets. Limiting the region
growing to pulmonary vein segmentation further increases
accuracy of the results. Stronger statistical constraints improve
the segmentation of low quality datasets.

This manuscript also reports the results of the Left Atrial
Segmentation Challenge 2013. The challenge included well
established state-of-the-art algorithms along with simpler al-
gorithms. This variety allowed us to present a very interesting
up-to-date comparison. To encourage the evaluation of new
algorithms, the benchmark (datasets, ground truth and code)
is available on the Cardiac Atlas Project website.5
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