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ABSTRACT

This paper describes and evaluates methods to detect pul-
monary vein drainages and create detailed vessel trees of each
drainage from contrast-enhanced magnetic resonance angiog-
raphy (MRA). This description of the drainage allow us to de-
termine the highly complex left atrial anatomy in a qualitative
and quantitative way. It is beneficial for planning atrial fib-
rillation ablation procedures. We conclude that our methods
permit the creation of drainage trees for the detailed descrip-
tion of the atrial anatomy from cardiac MRA data.

Index Terms— Segmentation, magnetic resonance an-
giocardiography, Blood vessels

1. INTRODUCTION

There is a growing interest in quantifying the precise anatomy
of the human heart before surgical interventions. Atrial fibril-
lation (AFib) is the most common superventricular arrhyth-
mia with significant morbidity and mortality. It is also now
well established that the anatomical architecture of the left
atrium and pulmonary veins (PV) play an important role in
the genesis and maintenance of AFib [1].

Traditional techniques used in electrophysiology can ac-
curately map electrical activity in the atrial chambers but can-
not resolve the underlying left atrial anatomy. The anatomy of
the left atrium is highly complex and shows significant inter-
subject variability [1]. Understanding its anatomy is impor-
tant for the successful restoration of normal sinus rhythm in
AFib patients [2]. The use of contrast enhanced MRA for ob-
taining the detailed 3D anatomy of the left atrium has thus
gained great importance in AFib corrective procedures. It is
desirable to visualize the left atrial anatomy without the inter-
ference of neighbouring blood vessels and chambers. There
is little known work on left atrium segmentation, except for
the work in [3, 4].

2. LEFT ATRIUM AND ATRIAL BODY
SEGMENTATION

The images acquired for this study are contrast-enhanced
MRA images. The left atrium (LA) is segmented using a seg-
mentation method, previously described in [5]. In this paper,
the LA refers to the atrium and also includes the pulmonary
veins that drain into it. The segmented LA contains voxels
that belong to two sub-atrial structures: 1) central atrial body,
and 2) pulmonary veins. The segmentation of the atrial body
is desirable, before determining the PV. The method is based
on evolving surfaces using level set methods with two con-
secutive evolution processes, each under a different speed
function derived from the sigmoid:

S(x) =
1

1 + e−( x−βα )
(1)

where α, β are scaling parameters of the sigmoid. The first
evolution step obtains an approximation of the atrial body
shape. This approximation is improved in the second evolu-
tion step. The first evolution is influenced by the speed func-
tion S(d) where d is the Euclidean distance value. Here, the
distance values are from the Euclidean distance (ED) trans-
formation of the binary segmented atrium image. The second
evolution is influenced by the speed function S(∇I) where
∇I is the image gradient. In this step, the approximate shape
obtained in the first step is used as the initial surface. A curva-
ture constraint imposed on the evolving surface, in the second
evolution step, prevents leaks through the LA-PV junction
by preventing large deviances from the initial approximated
shape.

3. PULMONARY VEIN CENTERLINES

The PV centerline extraction process is based on determining
the medial axis of tubular structures. This is found by max-
imizing the ED transform function of the binary segmented
LA image. The ED transform is computed on the segmented
atrium image using a fast and exact method described in [6].



3.1. Determining vessel direction

Prior to centerline tracking, vessel directions at each voxel
location are determined. The directions are found by ana-
lyzing the second-derivative information or Hessian H of the
Gaussian smoothed image containing vessels [7]. It is as-
sumed that there is a good contrast between vessel and back-
ground. With Gaussian smoothing, minimum intensity vari-
ation is expected to be found in the vessel direction. Maxi-
mum intensity variations are found in the two directions or-
thogonal to the vessel axis. An eigen decomposition of the
Hessian give the amount of intensity variations and their di-
rections. Let λ1, λ2, λ3 be ordered eigenvalues of H with
|λ1| ≤ |λ2| ≤ |λ3| and v1, v2, v3 as corresponding eigenvec-
tors. The vessel direction is then given by v1. As vessels vary
in diameter, a multi-scale approach is used with smoothing
applied only at selected scales. Vessel directions are thus ex-
tracted at scales that match the vessel diameter. The correct
scales are determined using a vessel response filter [7].

3.2. Automatic seed selection

With the atrial body segmented and subtracted from seg-
mented LA, most voxels that remain are PV. To track PV
centerlines, seed points within vessels from which the track-
ing process can initiate are generated. It is desirable to
generate seeds only within the vessels but not the atrial body.
A vesselness filter [7] produces high responses in voxels
within vessels. Using this filter, voxels that have a vesselness
filter response higher than a certain threshold value are used
as seeds, ensuring only tubular structures are explored. We
randomly select 5% of total voxels with high response. This
normally generates between 1000-5000 seed points.

3.3. Centerline tracking

Centerline tracking is an iterative process, where at each step
the ED transform function ξ of the segmented LA is maxi-
mized. This works on the principle that the medial axis can be
reconstructed by finding local maximums of the ED function
at vessel planes, and connecting these with an approximating
spline. The process makes progress by moving forward along
the vessel, i.e. a small number of steps in the vessel direction
v1. The process is repeated at this newly arrived point. Fig. 1
illustrates the tracking process.

At each iterative step, the distance function ξ is maxi-
mized along the plane Γ, which is perpendicular to the vessel
direction v1 and passes through the seed point s:

Γ : v1 · (x− s) = 0 (2)

By constraining the maximization to this plane, repeated con-
vergences to a same local maximum of ξ, due to its catch-
ment basin, is avoided. Maximization is accomplished us-
ing a hill-climbing approach. Starting from a seed s, the di-
rection of maximum ascent is followed by exploring its 8-

Fig. 1. A - Starting from a seed point s, the ED transform ξ is
maximized, bringing us to a centerline point P1. B - A small
number of steps is taken in the vessel direction v1. C - The
function ξ is maximized again yielding a new centerline P2.

neighborhood. These neighbour locations are found by inter-
polating them on the plane Γ.

Termination conditions are imposed for allowing the
tracking process to stop. When the vessel tracker is outside
the vessel, or inside the atrial body, the tracking process is
stopped. In addition to this the tracking is also stopped if
the degree of curvature between consecutive centerline points
becomes too large.

4. TREE REPRESENTATION OF THE PULMONARY
VEINS

Centerline tracking produces disconnected segments and it is
useful to connect them in some ordered fashion. This also
helps construct a tree-like representation of the PV. Two im-
portant steps in building the vessel tree are discussed: 1) Find-
ing the root vessels for each tree and, 2) the cost function for
establishing parent-child connections.

4.1. Finding PV drainage and root vessels

Prior to computing the PV trees, centerline segments close to
the atrial body are found. Some of these are centerlines of
PV drainages to the atrial body and ideal candidates for root
of PV trees. A simple and fast technique is proposed to find
these drainages. Distances between the centerline endpoints
and atrial body surface are computed. Assume two subsets
in the image space I: left atrium (LA) and atrial body (AB)
where AB ⊂ LA ⊂ I:

AB = I\AB (3)

Let ξ(.) denote the ED transform operator on a binary im-
age. We can thus compute ξ(AB) which gives the shortest
distance value of each voxel to the atrial body surface. Cen-
terline segment endpoints with distance values less than τ in
ξ(AB) are selected.

To handle these cases and to ensure only a single segment
is selected as the root to represent the drainage tree, we use a
hierarchical clustering algorithm [8] to group centerline seg-
ments C. The closest endpoint, to the atrial body surface, of
each centerline segment inC is used as the data for clustering.
Since, drainages are spatially located on both the left and right



sides of the atrial body, a variance measure on the inter-cluster
distances can be used to identify the optimal cluster grouping.
Once clusters are identified, a centerline segment from each
cluster is selected as the root vessel for that drainage, prefer-
ably the one with the largest length.

4.2. Parent-child connections

With a root vessel centerline segment selected, child nodes
are progressively attached to the connected base, by evaluat-
ing the cost of connection with a cost function. These attach-
ments are straight lines connecting the child to the parent. A
possible connection is supported by two criteria: 1) the short-
est distance between the parent and child vessel segment, and
2) the average vesselness filter response along the straight line
drawn for the re-connection. A cost function c : R→ [−1, 1]
examines these criteria for evidence of a connection:

c = ωV + (1− ω)D (4)

where ω ∈ [0, 1], trades off penalty function for vesselness
measure V and for the spatial proximity D. The penalty func-
tions V and D, are derived from the sigmoid which clamp
penalty values between [−1, 1], where positive penalty favors
connection and negative penalty otherwise.

The penalty term for spatial proximity is straightforward:
Any parent-child connection distance is penalized according
to their distance d:

D = 1− 2
1 + e−(d−ε) (5)

where any distance greater than ε acquires negative penalty.
For our purposes we use ε = 6. The penalty function V
for the vesselness measure is based on the observed distri-
bution of vesselness filter responses over all detected center-
line segments. We assume that the vesselness measure over
the detected centerlines is normally distributed: N(µ, σ) with
mean µ and variance σ2. The average vesselness measure µ0

along the proposed parent-child connection is determined and
a negative penalty is assigned if its z-score is less than -κ, i.e.
µ0 < −κσ. We use κ = 2. Since high vesselness is a strong
indicator of vessel connection, a positive penalty is assigned
not only when µ0 ≥ −κσ, but also when µ0 > +κσ. This is
achieved using:

V =
2

1 + e−(z+κ)
− 1, where z =

µo − µ
σ

(6)

Given a potential parent-child connection, the cost function in
eq. 4 is evaluated for every pair of sampled points on the par-
ent and child centerline segments, with a straight line drawn
between them. A positive cost value indicates a connection.

5. LEFT ATRIAL ANATOMY

Using the constructed PV drainage trees, the left atrial
anatomy can now be classified. The number of drainages

to each side of the atrium including the first bifurcation dis-
tances help classify the anatomy according to [1]. The first
bifurcation distance for each tree is computed using geodesic
distances between first child and root nodes. Diagrammatic
representations of the underlying trees are also generated
showing its configurations for each drainage (see Fig. 3).

Fig. 2. Surface reconstruction of a PV drainage (left). The de-
tected and annotated centerlines; vessels are annotated using
numbers by the system for easy reference (right). The root
node vessel is indicated by the arrow.

Fig. 3. The extracted vessel tree from drainage in Fig. 2

6. RESULTS

The data acquired are MR angiography studies of 30 differ-
ent patients. The images have in-plane resolutions ranging
between 250 × 350 to 380 × 380. Each image volume con-
tains between 30-100 slices. There was significant amount of
anatomic variability of the left atrium between patient sub-
jects. The studies contained pre- and post-MRA scans which
were registered using rigid registration. An anisotropic diffu-
sion smoothing step was used to remove noise and preserve
edges.

For evaluating atrial anatomy, two important determi-
nants of anatomy are qualitatively evaluated against ground
truth. These are first bifurcation distances and the number of
drainages to the right and left sides of the atrium. The atrial
classification system proposed in [1] uses these features to
identify anatomy. For the first bifurcation distance study, the
percentage error in the computed values were found by com-
paring them against ground truth. Ground truth was obtained
from surface reconstructed images of the LA. Note also that
distances were evaluated for each PV drainage of the 30 atria
studied. 41% of the drainages studied had an error in first



bifurcation distances of less than 15%. This is illustrated in
Fig. 7. For evaluating the number of drainages found to each
side of the atrium, computed values were compared against
ground truth. These are illustrated in Fig. 5 and 6 for the left
and right sides respectively. A success rate of 87% and 93%
was found for left and right sides respectively.

Fig. 4. Surface reconstructions of two segmented left atria
(left column). The segmented atrial bodies along with all
the detected PV centerlines (middle column). Only detected
drainage trees, with higher tree levels truncated (right col-
umn)

Fig. 5. Comparisons of the number of drainages to the left
side of 30 patient atria.

Fig. 6. Comparisons of the number of drainages to the right
side of 30 patient atria.

7. DISCUSSION

Results indicate that this is a robust technique for extract-
ing and reporting left atrial anatomy. The centerline detec-

Fig. 7. Percentage errors in the computed first bifurcation
distances in 116 drainages studied.

tion, tree building process and computation of bifurcation dis-
tances are fast requiring less than 10 seconds on a modern PC.
It also requires no special imaging acquisition and has been
shown to work on MRA data. The tree representation of the
drainages determines the anatomy and also makes it possible
to truncate peripheral vessels of the drainage (i.e. at higher
levels down in the tree), giving a less obstructed view of the
atrium. These are very beneficial for atrial fibrillation ablation
procedures.
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