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Abstract

Deterministic global optimisation is an active research area integrating: engineering applications;
mathematical algorithms; computational software. This short article introduces global optimisa-
tion; we focus on advances made by researchers associated with the Centre for Process Systems
Engineering. Our purposes are: (1) demonstrating global optimisation as an exciting research do-
main; (2) describing several industrially-relevant applications; (3) highlighting complementarity
between disparate CPSE research groups; (4) offering a list of publications for further reading.
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1. Introduction

Addressing the optimal design of multipur-
pose chemical plants, Grossmann and Sargent
(1979) formulate a mathematical model as a
mixed-integer nonlinear optimisation problem
(MINLP) and write:

This class of problem is very diffi-
cult to solve, and no general method
of yet exists for its efficient solution.

Deterministic global optimisation of MINLP
is NP-hard, so a general, efficient solution
method will probably never exist. But MINLP
has diverse application domains ranging from
process networks to computational chemistry
to finance. Focal points of research include:
building effective mathematical models of
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Figure 1: MINLP Example

industrially-relevant applications; designing
algorithms which take advantage of special
mathematical structure in optimisation prob-
lems; writing solver software integrating
algorithms into a computational framework.
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Appendix A formally defines several classes
(including MINLP) which can be addressed
using deterministic global optimisation, but
the simple example illustrated in Figure 1 can
demonstrate the challenge of solving MINLP:

max
x1,x2

x1 + x2

8 · x3
1−2 · x4

1− 8 · x2
1 + x2 ≤ 2

32 · x3
1−4 · x4

1−88 · x2
1

+96 · x1 + x2 ≤ 36
x1 ∈ [0,3]
x2 ∈ {0, 1, 2, 3, 4}

(1)
Example (1) is: mixed-integer because there
are both continuous, x1 ∈ [0,3], and discrete,
x2 ∈ {0, 1, 2, 3, 4}, variables; nonlinear
because of terms such as x3

1; an optimisa-
tion problem because of the maximisation
objective, x1 + x2. From Figure 1, it is
obvious that the answer is the green star at
x1 = 2.37; x2 = 3. But it is possible that a
local solution method may initialise at a point
such as the red star in the lower left of Figure
1; a local search staying within the feasible
space would not reach the global solution.

Example (1) is a toy problem with only
two variables; extensive research in the past
35 years has pushed the state-of-the-art to
the point where ANTIGONE (Misener and
Floudas, 2014a) can address several bench-
marks up to O(104) variables and equations.
Khor et al. (2014) use ANTIGONE to solve
bilinear water network synthesis problems
with up to 4657 continuous variables, 42
discrete variables, 5848 constraints, and 2704
nonconvex bilinear terms to deterministic
global optimality; no other off-the-shelf opti-
misation software approached this efficacy.

Deterministic global optimisation for MINLP
is computationally expensive, but it is highly
relevant to application domains where there is

high reward for fractional improvements and
sufficient time to explore the search space.
For very large problems beyond the limit of
current deterministic algorithms, heuristics
and stochastic methods may be most effective.
CPSE researchers have extensive expertise
developing non-deterministic algorithms
(Gjerdrum et al., 2002; Zilinskas and Bogle,
2004; Akrotirianakis and Rustem, 2005;
Parpas and Rustem, 2009; Parpas et al., 2009)
with applications such as financial portfolio
optimisation (Parpas and Rustem, 2006;
Maringer and Parpas, 2009) and molecular
dynamics (Ho and Parpas, 2014).

This short article mainly discusses applica-
tions, algorithms, and software for global op-
timisation of MINLP, but CPSE contributes
to a range of deterministic global optimisation
research domains including: multi-parametric
programming (Dua et al., 2002; Wittmann-
Hohlbein and Pistikopoulos, 2013; Oberdieck
et al., 2014); dynamic global optimisation (Pa-
pamichail and Adjiman, 2002, 2005; Chachuat
and Latifi, 2004; Chachuat et al., 2006); bi-
level optimisation (Faı́sca et al., 2007; Mitsos
et al., 2009b; Kleniati and Adjiman, 2014a,b);
guaranteed parameter estimation (Michalik
et al., 2009; Paulen et al., 2013).

2. Engineering Applications

The most established application domain for
deterministic global optimisation of MINLP
is in the area of process networks; here the ap-
plications include: blending feed stocks with
intermediate storage (Misener and Floudas,
2009); crude oil scheduling (Li et al., 2012);
process synthesis (Baliban et al., 2012).
Emerging opportunities are in areas such
as: biological and biomedical engineering
(Misener et al., 2014a); computational chem-
istry (Pereira et al., 2010); project scheduling
(Wiesemann et al., 2010).
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Figure 2: Branch & Bound Optimisation

We consider deterministic global optimisation
of MINLP through the lens of applications;
this is because researchers may be able to find
and exploit special mathematical structure for
particular problem classes. For example, Lib-
erti and Pantelides (2006) use redundant con-
straints for process networks problems; Mis-
ener and Floudas (2013) automate an algorith-
mic variant in the software GloMIQO.

3. Mathematical Algorithms

The dominant solution method for determinis-
tic global optimisation, shown in Figure 2, is
branch and bound. Branch and bound is di-
vide and conquer exhaustive search consisting
of: (1) finding rigorous bounds on the global
solution; (2) generating good feasible solu-
tions using heuristics; (3) dividing the search
space via domain branching; (4) reducing the
search space via variable bounding.

As discussed in Section 4, CPSE is associated
with three computational frameworks for
solving general MINLP to global optimality.
But CPSE is also responsible for many of the
major research advances that make each of
the four individual algorithmic components

of branch and bound global optimisation
effective. For example: Liberti and Pantelides
(2003) develop a methodology for rigorously
underestimating odd degree monomials; Mit-
sos et al. (2009a) design McCormick-based
relaxations; Misener et al. (2014b) aggregate
summations of bilinear terms. The heuristics
in Section 1 are useful for deterministic global
optimisation because the non-deterministic
algorithms generate high-quality solutions
quickly; this can be used to expedite the
branch and bound process.

Bespoke methods may be useful for particular
classes of problems. Kleniati et al. (2010a,b),
Misener et al. (2010), and Wiesemann et al.
(2010) design algorithms for solving poly-
nomial optimisation, feedstock blending, and
product scheduling problems, respectively.

4. Computational Software

CPSE is associated with two of the earliest
deterministic global optimisation code bases
and several of the latest contributions. Early
software included αBB (Adjiman et al.,
1998a,b) and a method on based factorable
programming (Smith and Pantelides, 1997,
1999). These two pieces of software strongly
influenced the development of GloMIQO
(Misener and Floudas, 2012, 2013) and
ANTIGONE (Misener and Floudas, 2014b,a);
GloMIQO and ANTIGONE not only hy-
bridise the algorithms of Adjiman et al.
(1998a,b) and Smith and Pantelides (1997,
1999), but also incorporate a range of other
cutting-edge algorithms.

ANTIGONE1 and GloMIQO2 are available as
off-the-shelf codes from GAMS3 and Prince-
ton University; GAMS is a modelling platform

1helios.princeton.edu/ANTIGONE/
2helios.princeton.edu/GloMIQO/
3www.gams.com
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used worldwide by optimisation practitioners
and researchers. MC++4, an open source de-
veloper’s toolbox distributed by COIN-OR,
is another code base available from CPSE.
MC++ prototypes and tests novel algorithms
in global and robust optimisation, including
problems with differential equations (Sahlodin
and Chachuat, 2011a,b).

5. Conclusions

This short manuscript has given a very brief
introduction to deterministic global optimisa-
tion and some of the intellectual contributions
made by the Centre for Process Systems Engi-
neering. The references listed in the bibliogra-
phy are a good place to explore this interesting
research topic further; the bibliography offers
a cross section of: mathematical models; algo-
rithms; software.
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Appendix A. Mathematical Definitions

MINLP is defined:

min
xxx

f0(xxx)

s.t.
bLO

i ≤ fi(xxx)≤ bUP
i ∀ i ∈M := {1, . . . , M}

x j ∈
[
xLO

j , xUP
j

]
∀ j ∈N := {1, . . . , N}

x j ∈ Z ∀ j ∈I ⊆N
(MINLP)

where M , N , and I represent sets of con-
straints, variables, and discrete variables, re-
spectively. The objective and constraints are
functions fi : RN 7→ R ∀ i ∈ {0, . . . , M}. Pa-
rameters bLO

i ∈ R ∪ {−∞} and bUP
i ∈ R ∪

{+∞} bound the set of constraints M ; param-
eters xLO

j ∈ R∪ {−∞} and xUP
j ∈ R∪ {+∞}

bound the set of variables N . We assume: (1)
that it is possible to infer finite bounds on the
variables participating in nonlinear terms; (2)
that the image of fi is finite on xxx; (3) that a lin-
ear programming (LP) relaxation of MINLP is
bounded. Typical expressions for fi(xxx) are:

fi(xxx) =ci +aT
i xxx+ xxxT Qi xxx+

Si

∑
s=1

cs, i · ∏
j∈N

xps, i, j
j + ∑

j∈N
ce, i, j ex j+

∑
j∈N

c`, i, j logx j

(A.1)

where the powers ps, i, j and coefficients
ci, ai, Qi, cs, i, ce, i, j, c`, i, j are constant reals;
s ∈ {1, . . . , Si} indexes the signomial terms.

Interesting special cases of MINLP include:
nonlinear programming (when all variables
are continuous, I = ∅); mixed-integer
quadratically-constrained quadratic program-
ming (when all nonlinearities are quadratic);
mixed-integer signomial optimisation (when
there are no exponential or logarithmic terms);
mixed-integer linear programming (when
there are no nonlinearites).

Global optimisation may also be used in:
bi-level optimisation; dynamic programming;
multi-parametric programming. But these are
not covered in this short article.
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