# Imperial College London





# OMLT: Optimization & Machine Learning Toolkit

Francesco Ceccon\*, Jordan Jalving\*, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D Laird $^\dagger$ , Ruth Misener $^\dagger$ 

\*These authors contributed equally, <sup>†</sup>These authors contributed equally

**Funding** EPSRC EP/P016871/1 & EP/T001577/1 Sandia LDRD program Institute for the Design of Advanced Energy Systems

Monday 21st March, 2022

Paper Ceccon\*, Jalving\*, Haddad, Thebelt, Tsay, Laird<sup>†</sup>, Misener<sup>†</sup>, arXiv, 2022.

### Team members



Francesco Ceccon Imperial



Calvin Tsay Imperial

### https://github.com/cog-imperial/OMLT



Jordan Jalving Sandia



Carl D Laird CMU



Joshua Haddad Sandia







Alexander Thebelt Imperial



You? Join us on GitHub!

Ceccon, Jalving, et al.

OMLT

### OMLT: Optimization & Machine Learning Toolkit



Why represent trained machine learning models as Pyomo [Bynum et al., 2021] formulations?

- Adversarial examples Verification [Lomuscio and Maganti, 2017], optimal adversary [Anderson et al., 2020], minimally-distorted adversary [Croce and Hein, 2020], lossless compression [Serra et al., 2020]
- Machine learning Maximize a neural acquisition function [Volpp et al., 2019], Bayesian optimization [Thebelt et al., 2021]
- Engineering Machine learning models may replace complicated constraints or serve as surrogates in larger design & operations problems.

### Optimization challenges to analyze trained neural networks Example: Classification of MNIST digits [Tsay et al., 2021]

Given ..... Trained NN  $ar{m{x}}$ Image j=9Label 20 k = 4Adversary? 35  $\downarrow \ell_{\infty}$ 15 20 20  $\|x - \bar{x}\|_{1} = 4$  $\|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_{\infty} = 0.05$ 

Verification [Feasibility] Is there an adversary labeled k within a given perturbation (e.g., by ℓ<sub>1</sub>- or ℓ<sub>∞</sub>-norm)?

• Optimal adversary [Anderson et al., 2020] What image within a perturbation radius maximizes the prediction difference?

• Minimally distorted adversary [Croce and Hein, 2020] Smallest perturbation over which the NN can predict adversarial label *k*?

• Lossless compression [Serra et al., 2020] Can I safely remove NN nodes or layers?

### What type of optimization problem do we want to solve?

Hybridize mechanistic, model-based optimization with surrogate models learned from data



### What type of optimization problem do we want to solve?

Hybridize mechanistic, model-based optimization with surrogate models learned from data





### What type of optimization problem do we want to solve?

Hybridize mechanistic, model-based optimization with surrogate models learned from data



#### What are the expressions $f_i$ ?

Affine • Have discrete variables (may want ReLU NN or GBT surrogates) • Nonlinear (may want smooth NN activations)

In OMLT v 1.0, what can the OmltBlock abstraction encapsulate?

Dense neural networks • Convolutional neural networks (CNN) • Gradient boosted trees (GBT)

### Interface with ONNX for interoperability



# Most software *evaluates* a trained model . . . [Mistry et al., 2021]

Consider gradient boosted trees (GBTs). *Evaluating* a single tree is easy!



### Most software *evaluates* a trained model ....

#### [Mistry et al., 2021]

Consider gradient boosted trees (GBTs). *Evaluating* a single tree is easy!

• Calculate for  $\boldsymbol{x} = (4,2)$ 





# Most software *evaluates* a trained model . . . Consider gradient boosted trees (GBTs). *Evaluating* a single tree is easy!

Ceccon, Jalving, et al.

[Mistry et al., 2021]



# Most software *evaluates* a trained model ....

Consider gradient boosted trees (GBTs). *Evaluating* a single tree is easy!

[Mistry et al., 2021]



Ceccon, Jalving, et al.

### Most software *evaluates* a trained model ... [Mistry et al., 2021]

Continuing the gradient boosted tree (GBT) example, it's also straightforward to evaluate the entire ensemble!

- $\bullet$  GBT function defined by a set of trees,  ${\cal T}$  , and a constant, C
- To evaluate at  ${m x} \in [{m L}, {m U}] \subset {\mathbb R}^n \longrightarrow y = {
  m GBT}({m x}) = C + \sum_{t \in {\mathcal T}} t({m x})$



What if GBT(x) is in an optimization problem where x are decision variables, i.e., not fixed?

There are mathematical programming formulations incorporating function y = GBT(x) with decision variables x into a larger optimization problem [Mišić, 2020, Mistry et al., 2021, Thebelt et al., 2021]. OMLT automates the translation from ML model to optimization model!

### Here's what OMLT allows users to ignore ....

The OMLTBlock abstraction holds optimization formulations, e.g., by Mišić [2020] and Mistry et al. [2021]

y



$$= \operatorname{GBT}(\boldsymbol{x}) = \sum_{t \in \mathcal{T}} \sum_{l \in \mathcal{L}_t} F_{t,l} z_{t,l}$$

$$\sum_{l \in \mathcal{L}_t} z_{t,l} = 1, \quad \forall t \in \mathcal{T},$$

$$\sum_{l \in \operatorname{Left}_{t,s}} z_{t,l} \leq w_{i(s),j(s)}, \quad \forall t \in \mathcal{T}, s \in \mathcal{V}_t,$$

$$\sum_{l \in \operatorname{Right}_{t,s}} z_{t,l} \leq 1 - w_{i(s),j(s)}, \quad \forall t \in \mathcal{T}, s \in \mathcal{V}_t,$$

$$w_{i,j} \leq w_{i,j+1}, \quad \forall i \in [n], j \in [m_i - 1],$$

$$w_{i,j} \in \{0, 1\}, \quad \forall t \in \mathcal{T}, l \in \mathcal{L}_t,$$

$$w_{i,1} w_{i,2} w_{i,3} w_{i,4} \quad \forall w_{i,m_i+1}$$

$$x_i^L = v_0^i \quad v_1^i \quad v_2^i \quad v_3^i \quad v_4^i$$

$$w_{i,m_i} = x_i^i$$

### Here's what OMLT allows users to ignore ....

The OMLTBlock abstraction holds optimization formulations, e.g., by Mišić [2020] and Mistry et al. [2021]



### How NN activation functions map onto OMLT formulations ....



### How NN activation functions map onto OMLT formulations ....



Mixed-integer linear [Relu{BigM,Partition}Formulation] CBC [EPL] • Gurobi [Prop] • Xpress [Prop] • CPLEX [Prop] Nonlinear [{Full, Reduced}SpaceSmoothNNFormulation, ReluComplementarityFormulation] lpopt [EPL] • SNOPT [Prop] • MINOS [Prop]

### How NN activation functions map onto OMLT formulations ....



Mixed-integer linear [Relu{BigM,Partition}Formulation] CBC [EPL] • Gurobi [Prop] • Xpress [Prop] • CPLEX [Prop] Nonlinear [{Full, Reduced}SpaceSmoothNNFormulation, ReluComplementarityFormulation] lpopt [EPL] • SNOPT [Prop] • MINOS [Prop]

OMLT puts optimization formulations in competition

Key idea One optimization formulation may be more effective than another

- Algebraic modelling languages, e.g., Pyomo, make switching optimization solvers easy
- OMLT makes switching formulations as easy as changing a couple lines of code



| Big-M formulation             | [Anderson et al., 2020] |
|-------------------------------|-------------------------|
| formulation = ReluBigMFormula | tion(net_relu)          |

OMLT puts optimization formulations in competition

Key idea One optimization formulation may be more effective than another

- Algebraic modelling languages, e.g., Pyomo, make switching optimization solvers easy
- OMLT makes switching formulations as easy as changing a couple lines of code



| Big-M formulation                                                                                    | [Anderson et al., 2020] |  |
|------------------------------------------------------------------------------------------------------|-------------------------|--|
| <pre>formulation = ReluBigMFormulation(net_relu)</pre>                                               |                         |  |
|                                                                                                      |                         |  |
| Partition-based formulation                                                                          | [Isay et al., 2021]     |  |
| P = 3                                                                                                |                         |  |
| <pre>split_func = lambda w: partition_split_func(w, P) formulation = BoluPartitionFormulation(</pre> |                         |  |
| net_relu, split_func=split_func)                                                                     |                         |  |

Importance of parameter P: Number solved vs. run time  $(||\boldsymbol{x} - \bar{\boldsymbol{x}}||_1 = 5)$ Optimal adversary CIFAR-10; NN with  $n_{\text{Layers}} = 2 \& n_{\text{Hidden}} = 100$ ; Each line averages 100 examples  $\bar{\boldsymbol{x}}$ 



#### Observations [Tsay et al., 2021]

- P = 1 (equivalent to big-M) performs worst;
- P = 2 good for easy problems;
- Intermediate P balances model size vs. tightness;
- Performance declines  $P \ge 7$

### Neural Network Formulation Example: Data

#### neural\_network\_formulations.ipynb



Read in the data 1 input x, 1 output y, 10<sup>4</sup> samples, Scaled has mean 0 & stdev 1 df = pd.read\_csv("../data/sin\_quadratic.csv",index\_col=[0]);

# Neural Network Formulation Example: Trained Neural Networks

neural\_network\_formulations.ipynb



```
Build a Keras NN with ReLU activation
nn = Sequential(name='sin_wave_relu')
nn.add(Input(1))
nn.add(Dense(30, activation='relu'))
nn.add(Dense(30, activation='relu'))
nn.add(Dense(1))
nn.compile(optimizer=Adam(), loss='mse')
history = nn.fit(x=df['x_scaled'], y=df['y_scaled'],
verbose=1, epochs=75)
```

## Neural Network Formulation Example: Trained Neural Networks

neural\_network\_formulations.ipynb



#### Build a Keras NN with sigmoid activation

```
nn = Sequential(name='sin_wave_sigmoid')
nn.add(Input(1))
nn.add(Dense(50, activation='sigmoid'))
nn.add(Dense(50, activation='sigmoid'))
nn.add(Dense(1))
nn.compile(optimizer=Adam(), loss='mse')
history = nn.fit(x=df['x_scaled'], y=df['y_scaled'],
    verbose=1, epochs=75)
```

### Neural Network Formulation Example: Trained Neural Networks

neural\_network\_formulations.ipynb



#### Build a Keras NN with mixed (sigmoid/ReLU) activation

```
nn = Sequential(name='sin_wave_mixed')
nn.add(Input(1))
nn.add(Dense(50, activation='sigmoid'))
nn.add(Dense(50, activation='relu'))
nn.add(Dense(1))
nn.compile(optimizer=Adam(), loss='mse')
history = nn.fit(x=df['x_scaled'], y=df['y_scaled'],
    verbose=1, epochs=150)
```

### Neural Network Formulation Example: Set up the optimization problem

```
net_sigmoid = keras_reader.load_keras_sequential(nn,scaler,input_bounds)
model = pyo.ConcreteModel()
model.x = pyo.Var(initialize = 0)
model.y = pyo.Var(initialize = 0)
model.obj = pyo.Objective(expr=(model.y))
model.nn = OmltBlock()
formulation = FullSpaceSmoothNNFormulation(net_sigmoid) #or ReducedSpaceSmoothNNFormulation
model.nn.build_formulation(formulation)
```

```
@model.Constraint()
def connect_inputs(mdl):
    return mdl.x == mdl.nn.inputs[0]
```

```
@model.Constraint()
def connect_outputs(mdl):
    return mdl.y == mdl.nn.outputs[0]
```

```
status = pyo.SolverFactory('ipopt').solve(model, tee=True)
solution = (pyo.value(model.x),pyo.value(model.y))
```

### Neural Network Formulation Example: Optimization results



#### neural\_network\_formulations.ipynb

# variables: 209, # constraints: 208 x = -0.28, y = -0.86Solve Time: 0.14s

Ceccon, Jalving, et al.

Solve Time: 0.08s

### Other notebook examples ...

https://github.com/cog-imperial/OMLT/tree/main/docs/notebooks



auto-thermal-reformer{-relu}.ipynb
develops an NN surrogate with data from
a process model built using IDAES-PSE
[Lee et al., 2021]

#### Even more notebook examples ...

- import\_network.ipynb imports NN models directly from Keras & ONNX. Using ONNX interoperability, it imports a NN model from PyTorch.
- build\_network.ipynb builds a NetworkDefinition manually.
- mnist\_example\_{dense, cnn}.ipynb train fully dense and convolutional NNs on MNIST [LeCun et al., 2010] and find adversarial examples [Tjeng et al., 2017].
- bo\_with\_trees.ipynb optimizes the Rosenbrock function.

### OMLT v 1.0 Summary

https://github.com/cog-imperial/OMLT

#### Key Contributions

- Automatically translate a trained machine learning model (neural network or gradient boosted tree) into Pyomo optimization constraints
- Achieve interoperability via the ONNX interface
- Easily switch and compare optimization formulations



### References I

- Michael Akintunde, Alessio Lomuscio, Lalit Maganti, and Edoardo Pirovano. Reachability analysis for neural agent-environment systems. In *KR*, pages 184–193, 2018.
- Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong mixed-integer programming formulations for trained neural networks. *Mathematical Programming*, pages 1–37, 2020.
- Egon Balas. *Disjunctive Programming*. Springer International Publishing, 2018. doi: 10.1007/978-3-030-00148-3.
- Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener. Efficient verification of ReLU-based neural networks via dependency analysis. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 3291–3299, 2020.
- Michael L Bynum, Gabriel A Hackebeil, William E Hart, Carl D Laird, Bethany L Nicholson, John D Siirola, Jean-Paul Watson, and David L Woodruff. *Pyomo—Optimization Modeling in Python*, volume 67. Springer Nature, 2021.
- Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neural networks. In *International Symposium on Automated Technology for Verification and Analysis*, pages 251–268. Springer, 2017.

### References II

- Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary attack. In *International Conference on Machine Learning*, pages 2196–2205. PMLR, 2020.
- Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip HS Torr, and M Pawan Kumar. Scaling the convex barrier with active sets. arXiv preprint arXiv:2101.05844, 2021.
- Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis for deep feedforward neural networks. In NASA Formal Methods Symposium, pages 121–138. Springer, 2018.
- Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Pushmeet Kohli. A dual approach to scalable verification of deep networks. In UAI, volume 1, page 3, 2018.
- Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. *Constraints*, 23(3): 296–309, 2018.
- Bjarne Grimstad and Henrik Andersson. ReLU networks as surrogate models in mixed-integer linear programs. *Computers & Chemical Engineering*, 131:106580, 2019.
- Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2020. URL http://www.gurobi.com.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

### References III

- Jan Kronqvist, Ruth Misener, and Calvin Tsay. Between steps: Intermediate relaxations between big-M and convex hull formulations. *CPAIOR*, 2021.
- Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.
- Andrew Lee, Jaffer H Ghouse, John C Eslick, Carl D Laird, John D Siirola, Miguel A Zamarripa, Dan Gunter, John H Shinn, Alexander W Dowling, Debangsu Bhattacharyya, et al. The IDAES process modeling framework and model library—Flexibility for process simulation and optimization. *Journal of Advanced Manufacturing and Processing*, page e10095, 2021.
- Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward ReLU neural networks. *arXiv preprint arXiv:1706.07351*, 2017.
- Velibor V Mišić. Optimization of tree ensembles. Operations Research, 68(5):1605-1624, 2020.
- Miten Mistry, Dimitrios Letsios, Gerhard Krennrich, Robert M Lee, and Ruth Misener. Mixed-integer convex nonlinear optimization with gradient-boosted trees embedded. *INFORMS Journal on Computing*, 33(3): 1103–1119, 2021.

### References IV

- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In *Advances in Neural Information Processing Systems 32*, pages 8024–8035. 2019.
- Artur M Schweidtmann and Alexander Mitsos. Deterministic global optimization with artificial neural networks embedded. *Journal of Optimization Theory and Applications*, 180(3):925–948, 2019.
- Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear regions of deep neural networks. In *International Conference on Machine Learning*, pages 4558–4566. PMLR, 2018.
- Thiago Serra, Abhinav Kumar, and Srikumar Ramalingam. Lossless compression of deep neural networks. In *Integration of Constraint Programming, Artificial Intelligence, and Operations Research*, pages 417–430. Springer, 2020.
- Alexander Thebelt, Jan Kronqvist, Miten Mistry, Robert M Lee, Nathan Sudermann-Merx, and Ruth Misener. ENTMOOT: A framework for optimization over ensemble tree models. *Computers & Chemical Engineering*, 151:107343, 2021.

- Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed integer programming. arXiv preprint arXiv:1711.07356, 2017.
- Calvin Tsay, Jan Kronqvist, Alexander Thebelt, and Ruth Misener. Partition-based formulations for mixed-integer optimization of trained ReLU neural networks. *NeurIPS*, 2021.
- Michael Volpp, Lukas P Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, and Christian Daniel. Meta-learning acquisition functions for transfer learning in Bayesian optimization. In *International Conference on Learning Representations*, 2019.
- Ga Wu, Buser Say, and Scott Sanner. Scalable planning with deep neural network learned transition models. *Journal of Artificial Intelligence Research*, 68:571–606, 2020.