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Abstract

Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems,
the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand,
similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use
of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can
incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In
this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This
approach introduces a new set of ‘‘smart markers’’ for a marker-controlled watershed algorithm, for which the identification
of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual
characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental
results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying
better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a
marker-controlled watershed algorithm.
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Introduction

Automated imaging systems are becoming popular to analyze

cellular events of fixed or live cells. These cellular imaging systems

have potential not only for decreasing processing time but also for

reducing human errors in the analysis. In almost all of the systems,

cell segmentation constitutes the first step, which greatly affects the

performance of the other system steps. Although there are several

algorithms for the segmentation of fixed cell images from a light or

a fluorescence microscope, there exist only few for the segmen-

tation of live cells from phase contrast microscopy. In this paper,

we focus on the implementation of a robust segmentation

algorithm for live cells in culture media.

In general, previous studies have approached the cell segmen-

tation problem in two different contexts: segmenting monolayer

isolated cells and segmenting cells that grow in clumps on layers.

For monolayer isolated cell segmentation, the studies first

differentiate cell pixels from the background using global thresh-

olding [1], adaptive thresholding [2–5], and clustering algorithms

[6] and then consider the connected components of the cell pixels

as the segmented cells.

For the segmentation of clumped cells, the previous studies

mainly use active contour models and marker-controlled water-

shed algorithms. The active contour models define an energy

function usually on the edge map of an image, associated with the

cell contours, and achieve segmentation by finding the contours

that minimize the energy function [7–9]. The marker-controlled

watershed algorithms identify the markers, each of which

corresponds to a cell, and start the flooding process from these

markers. One common way to identify the markers is to find

regional minima on the intensity/gradient map of the image,

reflecting the intensity differences between inside and outside of

the cells [10–12], and/or on the distance transform of an initially

segmented image, reflecting the shape characteristics of the cells

[13–16]. There are also other methods that are applied on the

transforms to find the markers based on the shape characteristics.

These methods include applying iterative erosions [17] and

modeling by the mixture of Gaussians [18]. As the marker-

controlled watersheds typically cause oversegmentation, the

studies commonly perform a merge process on the segmented

cells after their watershed algorithms [19–22].

Image segmentation in general is an ill-posed problem. The

success highly depends on the intent of segmentation as well as the

knowledge about the image content. This is especially the case for

the problems, in which domain specific knowledge is necessary

even for human subjects to achieve successful segmentations. Live

cell segmentation is one of such problems. In live cell images, cells

of the same cell line or the same tissue may show different

morphologies and intensity/texture characteristics. Moreover,

these characteristics could be different from a cell line or a tissue

to another. For example, KATO-3 gastric cancer cells can be

grouped into four morphological classes based on their visual

characteristics (Figure 1). The first group corresponds to round

cells with relatively brighter inner and boundary pixels. The

second one corresponds to round cells as well but these cells consist

of relatively darker pixels in their centers and brighter pixels on

their boundaries. The third group corresponds to non-circular

cells that have relatively larger and irregular shapes and consist of

high-gradient dark pixels. These cells also have brighter pixels on

their boundaries. The last group corresponds to apoptotic cells

whose inner regions and boundaries turn into matte and irregular.

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e48664



The algorithms with the capacity of incorporating this kind of

biological knowledge into segmentation have potential to improve

the results. This is our main motivation behind using domain

specific knowledge, in the form of visual characteristics of the cells,

in our segmentation algorithm.

In this paper, we propose a new algorithm for the effective and

robust segmentation of live cells. In the proposed algorithm, our

main contribution is the incorporation of domain specific

knowledge into the definition of a new set of ‘‘smart markers’’

for a watershed algorithm. In order to determine the smart

markers, the proposed algorithm identifies different pixel groups

with different visual properties, based on the biological back-

ground knowledge, and processes these groups with respect to

each other, again using the background knowledge of different cell

characteristics. Working with live cell images taken from the

KATO-3 cell line, our experiments demonstrate that the proposed

algorithm, which uses this new smart marker definition, is effective

in finding better markers compared to its counterparts, which will

Figure 1. Example images of live KATO-3 gastric carcinoma cells. As shown in the images, these cells can be grouped into four
morphological classes based on their visual characteristics. Examples from these groups are also indicated on the images.
doi:10.1371/journal.pone.0048664.g001

Figure 2. Schematic overview of the proposed algorithm.
doi:10.1371/journal.pone.0048664.g002
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in turn improve the segmentation performance of a marker-

controlled watershed algorithm. (One should note that the marker

term used in this paper is completely different than the one used in

immunocytochemistry. Here a marker refers to an image location

from which the flooding process of a watershed algorithm starts.

The smart marker term is used to indicate that the markers are

identified more wisely, considering the visual properties of cells in

a cell line.)

The proposed algorithm differs from the previous ones in two

main aspects. First, it defines the smart markers based on the

background knowledge specific to the image whereas the previous

algorithms define them using intensity, gradient, and distance

measures without considering the image specific properties.

Second, the previous algorithms typically find more markers than

the actual cells, resulting in oversegmentation, and hence, they

usually necessitate using a merge process after their watershed

algorithms. In contrary, the proposed algorithm can find more

markers that are one-to-one mapped to the actual cells and can

give less oversegmented results without using an external merge

process.

Materials and Methods

Cell lines
Five different cell lines are used in the experiments. The human

gastric cancer cell line (KATO-3) was inoculated in growth

medium containing High glucose (4500 mg/L D-Glucose)

DMEM with 10% FBS, 1% NEAA, 1% Penicilin/Streptomycin,

and 1% L-glutamine. The human liver cancer cell line (Huh7) and

the human breast cancer cell line (MCF7) were inoculated in

complete growth medium composed of DMEM, with 10% FBS,

1% NEAA and 1% Penicilin/Streptomycin. The human endo-

metrial carcinoma cell line (MFE-296) was cultivated in growth

medium containing 40% RPMI 1640, 40% MEM (with Earle

salts), 10% FBS, 2 mM L-glutamine and 1| insulin-transferrin-

sodium selenite. The human breast cancer cell line (SK-BR-3) was

inoculated in complete growth medium composed of HyClone

MCCOY’S 5A, together with 10% FBS and 1% L-glutamine. All

cell lines were incubated in 37 0C, 5% CO2, 95% air containing

incubators.

Smart markers algorithm
The proposed algorithm relies on defining three basic types on

image pixels—according to the intensity and gradient of these

pixels and their surroundings, associating these basic types with the

cells of different characteristics, and extracting the markers on

each of these basic types by considering the morphological

characteristics of their associated cells. The details of this

algorithm are explained in the following subsections. A schematic

overview of the algorithm is provided in Figure 2.

In this work, we develop our algorithm focusing on the KATO-

3 human gastric cancer cell line. Therefore, we consider the

characteristics of its cells in the definition of the basic pixel types

and the markers. Nevertheless, this idea can also be applied to

other cell lines or tissues, provided that the basic types reflecting

the characteristics of their cells are defined. In our experiments, we

also obtain preliminary results on four different cell lines to explore

the applicability of this algorithm to others.

Cell pixel quantization. This part consists of transforming

an image into three basic types of pixel groups, each of which

corresponds to a cell region of different characteristics. These types

correspond to (i) bright pixels, (ii) dark pixels fully surrounded by

bright pixels, and (iii) dark pixels only partially surrounded by

bright pixels. They are herein referred to as bright, dark-center, and

dark pixels, respectively. These three pixel types are used for

characterizing the four morphological classes of the KATO-3

gastric cancer cells; these classes are explained in the introduction

and illustrated in Figure 1. Particularly, we employ bright pixels

Figure 3. Illustration of the cell pixel quantization step on two exemplary images. (A) Start with an original image, (B) identify bright and
dark pixels using the intensity and gradient information, (C) identify some of dark pixels as dark-center pixels, and (D) eliminate noise and artifacts. In
this illustration, bright, dark, and dark-center pixels are shown with red, blue, and green, respectively.
doi:10.1371/journal.pone.0048664.g003

Figure 4. Illustration of the iterative erosion algorithm on dark
pixels. (A) before and (B) after.
doi:10.1371/journal.pone.0048664.g004

Figure 5. Illustration of the iterative erosion algorithm on dark-
center pixels. (A) before and (B) after.
doi:10.1371/journal.pone.0048664.g005
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for characterizing Type I cells as well as the boundaries of the

others, dark-center pixels for Type II cells, and dark pixels for both

Type III and Type IV cells.

Cell pixel quantization starts with identifying bright and dark

cell pixels. Bright pixels correspond to high intensity regions in the

image. Hence, we obtain them by thresholding the gray-level

image with the Otsu method [23], which automatically computes

the threshold tgray on intensity values. Dark pixels correspond to

relatively darker regions with high gradient values. Here one

should note that dark cell regions have an intensity distribution

similar to the background. Thus, using only intensities, without

considering gradient values, would yield errors in pixel quantiza-

tion. In this work, we use the Sobel operators on gray-level

intensities to define gradient values. Computing a new Otsu

threshold tsobel on these gradients, dark pixels are defined as the

pixels whose gray-level intensities are less than tgray and whose

gradients are greater than k:tsobel . Here the Sobel threshold is

multiplied by a constant k since our experiments reveal that

relatively lower gradients should also be considered in the dark

pixel definition.

After this quantization, dark pixels are further grouped into two

based on whether they are fully surrounded by bright pixels; that

is, some of the dark pixels are identified as dark-center pixels.

However, there usually exists noise in the quantized pixels, which

leads to errors in the definition of dark-center pixels. Thus, we

postprocess the quantized pixels to alleviate the noise. For that, we

first eliminate narrow dark pixel regions around the boundaries of

bright regions and then apply a majority filter on the quantized

pixels. For the example live cell images shown in Figure 3A, the

quantized pixels obtained by this process are illustrated in

Figure 3B. In this figure, bright and dark pixels are shown in

red and blue, respectively. After this noise elimination, we identify

the dark-center pixel group as follows: We consider all pixels except

the bright ones and find the connected components on these

pixels. Let Ci be the ith connected component and di and bi be the

numbers of dark and background pixels in the component Ci,

respectively. Dark pixels in Ci are identified as dark-center pixels if

diwbi. Otherwise, they remain as dark pixels. Figure 3C illustrates

the quantized pixels obtained at the end of this step. Here dark-

center pixels are shown in green.

The final step is to eliminate holes and artifacts from the pixel

groups. First, we fill holes in between cell pixels provided that the

holes are smaller than an area threshold Tarea. In our experiments,

we observe that the main source of noise and artifacts is the dark

components. They may correspond to small noisy regions as well

as relatively larger artifacts usually found in the background (see

the second row of Figure 3). These larger artifacts typically do not

contain any bright pixels on their boundaries. Thus, using these

observations, we define two rules: First, we eliminate the dark

components if they are smaller than the area threshold Tarea.

Second, we eliminate the dark components that do not contain

any bright pixels on their boundaries. The quantized pixels

obtained at the end of these elimination procedures are shown in

Figure 3D. We use these quantized pixels to define our smart

markers.

Smart marker extraction. The proposed algorithm defines

the markers for each of the three pixel types separately, according

to the characteristics of the regions that each type corresponds to.

Since the markers are defined considering the background

knowledge of the corresponding region characteristics, it is

expected to find more markers that are one-to-one mapped to

the actual cells, and thus, to obtain less under and oversegmented

results.

In order to define the markers on dark and dark-center pixels,

we employ an iterative erosion algorithm. This algorithm erodes

the given pixel groups iteratively until the size of a group falls

below a threshold. In our work, we select this threshold separately

for dark and dark-center pixels, considering their region charac-

teristics. Since dark-center pixels usually correspond to relatively

smaller regions compared to dark pixels, we use a size threshold

Tsize for dark pixels and the half of it (Tsize=2) for dark-center

pixels. Similarly, we use a disk structuring element with a radius of

rdisk for the erosion of dark pixels and its half (rdisk=2) for that of

dark-center pixels. The iterative erosion algorithm on dark and

dark-center pixels is illustrated in Figures 4 and 5, respectively.

To define the markers on bright pixels, we take the following

observation into consideration. Bright pixels can be found both

inside a particular class of cells and the boundaries of the others.

To alleviate the negative effects of the boundaries, we first dilate

the previously found markers and then locate circles on the

remaining bright pixels using the modified version of the circle-fit

algorithm [24]. In this algorithm, starting from the largest one, we

iteratively locate circles on the given pixels provided that the size

of a circle is larger than the threshold Tsize and the circle

boundaries are close enough to the non-bright pixels. This circle-

fit algorithm on bright pixels is illustrated in Figure 6.

Figure 6. Illustration of the circle-fit algorithm on the bright
pixels. (A) before and (B) after.
doi:10.1371/journal.pone.0048664.g006

Table 1. Comparison of the proposed smart markers algorithm against different marker identification algorithms.

One-to-one Overseg. Underseg. False Miss Precision Recall F-score

Smart markers 408 4 10 29 53 0.92 0.86 0.89

Intensity-based 331 16 14 124 122 0.70 0.70 0.70

Distance-based 245 4 8 92 218 0.71 0.52 0.60

Cond-erosion 231 23 8 97 226 0.65 0.49 0.56

The results are obtained on the training set using marker-based evaluation.
doi:10.1371/journal.pone.0048664.t001
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Results

Dataset
We conduct our experiments on 44 live cell images of the

KATO-3 human gastric cancer cell line. The dataset contains a

total of 1954 cells most of which grow in clumps on layers. Each

image has a resolution of 1360|1024 pixels. The images are

captured by a digital (Olympus DP72, Tokyo, Japan) microscope

with a 40| objective lens. The cells are annotated by our biologist

collaborators, manually drawing their boundaries. We will use the

centroids of these annotated cells for marker-based evaluation and

their boundaries for area-based evaluation.

In our experiments, the images are randomly divided into

training and test sets. The training set includes 474 cells of 10

different images whereas the test set includes 1480 cells of the

remaining 34 images. The cells in the training set are used to

estimate the parameters of our algorithm as well as those that we

use in our comparisons. The cells in the test set are not used in the

parameter estimation at all.

Evaluation
Marker-controlled watershed algorithms first identify markers

on an image and then start the flooding process from these

markers. The success of the segmentation is closely related with

how well the markers are identified on the image. One can obtain

more accurate segmentation results if there is one-to-one

correspondence between the markers and the actual cells. Since

the correct identification of the markers greatly affects the

segmentation results as well as the main contribution of this paper

is on the marker definition, in this section, we report the

experimental results in terms of the markers, but not the

segmentation boundaries. However, it is also possible to apply a

watershed algorithm on the markers to obtain the boundaries.

This possibility will be explored in the next section.

In our experiments, we evaluate the results both visually and

quantitatively. For that, we consider the centroids of the annotated

cells as the gold standards and the centroids of the identified

markers as the computed cells and use a distance-based evaluation

algorithm to obtain the quantitative results. In this marker-based

evaluation algorithm, each marker (computed cell) is matched to

every gold standard cell provided that the distance between the

marker and the gold standard cell is less than a predefined distance

threshold. By making use of these matchings, we compute the

number of one-to-one matches, oversegmentations, undersegmen-

tations, false detections, and misses, whose definitions are given

below. Additionally, we use the precision, recall, and F-score measures

in our evaluation.

N A marker (or a gold standard cell) corresponds to one-to-one

match if the marker is matched to a single gold standard cell

that is not matched with any other markers.

N A gold standard cell corresponds to oversegmentation, if more

than one marker is matched to this gold standard cell. The

number of such markers is considered in reporting the

quantitative results.

N A marker corresponds to undersegmentation if it is matched more

than one gold standard cell. The number of such gold standard

cells is considered in reporting the quantitative results.

N A marker corresponds to false detection, if it is not matched to

any gold standard cells.

N A gold standard cell corresponds to miss, if none of the markers

are matched to this gold standard cell.

Parameter selection
The proposed algorithm has five external model parameters.

The first three of these parameters are used for cell pixel

quantization whereas the other two are used for smart marker

extraction. These parameters are the Sobel threshold constant k,

the size W of the majority filter, the area threshold Tarea, the size

threshold Tsize, and the radius rdisk of the structuring element. In

our experiments, we consider all possible combinations of the

following parameter sets k~f0:2,0:3,:::,0:6g, W~f9,11,:::,21g,
Tarea~f750,1000,:::,1500g, Tsize~f750,1000,:::,1500g, and

rdisk~f5,6,:::,11g. Here we select these parameter sets according

to image characteristics. For example, we consider the typical size

of a cell and image resolution to determine an initial value for the

Table 2. Comparison of the proposed smart markers algorithm against different marker identification algorithms.

One-to-one Overseg. Underseg. False Miss Precision Recall F-score

Smart markers 1284 36 52 122 129 0.88 0.87 0.87

Intensity-based 1102 50 50 138 309 0.84 0.74 0.79

Distance-based 834 17 34 240 604 0.75 0.56 0.64

Cond-erosion 790 109 50 307 601 0.64 0.53 0.58

The results are obtained on the test set using marker-based evaluation.
doi:10.1371/journal.pone.0048664.t002

Figure 7. For the training set, the number of one-to-one
matches as a function of the distance threshold value used in
our marker-based evaluation algorithm.
doi:10.1371/journal.pone.0048664.g007
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area threshold Tarea and then include its nearby values to the

parameter set.

From all possible combinations of the parameter sets, we select

the one that gives the maximum F-score on the training cells. This

selection automatically evaluates the combinations based on their

F-scores and does not involve any manual or visual examination.

After this procedure, the parameters are selected as k~0:4,

W~13, Tarea~1000, Tsize~1250, and rdisk~9.

Comparisons
We compare our results against those of the three marker

identification algorithms. The first is the intensity-based algorithm. It

defines the markers computing regional minima on gray-level

intensities I of the given image. Here, to avoid the effects of noise,

it uses the h-minima transform, which suppresses all minima in the

intensity map I whose depth is less than a scalar h.

The second one is the distance-based algorithm which is similar to

the intensity-based algorithm except that it uses the inverse of the

Figure 8. Visual results of the algorithms obtained on example images.
doi:10.1371/journal.pone.0048664.g008
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distance transform instead of intensities. It obtains the distance

transform map on the initial segmentation of the image such that

the minimum distance from each foreground pixel to a

background pixel is computed. Similarly, it uses the h-minima

transform to reduce the effects of possible noise in the distance

map. This algorithm necessitates obtaining an initial segmentation

before finding the markers. For that, in our experiments, we use

the cell regions that the cell pixel quantization step identifies as the

initial segmentation; i.e., the union of bright, dark, and dark-center

pixels are used as the initial segmentation. Here we do not use the

standard thresholding-based algorithms, which are typically used

to obtain initial segmentations, since they yield worse results for

our dataset.

The last is the conditional-erosion algorithm, which defines the

markers on the initial segmentation map of the image by making

use of iterative erosions [17]. It first iteratively erodes the

connected components of the map with a coarse structuring

element while the size of the components is greater than an area

Figure 9. For the test set, the precision, recall, and F-score measures. As a function of (A) the Sobel threshold constant k, (B) the size W of
the majority filter, (C) the area threshold Tarea, (D) the size threshold Tsize, and (E) the radius rdisk of the structuring element.
doi:10.1371/journal.pone.0048664.g009

Figure 10. Visual results of the proposed algorithm obtained on the images of different cell lines.
doi:10.1371/journal.pone.0048664.g010
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threshold. It repeats the same procedure on the resulting

components, this time using a fine structuring element and a

smaller area threshold. Likewise, we use the union of bright, dark,

and dark-center pixels identified by our algorithm as the initial

segmentation.

These algorithms also have their own parameters. Besides, the

method used to obtain the initial segmentation maps introduces

additional ones. In our experiments, we use a similar method to

select these parameters: we first list different values for each

parameter, consider different combinations of the parameter

values, and select the combination that yields the maximum F-

score on the training cells.

We present the quantitative results obtained on the training and

test sets in Tables 1 and 2, respectively. As mentioned before, to

obtain these results, we employ a marker-based evaluation method

that uses a distance threshold to find matches between the markers

and the actual cells. Smaller values of this threshold increases false

detections and misses since some of the identified markers are not

close enough to the exact centroids of the gold standard cells. This

decreases one-to-one matches, giving lower precision and recall

values. Its larger values increases oversegmentations since more

markers are matched to the same gold standard cell. This also

decreases one-to-one matches. Figure 7 shows the number of one-

to-one matches as a function of the distance threshold value for the

training set. Considering these numbers, we select the distance

threshold as 30, which gives the maximum one-to-one matches for

all of the algorithms. We also present the visual results obtained for

example images in Figure 8.

The results show that the definition of smart markers leads to

higher precision and recall values. Compared to the other

algorithms, it gives more one-to-one matches with relatively less

false detections and misses. In Tables 1 and 2, we observe that the

most successful comparison algorithm is the intensity-based

algorithm. However, when we examine the visual results (the

third column of Figure 8), we observe that this algorithm usually

fails in finding Type I cells, which contain bright pixels both in

their centers and on their boundaries, and Type IV cells, which

correspond to apoptosis. Besides, for images that contain noise and

artifacts, it may find a very large number of markers. Indeed, the

reported results do not reflect this fact since we mask the markers

with the initial segmentation found by our algorithm. If such a

masking operation was not used, the number of false detections

would increase from 138 to 427.

Moreover, the results show that the distance-based and

conditional-erosion algorithms give less one-to-one matches due

to a high number of misses. The visual results of these algorithms

(the fourth and the fifth columns of Figure 8) reveal that they are

not successful in finding clumped cells, regardless of their

morphological classes. It is also worth noting that these algorithms

require an initial segmentation and the quality of this segmenta-

tion greatly affects the final segmentation results. In the

experiments, we use the initial segmentation found by our

algorithm, which uses domain specific knowledge to define this

segmentation. Without using this domain specific knowledge, it

may be harder to find a good initial segmentation especially for

Type III cells, which correspond to darker and non-circular cells,

and Type IV cells, which correspond to apoptosis. This may

further decrease the number of one-to-one matches.

Parameter analysis
The proposed algorithm has five model parameters. To

investigate the effects of each parameter to the segmentation

performance, we fix four parameters and observe the precision,

recall, and F-score measures as a function of the other. In Figure 9,

we present the parameter analysis performed on the test set.

There are three external parameters in the cell pixel quantiza-

tion step. The first one is the Sobel threshold constant k that is

used to define dark pixels. When its smaller values are used, some

background pixels are also defined as dark so that false

background regions are identified as cells. This increases the

number of computed cells without increasing one-to-one matches,

which in turn lowers precision. On the other hand, when larger

values of this constant are used, less dark pixel components can be

found. This leads to less computed cells as well as less one-to-one

matches, which lowers recall. Note that larger values do not lower

precision since the number of computed cells and one-to-one

matches decrease concurrently. In our experiments, this parameter

is selected as 0.4. Figure 9A shows that this selected value provides

a good balance between precision and recall.

The second parameter is the size W of the majority filter that is

used for alleviating the effects of noise in pixel quantization. The

filter size W should be selected large enough to get the benefits of

majority filtering. On the other hand, selecting too large filter sizes

causes to assign incorrect labels to pixels. As seen in Figure 6B, this

changes the balance between precision and recall. The area

threshold Tarea is the last parameter of this step. It is used to

eliminate smaller dark components. Smaller threshold values

identify more false regions as cells whereas larger values give less

computed cells and one-to-one matches. These decrease precision

and recall, respectively, as in the case of the parameter k. In the

experiments, Tarea is selected to be 1000, which gives high

precision and recall values at the same time (Figure 9C).

There are two parameters used in the smart marker extraction

step. These are the size threshold Tsize and the radius rdisk of the

structuring element. Smaller values of Tsize cause to define false

Table 3. Comparison of the marker-controlled watersheds
that use the smart markers and those identified by the
comparison algorithms.

Area-based Cell-based

Precision Recall F-score Precision Recall F-score

Smart markers 0.73 0.67 0.70 0.83 0.77 0.80

Intensity-based 0.71 0.54 0.62 0.75 0.64 0.69

Distance-based 0.50 0.38 0.43 0.64 0.40 0.49

Cond-erosion 0.50 0.35 0.41 0.58 0.38 0.46

The results are obtained on the training set.
doi:10.1371/journal.pone.0048664.t003

Table 4. Comparison of the marker-controlled watersheds
that use the smart markers and those identified by the
comparison algorithms.

Area-based Cell-based

Precision Recall
F-
score Precision Recall

F-
score

Smart markers 0.80 0.72 0.76 0.84 0.83 0.84

Intensity-based 0.82 0.66 0.73 0.84 0.74 0.78

Distance-based 0.59 0.47 0.52 0.68 0.50 0.58

Cond-erosion 0.58 0.44 0.50 0.61 0.47 0.53

The results are obtained on the test set.
doi:10.1371/journal.pone.0048664.t004
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markers, increasing the number of computed cells without

changing one-to-one matches. On the other hand, its larger

values cause to eliminate some true markers, decreasing the

number of computed cells as well as one-to-one matches. These

two conditions decrease precision and recall values, respectively, as

observed in Figure 9D. The radius rdisk slightly changes the results

except the case when largest values are used (Figure 9E). The

largest values prevent the iterative erosion algorithm to identify

especially smaller true markers; this also lowers recall values. In the

experiments, Tsize~1250 and rdisk~9, which give a good balance

between precision and recall.

Discussion

In this paper, we introduced the idea of defining smart markers

for a marker-controlled watershed algorithm by making use of

domain knowledge specific to live cells. This definition relies on

defining different pixel groups based on the morphological

characteristics of the live cells and identifying the smart markers

on these pixel groups. Working with 1954 KATO-3 gastric cancer

cells, our experiments indicated the effectiveness of this smart

marker definition in obtaining more successful results.

As seen in the visual results (Figure 8), the proposed algorithm

can successfully find different types of cells. This is attributed to the

fact that the algorithm uses domain specific knowledge so that it

knows there exist different types of cells in a cell line (or a tissue)

and the characteristics of these cells. Therefore, it can use this

knowledge in defining its markers. On the other hand, the other

algorithms do not use the knowledge of the existence of different

cell types in a cell line. The ability of using such knowledge is

indeed closely related with working on live cells. Live cells are not

fully attached to the plate, and thus, cells belonging to different

Figure 11. Visual results of the watershed algorithms obtained on example images.
doi:10.1371/journal.pone.0048664.g011
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morphological classes can show different appearances. On the

other hand, when cells are fixed, they become fully attached to the

plate and their appearances become the same. The only exception

is the appearance of dead (e.g., apoptotic) cells; they usually seem

different than the others. Thus, to analyze the morphological

classes of fixed cells, special stainings are typically required. The

most of the algorithms in literature, including those that we used in

our comparisons, were implemented considering fixed cells (mostly

for fluorescence stained cells). This could be the reason of these

algorithms not considering such kind of knowledge in their

segmentations. Our proposed work is a good example of showing

how domain knowledge can effectively be used in a cell

segmentation algorithm.

In this work, we developed our algorithm considering the

morphological characteristics of the KATO-3 human gastric

cancer cell line. We also use the images of this cell line to test our

algorithm. Nevertheless, it is also possible to apply this algorithm

to other cell lines. To explore this possibility, we also test our

algorithm on four different cell lines, namely the Huh7 human

liver cancer, MCF7 human breast cancer, MFE-296 human

endometrial carcinoma, and SK-BR-3 human breast cancer cell

lines. The preliminary visual results obtained on example images

of these cell lines are given in Figure 10. This figure shows that the

results hold promise for the proposed algorithm to be also used for

different cell lines. In order to obtain better results, one can

consider the characteristics of these cell lines for the definition of

additional pixel groups as well as for the identification of

additional smart marker types on these pixel groups. This could

be considered as one of the future research directions of our work.

Our experiments showed that the smart marker definition

increases the success in terms of marker localization. This, in turn,

is expected to also increase the success of a watershed algorithm.

To examine this, we implement a watershed algorithm that takes

the smart markers as starting locations and grows them by using

the marker types and the pixel groups (dark, dark-center, and bright

pixels). Here we use the geodesic distance from a pixel to a marker

boundary as the growing criterion. Let Mdark, Mcenter, and Mbright

be a set of smart markers defined on dark, dark-center, and bright

pixels, respectively. In this watershed, we first grow the markers

Mdark on dark pixels as long as the Euclidean and geodesic

distances from a dark pixel to the corresponding marker boundary

are equal to each other. This equality constraint is defined to

prevent flooding into dark pixels that belong to missing cells with

unidentified markers. Then, we repeat the same procedure to

grow the markers Mcenter on dark-center pixels. Finally, we

combine the grown markers with the centroid of the markers

Mbright and grow all of them on bright pixels. Here, we identify the

most distant pixels that each marker can grow into. For that, for

each marker Mi, we find the first bright pixel pi that is adjacent to

background and that Mi grows into and define the maximum

distance as the geodesic distance from pi to the closest boundary of

Mi plus an offset value, which is set to 10 in the experiments. This

distance constraint is defined to prevent flooding into pixels of

missing cells with unidentified markers as well as background

pixels that are incorrectly assigned to the bright pixel group. At the

end, we postprocess the results by applying the majority filter on

the grown areas and filling holes in each segmented cell. For the

other algorithms, we grow their markers on their initial masks by

considering the same distance constraint and applying the same

postprocessing.

We present area-based evaluation of these watershed algorithms

for the training and test sets in Tables 3 and 4, respectively. In this

evaluation, we first find the true segmented cells and then calculate

the precision, recall, and F-score measures by considering the true

positive pixels of these cells. A segmented cell S is said to be true if

at least half of its pixels overlap a gold standard cell G and at least

half of the pixels of G overlap S. That is, the pixels of a segmented

cell are not considered as true positive if there is no one-to-one

correspondence between this cell and a gold standard cell. In

Tables 3 and 4, we also report the precision, recall, and F-score

measures computed on the true segmented cells, without

considering their segmented areas. Note that these cell-based

results are computed on the segmented cells that are identified as

true after the watershed algorithm. Thus, they are less than those

computed on the markers before the watershed algorithm. This

table reveals that the use of the proposed smart markers gives more

successful results than the others in both area-based and cell-based

evaluations. We also give the visual comparison on example

images in Figure 11. When area-based and cell-based results are

assessed together, one can observe that the watershed algorithm

that uses the smart markers identifies cells better than finding their

exact areas. To improve the segmented areas, one can combine

different criteria, such as intensity and gradient values, with the

pixel groups in the growing process. This would be another future

research direction of this work.

Our implementation uses C for cell pixel quantization and

MATLABH for smart marker extraction. The average computa-

tional time for a single image is 2.63 seconds using a computer

with an Intel Core 2 Duo 2.4 GHz processor and 4 GB of RAM.

However, it is possible to obtain speedups by implementing the

smart marker extraction step also with C. This would be

considered as future work.
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