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Abstract. Cortical parcellation is one of the core steps for identifying
the functional architecture of the human brain. Despite the increasing
number of attempts at developing parcellation algorithms using resting-
state fMRI, there still remain challenges to be overcome, such as gener-
ating reproducible parcellations at both single-subject and group levels,
while sub-dividing the cortex into functionally homogeneous parcels. To
address these challenges, we propose a three-layer parcellation frame-
work which deploys a different clustering strategy at each layer. Initially,
the cortical vertices are clustered into a relatively large number of super-
vertices, which constitutes a high-level abstraction of the rs-fMRI data.
These supervertices are combined into a tree of hierarchical clusters to
generate individual subject parcellations, which are, in turn, used to com-
pute a groupwise parcellation in order to represent the whole population.
Using data collected as part of the Human Connectome Project from 100
healthy subjects, we show that our algorithm segregates the cortex into
distinctive parcels at different resolutions with high reproducibility and
functional homogeneity at both single-subject and group levels, therefore
can be reliably used for network analysis.

1 Introduction

Parcellation of the cerebral cortex constitutes one of the core steps to reveal the
functional organization of the brain. It is usually followed by network analyses
devised to generate graphical models of the connections between the parcellated
regions. Such analyses have the potential to uncover the neural mechanisms
behind the human behavior and to help understand neurological disorders [8].
It is of great importance to obtain reliable parcellations, since errors at this
stage propagate into the subsequent analysis and consequently affect the final
results. Among others, there are two notable attributes that define “reliability”
in the context of a cortical parcellation: 1) parcellated sub-regions should be
functionally consistent and comprise similar vertices, since network nodes are
typically represented by a single entity (such as the average time series of the
constituent vertices) and 2) both individual subject and groupwise parcellations
should be reproducible to some extent, that is, multiple parcellations obtained
from different datasets of the same subject as well as groupwise parcellations
computed from the subsets of the same population should exhibit functional
and structural similarity.
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With this motivation, we propose a whole-cortex parcellation framework based
on resting-state functional magnetic resonance imaging (rs-fMRI). The brain
is still functional in the absence of external stimuli, thus rs-fMRI time series
can be utilized to parcellate the cortical surface into functionally homogeneous
sub-regions. The majority of the literature on the rs-fMRI driven parcellation
techniques consists of methods (i) that aim to discover the cortical networks
(e.g. default mode network) [10,5] and (ii) that propose to subdivide the entire
cortical surface in order to produce a baseline for connectome analysis [3,2,7].
Hierarchical clustering, independent component analysis (ICA), region growing,
spectral graph theory, and k -means are some of the many statistical models pro-
posed to compute cortical parcellations as reviewed in [6]. Although promising
solutions exist among them, there still remain challenges to be overcome, es-
pecially in order to obtain reliable parcellations that fulfill the aforementioned
requirements at both single-subject and group levels.

We address these challenges with a three-layer parcellation framework in
which each layer makes use of a clustering technique targeting a specific prob-
lem. First, we pre-parcellate the cortical vertices into highly consistent, rela-
tively large number of homogeneous supervertices with a hybrid distance func-
tion based on rs-fMRI correlations and geodesic distance. This stage does not
only reduce the dimensionality of the data and decrease the computational cost,
but also improves the SNR. Second, we build hierarchical trees on top of the
supervertices to obtain individual parcellations reflecting the functional organi-
zation of the cortex without losing the spatial integrity within the parcels. Third,
we compute a graphical model of the parcel stability across the individual par-
cellations and cluster this graph in order to generate a groupwise representation
of the subjects in the population. Our framework is capable of parcelleting the
cortical surface into varying number of sub-regions (50 to 500 per hemisphere),
thus allowing the analysis at multiple scales.

The most closely related work to our approach is a single-subject parcella-
tion method composed of region growing and hierarchical clustering [2]. The
major differences to our proposed work are twofold. First, we introduce a new
pre-parcellation technique based on supervertices instead of relying on regions
derived from stable seeds. Second, our method is capable of generating parcel-
lations at the group level, thus can be used for population network analysis as
opposed to [2]. We also compare our approach to another state-of-the-art cortical
parcellation method based on spectral clustering with normalized cuts [3] and
demonstrate that the proposed framework is more effective than the other ap-
proaches at both single-subject and group levels, achieving high reproducibility
while preserving the functional consistency within the parcellated sub-regions.

2 Methodology

2.1 Data Acquisition and Preprocessing

We evaluate our algorithm using data from the Human Connectome Project
(HCP). We conducted our experiments on the rs-fMRI datasets, containing scans
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from 100 different subjects (54 female, 46 male adults, age 22-35). The data for
each subject was acquired in two sessions, divided into four runs of approximately
15 minutes each. Data was preprocessed and denoised by the HCP structural
and functional minimal preprocessing pipelines [4]. The outcome of the pipeline
is a standard set of cortical time series which were registered across subjects
to establish correspondences. This was achieved by mapping the gray matter
voxels to the native cortical surface and registering them onto the 32k stan-
dard triangulated mesh at a 2 mm spatial resolution. Finally, each time series
was temporally normalized to zero-mean and unit-variance. We concatenated
the time series of 15-minute scans acquired in the same sessions, obtaining two
30-minute rs-fMRI datasets for each of the 100 subjects and used them to eval-
uate our approach.

2.2 Initial Parcellation via Supervertex Clustering

We start the parcellation process by clustering the cortical vertices into a set
of functionally uniform sub-regions. This stage does not only enforce spatial
continuity within clusters, but is also beneficial for delineating more reproducible
parcellations. To this end, we propose a k -means clustering algorithm inspired by
SLIC superpixels [1]. Differently from the classical k -means, we limit the search
space for each cluster to reduce the number of distance calculations and we
define a hybrid distance function1 which is capable of grouping highly correlated
vertices, yet ensuring spatial continuity within clusters.

The cortical surface is represented as a smooth, triangulated mesh with no
topological defects. Initially, k seeds are selected as the singleton clusters by uni-
formly sub-sampling the mesh. The algorithm iteratively associates each vertex
with a cluster by computing their similarity using an Euclidean function in the
form of

√
(dc/Nc)2 + (dg/Ng)2, where dc and dg correspond to the functional and

spatial distance measures, respectively. Functional similarity between two ver-
tices is measured by the Pearson’s distance transformation of their corresponding
time series. This transformation ensures the distance between highly correlated
vertices being close to zero, thus increases their likelihood of being assigned to
the same cluster. Spatial proximity is measured by the geodesic distance along
the cortical surface, which is approximated as the length of the shortest path
between the nodes in the mesh graph. Nc and Ng refer to the normalization
factors, which are set to their corresponding maximal values in a cluster2. The
algorithm converges when none of the clusters change between two consecutive
iterations. Clustering decreases the dimensionality of the dataset to the number
of supervertices, thus reduces the computational cost of the subsequent stages.
Each supervertex is now represented by the average time series of the constituent
vertices, minimizing the effects of noisy signals throughout the dataset.

1 Please note that our distance function is not a metric, since it does not necessarily
satisfy the triangle inequality.

2 We straightforwardly set Nc to 2, since the Pearson’s distance values fall within
the range [0, 2]. Similarly, Ng is set to the predefined local search limit, since the
maximum distance within a cluster cannot exceed it.
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2.3 Single-Level Parcellation via Hierarchical Clustering

The supervertices over-parcellate the cortical surface, therefore a second stage
should be deployed in order to obtain a reasonable number of parcels without
losing the ability to represent the functional organization of the cortex and hav-
ing non-uniform functional patterns within sub-regions. Towards this end, we
join supervertices into non-overlapping parcels using agglomerative hierarchi-
cal clustering. This approach builds a hierarchy of clusters using a bottom-up
strategy in which pairs of clusters are merged if their similarity is the maximal
among the other pairing clusters. We only join adjacent clusters into a higher
level in order to ensure the spatial continuity throughout the parcellation pro-
cess. The algorithm is driven by Ward’s linkage rule and the similarity between
pairing clusters is computed by Pearson’s distance. The algorithm iteratively
constructs a dendrogram, in which the leaves represent the supervertices and
the root represents an entire hemisphere. Cutting this tree at different levels of
depth produces parcellations with the desired precision. We investigate the effect
of different granularities on the parcel reproducibility and functional consistency
in the following section.

2.4 Groupwise Parcellation via Spectral Clustering

Connectome analyses usually require a reliable groupwise representation for iden-
tifying common functional patterns across groups of healthy or disordered sub-
jects and compare how the connectivity changes, for example, through aging. To
this end, we deploy a final clustering stage in order to identify the group parcel-
lations. We compute a graphical model of the parcel stability across the whole
population [9], in which an edge between two vertices is weighted by the num-
ber of times they appear in the same parcel across all individual parcellations.
Notably, the spatial integrity of the parcels is automatically guaranteed, since
only vertices sharing the same cluster membership can have a correspondence
between each other. The graph is subdivided by spectral clustering with normal-
ized cuts [3] into pre-defined number of sub-regions, thus similar to individual
parcellations, allowing analysis of the connectome at different levels of detail.

3 Results

We assess the parcellation performance in two ways: (a) reproducibility and (b)
functional consistency. Reproducibility is measured with a two-pass Dice score-
based method suggested in [2]. In the first pass, overlapping sub-regions are
matched and given the same label based on their Dice scores. Functional in-
consistency due to low SNR usually results in a higher number of parcels than
desired. To eliminate its effect on the performance, a second-pass is applied to
the parcellations and over-segmented sub-regions are merged. A group of parcels
is considered as over-segmented if at least half of it overlaps with a single parcel
in the other parcellation. After locating and merging over-segmented parcels, the
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average Dice score is used to assess the accuracy of the resulting parcellations.
Functional consistency of a parcellation is assessed with respect to homogene-
ity and silhouette width [3]. Homogeneity is computed as the average pairwise
correlations within each parcel after applying Fisher’s z-transformation. Silhou-
ette width combines homogeneity with inter-parcel separation3, in order to assess
the effectiveness of the parcellation algorithm in terms of generating functionally
consistent sub-regions4. Algorithms were run on the left and right hemispheres
separately and performance measurements were computed at different scales,
starting from 500 parcels per hemisphere and in decrements of 50. Subsequently,
results for the left and right hemispheres were averaged for the final plots.

We present single-subject reproducibility and functional consistency results
obtained by our approach (3-LAYER), region growing (RG-HC), and normal-
ized cuts (NCUT) in Fig. 1. Each subject has two rs-fMRI datasets, therefore
reproducibility can be computed by matching parcellations derived from them
separately. Functional homogeneity of the first parcellation was computed using
the second rs-fMRI dataset, and vice versa, to avoid bias that may have emerged
during the computation of the parcellations. Both 3-LAYER and RG-HC were
run with ∼2000 initial clusters, each cluster having ∼30 cortical vertices on av-
erage. Results indicate that RG-HC and 3-LAYER perform similarly in terms
of computing functionally segregated parcels; the former having slightly bet-
ter performance at the lower resolutions, whereas the latter is able to generate
single-subject parcellations with higher homogeneity, having 1-5% better scores.
This is primarily due to the fact that we represent the cortical surface by func-
tionally uniform supervertices and incorporate a flexible spatial constraint into
our distance function, enabling any vertex to be assigned to a cluster if they
exhibit high correlation and are spatially close (but not necessarily neighbors)
as opposed to the region growing, which is based on stable seed points and a
more strict definition of spatial proximity. However, region growing shows mod-
erately better performance in terms of reproducibility when the same seed set
(RG-HC2) is used at both parcellations, but this has no impact on the functional
homogeneity. Although NCUT generates highly reproducible parcellations at low
resolutions, it produces the least homogeneous sub-regions and shows a poor per-
formance in silhouette width. Its high reproducibility can be attributed to the
bias emerging from the structure of the cortical meshes that were used to drive
the algorithm, which tends to generate evenly shaped parcels at the expense of
losing functional segregation ability as also discussed in [2] and [3].

Functional consistency of the parcellations was also qualitatively measured by
inspecting the connectivity profiles of the parcellated sub-regions thoroughly. We
identified that sharp transitions across functional patterns are more significantly
aligned with our parcellation boundaries compared to the other algorithms.

3 Inter-parcel separation is computed as the average of the correlations between the
vertices constituting a parcel and the remaining vertices across the cortex.

4 Silhouette width is defined as (H−S)
max{H,S} , where H is the within-parcel homogeneity

and S is the inter-parcel separation for a given parcel. Obtaining silhouette widths
of close to 1 indicates a highly reliable and functionally consistent parcellation.
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Fig. 1. Single-subject reproducibility (left), functional homogeneity (middle), and func-
tional segregation (right) results obtained by our approach (3-LAYER), region growing
with different (RG-HC1) and same seeds (RG-HC2), and normalized cuts (NCUT). See
the text for the experimental setup.

Further examinations on the parcellations revealed that our boundaries matched
well with the borders in cytoarchitectonic cortical areas, especially within the
somato-sensory and vision cortex, showing agreement with the findings in [2].

The group level parcellations were assessed by dividing the subjects into two
equally sized subgroups by random permutation and then computing a group
parcellation for each subset. Reproducibility was measured by matching two
group parcellations using the same Dice score method. Functional consistency
of the groupwise parcellations was computed by measuring the parcel homo-
geneity and silhouette width based on each individual subject’s rs-fMRI time
series and then averaging them within the subgroups. All measurements were
repeated for 10 times, each time forming subgroups with different subjects. Per-
formance scores computed in each repetition were then averaged and plotted
in Fig. 2. Groupwise parcellations were computed by using the stability graphs
obtained from each method’s single-level parcellations. In addition, we also com-
puted a groupwise parcellation by averaging the rs-fMRI datasets of all subjects
(after applying Fisher’s z-transformation) and parcellating this average dataset
by spectral clustering (MEAN) [3]. In general, the group-level results exhibit a
similar tendency with those of the individual subjects. MEAN and NCUT show
higher reproducibility at low resolutions, however 3-LAYER outperforms them
for increasing number of parcels, obtaining upto 15% better scores. It generates
the most functionally consistent parcellations at almost all resolutions achiev-
ing up to 4% higher homogeneity and 3% better functional segregation than
the other approaches, except for 50-150 parcels, where RG-HC performs slightly
better. These results may indicate that our parcellations can effectively reflect
common functional characteristics within the population, being minimally af-
fected by the functional and structural variability across different subjects.

Finally, for visual review, we present the parcellations of an arbitrary subject
and the groupwise parcellations of the population obtained by the proposed
algorithm in Fig. 3. We also provide the Dice scores computed between the single-
level parcellations and their respective group representations in order to show



Multi-Level Cortical Parcellation 53

100 200 300 400 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Group−level reproducibility

Number of parcels

A
ve

ra
g

e
 D

ic
e

 s
c

o
re

50 150 250 350 450
 

 

3−LAYER
NCUT
MEAN
RG−HC

100 200 300 400 500
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
Group−level functional homogeneity

Number of parcels
A

ve
ra

g
e

 c
ro

ss
−

c
o

rr
e

la
tio

n
s

50 150 250 350 450
 

 

3−LAYER
NCUT
MEAN
RG−HC

100 200 300 400 500
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of parcels

Group−level functional segregation

A
ve

ra
g

e
 s

ilh
o

u
tt

e
 w

id
th

s

50 150 250 350 450
 

 

3−LAYER
NCUT
MEAN
RG−HC

Fig. 2. Group-level reproducibility (left), functional homogeneity (middle) and func-
tional segregation (right) results obtained by our approach (3-LAYER), region growing
(RG-HC), normalized cuts (NCUT) and averaging rs-fMRI datasets (MEAN). See the
text for the experimental setup.
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Fig. 3. (a) Parcellations obtained by the proposed method (3-LAYER) for 200 parcels.
Single-level and groupwise parcellations in the first two columns were derived from
different rs-fMRI datasets of the same subject and from different subgroups of the
population, respectively. The third column shows the differences between the first and
second parcellations in each row. (b) Average Dice scores computed between the single-
level parcellations and their respective group representations.

the robustness of the proposed method in terms of coping with the functional
variability within the population, especially at high resolutions.

4 Conclusions

We presented a new three-layer clustering approach to parcellate the cerebral
cortex using resting-state fMRI. Our experiments at the single-subject and group
levels demonstrated that the proposed algorithm can produce reliable parcella-
tions, with higher reproduciblity and functional consistency compared to state-
of-the-art approaches, therefore can be reliably and effectively used for network
analysis. The three-layer method is in general more successful in grouping corre-
lated vertices together, thus fulfills a critical requirement of connectome studies.
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Having these promising results using solely rs-fMRI, we are now working on a
multi-modal approach to improve the precision of the parcellation borders by
incorporating task-fMRI into the parcellation framework. Another challenge in
the parcellation problem is finding an optimal number of parcels. Our initial
experiments showed that, the functional transitions in the connectivity profiles
can be utilized to drive an objective function at the hierarchical clustering stage,
thus can be used for this purpose.
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