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Human Brain Mapping: A Systematic Comparison of
Parcellation Methods for the Human Cerebral Cortex

Salim Arslan∗, Sofia Ira Ktena, Antonios Makropoulos, Emma C. Robinson,
Daniel Rueckert, Sarah Parisot

Biomedical Image Analysis Group, Imperial College London, 180 Queen’s Gate, London
SW7 2AZ, UK

Abstract

The macro-connectome elucidates the pathways through which brain regions are

structurally connected or functionally coupled to perform a specific cognitive

task. It embodies the notion of representing and understanding all connections

within the brain as a network, while the subdivision of the brain into interacting

functional units is inherent in its architecture. As a result, the definition of net-

work nodes is one of the most critical steps in connectivity network analysis. Al-

though brain atlases obtained from cytoarchitecture or anatomy have long been

used for this task, connectivity-driven methods have arisen only recently, aiming

to delineate more homogeneous and functionally coherent regions. This study

provides a systematic comparison between anatomical, connectivity-driven and

random parcellation methods proposed in the thriving field of brain parcella-

tion. Using resting-state functional MRI data from the Human Connectome

Project and a plethora of quantitative evaluation techniques investigated in the

literature, we evaluate 10 subject-level and 24 groupwise parcellation methods

at different resolutions. We assess the accuracy of parcellations from four dif-

ferent aspects: (1) reproducibility across different acquisitions and groups, (2)

fidelity to the underlying connectivity data, (3) agreement with fMRI task ac-

tivation, myelin maps, and cytoarchitectural areas, and (4) network analysis.

This extensive evaluation of different parcellations generated at the subject and
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group level highlights the strengths and shortcomings of the various methods

and aims to provide a guideline for the choice of parcellation technique and

resolution according to the task at hand. The results obtained in this study

suggest that there is no optimal method able to address all the challenges faced

in this endeavour simultaneously.

Keywords: brain parcellation, resting-state functional MRI, cerebral cortex,

functional neuroimaging, model selection, network analysis

1. Introduction

Understanding the brain’s behaviour and function has been a prominent and

ongoing research subject for over a century (Sporns, 2011). Neuronal intercon-

nections constitute the primary means of information transmission within the

brain and are, therefore, strongly related to the way the brain functions (Smith5

et al., 2013). These connections constitute a complex network that can be es-

timated at the macro scale via modern imaging techniques such as Magnetic

Resonance Imaging (MRI) (Craddock et al., 2013). While structural connec-

tivity networks are typically inferred from diffusion MRI (dMRI), functional

networks can be mapped using resting-state functional MRI (rs-fMRI) (Honey10

et al., 2009; Eickhoff et al., 2015). The former allows estimation of the physical

connections, while the latter elucidates putative functional connections between

spatially remote brain regions. Analysing brain connectivity from a network

theoretical point of view has shown significant potential for identifying organ-

isational principles in the brain and their connections to cognitive procedures15

and brain disorders (Supekar et al., 2008; Bassett et al., 2008; Smith et al.,

2009). This allows to study the brain and its function from a new perspective

that accounts for the complexity of its architecture. One of the critical steps in

the construction of brain connectivity networks is the definition of the network

nodes (Sporns, 2011; Eickhoff et al., 2015). Adopting a vertex- or voxel-based20

representation yields networks that are very noisy and of extremely high dimen-

sionality, making subsequent network analysis steps often intractable (Thirion
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et al., 2014). An alternative approach to node definition is to subdivide the

brain into a set of distinct regions - i.e. parcellate the brain-, where each parcel

corresponds to a node of the connectivity network.25

Traditionally, parcellations derived from anatomical landmarks (e.g. AAL)

or cytoarchitectonic information (e.g. Brodmann areas) have been used to de-

fine regions of interest (ROIs) for network analysis (Sporns, 2011). Whereas

such parcellations are of great importance in order to derive neuro-biologically

meaningful brain atlases, they might fail to fully reflect the intrinsic organisa-30

tion of the brain and capture the functional variability inherent in individual

brains, due to brain maturation or injury. Furthermore, they are typically gen-

erated on a single or small set of individuals, which can make them biased

and unable to accurately represent population variability. This can lead to ill-

defined nodes in the constructed network. For example, it has been shown that35

the anterior cingulate cortex (ACC) exhibits a great amount of heterogeneity

in structural (Beckmann et al., 2009) and functional connectivity (Margulies

et al., 2007), despite the fact that it is typically represented as a single ROI in

a standard anatomical brain atlas (Tzourio-Mazoyer et al., 2002).

Alternatively, random parcellations can be used to define the network nodes.40

However, this kind of approach could fail to represent the underlying connectiv-

ity faithfully and lead to loss of information (Smith et al., 2011). More recent

parcellation approaches attempt to overcome these problems by using connec-

tivity information (e.g. rs-fMRI or dMRI data) to drive parcellations (Eickhoff

et al., 2015). Since connectivity-based parcellations are directly obtained from45

the underlying data, such methods can potentially provide highly homogeneous

and functionally coherent parcels and separate regions with different patterns

of connectivity more accurately. With this idea in mind, several connectivity-

driven parcellation methods have been proposed, usually in association with

clustering techniques (Thirion et al., 2014). These methods are based on hier-50

archical clustering (Mumford et al., 2010; Bellec et al., 2010; Arslan and Rueck-

ert, 2015; Moreno-Dominguez et al., 2014), k -means (and its fuzzy counter-

part) (Tomassini et al., 2007; Mezer et al., 2009; Golland et al., 2008), Gaus-
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sian mixture models (Yeo et al., 2011; Lashkari et al., 2010), spectral graph

theory (van den Heuvel et al., 2008; Craddock et al., 2012; Arslan et al., 2015;55

Parisot et al., 2016a; Shen et al., 2013; Arslan et al., 2016), Markov random fields

(MRF) (Ryali et al., 2013; Honnorat et al., 2015; Parisot et al., 2016b), edge

detection (Cohen et al., 2008; Laumann et al., 2015; Gordon et al., 2016), region

growing (Blumensath et al., 2013; Bellec et al., 2006), independent component

analysis (ICA) (Beckmann and Smith, 2004; Smith et al., 2009), Bayesian mod-60

elling (Baldassano et al., 2015), meta-analytic connectivity techniques (Eickhoff

et al., 2011; Power et al., 2011), dictionary learning (Varoquaux et al., 2011),

and many more as extensively reviewed in (Eickhoff et al., 2015; Thirion et al.,

2014; de Reus and van den Heuvel, 2013). Although these methods have been

thoroughly validated against alternative approaches, a different experimental65

setup with varying assumptions was used in each case. In addition, the absence

of ground truth makes the evaluation of different parcellation methods even

more challenging as there is no universally-accepted parcellation that can be

used as reference.

In this paper, we propose a systematic comparison of existing parcellation70

methods using publicly available resources and evaluation measures that are

widely used in the literature through a structured experimental pipeline. We

focus on resting-state fMRI (rs-fMRI), as the majority of connectivity-driven

parcellation methods we are investigating have been developed and tested using

this modality. We aim to provide some insight into the reliability of parcel-75

lations in terms of reflecting the underlying mechanisms of cognitive function,

as well as, revealing their potential impact on network analysis. Thirion et al.

(2014) did a similar study at a lower scale, focusing on the analysis of three

clustering techniques for fMRI-based brain parcellation, but it only approaches

the problem from a clustering point of view. Our study, however, provides a80

large-scale systematic comparison of the state-of-the-art parcellation methods

that encompasses many different aspects in a unified experimental setting.

The main contributions of our study are the following: (1) We evaluate 10

subject-level and 24 groupwise methods using publicly available datasets pro-
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vided by the Human Connectome Project (Van Essen et al., 2013b). (2) Our85

experiments consist of quantitative assessments of parcellations at both subject

and group levels and for different resolutions. (3) We evaluate parcellations not

only from a data clustering point of view but also with regards to network anal-

ysis and multi-modal consistency. Our evaluation includes reproducibility (e.g.

Dice coefficient and adjusted Rand index), cluster validity analysis (e.g. Sil-90

houette coefficient and parcel homogeneity) and multi-modal comparisons with

task fMRI activation, myelin and cytoarchitectural maps. In addition, we com-

pute network statistics with respect to the underlying parcellation and devise

simple network-based tasks (such as gender classification) to evaluate the po-

tential impact of parcellations on network analysis at different scales. It should95

be noted that our aim is not to directly compare single subject parcellations to

group-level ones as groupwise parcellations are subject to methodological biases

(e.g. registration) which can affect their performance.

The remainder of this paper is organised as follows: Section 2 summarises

the procedures pursued during the generation and evaluation of parcellations.100

Experimental results are presented in Section 3. In Section 4, we discuss the

reliability and applicability of parcellations for network analysis and summarise

the impact of this study with some insight into the future of brain parcellation.

2. Materials and Methods

A summary of the processing pipelines is given in Fig. 1. A brief description105

of subject- and group-level methods is provided in Table 1 and Tables 2-3,

respectively. We provide further algorithmic/implementation details for each

method in Supplementary Material 1.

2.1. Data

This study is carried out using data from the publicly available Human Con-110

nectome Project (HCP) database (Van Essen et al., 2013b), S900 release. All

connectivity-driven parcellations are derived from the rs-fMRI acquisitions of
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Figure 1: Visual outline of parcellation generation steps for the subject- and group-level

parcellations.

100 unrelated subjects (54 female, 46 male adults, aged 22-35). This dataset is

publicly available as the “Unrelated 100” in the HCP database and is referred

to as “Dataset 1” in the remainder of this paper. For evaluation purposes, we115

gather a different set of 100 unrelated subjects from the HCP database (Dataset

2) comprising randomly selected 50 male and 50 female adults of age 22-35. The

evaluation is performed on Dataset 2 so as to reduce the possible bias towards

parcellations computed from Dataset 1 with respect to the provided ones. All

subjects had their scans successfully completed for all imaging modalities cov-120

ered by the HCP.

We use rs-fMRI as our primary data modality for the generation and eval-

uation of parcellations. This is because most methods selected for this study

were developed for rs-fMRI driven parcellation, and rs-fMRI allows test-retest

measurements across acquisitions, subjects, and groups. The rs-fMRI scans for125

each subject were conducted in two sessions, consisting of a total of four runs

of approximately 15 minutes each. The sessions were held on different days

and during the scans the subjects were presented a fixation cross-hair, pro-

jected against a dark background, which prevented them from falling asleep.

All subjects were preprocessed by the HCP structural and functional minimal130

preprocessing pipelines (Glasser et al., 2013). The output of these pipelines for
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each subject is a standard set of cortical vertices represented as a triangular

mesh M = {V,E}, where the nodes have a 2 mm spacing. V represents the set

of N = 32k nodes, while E describes the connections or edges between neigh-

bouring nodes. This standard mesh is obtained by registering all cortices to135

a common surface reference space, the Conte69 atlas (Van Essen et al., 2012),

using cortical surface based alignment (MSMsulc); implemented using Multi-

modal Surface Matching (Robinson et al., 2014). Our choice of MSMsulc over

the functional based alignment is motivated by the fact that the majority of

publicly available parcellations driven by the HCP data used MSMsulc. This140

yields a set of corresponding mesh coordinates for all subjects. Projection of

the 4D rs-fMRI volumes onto the cortical meshes associates each mesh vertex

with a rs-fMRI timeseries. Following these preprocessing steps, each timeseries

is temporally normalised to zero-mean and unit-variance.

All other modalities are obtained from the HCP dataset (myelin maps, Brod-145

mann areas) (Glasser et al., 2013) or using the HCP processing scripts (task

fMRI). Myelin maps are calculated as the ratio of T1-weighted and T2-weighted

MRI (Glasser and Van Essen, 2011). The Brodmann parcellation was mapped

onto the Conte69 surface atlas (Van Essen et al., 2012) and was then projected

onto each subject’s cortical surface using the cortical folding driven registra-150

tion’s deformation field. The task fMRI data is preprocessed following the HCP

preprocessing pipelines (gradient unwarping, motion and distortion correction,

registration to MNI space and projection to the cortical surface). Task activa-

tion maps are then obtained using standard FSL tools (FEAT) that use general

linear modelling to construct activation maps (Barch et al., 2013). The analysis155

is carried out separately for each of the 86 different functional contrasts, over 7

different tasks, including the motor protocol, the relational protocol, the social

protocol, the language protocol, the emotion protocol, the gambling protocol,

and the working memory protocol (Barch et al., 2013). We compute the group

average myelin maps by averaging all subjects’ myelin maps, while the average160

Brodmann map is obtained with majority voting.

7



2.2. Parcellation Methods

In order to provide a comprehensive evaluation of the state of the art on

surface-based brain parcellation, we gathered 10 single subject and 24 groupwise

parcellation methods from the literature. The methods included in this study165

satisfy at least one of the following criteria:

1. An implementation is publicly available.

2. Pre-computed parcellations are publicly available. Both surface-based and

volumetric parcellations are considered.

3. The method can easily be re-implemented.170

Subject-level methods

Subject-level methods subdivide the cortical surface of each subject inde-

pendently. We consider connectivity-driven parcellations as well as anatomical

and random parcellations. All single subject methods considered and their as-

sociated names used in the remainder of this paper are presented in Table 1. A175

more detailed description of the different methods is provided in Supplementary

Material 1.

Parcellations based on widely used clustering algorithms such as k -means,

agglomerative hierarchical clustering (Ward, 1963) and spectral clustering with

normalised cuts (Craddock et al., 2012) are computed using in-house implemen-180

tation built on clustering tools from Python’s scikit-learn library and Matlab.

The method proposed by Blumensath et al. (2013) is re-implemented as de-

scribed in the original paper. The remaining connectivity-driven methods (Ar-

slan and Rueckert, 2015; Bellec et al., 2006) are computed using publicly avail-

able code.185

We also evaluate surface-based anatomical atlases that are distributed as

part of the HCP datasets (Desikan et al., 2006; Fischl et al., 2004). These

parcellations are tailored to each individual subject with respect to anatomical

features, such as cortical folding.

Last but not least, we include two more approaches to our experiments that190

do not account for any functional data, with the aim of having a baseline towards
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Name Reference Resolution Description 

Arslan Arslan and Rueckert (2015); codes available from 
www.doc.ic.ac.uk/~sa1013/codes.html 

Varying A two-level approach that combines k-means and hierarchical clustering. Ward’s 
clustering with Euclidean distance is applied to an initial finer parcellation of 
1000 regions per hemisphere.  

Blumensath Blumensath et al. (2013); re-implemented as 
described in the original paper. 

Varying A two-level method that combines region growing and hierarchical clustering. 
Ward’s clustering with Euclidean distance is applied to an initial finer 
parcellation of 1000 regions per hemisphere.  

Bellec Bellec et al. (2006); codes available from 
www.nitrc.org/projects/niak 

Varying A competitive region growing approach driven by parcel homogeneity. A size 
threshold is applied to avoid over-growing of parcels.  

Ward Ward (1963); in-house implementation, featuring 
scikit-learn’s AgglomerativeClustering function. 

Varying A hierarchical tree is built by merging pairs of clusters, if their similarity is the 
maximal among the other pairing clusters. Only adjacent clusters are joined into 
a higher level in order to ensure the spatial contiguity. Clusteringis driven by 
Ward’s linkage rule with Euclidean distance. 

K-Means k-means clustering as described in Thirion et al. 
(2014); in-house implementation, featuring scikit-
learn’s KMeans and PCA functions. 

Varying PCA is applied to BOLD timeseries for feature reduction. PCA components that 
explain 50% of the variance combined with spatial vertex coordinates to 
improve spatial contiguity of parcellations.  

N-Cuts Craddock et al. (2012); in-house implementation 
of spectral clustering with normalised cuts. 

Varying Spectral clustering with normalised cuts. An affinity matrix is built by correlating 
the adjacent vertices with each other. Spectral decomposition is applied to the 
normalised graph Laplacian. The final parcellations are obtained by 
discretisation. 

Destrieux Fischlet al. (2004); available as part of the HCP 
datasets from db.humanconnectome.org 

150 (75 L, 
75 R) 

A surface-based parcellation that subdivides the cortex based on the limit 
between the gyral and sulcal regions. 

Desikan Desikan et al. (2006); available as part of the HCP 
datasets from db.humanconnectome.org 

70 (35 L, 35 
R) 

Asurface-based parcellation that subdivides the cortex with respect to 
anatomical landmarks based on the gyri. 

Geometric Geometric parcellations as described in Thirion et 
al. (2014); in-house implementation, featuring 
scikit-learn’s KMeans function. 

Varying k-means clustering is applied to the spatial vertex coordinates. No connectivity 
information is accounted for.  

Random Random parcellations as described in Schirmer 
(2015). 

Varying Poisson disk sampling is used to generate regions of approximately equal size by 
ensuring that tworegion centres are not closer than a given threshold that 
controls the numberof parcels. 

Table 1: Subject-level parcellation methods.

data-driven approaches. We generate (1) random parcellations using Poisson

disk sampling as described in (Schirmer, 2015) and (2) geometric parcellations

using k -means clustering of the spatial coordinates of the cortex (Thirion et al.,

2014).195

Two of the single-subject parcellation methods (Blumensath and Arslan)

require an initialisation with a high resolution parcellation (1000 parcels per

hemisphere). We use the approach proposed in (Blumensath et al., 2013) to

determine the resolution of initial parcellations for each subject, as it is the

only method that is driven by seed vertices generated from the underlying data,200

rather than a set of pre-determined centroids. Using the same initial resolution

for both methods facilitates their comparison on a single subject basis.

Group-level methods

Groupwise parcellations build representative models of a population. Meth-

ods to obtain a group-level parcellation typically rely on the assumption that205
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Name Reference Resolution Description 

JOINT Arslan et al. (2015); codes available from 
www.doc.ic.ac.uk/~sa1013/codes.html 

Varying A surface-based parcellation method based on a joint spectral 
decomposition of individual subjects. An initial finer parcellation of 2000 
regions per hemisphere is used for spatial feature reduction in order to 
compensate for the computational cost. 

2-LEVEL Groupwise parcellations obtained from the 
subject-level Arslan, Blumensath, Bellec, Ward, 
K-Means, and N-Cuts parcellations. 

Varying 2-level approach is applied to the subject-level parcellations of various 
methods to obtain groupwise parcellations. These parcellations are 
referred to as the method’s name followed by "2" (e.g. Ward-2). 

Ward-AVR Ward (1963); in-house implementation featuring 
scikit-learn’s AgglomerativeClustering function. 

Varying The group average matrix is fed into the Ward’s agglomerative 
hierarchical clustering algorithm using the same setting as for the 
subject-level Ward parcellations. 

K-Means-AVR k-means clustering as described in Thirion et al. 
(2014); in-house implementation featuring scikit-
learn’s KMeans and PCA functions. 

Varying The group average matrix is fed into k-means clustering after being 
concatenated with the average spatial coordinates to improve spatial 
contiguity of parcellations. 

N-Cuts-AVR Craddock et al. (2012); in-house implementation 
of spectral decomposition with normalised cuts.  

Varying A temporal correlation matrix is derived from the group average matrix 
and transformed into a spatially constrained affinity matrix. Spectral 
clustering with normalised cuts is used as in the same setting as the 
subject-level N-Cuts parcellations. 

GRASP Honnorat et al. (2015); codes available from 
cbica.upenn.edu/sbia/software/grasp/index.html 

Varying An MRF-based method that can subdivide the cortex into spatially 
contiguous parcels by using shape priors. The group average matrix is 
parcellated into 10000 initial clusters by running the method in the 
hierarchical clustering mode. Final parcellations are derived from this 
low-dimensional matrix.  

GRAMPA Parisot et al. (2016b); based on in-house 
implementation of the method. 

Varying An MRF model that iteratively updates parcel centres and parcel 
assignments based on modality specific costs. The parcellation is 
computed using the group average matrix. 

Geometric Geometric parcellations as described in Thirion et 
al. (2014); in-house implementation featuring 
scikit-learn’s KMeans function. 

Varying k-means clustering is applied to the average spatial vertex coordinates. 
No connectivity information is accounted for.  

 

Table 2: Computed group-level parcellation methods.

spatial correspondence between subjects has been ensured a priori by register-

ing subjects to a common template. Hence, each vertex (or voxel) represents

the same spatial location for each subject. This allows concatenating or aver-

aging data from different subjects for population-level analysis. The two more

popular ways of computing a data-driven groupwise parcellation are (1) per-210

forming parcellation for each subject individually and applying a second level

clustering algorithm to subject-level parcellations (i.e. 2-level approach), and

(2) computing a representative feature matrix from the population, for instance

by concatenating BOLD timeseries across subjects, and submitting this com-

bined matrix to a parcellation method (i.e. group-average approach). All the215

computed and publicly available group-level methods considered in this study

are presented in Tables 2 and 3, respectively, along with their associated names.

A more detailed description of each method is provided in Supplementary Ma-

terial 1.
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Name Reference Resolution Description 

Gordon Gordon et al. (2016); parcellation available from 
www.nil.wustl.edu/labs/petersen/Resources.html 

333                   
(161 L, 172 R) 

A surface-based parcellation computed from the average gradients of 
resting-state functional connectivity networks. Provided parcellation is 
iteratively dilated to cover the entire cortical surface. 

Power Power et al. (2011); parcellation available from 
balsa.wustl.edu/study/show/WG33 

130                    
(65 L, 65 R) 

Resting-state communities originally identified in volume space are 
projected onto the cortical surface and made publicly available by Van 
Essen et al. (2017). Connected components within each parcel are 
relabeled to ensure spatial contiguity.  

Yeo Yeo et al. (2011); parcellation available from 
balsa.wustl.edu/study/show/WG33 

96                        
(49 L, 47 R) 

17-cluster resting-state networks originally derived in volume space 
from average resting-state functional connectivity data using a GMM-
based clustering algorithm are projected onto the cortical surface and 
made publicly available by Van Essen et al. (2017). Connected 
components in each parcel are relabeled to ensure spatial contiguity.  

ICA Group-ICA parcellations available from 
db.humanconnectome.org/data/projects/HCP_500 

Varying Group-average parcellations by means of group-ICA (Beckmann and 
Smith, 2004) are obtained at several different dimensionalities (25, 50, 
100, 200, 300), using a group-PCA output (Smith et al. 2014) from the 
HCP S500 subjects. Connected components within each parcel are 
relabeled.  

Baldassano Baldassano et al. (2015); parcellation available from 
www.princeton.edu/~chrisb/code.html 

171                     
(84 L, 87 R) 

A multi-purpose clustering algorithm based on nonparametric Bayesian 
modeling is applied to dense connectome derived from the HCP S500 
group PCA output (Smith et al. 2014) in order to compute a surface-
based parcellation.  

Glasser Glasser et al. (2016); parcellation available from 
balsa.wustl.edu/study/show/RVVG 

360                   
(180 L, 180 R) 

A cortical parcellation generated from multi-modal images of 210 adults 
from the HCP, using a semi-automated approach. Cortical regions are 
delineated with respect to function, connectivity, cortical architecture, 
and topography, as well as, expert knowledge and meta-analysis results 
from the literature. 

Fan Fan et al. (2016); parcellation available from 
atlas.brainnetome.org 

210                     
(105 L, 105 R) 

A volumetric brain parcellation is obtained using both anatomical 
landmarks and connectivity-driven information. Anatomical regions 
defined by Desikan et al. (2006) are parcellated into subregions using 
functional and structural connectivity data from 40 adults provided by 
the HCP. Cortical parcels are projected from volume to surface.  

Shen Shen et al. (2013); parcellation available from 
www.nitrc.org/frs/?group_id=51 

200                     
(102 L, 98 R) 

A spectral clustering approach is used to compute a volumetric 
groupwise parcellation based on an optimization process that 
guarantees functional homogeneity within each parcel and ensures that 
computed parcels are consistent across subjects. Volumetric parcels 
from the provided 1 mm sampled 268-parcel atlas are projected to 
cortical surface.  

AAL Tzourio-Mazoyer et al. (2002); available from 
www.gin.cnrs.fr/AAL2_files/aal2_for_SPM12.tar.gz 

82                      
(41 L, 41 R) 

A popular volumetric atlas that is manually delineated with respect to 
anatomical landmarks, in particular, by following the sulci course in the 
brain. Cortical parcels are projected from volume to surface.  

Destrieux Fischl et al. (2004); parcellations available from 
db.humanconnectome.org 

150                     
(75 L, 75 R) 

Majority voting used across subject-level Destrieux parcellations to 
obtain a group-level parcellation. 

Desikan Desikan et al. (2006); parcellations available from 
db.humanconnectome.org 

70                       
(35 L, 35 R) 

Majority voting used across subject-level Desikan parcellations to obtain 
a group-level parcellation. 

 

Table 3: Pre-computed, publicly available group-level parcellation methods.

2-level approach. This technique is similar to majority voting, in the sense that220

vertices assigned to the same region across subject-level parcellations are clus-

tered together. As a result, group-level parcellations obtained via this method

can capture the shared characteristics of the population as approximated by the

individual parcellations. To this end, a graphical model of the “parcel stability”

is computed across all individual parcellations (Craddock et al., 2012; van den225

Heuvel et al., 2008). This is achieved by constructing an N × N adjacency

matrix A (i.e. stability graph), in which an edge between vertices vi and vj is

weighted by the number of times both vertices are assigned to the same parcel
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Figure 2: Illustration of how to compute a symmetric 16 × 16 adjacency matrix A from four

toy parcellations (4 × 4 matrices) where each colour represents a different label/parcel. For

example, vertex v7 (with its corresponding row and column highlighted in A) is assigned to

the same parcel as v3, v4, and v6, for 4, 3, and 2 times, respectively, giving A7,3 = 4, A7,4 = 3

and A7,6 = 2. A7,1 = A7,2 = A7,5 = A7,8 = 1, since it shares the same label with v1, v2, v5,

and v8 in just one parcellation, while the rest of the entries in row 7 of the adjacency matrix

are 0, since there does not exist a shared label between the other vertices and v7 in any of the

toy parcellations.

across all individual subject parcellations. Notably, as long as the initial par-

cellations are spatially contiguous, the spatial integrity of the parcellations is230

also guaranteed, since only vertices sharing the same cluster membership can

be connected in the adjacency matrix. Finally, the graph is subdivided into

different number of regions, typically by a graph partitioning algorithm, such as

spectral clustering with normalised cuts (van den Heuvel et al., 2008; Craddock

et al., 2012). An illustration is provided in Fig. 2 that explains the construction235

of a stability graph with 4 toy parcellations. This approach is used to gener-

ate a group-level parcellation from the individual subject parcellation methods

K-Means, Ward, N-Cuts, Arslan, Blumensath, and Bellec.

Group-average approach. This technique aims to capture shared patterns be-

tween individuals within a population by computing a group average repre-240
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sentation of connectivity. This is achieved by concatenating the timeseries

of each subject and applying PCA for dimensionality reduction before par-

cellation (Thirion et al., 2014; Smith et al., 2014). However, using the full-

concatenated timeseries with traditional PCA quickly becomes computationally

prohibitive when the population’s size increases. To overcome this, we follow245

the methodology employed by the HCP for the generation of group average ma-

trices. We use FSL’s incremental group PCA (Smith et al., 2014), a technique

developed for computing “pseudo-timeseries” that can (to good approximation)

estimate the real PCA output applied to the original combined dataset, while

relying on a limited amount of memory.250

We apply this technique to generate group level pseudo-timeseries from both

Dataset 1 and Dataset 2. Group-level parcellations are computed from each of

these datasets using our in-house implementations of clustering techniques (K-

Means, Ward and N-Cuts) as well as connectivity-driven methods for which

implementations are available (Honnorat et al., 2015; Parisot et al., 2016b).255

Other computed parcellations. Alternative to 2-level and group-average approaches,

we provide parcellations obtained from a spectral clustering technique that is

simultaneously driven by within- and inter-subject connectivity features (Arslan

et al., 2015). In addition, a groupwise geometric parcellation is derived using

k -means clustering of the average spatial coordinates of all cortical vertices as260

described in (Thirion et al., 2014).

Publicly available parcellations. Pre-computed, publicly available group-level

parcellations are also included in this study (Gordon et al., 2016; Yeo et al.,

2011; Power et al., 2011; Baldassano et al., 2015; Fan et al., 2016; Shen et al.,

2013; Smith et al., 2014; Glasser et al., 2016; Van Essen et al., 2017). Details265

on the method and the resolution of the parcellations are provided in Table 3.

In particular, it should be noted that the parcellations provided by Baldassano

et al. (2015) and the ICA parcellations (Beckmann and Smith, 2004; Smith

et al., 2014) are computed from a much larger HCP cohort (group average of
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500 subjects) which can comprise our evaluation dataset. This may introduce270

a bias in the evaluation of both methods.

The methods proposed by Yeo et al. (2011) and Power et al. (2011) as

well as the ICA parcellations (Beckmann and Smith, 2004; Smith et al., 2014)

were originally developed for identifying communities or resting-state networks

(RSNs) that span across the cortical surface, hence do not naturally provide275

spatially contiguous parcellations. Since it can affect the quality of the evalu-

ation measures, we overcome this by relabelling connected components within

each parcel. We then remove very small parcels and slightly dilate the remain-

ing ones to adjust for vertices lost. k -means (both subject-level, 2-level, and

group-average versions) and another connectivity-driven approach, GRAMPA,280

can also provide spatially disjoint parcels. In our experiments, we do not apply

any post-processing to the parcellations derived by these methods, as we aim

to obtain roughly the same number of regions for all computed parcellations

for the sake of consistency. Nonetheless, we perform additional experiments to

analyse the impact of relabelling connected components for these methods and285

discuss how their performance changes compared to the original parcellations.

The multi-modal parcellation of the human cerebral cortex (Glasser et al.,

2016) is computed through expert manual annotation of imaging data from

several modalities, including function, connectivity and cortical architecture.

To date, only group level parcellations have been made publicly available, and290

therefore, we only incorporate this parcellation to our groupwise experiments.

We also include anatomical atlases to our study, including the Automated

Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) and two other

parcellations provided by the HCP (Fischl et al., 2004; Desikan et al., 2006).

We obtain a groupwise representation of the surface-based anatomical parcella-295

tions (Fischl et al., 2004; Desikan et al., 2006) using majority voting across the

subject-level parcellations.

Several parcellations are only available in volume space (Tzourio-Mazoyer

et al., 2002; Shen et al., 2013; Fan et al., 2016). We use volume-to-surface and

surface-to-surface sampling techniques to project volumetric parcels onto the300
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HCP average cortical atlas (Conte69) (Van Essen et al., 2012). AAL (Tzourio-

Mazoyer et al., 2002) and the volumetric parcellation by Shen et al. (2013) are

projected onto the cortical surface generated from the Colin27 brain (Holmes

et al., 1998) using FreeSurfer (Fischl, 2012), which is then registered to the

Conte69 standard space using Multi-modal Surface Matching (Robinson et al.,305

2014). Our last volumetric parcellation (Fan et al., 2016) is provided in the

HCP volumetric space, and is therefore directly projected onto the HCP’s stan-

dard surface. Finally, all volumetric parcellations are post-processed and each

parcel is slightly dilated to fill holes that may have emerged during projection.

Unfortunately, volume-to-surface resampling is not a straightforward process,310

and hence, it is impossible to retain all volume-based parcels after projection.

However, we ensure that the parcellation boundaries and relative positions of

parcels to each other remain as faithful to the original atlas as possible.

2.3. Parcellation Evaluation Techniques

Evaluating the quality of parcellation methods is a challenging task since315

there is no ground-truth parcellation of the cerebral cortex. We gather here

some of the most commonly used evaluation techniques from the literature to

evaluate parcellations at both subject and group levels with respect to varying

resolutions. These techniques can be separated into four categories with re-

gards to the parcellation aspects they assess: (1) reproducibility, (2) clustering320

validity measures, such as homogeneity and Silhouette analysis, (3) multi-modal

comparisons with cytoarchitecture, task fMRI activation, and myelination, (4)

network analysis. A summary of the evaluation techniques is given in Table 4.

2.3.1. Reproducibility

Reproducibility is a widely-accepted technique for evaluating the robustness325

of a parcellation method with respect to the underlying data/subjects. It aims

at quantitatively measuring the extent of alignment in parcellation boundaries

between different parcellations. Reproducibility can be evaluated between par-

cellations obtained from a) different subjects, b) the same subject but different
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Evaluation 
technique 

Description Quantitative 
measurements 

Level Previously used in literature 

Reproducibility Assesses the similarity between two sets of 
parcellations either obtained from different 
acquisitions of an individual (scan-to-scan) 
or different groups (group-to-group). 

Dice coefficient; 
Adjusted Rand index 

Subject/Group Craddock et al. (2012); Blumensath et al. 
(2013); Shen et al. (2013); Thirion et al. (2014); 
Honnorat et al. (2015); Arslan et al. (2015); 
Parisot et al. (2016a) 

Cluster validity 
analysis  

Evaluates the quality of parcellations from a 
clustering point of view by measuring the 
faithfulness of the parcellation to the 
underlying data source.  

Homogeneity; 
Homogeneity relative to 
null models; Silhouette 
coefficient 

Subject/Group Yeo et al. (2011); Craddock et al. (2012); Arslan 
and Rueckert (2015); Parisot et al. (2016a); 
Gordon et al. (2016); Arslan et al. (2016) 

Agreement with 
cytoarchitecture 

Assesses the overlap with known 
cytoarchitectonic areas as delineated by the 
Brodmann atlas. 

Dice coefficient Subject/Group Blumensath et al. (2013); Arslan et al. (2016); 
Parisot et al. (2016a) 

Goodness-of-fit 
to task activation 

Evaluates how well the parcellations agree 
with the task activation maps. 

Bayesian information 
criterion 

Subject/Group Thirion et al. (2014); Parisot et al. (2016a) 

Alignment with 
myelination  

Assesses the agreement between the 
parcellations and highly myelinated cortical 
areas, identified by a coarse myelin-driven 
parcellation.  

Dice coefficient Subject/Group Blumensath et al. (2013); Arslan et al. (2016) 

Network-based 
classification 

Evaluates the ability of parcellations to 
capture population differences with a simple 
gender classification task on functional 
connectivity networks. 

Classification accuracy Group Vergun et al. (2013); Satterthwaite et al. (2015) 

Graph theoretic 
analysis 

Investigates different topological properties 
of connectivity networks with a focus on the 
underlying parcellation. 

Clustering coefficient; 
characteristic path 
length; small-world 
index; average node 
degree 

Group Salvador et al. (2005); Achard et al. (2006) 

 

Table 4: Techniques used to evaluate parcellations.

rs-fMRI acquisitions, c) different groups, and d) different initialisations (if the330

method depends on the initialisation). Due to the high inter-subject variability

within a population, it is not expected to obtain high reproducibility values

between different subjects. Nevertheless, a robust parcellation method should

yield very similar parcellations for the same subject with different acquisitions.

The same should be expected of group level parcellations, assuming the group335

size is large enough.

We perform a reproducibility analysis for each subject by comparing their

parcellations obtained from two different rs-fMRI acquisitions (i.e. scan-to-scan

reproducibility). At the group level, we compare the parcellations obtained

from Dataset 1 with the ones derived from Dataset 2 (i.e. group-to-group340

reproducibility). Unfortunately, we are limited to performing the groupwise

reproducibility analysis only for the computed parcellations, as only one parcel-

lation/atlas is publicly available from each external source.
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Dice coefficient. Dice coefficient (Dice, 1945) is a very popular measure of over-

lap between two labelled areas. It has been extensively used for evaluating brain345

parcellations (Craddock et al., 2012; Honnorat et al., 2015; Blumensath et al.,

2013; Yeo et al., 2011; Arslan and Rueckert, 2015; Parisot et al., 2016a). Given

two parcels X and Y , the Dice coefficient is calculated as:

Dice =
2|X

⋂
Y |

|X|+ |Y |

where | · | indicates the number of vertices in a parcel. In order to obtain a350

global measure of parcellation reproducibility, we follow the approach proposed

in (Blumensath et al., 2013). We first compute Dice coefficients for every pair

of parcels and match the parcels with the highest overlap. The Dice coefficients

of matching parcels are then averaged to obtain a global reproducibility score.

The matching process is performed in an iterative manner, where matching355

pairs identified in one iteration cannot be matched with other parcels at the

next iterations. This process is repeated until all pairs are identified. A Dice

coefficient of 1 implies a perfect match (identical parcellations).

Low SNR in functional connectivity data or high variability within a group

may yield a subdivision of some regions from one parcellation to the next, even360

when the same algorithm is performed on different acquisitions/subsets. To

account for this effect and reduce its impact on reproducibility, we also use a

modified version of Dice coefficient that merges the subdivided regions so as to

maximise the overlap with the other parcellation as described in (Blumensath

et al., 2013). This is done by iteratively matching each parcel in one parcellation365

to those in the other, if their overlap ratio is ≥ 0.5 (i.e. one parcel comprises

at least half of the other parcel). After this process, parcels that are matched

with the same parcel are merged and the average Dice coefficient is computed

between the matched pairs as described above.

Adjusted Rand index. Adjusted Rand index (ARI) (Hubert and Arabie, 1985) is370

also considered for the evaluation of parcellation reproducibility (Thirion et al.,
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2014). In contrast to Dice coefficient, it measures the agreement of two parcel-

lations without the necessity of initially matching parcels. As a result, it can

more effectively measure the agreement between two parcellations with different

numbers of clusters (Milligan and Cooper, 1986). The details of the method are375

given in Appendix A. An ARI of 1 indicates a perfect correspondence between

parcellations, whereas a value of 0 implies that the parcellations do not agree

on any of the labels.

2.3.2. Cluster validity measures

The second category of validation measures aims to evaluate the similarity of380

vertices aggregated in the same parcel. Parcellation can be seen as a clustering

problem, and there exist many tools targeted at evaluating the quality of clus-

tering solutions. Here, we focus on highly popular measures of clustering quality

for brain parcellation, namely parcel homogeneity and Silhouette coefficients. In

addition, we adopt the evaluation technique proposed by Gordon et al. (2016)385

that compares parcellations to a set of “null models” obtained by randomly

relabelling the parcellation without altering the relative parcel locations with

respect to each other.

Homogeneity. A good parcellation should have the ability to group cortical ver-

tices with highly similar functional connectivity (Craddock et al., 2012; Gordon390

et al., 2016). It might be particularly important for subsequent network anal-

ysis where network nodes are typically represented by the average signal (e.g.

BOLD timeseries) within each parcel (Shen et al., 2013; Gordon et al., 2016).

This can be evaluated by computing the functional homogeneity within a parcel,

a highly popular parcellation measure (Craddock et al., 2012; Shen et al., 2013;395

Gordon et al., 2016; Arslan and Rueckert, 2015; Parisot et al., 2016a; Honno-

rat et al., 2015). The homogeneity of a parcel is measured by calculating the

average similarity between every pair of vertices assigned to it. This similarity

can be defined as the Pearson’s correlation coefficient between the “connectivity

fingerprints” of vertices (Power et al., 2011; Craddock et al., 2012). A connec-400

tivity fingerprint is computed for each vertex vk, by correlating vk to the rest of
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the cortical vertices and applying Fisher’s r-to-z transformation to the resulting

correlation coefficients (Power et al., 2011). A global homogeneity value is ob-

tained by averaging the homogeneity values across all parcels (Craddock et al.,

2012).405

A shortcoming of homogeneity is its dependency on the parcel size distribu-

tion. Smaller parcels tend to have a higher homogeneity than large ones, such

that, a parcellation mostly composed of many small parcels and a few large

regions will perform better than one with similarly sized parcels. To reduce this

bias, we compute a weighted arithmetic mean, where each parcel’s contribution410

to the global homogeneity is proportional to its size.

Comparison to null models. While computing homogeneity by means of a weighted

mean reduces the bias towards small parcels, homogeneity values remain de-

pendent on the resolution of the parcellations so that fair comparison between

different resolutions is not possible. An alternative is proposed in (Gordon415

et al., 2016) which consists of comparing a parcellation with the so-called “null

models” of the same resolution.

In order to obtain such null models, we perform the following procedure: for

each hemisphere, we project the parcellation onto a standard spherical surface

provided by the HCP and randomly rotate each point in this sphere around420

the x, y, and z axes. This process moves each parcel to a new location on

the cortical surface without altering their relative positions. We then measure

the homogeneity of the rotated parcellation and repeat the same process for

1000 different null models. Parcels that move to the medial wall, where no

connectivity information is available, are discarded from computations. The425

advantage of this approach is that it reduces the observed biases with respect

to parcel shape and size, as the parcellations are compared to their rotated

versions, which have the same resolutions and similar parcel shapes.

In order to quantitatively evaluate parcellations with respect to their null

models, we (1) count the number of rotated parcellations with lower homogene-430

ity scores than the original parcellation and (2) compute the difference between
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the homogeneity of the original parcellation and the mean homogeneity score

of null models, scaled by their standard deviation (i.e. z-scores relative to null

models) (Gordon et al., 2016).

Silhouette coefficient. Another useful and popular technique to quantify par-435

cellation reliability is the Silhouette coefficient (SC) (Rousseeuw, 1987), which

can be used as an indicator of how well vertices fit in their assigned parcel. For

each vertex, it compares the within-parcel dissimilarity defined as the average

distance to all other vertices in the same parcel, to the inter-parcel dissimilarity

obtained from those assigned to other parcels (Yeo et al., 2011; Craddock et al.,440

2012). SC not only evaluates the compactness of parcels, but also their degree

of separation from each other. It is defined as follows:

SCi =
bi − ai

max(ai, bi)

Given a parcellation U = {U1, U2, . . . UK}, ai and bi correspond to within-parcel

and inter-parcel dissimilarity of vertex vi ∈ Uk, respectively, and are defined as445

follows:

ai =
1

nk − 1

∑
j∈Uk,i6=j

d(vi, vj)

bi =
1

M

∑
j∈N(Uk)

d(vi, vj)

Here, nk denotes the number of vertices in Uk, N(Uk) denotes the set of parcels

that are neighbours with Uk, with M being the number of vertices within these

neighbouring parcels and d(vi, vj) is the distance measure defined as 1−r, where

r is Pearson’s correlation computed between the connectivity fingerprints of vi450

and vj . Instead of computing the inter-parcel dissimilarity with respect to the

vertices in all other parcels, we restrict the computations to the neighbouring

parcels. This is because (1) it is unlikely for a vertex to be assigned to a

remote parcel due to spatial constraints imposed on the parcellations, and (2)
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computing inter-parcel dissimilarity with respect to all vertices outside a parcel455

can easily yield a bias towards obtaining high Silhouette coefficients, as the

inter-parcel dissimilarity tends to be extremely high due to the many vertices

with low similarity contributing to its computation.

Due to the fact that we use correlation distance as the dissimilarity measure,

SC ranges within [−1,+1]. A negative SC implies misclassification of a vertex,460

while a value close to 1 indicates that the vertex is clustered with a high degree

of confidence. If most vertices possess high Silhouette values, the parcellation is

considered to be of high quality. A global score is obtained for each parcellation

by averaging the Silhouette coefficients across all vertices.

2.3.3. Comparisons with other modalities465

The previously proposed measurements assess the accuracy of parcellations

from a clustering point of view. However, when defining regions of interest

for neuro-anatomical purposes, the consistency of these areas with well-defined

neuro-biological features also constitutes a critical aspect of evaluation. To this

end, we expand our comparisons to those with other modalities. We test the470

parcellation quality by evaluating their agreement with task activation maps,

as well as their overlap with myelination patterns and well-known cortical areas

delineated from cytoarchitectonic features.

Here, it is worth noting that Glasser is not only driven by connectivity,

but also uses information from cortical architecture, task fMRI activation, and475

myelin content. As a result, it may develop a positive bias towards these modal-

ities and this should be taken into consideration while interpreting the perfor-

mance of Glasser with respect to the inter-modality comparisons.

Bayesian information criterion. Bayesian information criterion (BIC) is pro-

posed by Thirion et al. (2014) as a means of quantifying the agreement of480

parcellations with task fMRI. Each vertex is associated with a task activation

map (or the concatenated task activation maps of all subjects if a groupwise

parcellation is considered). The BIC criterion measures the goodness-of-fit of a
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probabilistic model of the concatenated task activation maps by penalising the

negative log-likelihood by the complexity of the model (number of parcels).485

Overlap with cytoarchitectonic areas. We measure the agreement of our parcella-

tions with the Brodmann cytoarchitectonic areas (Brodmann, 1909). Although

functional connectivity obtained from BOLD timeseries does not necessarily re-

flect the cytoarchitecture of the cerebral cortex (Wig et al., 2014), agreement

with some known cytoarchitectonic areas could indicate a parcellation’s ability490

to reflect the underlying cortical segregation (Gordon et al., 2016). Our stand-

point to include comparisons with cytoarchitecture is to show the extent of such

agreement at least with certain areas, such as the motor and visual cortex, for

which several parcellation techniques report a noticeable alignment (Blumen-

sath et al., 2013; Wig et al., 2014; Gordon et al., 2016). To this end, we use495

the Brodmann parcellations provided by the HCP, which contain labels for the

primary somatosensory cortex (BA 3, 1, and 2), the primary motor cortex (BA

4), the premotor cortex (BA 6), Broca’s area (BA 44, 45), the visual cortex (BA

17 and MT), and the perirhinal cortex (BA 35, 36) as shown in Fig. 3.

Quantitative comparisons are performed using the joined Dice coefficient ap-500

proach as explained in Section 2.3.1. Similarly, overlapping parcels are matched

with the Brodmann areas before we compute the Dice coefficient between the

matching pairs. It is worth noting that several parcels can be matched to the

same area and therefore merged into a larger parcel.

Agreement with structured myelination patterns. Strong similarities have been505

observed between myelin maps and resting-state fMRI gradients (Glasser and

Van Essen, 2011). We should therefore expect the boundaries of rs-fMRI driven

parcellations to align with myelination patterns. To evaluate this, we compute

a coarse-resolution myelin-driven parcellation (25 parcels) using the method

described in (Parisot et al., 2016b) for each subject and a group-level one. This510

method simply regroups vertices with similar myelin values and, as shown in

Fig. 3, effectively delineates the major changes in myelination across the cortex.

We compare the parcellations obtained by different methods to these coarse
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Figure 3: Cyto- and myelo-architecture of the cerebral cortex as defined respectively by (a)

Brodmann areas and (b) a coarse-resolution myelin-driven parcellation.

parcellations using the joined Dice coefficient approach (Section 2.3.1) which

can accurately compare parcellations of different resolutions. Regarding this515

coarse parcellation we only consider the highly myelinated cortical areas, i.e.

cortical areas with a mean myelin value below a certain threshold are discarded.

2.3.4. Network analysis

Parcellations can significantly reduce the dimensionality of the dense human

connectome without eliminating valuable information about the interactions520

between different brain regions and the mechanisms through which these in-

terconnections give rise to complex cognitive processes. It has been common

practice in recent neuroscience studies to explore several neurological (Tijms

et al., 2013; Fornito et al., 2015) and neuro-developmental disorders (Jafri et al.,

2008; Liu et al., 2008; Dennis et al., 2011; Fornito et al., 2012) from a network525

perspective. These disorders have often been linked to a disruption or abnormal

integration of spatially distributed brain regions that would normally be part of

a single large-scale network, leading to their characterisation as disconnection

syndromes (Catani et al., 2005). Apart from the clinical value of network anal-

ysis, efforts to explore potential correlations between connectivity patterns and530

certain phenotypes like fluid intelligence (Smith, 2016), or to predict an individ-

ual’s biological age (Robinson et al., 2008; Dosenbach et al., 2010; Pandit et al.,

2014; Qiu et al., 2015) have been made. Therefore, a parcellation method can
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also be evaluated in terms of its ability to capture the inter-individual variability

and to reveal patterns that explain observed cognitive performance.535

Once the parcellation has been generated, a network representation can eas-

ily be obtained by mapping each network node to a parcel. The edge weights

in functional networks usually represent the statistical dependency between the

brain regions underlying the connected nodes. In our analysis of functional

networks, we use temporal correlation of the representative timeseries as an540

estimate of the connection strength between two brain parcels.

We explore different ways in which the underlying parcellation can affect

network analysis: (1) a network-based classification task and (2) a standard

graph theoretic analysis of brain connectivity networks.

Network-based classification. Several studies suggest that differences have been545

identified in both structural and functional connectivity between genders (Gong

et al., 2011). More specifically, in terms of functional connectivity derived from

rs-fMRI data, which is the focus of the current survey, significant differences

in the topological organisation of functional networks have been found between

males and females (Tian et al., 2011). For this reason we choose a gender550

classification task to evaluate the impact of the parcellation on network-based

classification tasks. We use linear Support Vector Machine (SVM) (Burges,

1998), a well-established classifier from the machine learning literature, and a 10-

fold cross-validation procedure to get an estimate of each method’s performance.

Previous studies (Robinson et al., 2008; Vergun et al., 2013; Satterthwaite et al.,555

2015) have used SVM as a machine learning classifier, which is designed to

make predictions based on high-dimensional data, to investigate sex differences

in functional connectivity.

Given a set of p-dimensional feature vectors, SVM aims to identify a (p−1)-

dimensional hyperplane that represents the largest separation or margin between560

the feature vectors of the two classes. The hyperplane is chosen in a way that

the distance from the nearest data point of each class is maximized. The weights

assigned to the normalised features to obtain a low-dimensional representation
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of the feature vectors can, additionally, be used to describe how heavily weighted

the connectivity feature is within the multivariate model (Satterthwaite et al.,565

2015).

Since node correspondences are ensured with groupwise parcellations, an

embedding of each subject’s connectivity matrix can be employed to get a gen-

eral vector representation (Varoquaux and Craddock, 2013), rendering the use

of the aforementioned classifier straightforward. This approach is often referred570

to as “bag of edges” (Craddock et al., 2013) and has been widely used when the

underlying parcellation is the same among all subjects.

Graph theoretic analysis. The first step of the analysis involves the computation

of partial correlation matrices for all subjects. Partial correlation is considered

to discard the “indirect” connections that are preserved by Pearson’s correla-575

tion, only maintaining the “direct” connections between two regions. It can be

computed from the inverse of the empirical covariance matrix, P = Σ−1, as

πvu = −Pvu(PvvPuu)−1/2. It is common practice to perform graph theoretic

analysis on partial correlation networks, since correlation coefficient captures

the effect of both direct and indirect paths minimising the information added580

by the analysis (e.g. the shortest path length between two nodes is already

captured by full correlation (Fornito et al., 2016)). In order to estimate the

group average functional connectivity matrix from the individual partial cor-

relation matrices, we follow the procedure described in (Salvador et al., 2005),

where a binary network for the group of subjects can be obtained by testing585

the null hypothesis that the (mean) partial correlation is zero between any pair

i, j of regions. Fisher’s r-to-z transform is applied to improve normality and,

subsequently, a one-sample t-test is performed for all possible pairs of regions.

The False Discovery Rate approach is applied to find the appropriate thresh-

old and to correct for multiple comparisons, according to the steps described590

in (Benjamini and Yekutieli, 2001), which takes into account the lack of inde-

pendence between tests. Proportional thresholding is applied after this step, to

preserve the top 20% of the edges and reduce threshold effects on the network
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measures (Garrison et al., 2015; Alexander-Bloch et al., 2010).

Once the binary network representing the group is generated for each method,595

a graph theoretic analysis can be performed to investigate topological properties

of the network. Network measures of healthy human functional brain connectiv-

ity have previously been explored with simple correlation (Eguiluz et al., 2005),

partial correlation (Salvador et al., 2005) as well as wavelet correlation (Achard

et al., 2006) networks. Here we investigate how some of the most commonly600

used graph theoretic measures, namely clustering coefficient C, characteristic

path length L, their respective normalised versions, γ and λ, as well as the

small world index σ, are affected by the underlying parcellation technique and

its resolution using partial correlation networks. The details of graph theoretic

measures are given in Appendix B.605

3. Results

3.1. Experimental Setup

All parcellations included in the subject-level analysis are generated from the

individual rs-fMRI scans in Dataset 1. The data for each subject was acquired

in two sessions that were held on different days and divided into four runs of610

approximately 15 minutes each. We concatenate the timeseries of two scans

acquired on the same day, obtaining two 30-minute rs-fMRI datasets (rs-fMRI 1

and rs-fMRI 2) for all 100 subjects and use them to obtain two different parcel-

lations for each subject for reproducibility analysis. The groupwise parcellations

using the 2-level approach are generated from the individual parcellations ob-615

tained from the rs-fMRI 1 set. This set is also submitted to MIGP to obtain

the group-PCA matrix, which is subsequently used to compute parcellations

using the group-average approach. The rs-fMRI 2 set is exclusively used for the

cluster validity measurements (i.e. homogeneity and Silhouette coefficients) of

the subject-level parcellations.620

Dataset 2 is primarily used to evaluate the groupwise parcellations (publicly

available and computed ones from Dataset 1). A second set of group-level
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parcellations is also generated using Dataset 2 in order to assess reproducibility

across different groups. It is worth noting that, this second set is solely used to

assess group-to-group reproducibility and excluded from any other stage of the625

analysis pipelines.

Most of the pre-computed parcellations comprise a fixed number of regions,

while the methods for which an implementation is available can be explored at

different resolutions, allowing us to assess the sensitivity of quantitative mea-

sures with respect to the number of parcels. For these methods, we generate630

parcellations containing between 50 and 500 regions (i.e. 25 to 250 per hemi-

sphere), in increments of 50.

Finally, results are reported using the following naming scheme: groupwise

parcellations obtained using the 2-level approach will be referred to as their

associated method name followed by “2” (e.g. Ward-2 ), whereas parcellations635

derived from the group-average approach will be accompanied by the “AVR”

suffix (e.g. Ward-AVR).

3.2. Subject-level Results

For ease of comparison between different methods, we report average evalu-

ation measures in the form of line graphs for all computed resolutions. In order640

to represent the variability across individuals we show box plots alongside the

line graphs, but only for a subset of granularity levels (i.e. for 100, 200, and 300

regions).

Reproducibility results are given in Fig. 4. Cluster validity results, including

homogeneity values and Silhouette coefficients, are presented in Fig. 5 and 6,645

respectively. Bayesian information criterion results obtained from the task acti-

vation maps on a per subject basis are given in Fig 8. Finally, comparisons with

Brodmann areas and myelin maps are presented in Fig. 9 and 10, respectively.

3.2.1. Reproducibility

Reproducibility results computed by Dice coefficient and adjusted Rand in-650

dex (ARI) indicate that Geometric and N-Cuts yield the most reproducible
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results. Although Geometric shows a better performance than N-Cuts at rel-

atively low resolutions, this trend shifts towards the favor of N-Cuts at higher

resolutions. The performance of N-Cuts can be explained by the hard spatial

constraints imposed to the adjacency matrices that drive the spectral clustering655

algorithm, which promotes uniformly sized and/or singleton parcels (Craddock

et al., 2012; Blumensath et al., 2013). Obtaining highly reproducible parcel-

lations for Geometric is also expected, as the parcellations of a subject are

generated from the same set of spatial coordinates.

Two general-purpose clustering methods, K-Means and Ward, show poor660

reproducibility scores, in particular when compared to methods derived from

an initial finer parcellation such as Blumensath and Arslan. It is interesting to

note that Dice overlap measurements indicate a more favourable performance

by Blumensath with respect to Arslan, while a reverse trend is observed in

ARI. These results suggest that methods initialised with a finer parcellation665

may be more robust, which could be due to the fact that the impact of noise

is reduced by the initialisation scheme. Bellec generally shows the poorest

performance. Nevertheless, it should be noted that this method is originally

developed to obtain parcellations with much finer resolutions (over 1000 regions

per hemisphere) (Bellec et al., 2006), hence, it may not be adapted to this range670

of resolutions. Indeed, we can observe that the reproducibility is constantly

increasing with the number of parcels. Inversely, the reproducibility of K-Means

parcellations rapidly decreases with the number of parcels, and Bellec surpasses

K-Means at higher levels of granularity with respect to ARI.

As expected, the Dice coefficient is strongly increased by merging subdivided675

regions. In particular, this process yields more favourable results for the meth-

ods based on hierarchical clustering, namely Ward, Arslan and Blumensath,

for which the improvement is up to 15%. Blumensath even surpasses N-Cuts

and Geometric over resolutions with more than 150 parcels, becoming the top

performing method regarding reproducibility. Other approaches tend to have680

a less significant improvement, mostly at a rate of 5 − 8%, while N-Cuts and

Geometric are minimally affected. This trend can be attributed to the fact that
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Figure 4: Subject-level reproducibility results. Left : Average reproducibility values obtained

using Dice coefficient (top), joined Dice coefficient (middle), and adjusted Rand index (bot-

tom). Right : Box plots indicate the reproducibility distribution across subjects for 100, 200,

and 300 regions, from left to right for each method.

hierarchical clustering subdivides the cortex with a bottom-up process, where

boundaries derived at lower resolutions are propagated to higher levels. Joining

over-parcellated regions may therefore increase the similarity between parcel-685
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lations that subdivide the same regions at different levels of the hierarchical

clustering tree.

3.2.2. Cluster validity measures

Cluster validity measurements show a clear tendency in favour of connectivity-

driven approaches. The most prominent trend is that regardless of the parcel-690

lation resolution, K-Means outperforms all other methods in terms of both

homogeneity (Fig. 5) and Silhouette analysis (Fig. 6). This would indicate that

K-Means generates the best clustering of the underlying data. It is followed by

the hierarchical approaches, each of which performs almost equally regarding

Silhouette coefficients, while Ward is the best with respect to homogeneity. In695

particular, Arslan consistently generates more homogeneous parcellations than

Blumensath, which might be attributed to the different techniques used by each

method for computing an initial parcellation of the cerebral cortex before apply-

ing hierarchical clustering. This initial stage also helps obtain parcellations with

a slightly higher degree of confidence than Ward. Amongst the connectivity-700

driven parcellations, N-Cuts shows the poorest performance. This can be due to

the size bias inherent in this parcellation scheme that could limit the agreement

with the underlying data. On the other hand, anatomical parcellations Desikan

and Destrieux, yield the worst measurements and are surpassed by Geometric

and Random. This might suggest that anatomical information alone does not705

allow to map the brain’s functional organisation.

All methods show a performance increasing with the number of parcels com-

puted. This is linked to the fact that both measurements depend on the size of

the parcels (e.g. smaller parcels yield better results). It should be noted that

this trend may benefit the K-Means parcellations, which comprise of several710

small discontinuous parcels.

Another important observation is the higher inter-subject variability of clus-

ter validity results compared to reproducibility, especially with respect to ho-

mogeneity. While one can infer that cluster validity measures are more sensitive

than Dice coefficients, this could also be attributed to the fact that reproducibil-715
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Figure 5: Subject-level homogeneity results. Left : Lines show homogeneity values for all res-

olutions, averaged across subjects, whereas black dots correspond to the average homogeneity

obtained from the Desikan and Destrieux atlases, at a fixed resolution of 70 and 150 parcels,

respectively. Right: Box plots indicate the homogeneity distribution across subjects for 100,

200, and 300 parcels, from left to right for each computed method.
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Figure 6: Subject-level Silhouette analysis results. Left : Lines show Silhouette coefficients

(SC) for all resolutions, averaged across subjects, whereas black dots correspond to the average

SC obtained from the Desikan and Destrieux atlases, at a fixed resolution of 70 and 150 parcels,

respectively. Right: Box plots indicate the SC distribution across subjects for 100, 200, and

300 parcels, from left to right for each computed method.

ity measures the spatial similarity of parcellations that have been registered onto

the same standard cortical surface; as a result, an inherent alignment already

exists across subjects. This yields a lower inter-subject variability, especially for

the spatially constrained methods and with respect to increasing resolution. On

the other hand, functional organisation of the brain as estimated by rs-fMRI can720
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dramatically change from one subject to the next and even between different

acquisitions of the same subject. Combining this with the impact of low SNR

inherent to rs-fMRI, it may not be possible to parcellate all subjects with high

homogeneity and/or confidence. This can be a critical point for consideration,

for example, when a group-level study is devised.725

Impact of relabelling connected components in disjoint parcellations

K -means clustering applied to the subject-level connectivity data can yield

spatially disjoint parcellations. In Fig. 7, we show how certain evaluation mea-

sures change when the k -means parcellations are forced to become spatially

contiguous by relabelling connected components in each parcel. As can be seen730

in Fig. 7(a), a large amount of new parcels are generated for all subjects and

resolutions after subdividing discontinuous regions. This unsurprisingly yields

more homogeneous regions, as homogeneity depends on the resolution and likely

to increase when the cortex is parcellated into more subregions (i.e. homoge-

neous regions still stay homogeneous when subdivided). On the other hand,735

as we alter the clustering configuration unnaturally by forcing parcels to split,

fidelity to the underlying data is negatively affected, yielding lower Silhouette

coefficients. Newly generated parcellations provide lower Dice scores at low reso-

lutions, most likely due to the decrease in the overlap ratio between large parcels

after splitting. However, it appears that newly obtained (smaller) parcels can740

be matched better with each other across parcellations, as the joined Dice co-

efficients and adjusted Rand indices show a more favourable performance after

the splitting process.

3.2.3. Multi-modal comparisons

The agreement between the subject-level parcellations and the task fMRI745

activation maps is evaluated using the Bayesian information criterion (BIC),

with respect to all contrasts available in the HCP (a total of 86 activation

contrasts from 7 different protocols). The results presented in Fig. 8 show a

very similar trend to cluster validity measures, with anatomical parcellations
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Figure 7: Quantitative evaluation measures obtained from subject-level k -means parcellations,

before and after disjoint parcels are split into spatially contiguous regions. Points represent-

ing the original and relabelled parcellations (shown in red and blue, respectively) are matched

with dashed lines for ease of comparison. The blue points correspond to the average number

of parcels acquired at each resolution after splitting, and therefore, are plotted further to the

right with respect to the red points, which align with the resolutions of the original parcella-

tions (50 to 500, in increments of 50) along the x axis. (a) The number of newly generated

parcels after splitting, where box plots show the variability across subjects. (b-d) Scan-to-scan

reproducibility obtained via Dice similarity, joined Dice similarity, and adjusted Rand index.

(e-f) Clustering accuracy measured via parcel homogeneity and Silhouette analysis.

having the worst performance and K-Means leading all methods. Interestingly,750

Blumensath has a very poor performance, even being surpassed by Random and

Geometric at high levels of granularity.

The average overlap between the parcellations and the Brodmann areas (BA)

across all subjects for all resolutions is given in Fig. 9. In general, all methods

have good overlap with the primary somato-sensory cortex (BA[3,1,2]), pre-755

motor cortex (BA6), and primary visual cortex (BA17). Relatively low mea-
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Figure 8: Subject-level Bayesian information criterion (BIC) results showing agreement with

task activation. Left : Lines show BIC values for all resolutions, averaged across subjects,

whereas black dots correspond to the average BIC obtained from the Desikan and Destrieux

atlases, at a fixed resolution of 70 and 150 parcels, respectively. Right: Box plots indicate the

variability across subjects for 100, 200, and 300 parcels, from left to right for each computed

method. It should be noted that a lower BIC indicates higher agreement.

sures are obtained for the rest of the Brodmann areas, especially for the perinatal

cortex (BA[35,36]). On average, the anatomical parcellations outperform other

approaches with the same number of parcels considered, while N-Cuts and Ran-

dom yield the best overlap for the rest of the resolutions. On the other hand,760

Blumensath produces the least favourable results at almost all scales.

Average overlap scores obtained by comparing each parcellation with highly

myelinated cortical regions are given in Fig. 10. In general, results follow simi-

lar trends to those obtained with the comparisons to cyto-architecture. N-Cuts

and Random yield the best overlap scores for all resolutions and anatomical765

parcellations show a higher degree of agreement with the myelination than the

rest of the approaches. Once again, Blumensath has the lowest overlap, which

might indicate that Blumensath parcellations generally do not agree with other

cortical features. Similarly, despite its high degree of agreement with task ac-

tivation, K-Means also yields relatively low overlapping scores with both the770

cyto- and myelo-architecture of the cortex.
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Figure 9: Agreement with the cytoarchitecture of cerebral cortex. Left : Overlap of all

subject-level parcellations with several Brodmann areas, averaged across individuals. For
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Figure 10: Agreement with the myelo-architecture of the cerebral cortex. Left : Dice-based

overlap measures of all subject-level parcellations with highly myelinated cortical areas, aver-

aged across individuals. Right: Box plots indicate the variability across subjects for 100, 200,

and 300 parcels, respectively from left to right for each computed method.

3.3. Group-level Results

Evaluation results obtained for the groupwise parcellations are summarised

below.
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3.3.1. Reproducibility775

The reproducibility values (Fig. 11) are only reported for methods that allow

the derivation of multiple parcellations. As expected, the spectral techniques

have the best reproducibility results, with N-Cuts and JOINT leading the oth-

ers. In general, more favourable results are achieved by 2-level parcellations.

This may be attributed to the fact that these parcellations are obtained from a780

set of individual parcellations that already provide a means of spatial smoothing.

Furthermore, the parcellations are computed using normalised cuts, a technique

known to increase the reproducibility of parcellations (Craddock et al., 2012;

Blumensath et al., 2013). Among the parcellations derived from the average

matrix, Ward-AVR shows the least favourable performance. MRF-based meth-785

ods (i.e. GRASP and GRAMPA) and K-Means-AVR also have a relatively poor

performance. While joining over-parcellated regions generally increases repro-

ducibility for the group-average approaches, it has a lesser impact on the 2-level

parcellations as most of them only show a marginal improvement.

3.3.2. Cluster validity results790

Clustering validity results in terms of parcellation homogeneity are sum-

marised in three figures. First of all, homogeneity values obtained by each

method/resolution are given in Fig. 12. The homogeneity of each method for a

set of selected resolutions together with the homogeneity of their respective null

parcellations are presented in Fig. 13. The difference between the homogene-795

ity of the computed parcellations and the distribution of homogeneity models

measured as z-scores is shown in Fig. 14. Although group-level homogeneity

results are obtained from the average connectivity fingerprints of all subjects,

very similar results are achieved when homogeneity is computed on a per sub-

ject basis by using each subject’s connectivity fingerprints and then averaged800

across subjects (Supplementary Material 2).

Homogeneity results in Fig. 12 show a relatively poor performance for most

of the provided parcellations. The methods that generate the most repro-

ducible parcellations (e.g. spectral methods JOINT, N-Cuts-2, and N-Cuts-
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Figure 11: Group-level reproducibility results. Reproducibility values for each method are

obtained using Dice coefficient (top, left), Dice coefficient after joining over-parcellated regions

(top, right), and adjusted Rand index (bottom).

AVR) as well as Geometric also obtain poor homogeneity values. In general,805

other connectivity-driven computed parcellations tend to generate highly ho-

mogeneous parcellations with the group-average and 2-level methods obtaining

very similar results. Among them, K-Means-AVR especially excels at lower

resolutions, but is outperformed by Baldassano, one of the publicly available

parcellations based on functional connectivity when similar resolutions are con-810

sidered. It should be noted, though, that Baldassano is obtained from a larger

HCP cohort (500 subjects) which may contain our evaluation set and positively

bias homogeneity results.

As shown in Fig. 13 and 14, we observe similar performance trends for most

of the computed parcellations by comparing to null models. Anatomical parcel-815

lations (AAL, Destrieux, and Desikan), and some of the provided parcellations
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Figure 12: Group-level homogeneity results. Whereas lines show the homogeneity values for

all computed resolutions, black dots correspond to the homogeneity scores obtained from the

publicly available parcellations with fixed resolutions.

(Fan, Gordon, and Shen), regardless of their respective resolutions perform

similar to or worse than their null models. Among the publicly available parcel-

lations, Baldassano is on par with K-Means-AVR, while Yeo, Power, and ICA

also yield good results.820

Group-level Silhouette coefficients (Fig. 15) mostly follow the tendency ob-

served in homogeneity. K-Means-AVR outperforms the other approaches at

all resolutions. It is followed by another group-average technique, GRAMPA,

which shows a good performance at low levels of granularity. All 2-level ap-

proaches, apart from N-Cuts-2, perform equivalently well and produce more825

distinct parcels than most of the group-average methods. In contrast to the ho-

mogeneity results, Gordon and Power are the top-performing provided parcella-

tions. Interestingly, despite producing homogeneous parcellations, Baldassano,

Yeo, and ICA show an average performance in terms of Silhouette coefficients.

This shows that generating homogeneous parcellations does not necessarily guar-830

antee a good separation between parcels. Overall, spectral techniques perform
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Figure 13: Homogeneity of each parcellation (red and cyan dots) and their respective 1000

null models (gray dots). Null models yield different homogeneity scores due to variation

across parcel size and location. + shows the average homogeneity obtained by each set of null

parcellations. ∗ indicates that the computed homogeneity is higher than at least 950 of its null

parcellations (i.e. p < 0.05). Top: Results of publicly available parcellations with relatively

low resolutions (comprising around or fewer than 200 regions) and the computed parcellations

with 150 parcels. Bottom: Results of publicly available parcellations with higher resolutions

(e.g. comprising around or greater than 300 regions), with the computed parcellations having

a fixed resolution of 300 parcels. The exact number of parcels for each method is indicated

aside the method name in parentheses.

poorly but still surpass the anatomical and geometric parcellations.

Similarly to homogeneity, we obtain group-level Silhouette coefficients from

the average connectivity fingerprints derived from Dataset 2, however, equiva-

39



# of parcels
50 100 150 200 250 300 350 400 450 500

   
   

   
   

 Z
 s

co
re

s 
re

la
tiv

e 
to

 n
ul

l m
od

el
s

-5

-3

-1

1

3

5

7

9

11

13

15

17

Gordon

Power

Yeo Baldassano

Glasser

Destrieux

Desikan Shen

AAL

Fan

ICA
Arslan
Blumensath
Bellec
Ward-2
K-Means-2
N-Cuts-2
Geometric
JOINT
GRASP
Ward-AVR
K-Means-AVR
N-Cuts-AVR
GRAMPA

Figure 14: Difference between the actual homogeneity and the homogeneity distribution of

null models. Lines show the z scores relative to null models for all computed resolutions, while

black dots correspond to the z scores obtained from the publicly available parcellations with

fixed resolutions.

lent trends can be observed when Silhouette coefficients are computed for each835

subject separately and then averaged across subjects (Supplementary Material

2).

Impact of relabelling connected components in disjoint parcellations

Among groupwise parcellation methods, two k -means variants, K-Means-

AVR, and K-Means-2 as well as GRAMPA can generate spatially disjoint par-840

cellations. In particular, K-Means-AVR yields many discontinuous parcels,

which significantly increases the total number of parcels after the relabelling

process and consequently affects several different evaluation measures as shown

in Fig. 16. The changes in reproducibility and cluster validity measures show

a similar tendency to those obtained by the subject-level k -means. Although845

more homogeneous parcels are obtained, the indirect alteration of the clustering

configuration leads to lower Silhouette coefficients and z-scores relative to null

models. However, this change in the spatial structure of the parcellations in
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Figure 15: Group-level Silhouette analysis results. Lines show the Silhouette coefficients (SC)

for all computed resolutions, while black dots correspond to the SC obtained from the publicly

available parcellations with fixed resolutions.

general appears to yield a positive impact on reproducibility, as indicated by

the joined Dice coefficients and adjusted Rand indices. The other two methods,850

GRAMPA and K-Means-2, only produce few parcels that are discontinuous,

thus relabelling does not lead to a significant change in the evaluation measures

as shown in Supplementary Material 5.

3.3.3. Multi-modal comparisons

The agreement with concatenated single-subject task activation maps is re-855

ported in Fig. 17. In general, all provided parcellations yield relatively poor BIC

values compared to the computed parcellations with similar resolutions. The

2-level approaches tend to yield better results than their group-average (AVR)

counterparts, in particular at higher resolutions, with K-Means-2 showing the

best performance for most resolutions. This could be linked to the fact that860

the parcellations are derived from the subject level, where the individual task

activation is also estimated from. The only provided methods that show a com-
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Figure 16: Quantitative evaluation measures obtained from K-Means-AVR parcellations, be-

fore and after disjoint parcels are split into spatially contiguous regions. Points representing

the original and relabelled parcellations (shown in red and blue, respectively) are matched with

dashed lines for ease of comparison. The blue points correspond to the number of parcels ac-

quired at each resolution after splitting, and therefore, are plotted further to the right with

respect to the red points, which align with the resolutions of the original parcellations (50 to

500, in increments of 50) along the x axis. (a) The number of parcels before and after the

split process. (b-d) Group-to-group reproducibility obtained via Dice similarity, joined Dice

similarity, and adjusted Rand index. (e-h) Clustering accuracy measured via parcel homo-

geneity, comparison to null models (only for one resolution), z scores relative to null models,

and Silhouette analysis.

petitive performance are Yeo and Baldassano, while GRASP yields the worst

results amongst the computed parcellations. Glasser has a poor performance
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Figure 17: Group-level Bayesian information criterion (BIC) results for measuring the agree-

ment with task activation. Lines show the BIC values for all computed resolutions, while

black dots correspond to the BIC obtained from the publicly available parcellations with fixed

resolutions. A lower BIC indicates higher agreement with the task activation. ?: It should be

noted that Glasser is partially derived from group average task activation maps, which can

influence this evaluation.

despite being driven by task average data. This can be attributed to the fact865

that it is generated from a different dataset which does not necessarily reflect

the single subject task data in our test set.

The overlap between the groupwise parcellations and the average Brodmann

areas (BA) for all resolutions is given in Fig. 18. Similarly to the subject-

level results, most methods show a high degree of agreement particularly with870

the primary somato-sensory cortex (BA[3,1,2]), premotor cortex (BA6), and

primary visual cortex (BA17). Relatively low measures are obtained for the

rest of the Brodmann areas, especially for the perinatal cortex (BA[35,36]).

Overall, Glasser shows the best performance and yields the highest overlap

for most areas. Similarly, other provided parcellations Fan and Gordon, as875

well as the anatomical parcellations show a relatively high performance. Yeo,

Power, and ICA yield the lowest overlap measures, and in contrast to the general
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tendency in the group, do not align well with BA[3,1,2]. Interestingly, K-Means-

AVR produces the poorest results amongst the computed parcellations for all

resolutions. This can be linked to the fact that K-Means-AVR parcels are880

not necessarily spatially contiguous and may be spread across the cortex. In

particular, the 2-level approaches perform better than the group-average ones,

with Bellec leading them at almost all levels of granularity.

Average overlap scores with myelin based parcellations are given in Fig. 19.

In general, the 2-level approaches show similar performance and outperform the885

group-average methods for most resolutions. Bellec, Ward-2 and K-Means-2

have the highest agreement among the computed parcellations, while GRAMPA

and Geometric yield relatively poor measures. Glasser and Gordon show the

best performance amongst provided parcellations and outperform most of the

other approaches when similar resolutions are considered. This is to be expected890

for Glasser since it is partially derived from myelin maps. Other provided

parcellations generally yield relatively low measures.

3.3.4. Network analysis

The accuracy achieved for a gender classification task is presented in Fig. 20

and the values of network measures derived with respect to different parcella-895

tions/resolutions are shown in Fig. 21.

Connectivity networks are generated using the same set of nodes for all

subjects in Dataset 2. The nodes correspond to non-overlapping regions speci-

fied by the anatomical atlases, provided parcellations or groupwise data-driven

parcellations obtained from Dataset 1. In order to explore the performance900

of different parcellation methods in capturing population differences, we show

the results of a gender prediction task with r-to-z transformed full correla-

tion networks. Before the classification step, dimensionality reduction through

PCA is performed (Pereira et al., 2009) and the components explaining 100%

of the variance (Robinson et al., 2010) in the training data are preserved for905

both training and testing. The results with SVM and 10-fold cross-validation

are illustrated in Fig. 20. Although there is no single winner across all differ-
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Figure 18: Top: Agreement of all group-level parcellations with Brodmann areas. For the

computed parcellations (top 13 rows), each cell shows Dice coefficients for 100, 200, and

300 regions, respectively from top to bottom. For the other parcellations, resolutions are

indicated aside their names in parentheses. Bottom: Average Dice coefficients for each

method/resolution. ?: It should be noted that Glasser uses expert knowledge and priors

from the neuro-anatomical literature for the delineation of parcellation borders, which can

influence this evaluation.
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Figure 19: Dice-based overlap measures of all group-level parcellations with highly myelinated

cortical areas, derived from a coarse parcellation of the average myelination map. ?: It should

be noted that Glasser is derived from myelin maps and is therefore expected to have a good

performance here.

ent resolutions, anatomical parcellations are generally outperformed by several

data-driven methods with similar number of parcels. Overall, results obtained

with SVM are not very consistent across resolutions, since there is no obvi-910

ous upward/downward trend with increasing resolution. In fact, most methods

demonstrate a similar average performance, being able to classify males and

females with above 60% accuracy for granularities below 150 parcels and above

70% for higher resolutions.

More specifically, Geometric tends to perform poorly compared to the rest915

of the methods, both at lower and higher resolutions. The highest SVM clas-

sification accuracy (86%) is achieved with Ward-AVR and Glasser at the scale

of 350 and 360 parcels, respectively. Moreover, we can observe that increasing

the resolution of the parcellation in data-driven approaches beyond a certain

value (350 parcels) does not necessarily provide additional information about920

population differences. However, lower resolutions lead to lower classification
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Figure 20: Gender classification results. Left: Average Gender classification accuracy on 100

subjects with SVM. Right: Variation across results is shown with respect to 10-fold cross-

validation.

scores, perhaps due to the fact that functional information valuable for the

discrimination between the two classes fades by averaging the signal in larger

parcels. Interestingly, N-Cuts-AVR, Bellec and Arslan perform quite well for

several resolutions, while GRASP yields the top accuracy among all methods925

for 50 parcels across the cortex. It is also worth mentioning that the parcel-

lations provided by Yeo, Shen and Gordon have below average performance,

while Fan and Glasser have good performance compared to parcellations with

similar resolutions.

Our experimental setting allows us to explore the effect of both the parcel-930

lation method and the level of granularity on the graph theoretic measures. We

compute the most commonly reported network measure in comparative connec-

tomics studies of structural (Sporns et al., 2004; van den Heuvel et al., 2016) and

functional (Sporns et al., 2004; Bassett and Bullmore, 2006) brain connectivity,

namely, the average clustering coefficient (C), characteristic path length (L),935

their respective normalised versions, γ and λ (obtained after their division by
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the mean corresponding values of a set of 1000 random networks with the same

density and degree distribution), the small-world index (σ) and average node

degree of the network (k), i.e. the ratio of present connections to the number

of nodes divided by 2 (since networks are undirected). The network measures940

are computed on binarised functional networks obtained by individually testing

the elements of the group mean partial correlation matrix (all pairwise con-

nection strengths) for non-zero mean (using P < 0.01%) with correction for

multiple comparisons, followed by sparsity-based thresholding (keeping 20% of

the edges). Results are presented in Fig. 21.945

It can be observed that all six network measures reported are relatively ro-

bust with respect to the parcellation method. However, there is an evident effect

of parcellation granularity on the calculated measures, which needs to be taken

into consideration when performing this kind of network analysis to investigate

population differences. This effect is partly attenuated, though, by the use of950

sparsity-based thresholding that keeps the average node degree k levelled for

networks with above than 150 nodes. More specifically, clustering coefficient

decreases for resolutions between 100 and 200 nodes to 0.3 and gradually in-

creases to about 0.35 for higher resolutions. On the contrary, γ, its normalised

equivalent, increases progressively for resolutions above 150 nodes. The char-955

acteristic path length and the normalised λ also increase with resolution, for

resolutions above 150 nodes, while a negative trend is observed at lower res-

olutions. This can be attributed to the fact that k increases with resolution

for networks consisting of up to 150 nodes. In general, GRASP appears to

yield networks with lower γ than the rest of the methods, while K-Means-AVR960

produces networks with higher γ. Similarly to the characteristic path length,

the small-world index also increases with resolution with values spanning from

4.7 to 5.3 for the highest resolutions, but always remains above 1 which in-

dicates a small-world topology of functional connectivity networks. The three

key measures, γ, λ and small-world index σ demonstrate higher variability be-965

tween methods at higher resolutions, while they are relatively consistent at low

resolutions. Finally, the average node degree increases with resolution up to
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Figure 21: Network measures computed for different parcellations on the group binary net-

works, including clustering coefficient, C, normalised clustering coefficient, γ, characteristic

path length, L, normalised characteristic path length, λ, small-world index, σ and average

node degree k.
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150 nodes, but remains stagnant afterwards due to fewer connections surviving

the significance test after correction for multiple comparisons and proportional

thresholding. This has a profound effect on the clustering coefficient and path970

length.

4. Discussion

In this paper, we presented a large-scale comparison of existing parcellation

methods using state-of-the-art evaluation measures and publicly available data

provided by the HCP. The generation and evaluation of the parcellations is975

based on resting-state functional connectivity, which is thought to express the

interactions underlying high level cognitive processes. In the absence of a gold

standard parcellation, we considered several criteria simultaneously to evaluate

the quality of the parcellations, such as reproducibility, parcel homogeneity, and

Silhouette analysis. While these measurements assessed the performance from a980

cluster quality point of view, the neuro-biological interpretation of the obtained

parcels is also investigated by comparing parcel boundaries with well-defined

neuro-biological properties, such as cytoarchitecture and myelination, as well as

task activations. In addition, we devised a simple network analysis task, i.e.

gender classification, in order to measure the impact of the underlying parcel-985

lation on network analysis, and explored how parcellations affect the structure

of connectivity networks based on several network measures.

Our experiments show that there is no clear trend in favour of a specific

method - or type of method - regarding all evaluation measures considered. For

instance, k -means clustering appears to be largely leading in terms of clustering990

quality; it, however, shows a poor performance regarding reproducibility and

agreement with other modalities. In addition, while cortical delineation intrin-

sically requires a relatively large number of parcels, this does not appear to be

a requirement for effective network analysis. This may suggest that different

types of parcellations are to be investigated depending on the task at hand995

(e.g. one should use different methods when considering network analysis or
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cortical delineation). We observe that connectivity-driven parcellations have a

much better agreement with the underlying rs-fMRI connectivity compared to

anatomical and random parcellations as expected. The benefit of using connec-

tivity to parcellate the brain is not as clear regarding the delineation of cortical1000

areas (agreement with other modalities and established brain delineations) and

subsequent network analysis. In particular, anatomical parcellations appear to

yield equivalent or better results with respect to cytoarchitecture. A general

suggestion regarding network analysis would be to use any parcellation avail-

able, since this decision seems to have a very limited impact. However, while1005

this may be true for simple analysis of healthy subjects, it would have to be

investigated further in the context of largely different brains (such as diseased

subjects or those within a large age range).

Parcellating the cerebral cortex: Aim and scope

The foundations of parcellation were already set in the nineteenth and twen-1010

tieth centuries, by neuroscientists like Ramon y Cajal, Wernicke, and Brodmann,

who emphasised the importance of connectivity in understanding nervous sys-

tems and reported insights that underpin the way we think about nervous sys-

tems today (Zilles et al., 2010). Although the concept of parcellation spans more

than a century in the field of neuroscience and has historically been carried out1015

on the basis of careful studies of the underlying tissue properties, it is currently

supplemented with modern in-vivo neuroimaging based parcellations (Thirion

et al., 2014). The ultimate goal of any kind of parcellation, either based on

cytoarchitecture, structural or functional information, is to provide meaningful

and homogeneous subdivisions of the brain into regions that are specialised in1020

a certain function. The idea stems from the fact that specific facets of cogni-

tion, emotion, and behaviour are considered to be anatomically localised and

segregated in the brain. This further allows for a reduction in the complexity

of connectivity, an aspect that is highly critical for the study of brain dynamics

with whole-brain models.1025

Therefore, parcellations provide a high-level abstraction of the fundamental
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organisation of the brain at macroscopic scales (Sporns et al., 2005; Craddock

et al., 2013). Over the last few decades, image acquisition techniques have

boosted the potential of in-vivo brain mapping and facilitated the multi-scale

subdivision of the brain using varying modalities and methods. As a matter of1030

fact, there is not a unique brain parcellation, but rather a spectrum of parcella-

tions that encapsulate fundamental neuro-biological information about cortical

organisation and allow the mapping of brain function and anatomy with respect

to different aspects. A parcellation may, thus, refer to (1) a reference atlas

model that summarises certain properties across the cerebral cortex (e.g. Brod-1035

mann atlas, AAL), (2) specialised subunits involved in cognitive functions, (3)

high-level structures of functional connectivity (e.g. resting-state networks), or

(4) whole-brain subdivisions of the cerebral cortex constituting a few hundred

anatomically or functionally distinct parcels (Van Essen et al., 1998; Glasser

et al., 2016).1040

Connectivity estimated from resting-state fMRI and its impact on parcellations

Resting-state fMRI is the most commonly used state-of-the-art technique to

map whole-brain functional connectivity, with its high spatial resolution favour-

ing its application over alternative electro-physiological recordings, like EEG

and MEG. Its effectiveness to map the function of the brain has been consis-1045

tently shown across a wide range of studies (Damoiseaux et al., 2006; Salvador

et al., 2005; van den Heuvel et al., 2008; Power et al., 2011). However, the true

biological interpretation of the BOLD signals is still unknown (Eickhoff et al.,

2015), and its low temporal resolution (commonly at the order of seconds) is a

limiting factor for the observation of high-frequency patterns. Several sources1050

of noise can influence BOLD signals, including imaging artefacts, head motion,

as well as cardiac and respiratory pulsations (Craddock et al., 2013). This, sub-

sequently, leads to a complex connectivity structure, which comprises of linear

and nonlinear patterns and is contaminated with noise (Thirion and Faugeras,

2004; Lindquist, 2008). As a consequence, functional connectivity estimated1055

from rs-fMRI usually suffers from false positives and/or indirect connections
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mediated by third-party regions (Smith et al., 2011; Eickhoff et al., 2015).

In order to account for the inherently high dimensional and complex struc-

ture of the connectivity data, clustering algorithms may a priori make various

assumptions or introduce implicit/explicit constraints, depending on the task1060

under consideration. This could explain why different parcellation methods

perform better or worse with respect to different aspects of the problem. For

example, ICA assumes that the fMRI data consists of a mixture of statistically

independent components and that spatially distributed functional networks can

be effectively separated from signals of non-neural (e.g. artefactual) origin.1065

With a similar objective, but from a different perspective, nonlinear manifold

learning techniques rely on the assumption that structures of interest in the

connectivity data live in a low dimensional embedding, which can be captured

using spectral decomposition (Thirion and Faugeras, 2004; Shen and Meyer,

2006; Langs et al., 2014). Other techniques alter the structure of the connec-1070

tivity network to obtain more robust parcellations, for instance, by applying

thresholding to suppress negative and weak correlations, assuming that corre-

lations under a threshold correspond to spurious connections (van den Heuvel

et al., 2008; Power et al., 2011; Craddock et al., 2012; Arslan et al., 2015). It

is also common to rely on spatial constraints for computing what is expected1075

to be physiologically more plausible parcellations. Similarly, various methods

include a spatial smoothing stage (such as a fine-resolution parcellation) or

average subject-level connectivity data for improved SNR and stability in par-

cellations (Yeo et al., 2011; Blumensath et al., 2013; Arslan and Rueckert, 2015;

Gordon et al., 2016). As a general note, it is important to realise that each1080

assumption and processing decision made by a clustering algorithm comes with

advantages, as well as limitations, and hence, will inevitably bias the resulting

parcellations in different aspects, including the shape, number, size, and spatial

contiguity of the parcels (Eickhoff et al., 2015).
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Evaluation of parcellations from a clustering point of view1085

When parcellations are evaluated, both implicit constraints inherent to the

method and explicit constraints imposed to the data should be taken into consid-

eration, as they yield inevitable biases towards the computed parcellations (Blu-

mensath et al., 2013). It is, therefore, highly critical to evaluate clustering

accuracy from different perspectives.1090

Hierarchical clustering, k -means, and spectral clustering (as well as their

variants) are frequently used to obtain connectivity-driven parcellations, ulti-

mately serving the task of brain mapping (Eickhoff et al., 2015). Their impact

on the parcellation configuration as well as their limitations and advantages

over each other have been extensively reviewed in (Thirion et al., 2014; Eickhoff1095

et al., 2015). In general, our results align with the previous literature regarding

the performance of these clustering algorithms. For example, k -means gener-

ally provides the best performing regroupings of the data, but suffers from low

reproducibility due to the fact that it does not inherently rely on hard spa-

tial constraints. On the contrary, spectral techniques are usually dominated1100

by spatial constraints, and consequently, capture stable features regarding the

geometry of the cortical mesh (Thirion et al., 2014). This appears to confer a

strong advantage for reproducibility, but constrains the parcellation task and

leads to an inaccurate alignment with the brain’s underlying functional organ-

isation. Hierarchical clustering yields a performance that resides in-between:1105

it offers the advantage of generating spatially contiguous parcels, which can

contribute to yielding more reproducible parcellations, while still capturing the

functional features with high fidelity.

Several other connectivity-driven parcellations computed on a different dataset

yield relatively good cluster quality results. One can infer from this observation1110

that similar characteristics shared by healthy adults can be robustly detected

across different datasets as long as the analysis is performed on a large cohort

(for example ICA and Baldassano are originally obtained from a group of 500

subjects where this number increases to 1000 for Yeo). It should be also noted

that, ICA, Baldassano, and Glasser can also comprise some subjects from our1115
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test dataset as they are computed from a larger HCP cohort. This may con-

stitute an important factor promoting a more favourable performance for these

methods compared to the others.

Predictably, anatomical parcellations yield the lowest performance in terms

of clustering quality. However, they allow a more intuitive neuro-biological inter-1120

pretation which can make network analysis more insightful. On top of that, our

network-based experiments show that a better clustering does not necessarily

benefit network analysis. One limitation is their relatively low resolution which

is typically addressed by partitioning each parcel into subunits without altering

the anatomically delineated boundaries. This can be achieved randomly (Hag-1125

mann et al., 2008; Honey et al., 2009) or using functional connectivity (Patel

et al., 2008; Fan et al., 2016). The latter approach is adopted by Fan, but ap-

pears to provide a limited improvement compared to anatomical parcellations.

Agreement of parcellations with other neuro-biological properties of the cortex

The anatomical parcellations based on cortical folding, i.e. Desikan and De-1130

strieux, as well as the anatomo-functional atlas based on the Desikan parcels (i.e.

Fan) interestingly show a high degree of agreement with the cytoarchitecture

of the cerebral cortex. Although these results may reflect a better alignment

between anatomy and cytoarchitectural atlases than with rs-fMRI, this might

also be linked to registration errors, as the Brodmann maps are registered to1135

each individual subject based on cortical folding. While we can expect a good

overlap in the motor and visual cortex, where the folding patterns are more

consistent across subjects, stronger misalignments could occur in other regions.

Similar observations can be made for connectivity-driven parcellations, in

which case a higher degree of alignment is found within the motor and visual1140

cortex. Despite the fact that functional connectivity obtained from BOLD time-

series is not necessarily expected to reflect the cytoarchitecture of the cerebral

cortex, our results agree with several rs-fMRI based studies that report simi-

lar findings regarding these regions (Blumensath et al., 2013; Wig et al., 2014;

Gordon et al., 2016). On the other hand, a more consistent agreement can be1145
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expected between the connectivity-driven parcellations and highly myelinated

areas, as the gradients in rs-fMRI-driven connectivity have been observed to

align well with the myelination patterns (Glasser and Van Essen, 2011).

One should also take into consideration the reliability of the evaluation tech-

niques used to compare the different modalities. For example, overlap-based1150

measures, such as the Dice coefficient, are biased by the size of the parcels.

Evenly sized/shaped parcels are easier to match with their target parcels, while

differences in Dice scores will be much more striking when comparing small

parcels over big ones. This bias can lead to more favourable results for some of

the parcellations, such as Geometric, N-Cuts, and Random, all of which comprise1155

more uniformly shaped/sized parcels than the rest of the approaches. Although

such quantitative measures can provide a means of comparing different methods,

the quality of a parcellation with respect to cytoarchitecture or myelin content

should also be visually assessed before drawing any conclusion. To this end,

we provide visual examples of all the subject-level and groupwise parcellations1160

tested in Supplementary Material 3 and 4, respectively.

Similarly, the Bayesian information criterion has a bias towards more com-

plex models, i.e. parcellations with higher resolution are always favoured (Thirion

et al., 2014). It should be also noted that there may exist redundant and con-

tradictory information in the different tasks/contrasts which could bias the re-1165

sults. On top of that, the SNR in the task activation maps is low, therefore, it is

likely that the results might be compromised by noise. Finally, our experiments

compared group-level parcellations to single subject level task activation maps.

While the objective is to evaluate whether these group parcellations provide a

good representation of the population, one could also consider comparing to1170

group average task activation maps. This would alleviate single subject noise

and could yield better results. For example, the Glasser parcellation is expected

to have a much better performance with respect to group level task maps on

which it is derived.

Additionally, this multi-modal parcellation (Glasser) can give a clearer in-1175

tuition on the behaviour of inter-modality comparisons. This method does not
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only rely on resting-state functional connectivity, but also embodies information

from task activation, myelin content, and the cortical architecture. It yields very

good overlap with the Brodmann areas and myelin content, especially on some

parts of the cortex (e.g. motor cortex, highly-myelinated areas), indicating that1180

the overlap measures used for multi-modal comparisons do provide accurate

information.

Impact of parcellation on network analysis

Although classification analysis has previously been applied in studies of

functional connectivity to predict demographic measures including gender (Sat-1185

terthwaite et al., 2015; Robinson et al., 2008) and age (Vergun et al., 2013), our

experiments suggest that the classification score alone is not a valuable tool for

the evaluation of parcellation quality. Instead, the number of features selected

(edges in the connectivity matrix) to achieve the same classification performance

might be a better means of evaluation provided that a larger number of subjects1190

is available, assuming that a good parcellation should give a sparse selection of

features and a more interpretable result. The results obtained with a linear

SVM classifier do not favour any particular method, either anatomy, or data

driven, to subdivide the brain into regions that would better reflect population

differences. In fact, anatomical atlases, like AAL, which are purely based on1195

anatomical landmarks, appear to perform as well as data-driven approaches, de-

signed and tailored to fit the underlying rs-fMRI data. This could be attributed

to the specific task at hand, since anatomical and, more specifically, cerebral

volume differences have been reported between males and females that signif-

icantly influence the volume of white and gray matter (Leonard et al., 2008).1200

Therefore, volume/anatomy- and sex-related differences are hard to disentangle

under the current experimental setting, despite the fact that all subjects have

been registered to the same anatomical space.

On a different note, the fact that there is no negative effect of higher parcel-

lation resolutions on classification performance indicates that a SVM classifier1205

is appropriate for performing predictions on brain connectivity networks, which
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are represented by high-dimensional feature vectors. Interestingly, parcellations

producing more evenly sized parcels, like N-Cuts-AVR, demonstrate a relative

advantage (at least for certain resolutions) over alternative data-driven methods

that generate parcels of variable size. According to Stanley et al. (2013), ROIs1210

comprised of more voxels than other ROIs might exhibit greater variability in

connectivity, simply due to the fact that a greater variety of signals is included in

the ROI itself. As a result, correction mechanisms might be required to account

for this variability in parcel extent, which are not required in parcellations con-

sisting of evenly sized parcels. Finally, choosing a different classification task,1215

like disease state or age group, could be more suitable for evaluating parcellation

performance in summarising a population’s brain connectivity, but the healthy

state and narrow age range of the current dataset does not allow this kind of

analysis.

As far as graph theoretical analysis is concerned, the measures of network1220

segregation and integration, as well as the small-world topology, seem to be

robust to the underlying parcellations. Despite that, all measures are highly

susceptible to the granularity of the parcellation (i.e. the number of nodes

within the network). These findings align with a previous study on structural

connectivity and the sensitivity of network measures to the resolution of the1225

parcellation scheme (Zalesky et al., 2010). The robustness of these network

measures to the parcellation method renders them a convenient means for the

analysis of population differences and explains their popularity in recent neuro-

science studies on healthy and diseased subjects (Wang et al., 2010; Rubinov and

Sporns, 2010; Bullmore and Sporns, 2009; Stam et al., 2009, 2007). Nevertheless,1230

the prominent effect of network size on the calculated measures is a factor that

needs to be taken into consideration when interpreting the results of relevant

studies. To this date, it is difficult to correct for and set limitations to the di-

rect comparison of graph invariants between networks of different order (de Reus

and van den Heuvel, 2013). Moreover, the threshold value or significance level1235

chosen to obtain the binarised versions of the functional connectivity networks

directly impacts the network density and needs to be reasonably selected and
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always accompany the reports of network segregation and integration measures.

Use of parcellations in future subject- and group-level studies

In this paper, evaluations are made on both individual and group level parcel-1240

lations, with the aim of providing some insight into different techniques that can

be used to represent the brain’s functional organisation. The results presented

as part of this empirical study may indicate parcellation techniques and/or res-

olutions that are more appropriate for the problem under investigation.

While groupwise parcellations represent shared characteristics within a pop-1245

ulation, subject-level parcellations serve the purpose of better investigating the

functional organisation of an individual brain and understanding the neural ba-

sis that results in the observed human behaviour. Evidence suggests that the

human connectome possesses connectional traits that are unique to each in-

dividual (Mueller et al., 2013; Barch et al., 2013; Wang et al., 2015; Gordon1250

et al., 2017). A recent study (Finn et al., 2015) has further shown that rs-fMRI

can be used to derive distinct features to successfully distinguish one individual

from another. These features, however, may not be observed in group-averaged

datasets (Gordon et al., 2017). Therefore, parcellating the cerebral cortex on

a single subject basis can provide a natural starting point for detecting such1255

features, which may further help understand how connectivity varies within a

population and how this affects human behaviour and cognition (Wang et al.,

2015).

In addition, using subject-level and groupwise parcellations collaboratively

may provide more insight into inter-subject variability. For example, cortical1260

regions that are most consistent and/or least similar across subjects can be

localised by comparing individual subject parcellations to a group representa-

tion obtained via the same clustering method. However, understanding the

source of variability across subjects constitutes an additional challenge. While

alterations in connectivity can be associated with brain disorders, these could1265

also be attributed to genetic variations (Dubois and Adolphs, 2016), topological

differences between subjects (Langs et al., 2014), varying connection strengths
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between brain areas in some individuals (Gordon et al., 2017), or even purely

caused by registration errors or low SNR in the data. Given many parcellation

techniques available at both subject and group levels, analysis of this variability1270

could be an interesting problem to tackle and constitutes one of our planned

future directions.

As far as network analysis is concerned, not only the parcellation scheme

itself, but its resolution might also have an impact, depending on the task at

hand. A recent study suggests that increasing the parcellation resolution yields1275

more reliable biomarkers for studying brain disorders (Abraham et al., 2017).

Similarly, using more ROIs for network analysis appears to improve the perfor-

mance of age prediction tasks (Liem et al., 2017). This might be linked to the

fact that parcellations with fewer ROIs may not be able to capture structural

patterns of interest from the underlying data due to their resolutions. In this1280

case, data-driven parcellations provide a greater flexibility to study the impact

of resolution on network analysis, as they allow the construction of a set of

parcellations at different resolutions, as opposed to pre-computed parcellations

with fixed resolutions. On a similar note, the heterogeneity of a dataset, e.g.

inter-subject variability, could pose additional challenges regarding the perfor-1285

mance and interpretability of network analysis. One way to better account for

this variability could be generating several group-level parcellations from subsets

of the population, preferably on a multi-scale basis, rather than constructing a

single parcellation for a population.

Most of the parcellations included in this study can be used to represent1290

the functional organisation of the brain and derive distinct features for network

analysis. However, additional information might be required to enhance the

information provided by rs-fMRI and identify areas of interest on the cerebral

cortex. Evidence suggests that a single modality is too limited to reveal the

complex structure of the cerebral cortex, which consists of a mosaic of multiple1295

properties nested at different levels of detail (Glasser et al., 2016; Eickhoff et al.,

2015). From a neuro-biological point of view, the integration of other modalities

to the parcellation generation task may provide a more accurate and robust
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segregation of the cortex, as shown in the recently proposed multi-modal cortical

parcellation (Glasser et al., 2016). A prospective future work, therefore, would1300

be to use a similar technique and expand the current evaluation pipeline towards

parcellations obtained from different modalities and their combinations.

Limitations

While we did not explore structural connectivity, estimating and analysing

brain connectivity from diffusion MRI (dMRI) using tractography techniques1305

is also an important aspect of brain mapping. In contrast to the indirect esti-

mation of connectivity achieved with rs-fMRI, dMRI can estimate the physical

white matter connections in the brain. Parcellations derived from dMRI have,

therefore, a more intuitive interpretation, and tend to be more robust than

rs-fMRI (Parisot et al., 2016a). The estimation of structural connectivity is1310

plagued by several limitations introduced by the imaging technique (a very in-

direct measurement of white matter connectivity) and processing methods (e.g.

tractography) which can suppress existing structural connections, and thus, al-

leviate the reliability of the connectome analysis. These limitations include the

dominance of large fibre bundles, impaired detection of crossing/kissing fibres1315

and long range connections, difficulty to determine the origin or termination of

the tracts, and a possible bias with ending tracts in gyri (Van Essen et al., 2013a;

Ng et al., 2013). As a result, different tractography algorithms can yield very

different estimations of white matter connectivity, while parcellation boundaries

tend to align with cortical folding due to this gyral bias. Structural connectivity1320

is, however, a very important aspect of connectomic analysis and parcellations

exploiting this modality should be investigated further.

In this empirical study, we considered both surface-based and volumetric par-

cellations. Whilst efforts are made to be fair to all methods, several important

methodological choices have been made, which may have an impact on the eval-1325

uation and possibly promote some parcellations over the others. In particular,

decisions were made early on to use cortical folding-based alignment to project

group parcellations onto individual subjects’ functional imaging data. This
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choice allows greater consistency with popular volume-based analysis, however it

is likely to bias results against groupwise comparisons, especially for comparisons1330

of resting-state homogeneity, and BIC comparisons against task data, where re-

sults have consistently shown that resting-state-driven alignment improves the

correspondence of resting state, myelin and task across a group (Robinson et al.,

2014; Glasser et al., 2016; Sabuncu et al., 2010; Conroy et al., 2013). Further-

more, parcellations are not the products of the same processing pipeline. Most1335

of the publicly available parcellations have been generated under different as-

sumptions, from different sets of subjects with varying cohort size and after

being subject to a series of processing steps. Additional processing was fur-

ther applied to certain methods to make parcellations comparable on a more

standard basis. Parcellations that do not naturally provide spatially contiguous1340

cortical regions (e.g. Yeo, Power, ICA) were relabelled, while those that do

not cover the entire cortical surface (e.g. Gordon) were dilated. Similarly, we

used the group-average Glasser parcellation in our experiments, despite the fact

that this method also provides individual parcellations tailored to each subject.

If these subject-specific parcellations are made available, it is likely that their1345

performance with our proposed evaluation measures would see further gains. In

particular, the performance of parcellations sampled from a volumetric space

should be interpreted carefully due to the complicated transformation steps.

Nevertheless, we believe that these parcellations are an essential aspect of our

evaluation.1350

Please see Supplementary Material 3 and 4, for figures showing subject-level

and groupwise parcellations used in this study, respectively. All the parcellations

included in this paper will be made publicly available via the web page: http://

biomedia.doc.ic.ac.uk/brain-parcellation-survey, in case one may need

access to these parcellations for their own analysis on a different dataset.1355
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Appendix A: Adjusted Rand Index1365

ARI is built upon counting the number of items (in our case, vertices) on

which two parcellations agree or disagree (Vinh et al., 2009). It classifies
(
N
2

)
pairs of vertices into one of the four sets (N11, N00, N01, N10), based on their

labeling in each parcellation. For parcellations U and V, N11 corresponds to

the number of pairs that are assigned to the same parcel in both U and V, N001370

corresponds to the number of pairs that are assigned to different clusters in both

U and V, N01 corresponds to the number of pairs that are assigned to the same

parcel in U, but different parcels in V, and N10 corresponds to the number

of pairs that are assigned to the same parcel in V, but different parcels in U.

Intuitively, N00 and N11 account for the agreement of parcellations, whereas1375

N01 and N10 indicate their disagreement (Vinh et al., 2009). After counting the

number of pairs, ARI for parcellations U and V is computed as follows:

ARI(U,V) =
2(N00N11 −N01N10)

(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11)

Appendix B: Graph Theoretical Measures

Graph theory has played an integral role in recent efforts to understand

the structure and function of complex systems like the human brain, and has1380
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been widely used to characterise patterns and explore topological properties of

connectivity networks. Watts and Strogatz (1998), particularly, focused on two

key properties of a network, i.e. the clustering coefficient and the characteristic

path length. The clustering coefficient is one of the most elementary measures

of local segregation, which measures the density of connections between a node’s1385

neighbours. The average of the clustering coefficients for each individual node

is the clustering coefficient of the graph. Clustering is significant in a neuro-

biological context because neuronal units or brain regions that form a densely

connected cluster or module communicate a lot of shared information and are

therefore likely to constitute a functionally coherent brain system. The cluster-1390

ing coefficient of a binary network can be computed by:

Ci =
1

ki(ki − 1)

∑
j,k∈N

(aijajkaki) (1)

where N is the set of all nodes in the network, ki is the degree of node i,

and aij is connection status between i and j, with aij = 1 if there is a link and

aij = 0 otherwise. The degree of a node is the number of edges attached to it

and connecting it to the rest of the network.1395

While clustering evaluates local connectivity and the segregation of the net-

work into communities, another set of measures captures the capacity of the

network to engage in more global interactions that transcend the boundaries of

modules and enable network-wide integration. One of the most commonly used

measures of integration in brain networks is the characteristic path length, usu-1400

ally computed as the global average of the graph’s distance matrix (Watts and

Strogatz, 1998). The characteristic path length is a measure of functional inte-

gration of the network, demonstrating its ability to quickly combine specialised

information from distributed brain regions. A short path length indicates that,

on average, each node can be reached from any other node along a path com-1405

posed of only a few edges. The path length between nodes i and j is given
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by:

dij =
∑

auv∈gi↔j

auv (2)

where gu↔v is the shortest path between u and v. However, the absolute value

of the path length varies greatly with the size and density of individual graphs1410

and, hence, provides only limited information on integration in the network.

The network path length should therefore be compared to path lengths of ap-

propriately constructed random networks. For this reason it is customary to

compare the obtained path length to that of randomized reference networks

with the same number of nodes and edges and identical node degrees as the1415

original network. Such reference networks can be provided by randomizing the

original network using a random switching procedure (Rubinov and Sporns,

2010). The calculated values for the clustering coefficient and the path length

can, then, be normalised by dividing them with the average corresponding val-

ues of the randomized networks. In this study we normalise these metrics using1420

a set of 1000 random networks with the same degree distribution as the original

ones.

An important shared feature of complex networks like the human brain is

small-world topology (Bullmore and Sporns, 2009). In a small-world network,

most links are among neighbouring nodes, but there are a few connections to1425

distant nodes that create shortcuts across the network. As a result, small-world

networks are characterised by the prevalence of exquisitely small path lengths

among pairs of nodes within very large networks.A prior belief about the small-

worldness of the brain arises from the fact that it supports both segregated and

distributed information and is also likely evolved to maximise efficiency and1430

minimise the cost of information processing (Bassett and Bullmore, 2006). The

small-world index can be calculated as:

σ =
γ

λ
(3)

65



where γ is the normalised clustering coefficient and λ the normalised path length.
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