
Run, Actor, Run
Towards Cross-Actor Language Benchmarking

Sebastian Blessing
Imperial College London

United Kingdom
sebastian.blessing12@imperial.ac.uk

Kiko Fernandez-Reyes
Uppsala University

Sweden
kiko.fernandez@it.uu.se

Albert Mingkun Yang
Uppsala University

Sweden
albert.yang@it.uu.se

Sophia Drossopoulou
Imperial College London

United Kingdom
s.drossopoulou@imperial.ac.uk

Tobias Wrigstad
Uppsala University

Sweden
tobias.wrigstad@it.uu.se

Abstract
The actor paradigm supports the natural expression of con-
currency. It has inspired the development of several actor-
based languages, whose adoption depends, to a large extent,
on the runtime characteristics (i.e., the performance and scal-
ing behaviour) of programs written in these languages.
This paper investigates the relative runtime characterist-

ics of Akka, CAF and Pony, based on the Savina benchmarks.
We observe that the scaling of many of the Savina bench-
marks does not reflect their categorization (into essentially
sequential, concurrent and parallel), that many programs
have similar runtime characteristics, and that their runtime
behaviour may drastically change nature (e.g., go from essen-
tially sequential to parallel) by tweaking some parameters.

These observations lead to our proposal of a single bench-
mark program which we designed so that through tweaking
of some knobs (we hope) we can simulate most of the pro-
grams of the Savina suite.

CCS Concepts • Computing methodologies→ Distrib-
uted programming languages; • General and reference →
Evaluation; Performance.

Keywords actor programming; benchmarks
ACM Reference Format:
Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang,
Sophia Drossopoulou, and Tobias Wrigstad. 2019. Run, Actor, Run:
Towards Cross-Actor Language Benchmarking. In Proceedings of
the 9th ACM SIGPLAN International Workshop on Programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
AGERE ’19, October 22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6982-4/19/10. . . $15.00
https://doi.org/10.1145/3358499.3361224

Based on Actors, Agents, and Decentralized Control (AGERE ’19),
October 22, 2019, Athens, Greece.ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3358499.3361224

1 Introduction
Modern computers are all multicore or manycore machines
that need software written with concurrency and parallelism
inmind to utilise their full power. This has sparked a renewed
interest in the actor paradigm, which aims to express concur-
rency in a natural way, and provide a high-level abstraction
that, at least in theory, exploits the inherent concurrency of
a program’s design. This has inspired the development of
several actor languages [6, 11–13, 16, 19, 24, 32, 36, 38].
For wide adoption of actor languages, the runtime char-

acteristics—performance and scaling—are important consid-
erations. The benchmark suite Savina [30], which aims to
provide a collection of programs which are “diverse, realistic
and compute intensive (rather than I/O intensive)”, is the
current de facto benchmark for actor languages. Benchmark-
ing is difficult; language and runtime features may interact
in ways which, if not carefully taken into account, may lead
to a misinterpretation of the results.
To deepen the understanding of Savina and corroborate

that a program’s scaling depends on the inherent concurrency
in its design, we compare the performance of the Savina
programs across three actor languages on two architectures,
scaling from 1 to 112 cores.

The contributions of the paper are as follows:
– Description of the aims and (common) pitfalls of cross-
language benchmarking (§2).

– Reproduction study of the Savina paper with explana-
tions of runtime characteristics (§4 and §5).

– An observation that many Savina benchmarks have
similar runtime characteristics, and that tuning para-
meters in these programs drastically affects their char-
acteristics so that they become indistinguishable from
those of other programs in the suite (§5).

https://doi.org/10.1145/3358499.3361224
https://doi.org/10.1145/3358499.3361224

AGERE ’19, October 22, 2019, Athens, Greece Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia Drossopoulou and Tobias Wrigstad

– A proposal for a single benchmark program that (we
believe) can simulate most of the programs of the Sav-
ina benchmark suite (§6).

§3 gives an overview of the three languages in our study,
and §4 introduces the Savina benchmarks. §7 concludes.

2 Cross-Language Benchmarking: Pitfalls
A central question for the adoption of a concurrent program-
ming language is its performance, and how well it scales
when we increase, or decrease, the number of cores.

This section briefly touches on some of the problems when
comparing performance across multiple languages that in-
troduce differences in the benchmark programs.

2.1 Pitfalls of Cross-Language Benchmarking
Cross-language benchmarking is difficult. Considering simple
programs (aka micro benchmarking), that typically stress a
single or a few aspects, like message passing overhead or
backpressure handling, isolating aspects is a delicate matter
as many seemingly innocuous operations performed e.g., to
simulate “actual work” can easily become dominating per-
formance factors. For example, many actor micro benchmark
programs generate random numbers: even with actor-local
generators initialised with constant seeds, generators in dif-
ferent languagesmay favour one implementation or suppress
a pain point in another. Furthermore, random number gener-
ators may perform differently which may obscure the actual
benchmark result and the performance of the operations it
is used in combination with.
In the past, we have seen results in micro benchmarks

skewed (or obscured) by e.g.,: random number generation
(such as different numbers generated across platforms; vary-
ing performance of generators across platforms—leading to
accidentally comparing performance of random number gen-
erators rather than the actual metric of interest); string librar-
ies (such as the same frequent operation is O(1) on one plat-
form and O(n) on another); accidentally measuring perform-
ance of “irrelevant” libraries (such as regular expressions);
creation of garbage objects during warm-up that penalises
subsequent iterations due to e.g., worse locality or additional
GC cycles.

These problems largely go away inmacro benchmarking—
comparing the performance of entire applications without
synthesized behaviour. Butmacro benchmarksmake it harder
to isolate the effects of single aspects.

Measuring scalability is delicate regardless of micro/macro.
When using only a fraction of a large machine to simulate
performance on a smaller machine, one typically wants cores
on the same NUMA node to avoid slowdowns due to remote
memory access, or suffer from unfairness when a lock is
suddenly closer to one core than another, etc. This is relat-
ively straightforward in compiled systems without a run-
time component, but for full-blown VMs with background

compilation threads, GC threads, and many other runtime
management entities—what is the right thing to do is a lot less
clear. Pin all, pin no, or pin only non-VM threads? Ultimately,
what is a “fair” comparison is not obvious.

There are multiple other reasons why fairness is difficult.
For example, Akka allows users to supply custom scheduling
behaviours for actors which ultimately hurts its scheduling
performance because it limits the extent to which things can
be optimised as fewer facts are set in stone. This (at least in
theory) makes it easier to “beat” the default Akka scheduling
behaviour which, unless one goes through the trouble of
defining benchmarks where custom scheduling makes sense,
paints Akka in less favourable light. A similar argument can
be made about Erlang favouring fairness over performance.

2.2 The Objective and The Rules of the Game
The above discussion brings us to the point of what we call
“the rules of the game”. For a micro benchmark to be useful,
it needs a clearly stated objective: what it intends to show
(e.g., how a program that is under-saturated with respect to
parallel units of behaviour is penalised by actor scheduling)
as well as the rules for meeting the objective—what “tricks” are
allowed in implementations. For example, in the context of
actor programs, a rule could be not breaking actor isolation.
As §5will discuss further, some of the initial implementations
of Savina programs break isolation to avoid message passing
overhead for coordination. Is the ability to do so a strength,
or is a language’s ability to enforce actor isolation a superior
quality?

In this example, the question may be formulated as “when
is a program an actor program?” As there is no universally
accepted truth, we believe each benchmark should come
with its own set of rules, and changing the rules by definition
means the creation of a different benchmark.

3 Actor Languages
Actors are concurrent objects interacting via asynchron-
ous point-to-point messages [2, 26]. In the initial model,
every actor maintains a private heap inaccessible to other
actors [26]. Hence, the state of an actor can only be manipu-
lated through messages. Messages are sent by adding them
to the mailbox of the receiving actor (ideally the only point
of synchronisation in a program) after which the sender can
continue without waiting for an explicit reply. Actors pro-
cess incoming messages in the order they arrive or out of
order (called selective receive). Actors are thus sequential,
but actor programs are inherently concurrent. Consequently,
actor-based languages are concurrent-by-default [2, 26].

3.1 Akka
Akka [24, 38] is a library-based implementation of the actor
model on the JVM with widespread adoption. Akka supports

Run, Actor, Run AGERE ’19, October 22, 2019, Athens, Greece

Table 1. Overview of Akka, CAF, and Pony.

Features Akka CAF Pony

Model Actor Actor Actor
Concurrent Yes Yes Yes
Distributed Yes Yes No
Data Races Possible Possible Impossible

(Type system)
Fault Tolerance Supervisor Supervisor None
GC Any JVM

collector
Automatic refer-
ence counting

Orca [17]

Runtime JVM Compiled Compiled

distributed programming through a configuration deploy-
ment mechanism that decouples the program logic from the
network (deployment) architecture. Unlike Pony, Akka does
not enforce actor isolation, meaning data-races are possible
if a programmer is not careful. Fault tolerance is achieved
through a supervisor hierarchy, i.e., the common let-it-crash
semantics of actor-based languages.

3.2 C++ Actor Framework (CAF)
TheC++Actor Framework (CAF) is a C++ library for building
concurrent and distributed, actor-based programs [14]. CAF
has dynamic and statically typed actors in a high-performant
implementation that is data-race free and fault tolerant. Dy-
namic actors accept any message and dispatch dynamically
while interaction with statically typed actors is type-checked.
CAF does not enforce actor isolation, but allows somemiddle-
ground through copy-on-write semantics: immutable data
can be shared by reference between actors and copied locally
when an actor creates a mutable reference to it. Altough
this appears to be an optimization compared to full isola-
tion, copying potentially immutable data is important for GC,
see e.g., Erlang [6]. As Akka, CAF decouples the actor logic
from its deployment; fault tolerance is achieved by using a
supervisor hierarchy.

3.3 Pony
Pony is an actor language for building concurrent, parallel,
type-safe, and high-performant systems [15–17, 22]. Pony
enforces actor isolation through a capability-based type sys-
tem, which also provides guarantees to the runtime that are
used to implement a zero-copying policy of shared data.

3.4 Similarities and Differences
In this section we highlight the main similarities and differ-
ences between Akka, CAF, and Pony (summary in Table 1).
The three languages are concurrent and parallel by default.
Akka and CAF support distributed programming, with a su-
pervisor hierarchy to provide fault tolerance. Support for
distributed programming in Pony is under development [8].
Akka and CAF leave actor isolation to the programmer.

Pony guarantees isolation statically through its type system.

Akka runs on the JVM and thus may use whatever garbage
collector the JVM supports (starting from JDK 9, the default
is G1 [20]); which typically introduces some stop-the-world
pauses and does not leverage actor isolation. CAF imple-
ments its own garbage collection using reference count-
ing [1]; Pony has its own runtime and uses its own con-
current and parallel garbage collector [17] including actor
collection [15].

3.5 Cross-Language Benchmarking—The Rules of
the Game revisited

Despite Akka, Pony and CAF being all actor languages, they
are implemented quite differently. This stresses the import-
ance of the rules to guide benchmark implementation in any
of these (or future) languages. Using only constructs that
are present in all languages compared does not scale well to
future languages, may not be possible, and also hurts the rel-
evance of the benchmarks. Instead we propose a set of rules
for what not to do that we believe any actor-based language
can easily adhere to (even if not always idiomatic).

R0: No Breaking of The Actor Model Actor isolation is
an intrinsic property of the actor paradigm. That is, state
changes must be caused by sending messages. Sharing mut-
able data or using thread-safe data structures such as atomic
integers or maps and containers is forbidden.

R1: No Poison Pills In our experience, actor programs
tend to be long-running with potentially no intention to ever
terminate. Thus, including termination in measurements
only serves to add jitter. Consequently, we consider a bench-
mark “done” when the desired final state is reached. This
means that cleaning up (say final GC’ing or poisoning live
actors to terminate quickly) is outside of measurements.

R2: No Selective Receive Programs should not require the
causal nature of actor systems to be broken. Available mech-
anisms behave differently with varying impact on actor re-
sponsiveness (e.g.,, Akka’s stash vs. receive), leading to noise
when reporting benchmark results. Moreover, not all lan-
guages and frameworks allow for pattern matching on mes-
sage queues, which leaves too much room for implementing
a custom (language-level based) stash and unstash mechan-
ism posing an additional emphasis on object allocation.

R3: No Randomness Relying on randomness hampers re-
producibility, even with constant seeds, and introduces reli-
ance of random number generators with associated perform-
ance noise. In the spirit of [18], the input should be externally
supplied and lead to deterministic program behaviour.

R4: No Focus on Highly Optimized Libraries The pur-
pose of cross-language benchmarking is comparing lan-
guages, frameworks and runtime systems, not libraries such as
regular expressions (e.g., pcre2) or numerical computations

AGERE ’19, October 22, 2019, Athens, Greece Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia Drossopoulou and Tobias Wrigstad

(e.g., libgmp). A set of primitive data types and standard col-
lections (array, list, maps and sets) as well as networking
(TCP/UDP) should be enough and are most likely available
in any standard library.

R5: No Focus on Embarrassingly Parallel Algorithms
In our experience, embarassingly parallel data processing on
large shared mutable state is rare in the context of actors,
and do not stress the asynchronous behaviour for which
actor languages were developed.

4 Benchmarking Savina
Savina consists of 30 programs, grouped into three categories:
Micro, Concurrency and Parallelism. We took the benchmarks
as already implemented for Akka and CAF from [31, 37], and
implemented their counterpart in Pony. We left the Akka and
CAF implementation unchanged, and developed the Pony
versions from scratch, in accordance with Rules R0–R5. We
omitted Successive Over-Relaxation, as the Akka implementa-
tion appeared to be infinitely running. Moreover, a few Pony
implementations are missing (apsp,astar, bitonicsort, pipre-
cision, facloc, NQueenk and Uct) due to the lack of standard
library support (such as a comparable big decimal implement-
ation required for piprecision). The code for all the programs
in all three programming languages can be found at [9]. It
shall be noted at this point, that most of the savina programs
violate rule R3 by making heavy and inconsistent use of
random number generators [31]. Some use java.util.Random
while others use a locally defined congruential generator.

We ran the benchmarks on a medium-sized machine (an
Intel Xeon(R) CPU E5-2690 v3 2.6 GHz, with 2 sockets, and
24 cores with hyperthreading and 256 GB main memory),
as well as a larger machine (an Intel Xeon Platinum 8180M
2.5 GHz, with 4 sockets, and 112 physical cores with hyper-
threading and 3TB main memory). We ran on SuSE Linux
Enterprise 15 HPC with Linux Kernel 4.12.14-150.14.

We measure time from a start event until the specific pro-
gram event which signals the finished computation. We run
12 warm-up iterations on the JVM, and rule out signific-
ant outliers before reporting statistics data. We implement
a generic benchmark runner to automate the benchmark-
ing process, including plotting the statistics. The runner
detects the hardware resources including NUMA arrange-
ment, physical cores and hyperthreads, and disables/enables
cores (using numactl or CPU offlining) until all languages and
iterations have been executed on all available core counts.
CPU disabling is NUMA-aware to mitigate the risk of stalling
a thread due to far-distance memory accesses.

Runtimes are the median taken from all iterations per core,
in milliseconds. We report the results for the larger machine;
those for the smaller machine can be found at [10].

4.1 Benchmarking Results
The Savina benchmarks are grouped into three categories:
Essentially Sequential (calledMicro by [30]), Concurrency and
Parallelism. In our opinion, all 30 Savina benchmarks are mi-
cro benchmarks, as we used the term in section 2. The Savina
authors use the term Micro in a different sense: they call
Micro those benchmarks which exercise a single implement-
ation aspect, and which do not benefit from concurrency.
From now on, we stick to their definition.
We now describe the three Savina categories, their pro-

grams, and the results we obtained. We show the plots in
Figures 1 to 3, where the x-axis is the number of cores (1–112,
no hyperthreading), and the y-axis is time in milliseconds.

4.1.1 Micro Benchmarks
TheMicro benchmarks are small, simple programs whose ob-
jective is to test specific components of an actor runtime.big
(from [7]) measures the performance of many-to-many mes-
sage passing as well as mailbox contention. count measures
message passing overhead by sending a large number of mes-
sages from one actor to another. chameneos is similar to big,
but all message exchanges go through a single broker and
thus stresses mailbox contention on the disproportionally
popular broker actor. fib measures creation and destruction
of a large number of actors of varying lifetime by recursive
fibonacci number calculation, spawning actors in-place of
recursive calls. fjcreate and fjthrput measure actor creation
and destruction, and messaging throughput respectively us-
ing parallel fork–join calculations. Ping Pong and Thread
Ring measure the scheduling behaviour, context switching
overhead, and message passing overhead of sequential pro-
grams implementing a logical thread of control in form of a
message being passed around a ring topology.

Measurements and Observations Figure 1 shows the res-
ults of the eight microbenchmarks. None of the benchmarks
show a considerable speed-up with increasing number of
cores. This is not surprising, as they are essentially sequential:
In Ping Pong and Thread Ring, no more than one actor can be
active at a time. In count, at most two actors are active at a
time. In chameneos the broker is the bottleneck. Even though
in fib an exponentially growing number of actors is active at
a time, each actor’s work is so small that the parallelism is
dwarved by actor-creation and communication overhead.

We notice a considerable speed-up between 1 and 2 cores
in CAF, even in benchmarks which exhibit no concurrency
(or parallelism), e.g., Thread Ring or Ping Pong. We believe
this is because CAF oversubscribes to scheduler threads on
small core numbers. In some cases, we notice a small slow-
down in Pony and Akka going from 1 to 2 cores; we believe
this is due to mailbox contention.

Run, Actor, Run AGERE ’19, October 22, 2019, Athens, Greece

 0

 5000

 10000

 15000

 20000

 25000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Big

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 200

 400

 600

 800

 1000

 1200

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112
E

xe
cu

tio
n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Counting Actor

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Chameneos

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Fibonacci

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Fork Join Actor Creation

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 5000

 10000

 15000

 20000

 25000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Fork Join Throughput

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 50

 100

 150

 200

 250

 300

 350

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Ping Pong

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 50

 100

 150

 200

 250

 300

 350

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Thread Ring

caf 0.16.3
pony 0.28.0

akka 2.3.2

Figure 1. Microbenchmark performance and scaling plots. Legend: Akka 2.3.2: , CAF 0.16.3: , Pony 0.28.0: .

4.1.2 Concurrency Benchmarks
The objective of the concurrency benchmarks is to meas-
ure contention and coordination of nondeterministic com-
munication between multiple actors. Banking and Logmap
both measure cost of synchronising request–response pat-
terns with interfering and non-interfering transactions re-
spectively. Both violate rule R2, by stashing and unstashing
messages to defer the receipt of subsequent requests until
a response for previous request has been received. philo-
sophers (from [28]) measure contention on shared resources
governed by a central arbitrator actor. The implementation
provided at [31] violates R0 by using shared atomics for
reporting results. Bounded Buffer is an instance of a multi-
process synchronisation problem [27, 28]. It measures the
overhead of (effectively) starting and stopping actors depend-
ing on increasing supply and demand. concdict and concsll
both measure the performance of multiple readers–single
writer concurrency (which the actor model does not support).
The purpose of cigsmok (from [34]) is unclear; its actual chal-
lenge is to avoid deadlocks. barber (from [21]) measures
contention on a single bottleneck, while avoiding starvation.
Just as for philosopher, rule R0 is violated by the implement-
ation provided at [31].

Measurements and Observations Figure 2 shows the res-
ults of the eight concurrency benchmarks. With the excep-
tion of bndbuffer, the concurrency benchmarks do not speed-
up with increasing number of cores. This might be initially
surprising, as in these benchmarks there is (theoretically)
a large number of actors which can be active concurrently.
However, on closer inspection, we observe that these con-
current actors tend to do very little work when active. For

example, in the philosophers, when a philosopher is given the
forks she relinquishes them immediately, and notifies the ar-
bitrator that she is hungry. Thus the arbitrator immediately
becomes a bottleneck, and philosophers mostly wait.
Increasing the amount of work each philosopher does

upon receiving two forks also increases the possible paral-
lelism, as shown by the pragmatically placed Figure 3 (a).
The same “trick” can be applied successfully to several other
benchmarks, for example, chameneos, fib and barber.

Combining the results of all concurrency benchmarks, we
obtain the plot in Figure 3 (b).

4.1.3 Parallelism Benchmarks
The parallelism benchmarks aim to take full advantage of
parallel hardware architectures by task decomposition. The
challenge is to translate this decomposition efficiently into
actor-style computations. There are different kinds of paral-
lelism, such as pipelines, phased computations, divide-and-
conquer, master–worker schemes as well as graph and tree
navigation scenarios.
apsp is a phased computation where actors join a barrier

(implemented via messages) at the end of each iteration,
while mutating a matrix. Each actor owns a block of the
matrix and is responsible for updating the state of its block
and inform its neighbor about state changes.
astar (from [25]) is a graph traversal benchmark search-

ing for the path with the lowest expected total cost/distance.
The implementation as defined in [31] breaks actor isolation
(and thus rule R0) by sharing and mutating a central graph
data structure [31]. Implementing this benchmark whilst
preserving parallelism faithfully with actor isolation is non-
trivial. Our Akka implementation from [30] inherits artefacts

AGERE ’19, October 22, 2019, Athens, Greece Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia Drossopoulou and Tobias Wrigstad

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Bank Transaction

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 50000

 100000

 150000

 200000

 250000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112
E

xe
cu

tio
n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Logistic Map Series

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Dining Philosophers

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Producer-Consumer with Bounded Buffer

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Concurrent Dictionary

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Concurrent Sorted Linked-List

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Cigarette Smokers

pony 0.28.0
akka 2.3.2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Sleeping Barber

pony 0.28.0
akka 2.3.2

Figure 2. Concurrency performance and scaling plots. Legend: Akka 2.3.2: , CAF 0.16.3: , Pony 0.28.0: .

due to the use of a priority queue in the original implementa-
tion. Prioritising inter-actor messages is not part of the actor
model, which makes achieving good performance difficult.

filterbank is a stream-pipelining implementation with join
semantics. The benchmark stresses the speed of message
delivery and the scheduling of actors onto worker threads.

NQueensmeasures the overhead of speculative parallelism
with a single master and several worker actors each attempt-
ing to find a valid solution. Prioritising solutions that place
more queens on a board makes this benchmark difficult to
implement in the actor model.

piprecision exhibits amaster–worker patternwith dynamic
load-balancing computing the value of π in a way that re-
quires an implementation of a Big Decimal datatype. Similar
to philosopher and barber, this benchmark violates rule R0.
trapezoid is master-worker style implementation to ap-

proximate the integral over a given function.
recmatmul uses static load-balancing performing an em-

barassingly parallel recursive matrix multiplication. The
nature of this benchmark is violating rule R5 and, by sharing
the central mutable result matrix, does not adhere to rule R0.
In Pony, an additional is required to collect the values for
the result matrix. sieve (from [29]) implements a dynamic
pipeline. Each time a pipeline overflows, a new actor is cre-
ated and attached to the pipeline meaning messages have
a varying “hop length”. uct exhibits non-uniform load in a
tree-traversal benchmark stressing dynamic load-balancing
of the scheduler.

facloc (from [5]) uses speculative parallelism on a dynam-
ically generated tree.

Finally, quicksort, bitonicsort and radixsort are divide-and-
conquer based sorting algorithms.

Measurements and Observations Figure 3 shows the res-
ults of the parallel benchmarks. (The last three subfigures
were placed in the same figure to save space.) Several of these
benchmarks show a considerable speed-up with increasing
number of cores, but this improvement tends to peter off at
between 8 and 32 cores.

The matrix multiplication program is interesting—the typ-
ical way to implement this in a threaded system is by shar-
ing read-only input matrices and a write-only result matrix
across all workers. The latter is safe because workers will
write to disjoint locations in the matrix. As Pony’s type
system enforces actor isolation, this strategy is forbidden
(although see [3] for an extension to a similar capability sys-
tem that handles precisely this scenario). Both the Akka and
CAF programs pragmatically break actor isolation and share
the result matrix.

We combine the results of all the parallel benchmarks per
language, and show the results in Figure 3 (c).

5 Performance Analysis
In the previous section, we described the key characteristics
of each benchark, and pointed to the benchmark results. In
this section, we perform a more thorough analysis and argue
for a recategorisation of the Savina benchmarks.

5.1 Recategorisation
The fact that the plot for philosophers could change drastic-
ally after increasing the amount of work done by actors
suggests the original categorisation does not capture the in-
herent concurrency of the benchmark. Instead, we propose
the following recategorisation based on potential parallelism
if actors do a non-trivial amount of work.

Run, Actor, Run AGERE ’19, October 22, 2019, Athens, Greece

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

All-Pairs Shortest Path

caf 0.16.3
akka 2.3.2

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112
E

xe
cu

tio
n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Filter Bank

pony 0.28.0
akka 2.3.2

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Trapezoidal Approximation

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d

s,
 M

e
d
ia

n
)

Cores

Recursive Matrix Multiplication

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Sieve of Eratosthenes

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Online Facility Location

caf 0.16.3
akka 2.3.2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Quicksort

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 5000

 10000

 15000

 20000

 25000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e

d
ia

n
)

Cores

Bitonic Sort

caf 0.16.3
akka 2.3.2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e
d
ia

n
)

Cores

Radix Sort

caf 0.16.3
pony 0.28.0

akka 2.3.2

 0

 50000

 100000

 150000

 200000

 250000

 0 4 8 12 16 20 24 28 32 36 40 44 48

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e
d
ia

n
)

Cores

Busy Dining Philosophers

pony 0.28.0

(a) Busy Philosophers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e
d
ia

n
)

Cores

Concurrency

caf 0.16.3
pony 0.28.0

akka 2.3.2

(b) All Concurrency

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112

E
xe

cu
tio

n
 T

im
e
 (

M
ill

is
e
co

n
d
s,

 M
e
d
ia

n
)

Cores

Parallel

caf 0.16.3
pony 0.28.0

akka 2.3.2

(c) All Parallelism

Figure 3. Parallel performance and scaling plots. Legend: Akka 2.3.2: , CAF 0.16.3: , Pony 0.28.0: . Subfigure (a) shows
philosophers with extra work. Subfigures (b) and (c) coalesces concurrency and parallelism results respectively.

Sequential: only one actor is runnable at any instant of time;
this category contains Thread Ring and Ping Pong. Therefore,
both benchmarks are inherently sequential; we expect to
see a flat line in the execution time plot. The plot for Pony
is indeed a flat line; Akka shows some jitter, but mostly a
flat line as well. CAF shows a flat line once the number of
cores goes above 4, because CAF spawns multiple threads
according to the number of cores in the machine, but never
less than 4. The large execution time when the core count is
less than 4 is the cost of over-provisioning the system and
potentially disrespecting the NUMA affinity map given by
numactl.

Constant parallelism: only a constant number of actors
are runnable and doing non-trivial work; this category con-
tains count, chameneos, big, concdict, Banking, facloc, concsll,
philosophers, barber, sieve, and uct. These benchmarks show
visible speedup when the number of cores are small, but
flatten afterwards due to limited parallelism. For example,
barber flattens at core 3.

Master & Slaves: a master pushes work to several slaves
which can run in parallel; this category contains: bndbuffer,
cigsmok, Logmap, astar, NQueens, trapezoid, filterbank, and
piprecision. The trend in the plot should be similar to the
previous category except that parallelism is tunable.

Recursive Divide-and-Conquer: work is distributed by re-
cursively decomposing the problem into smaller subprob-
lems; this category contains: fjcreate, fjthrput, fib, apsp, recmat-
mul, quicksort, bitonicsort and radixsort. It differs from the
previous category only in how parallelism is created. Depend-
ing on the cost of actor creation relative to other workloads,
that difference may not manifest itself in the plots. Indeed,
in the Savina benchmarks it does not manifest itself.

5.2 Actor Benchmarks?
The Savina benchmarks are a collection of “found bench-
marks,” many of which were taken from a threaded domain
and ported to an actor setting in a way where an actor is
made to operate in a thread-like fashion. Porting sometimes

AGERE ’19, October 22, 2019, Athens, Greece Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia Drossopoulou and Tobias Wrigstad

breaks with the actor model: using shared counters manipu-
lated by atomic operations; the sharing of the result matrix;
message priorities. Furthermore, task-based parallelism (e.g.,
parallel quicksort) typically relies on a notion of a task graph
that captures dependencies between tasks (which e.g., influ-
ences work-stealing)—actors are unstructured and cannot
express such dependencies, making these algorithms un-
suited for actor programs. Using futures to block execution
(and possibly selective receive) can be used to encode similar
dependencies, but is arguably not part of the actor model.
Finally, the actor paradigm was developed for concurrent
programs, not parallel. Few of the Savina benchmarks deal
with responding to truly asynchronous behaviour.

A survey of how programmers tend to use actors in Scala
can be found at [35]. In our experience, actor-based applica-
tions tend to consist of a large number of actors of varying
lifetime, which receive messages frequently, and whose be-
haviours are relatively short-lived. We have not observed
this kind of design pattern with the Savina benchmark suite.

5.3 Memory Management
A note on memory management is in place. We use the de-
fault G1 collector for our benchmarks. G1 has been claimed
to scale as the number of cores increases [23] in a study
which did not take into account NUMA-awareness when
allocating objects [33]. Carpen-Amarie et al. measure per-
formance of various collectors (including G1) in terms of
responsiveness, throughput and GC pause times. The au-
thors conclude that G1 performs badly in applications with
a small memory footprint but reduce pause times for ap-
plications with a large memory footprint [4]. Ultimately, we
are faced with a choice between GC behaviour which is ill-
chosen for benchmark programs, or measurements on a GC
which is unrepresentative for real programs.

The memory footprint of the Savina benchmark suite is
something to be taken into account and appears to be dif-
ficult to tune using the available input parameters to the
individual programs. Using the default configurations, dur-
ing our measurements, the memory consumption across
all languages did not grow beyond 11 GB. Scheduling and
memory management are seperate, but equally difficult tasks
to perform well in. Consequently, memory-boundedness as
well as computation-boundedness should be tuning knobs
of a cross-language benchmark suite.

6 One Benchmark to Rule them All
To mitigate many of the problems and pitfalls discussed in
§2.1, we propose a malleable synthesised benchmark mod-
elled after typical actor uses in industry: ChatApp. The idea
of a malleable benchmark application is to provide several
tuning knobs (see §6.2) for the application that can be used to
put pressure on particular design points of an actor language,
all within a single benchmark program without the need to

create many specialised and highly different programs for
various tasks. We believe that using the same program for
multiple investigations will lead to intimate understanding of
its characteristics in a way that can avoid or at least mitigate
the obscuring of results in macro benchmarks when trying
to study specific language aspects. Depending on the config-
uration, the program can be memory-bound, computation-
bound, message-bound or mixed. Having such tuning knobs
allows benchmarking to be more experimental and focussed
at the same time, ultimately helping in understanding and
comparing cross-language behaviors and draw conclusions
for real-world application scenarios. Section §6.2 suggests
some tuning knob settings to serve different objectives.
In the remainder of this section, we briefly sketch the

ChatApp design and architecture, tuning knobs, and state
the rules for its implementation.

6.1 ChatApp – A Malleable Benchmark
ChatApp models a chat application in the spirit of e.g., Face-
book chats. It consists of three types of actors: clients, dir-
ectories and chats. A client is a server-side proxy for an ima-
gined client on the client-side. A directory is a load-balancing
mechanism that maps a number of client ids to their cor-
responding actor handles. A chat is a representation of a
conversation between multiple client actors that keeps a
history of a conversation, and a list of clients involved in
the chat to which it forwards all incoming chat messages.
Ideally, for running the benchmark, there should be an “ex-
ternal world” actor to supply non-random, repeatable input
to the system. Figure 4 shows an example topology with two
directories, three clients and three chats.

Main

Directory 1 Directory 2

Client 1 Client 2 Client 3

Chat 1 Chat 2 Chat 3

Figure 4. ChatApp ex-
ample topology.

Input that spawns parallel
activity arrives in turns and
causes each actor to make one
move (and possibly respond to
many more). When an actor
makes a move it rolls a die,
and acts depending on the out-
come: it may do nothing, start
a new chat, leave an existing
chat in which it is a member,
or post a message in an exist-
ing chat in which it is a mem-
ber. When a new chat is started, we iterate over the list of
friends, roll a die for each one, and with some low probability
invite them to the chat.

In addition, a client actor may respond to external stimuli.
It may respond to a befriend request from another Client
actor by adding the other actor to its friends; respond to an
invite to join a chat by joining the chat, send an acknow-
ledgement when receiving a message from one of its chats,
or respond to a logout request from the system after the
desired number of turns is completed, by setting its status in
its containing directory to offline. When an actor is added

Run, Actor, Run AGERE ’19, October 22, 2019, Athens, Greece

to the system during start up, we iterate over the global list
of actors and roll a die for each actor, and with some low
probability send it a friend request. As the collection of act-
ors grow during start up, an older actor is likely to be more
well-connected than a younger actor, which models typical
social network topologies.

Directories respond to requests for actor handles. When a
chat receives a message, it forwards it to all of its members.
It also maintains a list of clients and responds to join and
leave requests.

6.2 Tuning Knobs
In addition to the number of turns (amount of work) and the
number of actors (possible span), the ChatApp benchmark
supports (at least) the following tuning knobs:

Work Per Client Move In addition to the behaviour de-
scribed above, each client move may perform a variable
amount of extra “busy work” to simulate more involved
computation. This work can be compute-bound or memory-
bound. It should be possible to assign different busy work to
different actors, both with respect to type and amount. This
tuning knob can be used to expose hidden parallelism, or
sequential execution due to actors doing only trivial work,
as shown in philosopher.

Client Behaviour The probabilities with which clients act
in the various ways described above should be tuneable.
For example, one can have a system with millions of actors
with a 99% chance of doing nothing per turn, or a smaller
number of less idle actors. As another example, decreasing
the possibility of leaving chats to zero will cause the system’s
memory to get increasingly bloated as only more and more
connections and objects will be created.

Clients Per Directory Whenever a client wants to obtain
a handle to another client, it must go via a directory lookup.
A single centralised directory will immediately become a
bottleneck (possible objective) of the system as it will be
disproportionally flooded by requests. Increase the number
of directories tomake sure clients are runnable without being
blocked on a single shared resource.

Size of Messages Similar to the above, the size of messages
sent should also be tuneable to be able to investigate message
sending implementations. Some actor systems (e.g., Erlang
[6]) traverse and clone the transitive closure of argument
objects in a message, possibly optimised through copy-on-
write (e.g., CAF). Others support message passing by pointer
swizzle (e.g., Akka, Pony and Encore [11]) but may require
scanning outgoing and incoming messages for GC purposes
(e.g., Pony and Encore). Small message payloads (e.g., prim-
itive values and single-object structures) downplay these
differences whereas larger message payloads highlight them.
For example, a message to a chat can be a graph of objects
of size 0 or more.

Degree of Connectedness The probability by which an
actor will add another actor as a friend or add a friend to a
newly created chat controls the degree of connectedness in
the system which affects how many parallel units of work
are created by each actor move.

6.3 Game Rules for ChatApp
Following our own recommendation, we define a clear set of
rules for implementation of every aspect of the ChatApp’s
design considerations (which already satisfies R4 and R5)
and tuning knobs (take this to be in addition to §3.5). Most
importantly, directories need to be actors, not shared read-
only collections of some sort (R0). Consequently, a message
round-trip and actor-local hash map look-up is required to
retrieve an actor handle from its identifier. The amount of
actors a directory can handle is implicitly decided by the
number of client actors in the system, which are distributed
uniformly between all available directories.
Each turn, each client is sent one message to move, and

executes exactly one move as a result (which may amount
to “do nothing”), without coordinating its decision with any
other clients. Moreover, following our initial proposition, an
actor picks its behavior to execute based on a factory class
(local to each client) using a congruential (but deterministic)
random number generator based on 32-bit integers (breaking
R3!), which should be implementable on almost any platform
and any language or framework as demonstrated in [9].
Ideally, we would like to eliminate any degree of num-

ber generation in future versions of the ChatApp (R3), and
control the systems behavior based on some pre-defined re-
peatable input. This could be an external benchmark driver
communicating against TCP sockets (to which the direct-
ories listen), allowing us to control the behavior of clients,
chats as well as the size of messages posted to any of the
actors (even complex object graphs). The specification of
such a driver is subject to future work.

7 Conclusion
We compared the runtime characteristics of Akka, CAF and
Pony based on the Savina benchmark suite. We observed
similarities between many of the benchmarks, and drastic
effects of small tweaks to the benchmarks. As a result, we
proposed one, highly tunable benchmark, which we plan to
implement and study in a range of actor-based languages.

References
[1] 2019. CAF, C++ Actor Framework version 0.17. http://www.actor-

framework.org/pdf/manual.pdf
[2] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distrib-

uted Systems. MIT Press, Cambridge, MA, USA.
[3] Beatrice Åkerblom, Elias Castegren, and Tobias Wrigstad. 2020. Ref-

erence Capabilities for Safe Parallel Array Programming. The Art,
Science, and Engineering of Programming (2020). To appear.

[4] Maria Carpen Amarie, Patrick Marlier, Pascal Felber, and Gaël Thomas.
2015. A performance study of Java garbage collectors on multicore

http://www.actor-framework.org/pdf/manual.pdf
http://www.actor-framework.org/pdf/manual.pdf

AGERE ’19, October 22, 2019, Athens, Greece Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia Drossopoulou and Tobias Wrigstad

architectures. 20–29. https://doi.org/10.1145/2712386.2712404
[5] Aris Anagnostopoulos, Russell Bent, Eli Upfal, and Pascal Van Hen-

tenryck. 2004. A Simple and Deterministic Competitive Algorithm
for Online Facility Location. Inf. Comput. 194, 2 (Nov. 2004), 175–202.
https://doi.org/10.1016/j.ic.2004.06.002

[6] Joe Armstrong. 2007. A History of Erlang. In Proceedings of the Third
ACM SIGPLANConference on History of Programming Languages (HOPL
III). ACM, New York, NY, USA, 6–1–6–26. https://doi.org/10.1145/
1238844.1238850

[7] Stavros Aronis, Nikolaos Papaspyrou, Katerina Roukounaki, Konstanti-
nos Sagonas, Yiannis Tsiouris, and Ioannis E. Venetis. 2012. A Scalab-
ility Benchmark Suite for Erlang/OTP. In Proceedings of the Eleventh
ACM SIGPLAN Workshop on Erlang Workshop (Erlang ’12). ACM, New
York, NY, USA, 33–42. https://doi.org/10.1145/2364489.2364495

[8] Sebastian Blessing. 2013. A String of Ponies. Transparent Distributed
Programming with Actors. Master’s thesis. Imperial College of Science.
https://www.doc.ic.ac.uk/~scb12/publications/s.blessing.pdf

[9] Sebastian Blessing. 2019. GitHub - Pony Savina. https://github.com/
sblessing/pony-savina. (2019). Accessed: 2019-08-13.

[10] Sebastian Blessing. 2019. Savina Results - Medium Machine. https:
//www.doc.ic.ac.uk/~scb12/pony.html. (2019). Accessed: 2019-08-13.

[11] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-
Reyes, Einar Broch Johnsen, Ka I Pun, Silvia Lizeth Tapia Tarifa, Tobias
Wrigstad, and Albert Mingkun Yang. 2015. Parallel Objects for Mul-
ticores: A Glimpse at the Parallel Language Encore. In Formal Methods
for Multicore Programming - 15th SFM 2015, Bertinoro, Italy, June 15-
19, 2015, Advanced Lectures. 1–56. https://doi.org/10.1007/978-3-319-
18941-3_1

[12] Denis Caromel, Christian Delbe, Alexandre Di Costanzo, and Mario
Leyton. 2006. ProActive: an integrated platform for programming and
running applications on grids and P2P systems. Computational Meth-
ods in Science and Technology 12 (2006), issue 1. https://hal.archives-
ouvertes.fr/hal-00125034

[13] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2014.
CAF - the C++ Actor Framework for Scalable and Resource-Efficient
Applications. In Proceedings of the 4th International Workshop on Pro-
gramming based on Actors Agents & Decentralized Control, AGERE!
2014, Portland, OR, USA, October 20, 2014. 15–28. https://doi.org/10.
1145/2687357.2687363

[14] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2016.
Revisiting actor programming in C++. Computer Languages, Systems
& Structures 45 (2016), 105–131. https://doi.org/10.1016/j.cl.2016.01.002

[15] Sylvan Clebsch and Sophia Drossopoulou. 2013. Fully concurrent
garbage collection of actors on many-core machines. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part
of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. 553–570.
https://doi.org/10.1145/2509136.2509557

[16] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy
McNeil. 2015. Deny capabilities for safe, fast actors. In Proceedings
of the 5th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA,
October 26, 2015. 1–12. https://doi.org/10.1145/2824815.2824816

[17] Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun
Yang, Tobias Wrigstad, and Jan Vitek. 2017. Orca: GC and type system
co-design for actor languages. PACMPL 1, OOPSLA (2017), 72:1–72:28.
https://doi.org/10.1145/3133896

[18] The TPC consortium. 2019. TPC-C - An On-Line Transaction Pro-
cessing Benchmark. http://www.tpc.org/tpcc/default.asp. (2019). Ac-
cessed: 2019-08-13.

[19] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,
and Wolfgang De Meuter. 2006. Ambient-Oriented Programming in
AmbientTalk. In ECOOP 2006 - Object-Oriented Programming, 20th

European Conference, Nantes, France, July 3-7, 2006, Proceedings. 230–
254. https://doi.org/10.1007/11785477_16

[20] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004.
Garbage-first garbage collection. In Proceedings of the 4th international
symposium on Memory management. ACM, 37–48.

[21] Edsger W. Dijkstra. 2002. The Origin of Concurrent Programming.
Springer-Verlag New York, Inc., New York, NY, USA, Chapter Cooper-
ating Sequential Processes, 65–138. http://dl.acm.org/citation.cfm?id=
762971.762974

[22] Juliana Franco, Sylvan Clebsch, Sophia Drossopoulou, Jan Vitek, and
Tobias Wrigstad. 2018. Correctness of a Concurrent Object Collector
for Actor Languages. In Programming Languages and Systems - 27th
European Symposium on Programming, ESOP 2018, Held as Part of
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. 885–
911. https://doi.org/10.1007/978-3-319-89884-1_31

[23] Lokesh Gidra, Gael Thomas, Julien Sopena, and Mark Shapiro. 2012.
Assessing the Scalability of Garbage Collectors onMany Cores. SIGOPS
Oper. Syst. Rev. 45, 3 (Jan. 2012), 15–19.

[24] P. Haller and M. Odersky. 2009. Scala actors: Unifying thread-based
and event-based programming. Theoretical Computer Science 410, 2-3
(2009), 202–220.

[25] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A formal
basis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics SSC-4(2) (1968), 100–
107.

[26] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. 1973. A
Universal Modular ACTOR Formalism for Artificial Intelligence. In
Proceedings of the 3rd International Joint Conference on Artificial In-
telligence. Standford, CA, USA, August 20-23, 1973. 235–245. http:
//ijcai.org/Proceedings/73/Papers/027B.pdf

[27] C. A. R. Hoare. 1974. Monitors: An Operating System Structuring
Concept. Commun. ACM 17, 10 (Oct. 1974), 549–557. https://doi.org/
10.1145/355620.361161

[28] C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun.
ACM 21, 8 (Aug. 1978), 666–677. https://doi.org/10.1145/359576.359585

[29] Samuel Horsley. 1772. The Sieve of Eratosthenes. Being an Account
of His Method of Finding All the Prime Numbers, by the Rev. Samuel
Horsley, F. R. S. Philosophical Transactions (1683-1775) 62 (1772), 327–
347.

[30] Shams M. Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark
Suite: Enabling Empirical Evaluation of Actor Libraries. In Proceedings
of the 4th International Workshop on Programming Based on Actors
Agents & Decentralized Control (AGERE! ’14). ACM, New York, NY,
USA, 67–80. https://doi.org/10.1145/2687357.2687368

[31] Shams M. Imam and Vivek Sarkar. 2019. GitHub - Savina. https:
//github.com/shamsimam/savina. (2019). Accessed: 2019-08-13.

[32] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and
Martin Steffen. 2010. ABS: A Core Language for Abstract Behavioral
Specification. 142–164. https://doi.org/10.1007/978-3-642-25271-6_8

[33] Tomas Kalibera, Matthew Mole, Richard E. Jones, and Jan Vitek. 2012.
A black-box approach to understanding concurrency in DaCapo. In
Proceedings of the 27th Annual ACM SIGPLAN OOPSLA 2012, part of
SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012. 335–354. https:
//doi.org/10.1145/2384616.2384641

[34] Suhas S. Patil. 1971. Limitations and capabilities of dijkstra’s sema-
phore primitives for coordination among processes.

[35] Tasharofi Samira, Dinges Peter, and Johnson Ralph. 2012. Why Do
Scala Developers Mix the Actor Modelwith Other Concurrency Mod-
els?. In ECOOP.

[36] Dave Thomas. 2018. Programming Elixir ≥ 1.6: Functional |> Concurrent
|> Pragmatic |> Fun. Pragmatic Bookshelf.

[37] Sebastian Woelke. 2019. GitHub - CAF Fork Savina. https://github.
com/woelke/savina. (2019). Accessed: 2019-08-13.

[38] Derek Wyatt. 2013. Akka Concurrency. Artima.

https://doi.org/10.1145/2712386.2712404
https://doi.org/10.1016/j.ic.2004.06.002
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/2364489.2364495
https://www.doc.ic.ac.uk/~scb12/publications/s.blessing.pdf
https://github.com/sblessing/pony-savina
https://github.com/sblessing/pony-savina
https://www.doc.ic.ac.uk/~scb12/pony.html
https://www.doc.ic.ac.uk/~scb12/pony.html
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-319-18941-3_1
https://hal.archives-ouvertes.fr/hal-00125034
https://hal.archives-ouvertes.fr/hal-00125034
https://doi.org/10.1145/2687357.2687363
https://doi.org/10.1145/2687357.2687363
https://doi.org/10.1016/j.cl.2016.01.002
https://doi.org/10.1145/2509136.2509557
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/3133896
http://www.tpc.org/tpcc/default.asp
https://doi.org/10.1007/11785477_16
http://dl.acm.org/citation.cfm?id=762971.762974
http://dl.acm.org/citation.cfm?id=762971.762974
https://doi.org/10.1007/978-3-319-89884-1_31
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/355620.361161
https://doi.org/10.1145/355620.361161
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/2687357.2687368
https://github.com/shamsimam/savina
https://github.com/shamsimam/savina
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1145/2384616.2384641
https://doi.org/10.1145/2384616.2384641
https://github.com/woelke/savina
https://github.com/woelke/savina

	Abstract
	1 Introduction
	2 Cross-Language Benchmarking: Pitfalls
	2.1 Pitfalls of Cross-Language Benchmarking
	2.2 The Objective and The Rules of the Game

	3 Actor Languages
	3.1 Akka
	3.2 C++ Actor Framework (CAF)
	3.3 Pony
	3.4 Similarities and Differences
	3.5 Cross-Language Benchmarking—The Rules of the Game revisited

	4 Benchmarking Savina
	4.1 Benchmarking Results

	5 Performance Analysis
	5.1 Recategorisation
	5.2 Actor Benchmarks?
	5.3 Memory Management

	6 One Benchmark to Rule them All
	6.1 ChatApp – A Malleable Benchmark
	6.2 Tuning Knobs
	6.3 Game Rules for ChatApp

	7 Conclusion
	References

