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Abstract

Concurrent programs executing on NUMA architectures consist of concurrent entities (e.g. threads,

actors) and data placed on different nodes. Execution of these concurrent entities often reads or

updates state from remote nodes. The performance of such systems depends on the extent to which

the concurrent entities can be executing in parallel, and on the amount of the remote reads and writes.

We consider an actor-based object oriented language, and propose a type system which expresses

the topology of the program (the placement of the actors and data on the nodes), and an effect system

which characterises remote reads and writes (in terms of which node reads/writes from which other

nodes). We use a variant of ownership types for the topology, and a combination of behavioural and

ownership types for the effect system.

1 Introduction

A prevalent paradigm in high performance machines is NUMA (non uniform memory access)
systems, e.g. the AMD Bulldozer server[1]. NUMA systems have many nodes which contain pro-
cessors and memory; Figure 1 shows the common NUMA structure.
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Figure 1: NUMA system [9].

The nodes are connected with the other nodes through a
system bus that allows processes running on a specific node
to access the memory of the other nodes.

Memory access is either local, i.e. accessing memory in
the local node, or remote, i.e. accessing memory of remote
nodes. Remote accesses require requests to the system bus,
and are thus more expensive than local accesses. Moreover,
different remote accesses do not necessarily have the same
cost (the time to obtain/write data in memory). Therefore,
to characterize the communication (read/write) costs of a
concurrent program, we need to know its topology (the placement of the actors and data on
the nodes), and a characterisation of the reads and writes across nodes.

In this work we consider a concurrent language based on actors (or active objects) and
objects [3], which we call La, a language where, for the sake of simplicity, mutually recursive
(synchronous and asynchronous) method invocations are not allowed and all the active objects
must be created in the main class.

We develop a variant of ownership types [4] to express the location of actors and of data. In
particular, we propose two levels of abstraction: classes have ownership (location) parameters,
the main program defines the abstract locations and creates objects in these abstract locations;
finally, at runtime the abstract locations are mapped to nodes (cf. Appendix C). We also propose
a combination of behavioural and ownership types to characterize the interactions (reads, writes
and messages sent) among objects located in different nodes.

Ownership types [4] were first introduced to statically describe the heap topology. Here we
introduce ownership-like annotations to describe the system topology, that is, its nodes and

∗This work was funded by the EU project UpScale http://www.upscale-project.eu/.

1

http://www.upscale-project.eu/


Behavioural types for NUMA Franco & Drossopoulou

where threads are running and data is allocated. Behavioural types [6] are usually used to
describe and statically, or dynamically, verify patterns of interaction between processes/thread-
s/participants of concurrent and parallel computations. Here we present a type system that
allows the programmer to specify the interactions among objects located in different nodes, and
therefore we abstract the communication made through the system bus.

Outline. This paper is organised as follows: Section 2 introduces the syntax of La, Section 3
gives the operational semantics, Section 4 presents the type rules, and Section 4 shows properties
of La, and finally Section 6 concludes. Several definitions are given in the appendix.

2 Syntax

Figure 2 presents the syntax of La. A program consists of a set of class declarations representing
actors, passive objects and the main object. The use of the keyword active in a class declaration
indicates that the class represents actors. Passive objects are similar to ordinary Java objects
while actors have all the properties of passive objects, but in addition also have their own
execution thread and may send messages to other actors. As in actor-based languages, messages
are stored in private queues. a more detailed definition can be found in [3].

P ::= Cd∗Main

Cd ::= [active] class C〈p+〉 Fd Md

Main ::= class C〈L+〉 Fd Md

Fd ::= f : T

Md ::= def m(x : T ) : T as b {e}

ot ::= C〈l+〉
T ∈ Type ::= bool | nil | ot

l ::= p | L

e ::= var | val | if e then e else e | e.m(e) | e!m(e)

| e.f | e.f = e | new ot | for i in n1..n2 do e

| let x = e in e | return e

val ::= null | true | false

var ::= x | this

π ::= rd(l, l) | wrt(l, l) | msg(l, l,m)

bop ::= π | {b or b} | Loop(n : b)

b ∈ Behav ::= ε | bop.b | [b, b]

Figure 2: Syntax of classes and (behavioural) types. The boxed constructs are not user syntax.

Each class, active or passive, is annotated with a set of location parameters p1, . . . , pn where
p1 represents the place where the instance of the class is allocated and p2, . . . , pn locations that
can be used in the types of the rest of the class. The location parameters of the main class,
L1, ..., Ln, are abstractions of the concrete nodes, and at runtime will be mapped to concrete
node identifiers.

A class declaration might have field and method declarations. A field declaration consists a
field identifier and its type; a method declaration consists of a method identifier, one parameter
(variable and type), return type, behavioural type and an expression (method body). La has
the types bool, nil, and an ownership type C〈l1, ..., ln〉 which represents objects located in l1 that
may contain references to objects in locations l2, ..., ln. The syntax of expressions is similar to
other OO programming languages; note only the asynchronous method call (message sending),
e!m(e).

The most interesting part of the syntax is our treatment of behavioural types. We have
basic operations, π, which are reading from a remote node (rd(l, l)), writing to a remote node
(wrt(l, l)), and message sending (msg(l, l,m))—this has to be reflected in the behaviour, as it
adds messages to queues in remote memory. For all of them the first location is where the
expression is running and the second is the location where a read/write is made or a message
sent. We also have types to describe conditional expressions, {b or b}, (the two branches in
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the expression imply two branches in the type), and for-loops, Loop(n : b). A behavioural type,
b, may be empty, ε, meaning that there is no “communication” across different nodes, the
sequence of operations, bop.b, and two types in parallel, [b, b], introduced by message sendings.

3 Semantics

We now describe the dynamic semantics of La. Nodes, N , defined in Figure 3, aim to reflect
NUMA nodes. Namely, a node in our formalism has an identifier, a heap with all the data
allocated in it, and several execution threads Ethread. An execution thread belongs to an
actor, and has a stack and an expression being executed. A heap is a mapping from addresses

N ∈ Node = NodeId ×Heap × EThread

T ∈ EThread = Stack × Expr

h ∈ Heap = Addr → Object

σ ∈ Stack = Addr × Frame

ϕ ∈ Frame = var → value

Q ∈ Queue ::= • | ∅ | m(v) :: Q

L ∈ LocsMap = LocId → NodeId

κ ∈ NodeId = N

o ∈ Object = ClassId ×NodeId×
(FieldId → value)×Queue

α ∈ Addr = NodeId×N
v ∈ value = val | Addr | skip | NPE

E[] ::= [·] | [·].m(e) | α.m([·]) | [·]!m(e) | α!m([·])
| [·].f | [·].f = e | let x = [·] in e | α.f = [·]
| if [·] then e1 else e2 | let x = [·] in e | return [·]

l ::= as before | κ

Figure 3: Dynamic Entities. We assume the existence of a map L that maps abstract locations
(declared by the programmer in the main class) to NUMA node identifiers.

to (passive and active) objects. An object consists of a class identifier C, a sequence of node
identifiers representing the actual location parameters, a mapping from filed identifiers to their
values, and a message queue, where the queue of a passive object is •. An address, α, consists
of a node identifier, κ ∈ NodeId , and an offset, n ∈ N.

Expression execution may result in accessing remote memory; therefore we divide the oper-
ational semantics rules as follows:

1. Expressions that do not access memory or send messages. These are defined in appnd A.
2. Expressions that result in accesses to memory. These are defined in Figure 4 and are

further divided in:
(a) The access happens locally—only one node required.

(b) The access happens remotely—two different nodes required.

Figure 4 shows the semantic rules for the point 2. The rules on the left belong to 2(a); they take
a node identifier, its heap, a stack and an expression, and reduce to a new heap, a new stack
and a new expression. They have the form κ, h, σ, e

π→ h′, σ′, e′. The rules on the right belong
to 2(b); they take two node identifiers, their heaps, a stack and an expression, and reduce to

two new heaps, a new stack and a new expression. They have the form κ1, h2, σ, e ‖ κ2, h2
π→

h′1, σ
′, e′ ‖ h′2. In both cases they reduce through an operation described by π—the remote

operation made or empty, ε (in the case of the absence of a remote operation). For instance,
message sending in rule [SMsgL] adds a message to the queue of an actor in the same node as
this, while [SMsgR] adds the message to the queue of an object in a different node. In the first
case π is empty and in the second case it is msg(κ1, κ2,m). In both cases, the stack remains
unchanged and the returned expression is null; namely execution is asynchronous. All the other
rules, except the context rules, on the left show, as expected, reads and writes to the local heap
and on the right present reads and writes to a remote heap.
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[SMsgL]

h′ = h[〈κ.n〉 :: m(v)]

κ, h, σ, 〈κ.n〉!m(v)
ε→ h′, σ, null

[SMsgR]

π = msg(κ1, κ2,m) h′2 = h2[〈κ2.n〉 :: m(v)]

κ1, h1, σ, 〈κ2.n〉!m(v) ‖ κ2, h2
π→ h1, σ, null ‖ h′2

[SFReadL]

κ, h, σ, 〈κ.n〉.f ε→ h, σ, h(κ.n)(f)

[SFReadR]

π = rd(κ1, κ2) v = h2(〈κ2.n〉)(f)

κ1, h1, σ, 〈κ2.n〉.f ‖ κ2, h2
π→ h1, σ, v ‖ h2

[SFWriteL]

κ, h, σ, 〈κ.n〉.f = v
ε→ h[α′, f 7→ v], σ, v

[SFWriteR]

π = wrt(κ1, κ2) h′2 = h2[〈κ2.n〉, f 7→ v]

κ1, h1, σ, 〈κ2.n〉.f = v ‖ κ2, h2
π→ h1, σ, v ‖ h′2

[SNewL]

κ = L(L1) 〈κ.n〉 /∈ dom(h)
h′ = h[〈κ.n〉 7→ initObj(C〈L〉)]
κ, h, σ, new C〈L〉 ε→ h′, σ, 〈κ.n〉

[SNewR]

κ2 = L(L1) 〈κ2.n〉 /∈ dom(h2) π = wrt(κ1, κ2)
h′2 = h2[〈κ2.n〉 7→ initObj(C〈L〉)]

κ1, h1, σ, new C〈L〉 ‖ κ2, h2
π→ h1, σ, 〈κ2.n〉 ‖ h′2

[SContextL]

κ, h, σ, e
π→ h′, σ′, e′

κ, h, σ,E[e]
π→ h′, σ′, E[e′]

[SContextR]

κ1, h1, σ, e ‖ κ2, h2
π→ h′1, σ

′, e′ ‖ h′2
κ1, h1, σ, E[e] ‖ κ2, h2

π→ h′1, σ
′, E[e′] ‖ h′2

Figure 4: Set of semantic rules described in 2. The left rules show the reduction of expressions
that execute locally (a) and the right rules, expressions that interact with remote objects (b).

4 Type Checking

Figure 5 shows the typing rules of La. They have the form Γ ` e . T, b where Γ is a sequence
of typing contexts Γ. A typing context is a mapping from variables and addresses to types:

Γ ∈ TypingContext = (var ∪ Addr)→ Type

The result of each rule is the type T of the expression e and the effect b (the behavioural type)
that describes the behaviour of e, that is, the memory accesses and messages sent to remote
locations. The type T associated to an expression is found in a standard way: similar can be
found in [2], therefore we focus only in the behaviour produced. The rules for variables and
values, [T-Var/Addr], [T-True/False], [T-Skip/Null] result in empty effects, ε, because they do
not represent any communication. The resulting behaviour of the rule [T-Cond] is the behaviour
of the predicate concatenated with a choice type which describes the behaviour of both branches.
The rule [T-For] returns a loop type Loop(n : b), where n is the number of iterations of the loop
and b is the behavioural type of its body. Typing a let expression results in the concatenation of
the behaviour of both expressions. The behaviour of the creation of an object, with [T-NewO],
is a write behaviour, from the location of this to the location of the new object, as new data
is written to memory. The field write is also represented by the write behaviour, given that
it changes data already in memory. The behaviour of the expression e.f = e′ returns the
concatenation of the behaviour of e, the behaviour of e′ and the write from the location of this to
the location of the object changed. Following the same idea, the field read, e.f , is represented
by the read behaviour and therefore its behaviour is the concatenation of the behaviour of e
with a read type from the location of this and to the location of the object read. The typing rule,
[T-Call], describes synchronous method invocation which is only allowed if the receiver is in the
same location as the this object. Its behaviour is the behaviour of the receiver concatenated
with the behaviour of the expression passed as argument and the behavioural type annotated in
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[T-Var/Addr]

Γ.Γ ` var . Γ(var), ε

Γ.Γ ` α . Γ(α), ε

[T-True/False]

Γ ` true . bool, ε
Γ ` false . bool, ε

[T-Skip/Null]

Γ ` skip . nil, ε
Γ ` null . nil, ε

[T-Let]

Γ.Γ ` e1 . T1, b1 x /∈ dom(Γ)

Γ.Γ[x 7→ T1] ` e2 . T2, b2
Γ.Γ ` let x = e1 in e2 . T2, b1 ◦ b2

[T-Cond]

Γ ` e1 . bool, b1 Γ ` e2 . T, b2 Γ ` e3 . T, b3
Γ ` if e1 then e2 else e3 . T, b1 ◦ {b2 or b3}

[T-For]

k > j Γ = Γ
′
.Γ Γ

′
.Γ[i 7→ int] ` e . T, b

Γ ` for i in j..k do e . T, Loop(k − j + 1: b)

[T-Ret]

Γ ` e . T, b
Γ.Γ ` return e . T, b

[T-NewO]

¬ isMain(Γ, this) =⇒ ¬ isActive(C) ot = C〈l1, ..., ln〉 l1 6= ... 6= ln
Γ ` new ot . ot ,wrt(`(Γ), l1)

[T-Call]

Γ ` e1 . C〈l〉, b1 Γ ` e2 . T ′, b2
`(Γ) = l1 M(C,m)[l] = (T, T ′, e3, b3)

Γ ` e1.m(e2) . T, b1 ◦ b2 ◦ b3

[T-Message]

Γ ` e1 . C〈l〉, b1 Γ ` e2 . T ′, b2
`(Γ) = l0 M(C,m)[l] = (nil, T ′, e3, b)

Γ ` e1!m(e2) . nil, b1 ◦ b2 ◦ msg(l0, l1,m).[∅, b]

[T-FRead]

Γ ` e . C〈l〉, b1 F(C, f)[l] = T

Γ ` e.f . T, b1 ◦ rd(`(Γ), l1)

[T-FWrite]

Γ ` e . C〈l〉, b1 F(C, f)[l] = T Γ ` e′ . T, b2
Γ ` e.f = e′ . T, b1 ◦ b2 ◦ wrt(`(Γ), l1)

Figure 5: Typing rules

the body of the invoked method. The typing rule for the message send, [T-Message], is similar.
However, it is possible to send a message to a different location and moreover it introduces
parallelism in our types: the receiving of the message should be executed in parallel with the
continuation of the message sending—the resulting behaviour has the continuation type, which
in in this case is ε, in parallel with the expression to be executed due the message received.

The concatenation function used in the typing rules, ◦, is defined below:

ε ◦ b = b (bop.b1) ◦ b2 = bop.(b1 ◦ b2) [b1, b2] ◦ b3 = [b1 ◦ b3, b2]

5 The global behaviour

We define a global behaviour, Σ, as a sequence of behavioural types
Σ ∈ Behav

The behaviour of a node, N , describes the remote reads, writes and message sends to be
executed by that node; it is obtained from the behaviour of the execution threads and message
queues of all actors in that node (cf. N I b from Def. 4 in App. B).

The global behaviour of a runtime configuration, N , describes the remote reads, writes and
message sends to be executed by all nodes; it is the parallel combination of the behaviours of
each the nodes Ni (cf. N I Σ from Def. 4 in App. B). This context gives a global behaviour,
the reads, writes and sends among different nodes. We implicitly assume a well-formed program
and we state soundness of our typing:

Theorem 1. If N I Σ ∧ N π→ N ′
then ∃Σ′ : N ′

I Σ′ ∧ Σ vπ Σ′

Theorem 1 is a corollary of Lemmas 1 and 2.

Lemma 1. If κ, h, σ, e
π→ h′, σ′, e′ ∧ h, σ ` e . T, b ∧ ¬(σ↓2= ∅ ∧ e = null) then ∃b′ : h′, σ′ `

e′ . T, b′ ∧ b vπ b′
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Lemma 2. If κ1, h1, σ, e ‖ κ2, h2
π→ h′1, σ

′, e′ ‖ h′2 ∧ h1 ∪h2, σ ` e .T, b then ∃b′ : h′1 ∪h′2, σ′ `
e′ . T, b′ ∧ b vπ b′

6 Final Remarks

Related Work. As far as we know there is no integration of behavioural types in the
active/passive object paradigm, however there are already a few programming languages that
use session (behavioural) types in actor-based languages, namely: the integration of session
types in a Featherweight Erlang introduced by Mostrous and Vasconcelos [7]; an implementation
of multiparty session types in an actor library written in Python presented by Neykova and
Yoshida [8]; and the behavioural type system for an actor calulus, proposed by Crafa [5].
To the best of our knowledge there is no formalism that combines behavioural types with
ownership types to describe memory accesses; the closest work that we know uses session types
in a compilation framework for distributed memory chip-level multiprocessing systems and was
presented by Yoshida et al. [10].
Conclusion. This paper presents the fomalisation of a small oject-oriented programming
language that amalgamates behavioural types with ownership types in order to describe remote
memory accesses in NUMA systems. Ownership types play a role in the representation of the
topology and behavioural types in the definition of reads, writes and messages sent to remote
locations. This sequence of memory access operations are annotated in the method declarations
as the ownership/location parameters are annotated in class declarations. This formalisation
is just the first step towards a programming language that optimises performance by moving
objects to nodes where they have a cheaper cost (the cost of interacting with other objects and
of doing remote accesses).
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A Identifier Conventions and Semantics

Identifier conventions.

n ∈ N C ∈ ClassId m ∈ MethId f ∈ FieldId L ∈ LocId p ∈ OwnershipId x, i ∈ varId

Semantic rules for expressions that do not perform remote operations.

[SIfTrue]

κ, h, σ, if true then e1 else e2
ε→ h′, σ, e1

[SIfFalse]

κ, h, σ, if false then e1 else e2
ε→ h′, σ, e2

[SLet]

x fresh inϕ ϕ′ = ϕ[x 7→ v]

κ, h, σ.ϕ, let x = v in e
ε→ h′, σ.ϕ′, e

[SRet]

κ, h, σ.ϕ, return v
ε→ h, σ, v

[SVar]

ϕ(x) = v

κ, h, σ.ϕ, x
ε→ h, σ.ϕ, v

[SFor]

e′ = e[n1/i]; for i in (n1 + 1)..n2 do e

κ, h, σ, for i in n1..n2 do e
ε→ h, σ, e′

[SForSkip]

n2 > n1

κ, h, σ, for i in n1..n2 do e
ε→ h, σ, skip

[SSkip]

κ, h, σ, skip
ε→ h, σ, null

[SCallL]

owners(h, α) = C〈κ〉 ϕ = α · (this 7→ α, x 7→ v)

κ, h, σ, α.m(v)
ε→ h, σ.ϕ, return M(C,m)↓3 [κ]

[SReceiveL]

α↓1= κ h(α) = (C, κ, ,m(v) :: Q) e =M(C,m)[κ]

κ, h, α · ∅, null
ε→ h[α 7→ Q], α · (this 7→ α, x 7→ v), e

[SContextNPE]

κ, h, σ, E[NPE]
ε→ h, σ,NPE

[SNPE]

κ, h, σ, enpe
ε→ h, σ,NPE

where enpe can be null.f, null.f = e, null.m(e), null!m(e), null[i], null[i] = e′

Figure 6: Semantic rules for expressions that do not perform remote operations. Null-pointer
exceptions included.

Global rules. In the same way that an expression may or may not access to the heap
of a different location from where it is running the global semantics need to express if there
is an access to a different node or not. Therefore we have two global rules: [GsExec1] that
shows the reduction of the configuration considering one node and [GsExec2] which describes
the reduction considering two different nodes.

[GsExec1]

κ, h, σ, e
π→ h′, σ′, e′

N , (κ, h, T , 〈σ, e〉) π→ N , (κ, h′, T , 〈σ′, e′〉)
[GsExec2]

κ1, h1, σ1, e1 ‖ κ2, h2
π→ h′1, σ

′
1, e
′
1 ‖ h′2

N , (κ1, h1, T1, 〈σ1, e1〉), (κ2, h2, T2, 〈σ2, e2〉)
π→ N , (κ1, h

′
1, T1, 〈σ′1, e′1〉), (κ2, h

′
2, T2, 〈σ2, e2〉)

Figure 7: Global semantics
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B Auxiliary definitions, shorthands and lookup functions

Definition 1 (Well-formed program and class).

` P ≡ ∀([active] class C〈...〉... ∈ P ) : P ` C P ` C ≡


O(C) = {p1, ..., pn} ∧
∀m :M(C,m) = (T, x : T ′, e, b) ∧
(this 7→ C〈p1, ..., pn〉, x 7→ T ′) ` e . T, b′

=⇒ b = filter(b′)

Given that the effects returned during type checking do not exclude reads and writes hap-
pening in the same node, we apply a function filter(b) in order to exclude such annotations.
The function is define as follows.

filter(ε) = ε filter([b1, b2]) = [filter(b1), filter(b2)]

filter(π.b) = (if source(π) = dest(π) then ε else π). filter(b)

filter({b1 or b2}.b3) = (if filter(b1) = ε ∧ filter(b2) = ε then ε else {filter(b1) or filter(b2)}). filter(b3)

filter(Loop(n : b).b′) = (if filter(b) = ε then ε else Loop(n : filter(b))).filter(b′)

Note that if the expressiosns nested in for-loops or conditional expressions have behaviour ε, then the
the loop or choice types are not annotated.

Definition 2 (Well-formed (1) configuration, (2) node, (3) heap, (4) stack and (5) stack frame).

(1) ` N iff ∀i, j : Ni↓1= Nj↓1 =⇒ i = j ∧ ∀N ′ : N ` N ′

(2) N ` κ, h, (〈σ1, e1〉, ..., 〈σn, en〉) iff

∀α ∈ dom(h) : α↓1= κ ∧ h(α)↓2= κ, ∧ N ` h
∧ ∀i ∈ {1..n} : heaps(N ) ` σi ∧ ∃Ti, bi : h, σi ` ei . Ti, bi

(3) N ` h iff ∀α ∈ dom(h) : heaps(N ) ` α : owners(h, α)

(4) h ` α · ϕ1, ..., ϕn iff ∀i ∈ {1..n} : h ` ϕi
(5) h ` (this 7→ α, x1 7→ v1, . . . , xn 7→ vn) iff {α, v1...vn} ⊆ {true, false, null} ∪ dom(h)

Definition 3 (Value agreement).

[WFTrue]

h ` true : bool

[WFFalse]

h ` false : bool

[WFNull]

T = nil ∨ isValid(T )

h ` null : T

[WFObj]

h(α) = (C, (κ), (fi 7→ vi)i∈I , •)
∀i ∈ I : h ` vi : F(C, fi)[κ]

h ` α : C〈κ〉
[WFAObj]

For I some index set h(α) = (C, (κ), (fi 7→ vi)i∈I ,m1(v1) :: ... :: mn(vn) :: ∅)
∀i ∈ I : h ` vi : F(C, fi)[κ] h, α · (this 7→ α, x 7→ vi) ` vi .M(C,mi)↓2 [κ], b

h ` α : C〈κ〉

Definition 4 (The global behaviour).

(1) N1, . . . ,Nn I b1, . . . , bn iff ∀i ∈ 1..n : Ni I bgi

(2) κ, h, 〈σ1, e1〉, . . . , 〈σn, en〉 I b1, . . . , bn iff ∀i ∈ 1..n : h, σi, ei I bi

(3) h, σ, e I filter(b ◦ b1 ◦ ... ◦ bn) iff ∃T : h, σ ` e . T, b ∧

(h(σ↓1) = (C, κ+, ,m1(v1) :: ... :: mn(vn) :: ∅) ∧ ∀j ∈ 1..n : ∃Ti : h, σ ` M(C, n)[κ+] . Ti, bi)
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Definition 5 (Global behaviour reduction).

Σ vπ Σ′ iff Σ = b1, b, b2 ∧ Σ′ = b
′
1, b
′, b
′
2 ∧ b vπ b′ ∧

(b = [b1, b2] =⇒ b′ = b1 ∧ ∃bj ∈ Σ, b′j ∈ Σ′ : b′j = bj ◦ b2)

Definition 6 (Behaviour reduction).

b1 vπ b2 iff b1 = π.b2

b1 vε b2 iff b1 = b2 ∨ b1 = {b2 or } ∨ b1 = { or b2} ∨
(b1 = Loop(n : b).b′ ∧ b2 = b.Loop(n− 1: b).b′) ∨ b1 = [b2, ]

Lookup functions Considering P , the globally accessible program, and the class declaration
class C〈p+〉{Fd Md} ∈ P :

O(C) = {p+} F(C, f) = T iff f : T ∈ Fd Fs(C) = {Fd}

M(C,m) = (T, T ′, e, b) iff def m(x : T ′) : T in b {e} ∈ Md

F(C, f)[l1, ..., ln] = F(C, f)[l1/p1, . . . , ln/pn] where O(C) = {p1, . . . , pn}

Operations on the heap

h[α 7→ o] = h′ where h′(α) = o ∧ ∀αi ∈ dom(h) \ {α} : h(αi) = h′(αi)

h[α, f 7→ v] = h′ where h′(α) = h(α)[f 7→ v] ∧ ∀αi ∈ dom(h) \ {α} : h(αi) = h′(αi)

h[α :: m(v)] = h′ where h(α) = o ∧ o↓4 6= • ∧ h′ = h[α 7→ (o↓1, o↓2, o↓3,m(v) :: o↓4)]

∧ ∀αi ∈ dom(h) \ {α} : h(αi) = h′(αi)

owners(h, α) = C〈κ〉 where h(α)↓1= C ∧ h(α)↓2= κ

h1 ∪ h2 = h where ∀α ∈ dom(h) : h1(α) = h(α) ∨ h2(α) = h(α)

Operations on objects

o(f) ≡ o↓3 (f)

o[f 7→ v] ≡ (o↓1, o↓2, (f 7→ v, fi 7→ vi), o↓4) where o↓3= f 7→ , fi 7→ vi

initObj(C〈L1, ..., Lm〉) ≡

{
(C, κ1, ..., κm, (fi 7→ init(Ti))i∈1..n, ∅) isActive(C)

(C, κ1, ..., κm, (fi 7→ init(Ti))i∈1..n, •) otherwise

where Fs(C) = {f1 : T1, . . . , fn : Tn} and ∀j ∈ {1..m} : κj = L(Lj)

Operations on types

init(T ) ≡ if T = bool then false else null `(Γ) = l iff Γ = .Γ ∧ Γ(this) = C〈l, 〉

Other definitions

e[C, κ1, . . . , κn] = e[κ1/p1, . . . , κn/pn] where O(C) = {p1, . . . , pn}
heaps(N1, . . . ,Nn) = h1 ∪ · · · ∪ hn iff ∀i ∈ {1..n} : Ni↓2= hi

h, σ ` e . T, b iff buildContext(h, σ) ` e . T, b
typeOf(h, v) ≡ if v = true ∨ v = false then bool else owners(h, v)

buildContext(h, ϕ1) = Γn
. . .

buildContext(h, ϕn) = Γ1

buildContext(h, α · ϕ1 . . . ϕn)

Tthis = typeOf(h, α)
T1 = typeOf(h, v1) . . . Tn = typeOf(h, vn)

Γ = (this 7→ Tthis, x1 7→ T1, . . . , xn 7→ Tn)

buildContext(h, this 7→ α, x1 7→ v1, . . . , xn 7→ vn) = Γ
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C Topology Example

Consider the following code with three class declarations: an active class C, a passive D and the class
Main. An active object, instance of C, has three fields pointing to three objects in different locations of
type D. The class main creates three abstract (or symbolic) locations L1, L2, L3 and the body of the main

method.

act ive class C〈p1 , p2 , p3〉
d1 : D〈p1〉
d2 : D〈p2〉
d3 : D〈p3〉

class D〈p〉

class Main〈L1 , L2 , L3〉
def main ( ) : n i l

as b w r i t e ( L1 , L2 ) . w r i t e ( L1 , L3 ) {
l e t x = new C 〈L1 , L2 , L3〉 in
l e t y = ( x . d1 = new D〈p1〉 ) in
l e t z = ( x . d2 = new D〈p2〉 ) in x . d3 = new D〈p3〉

}

The topology after execution of the main method is depicted in the following figure. In the abstract

Figure 8: The ownership topology after the execution of the expression in the method main.

location L1 there is an instance of class C and an instance of class D. Abstract locations L2 and L3 have
both an instance of class D. Although the programmer define 3 abstract locations, the machine might
have a different number of nodes. For instance, in a system with two different nodes, we could have the
mapping (L1 7→ κ1, L2 7→ κ2, L3 7→ κ2) between abstract locations and node identifiers, which means
that the objects in L1 are in the node κ1, and objects from L2 and L3 are in the same node.

Cache

 

Cache

System Bus

Processor 1 Processor 2

Core  1 Core  2Core  2Core  1

Memory Memory

C<L1, L2, L3>

D<L1> D<L2>

D<L3>

d1

d2
d3

Figure 9: NUMA system with two different nodes
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