
Towards Capability Policy Specification and Verification

Abstract. The object-capability model is a de-facto industry standard widely
adopted for the implementation of security policies for web-based software. Un-
fortunately, code written using capabilities tends to concentrate on the low-level
mechanism rather than the high-level policy, and the parts implementing the pol-
icy are tangled with parts implementing the functionality.
In this paper we argue that the policies intended by programs using object capa-
bilities should be made explicit and written separately from the code implement-
ing them. We also argue that the specification of such capability policies requires
concepts that go beyond the features of current specification languages. More-
over, we argue that we need methodologies with which to prove that programs
adhere to their capability policies as specified.
We sketch such a capability policy specification language, and propose capability
triples, which are a generalisation of Hoare logic triples. Capability triples consist
of conditions, code and conclusions, but interestingly they allow the conditions
as well as the conclusion to talk about the state before and after execution of the
code, they allow the code to be existentially or universally quantified, and their
interpretation quantifies over all modules extending the curent module.
Based on the famous mint example [22], we outline its capability policy specifica-
tions, and demonstrate how we can reason that it satisfies the capability policies.
Interestingly, the reasoning makes use of restrictions imposed by the type system,
such as final and private.

1 Introduction

Capabilities — unforgeable authentication tokens — have been used to provide secu-
rity and task separation on multi-user machines since the 60s [7], e.g. PDP-1, operat-
ing systems e.g. CAL-TSS [16], and the CAP computer and operating system [47]. In
capability-based security resources can only be accessed via capabilities: possessing a
capability gives the right to access the resource represented by that capability.

Object capabilities [24] apply the concept of capability to object-oriented program-
ming languages. In an object capability system, an object is a capability for the services
the object provides: any part of a program that has a reference to an object can always
use all the services of that object. To restrict authority over an object, one can create, in-
stead of “naked” reference, an intermediate object which offers only restricted services
on the original object.

Object capabilities afford simpler and more fine-grained protection than privilege
levels (as in Unix), static types, ad-hoc dynamic security managers (as in Java or JSand
[1]), or state-machine-based event monitoring [2]. On the other hand, object capability
systems are only secure as long as trusted capabilities (that is, trusted objects) are never
leaked to untrusted code. Object capabilities have been adopted in several programming
languages [26, 22, 45] and are increasingly used for the provision of security in web-
programming in industry [27, 46, 39].
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On a different development strand to object capabilities, and with the aim to restrict
access across code, programming languages adopted features like packages and opaque
types, const or fields, private and protected members, or final classes [48, 40].
More advanced features, such as ownership types [6], restrict access to different parts
of the heap. Such features do not introduce new behaviour into the language, but restrict
the set of legal programs, hence we call them here restrictive; they usually are part of
statically typed languages.

The key problem with object capability programming as practiced today is that —
because capabilities are just objects — code manipulating capabilities is tangled to-
gether with code supporting the functional behaviour of the program. The actual se-
curity policies enforced by a program are implicit, scattered throughout the program’s
code. Any part of a program that uses an object may (by oversight, error, or fraud) hand
that object to an untrusted part of the program, giving the untrusted code access to all
the services provided by that object. This makes it difficult to determine what security
properties are guaranteed by a given program, and as a result, programs are difficult to
understand, validate, and maintain.

We argue that capability policies should be specified separately from the program
implementing them. And that the specification of capability policies requires features
that go beyond what is available in current specification languages. Namely, capability
policies are program centred, fine grained, open in the sense that they specify aspects of
the behaviour of all possible extensions of a program, and have deny elements, which
require that certain effects may only take place if the originating code or the runtime
context satisfy some conditions. In [10] the authors anticipated expressing such policies
through extensions of temporal logics.

In this paper we propose that capability policies can be specified through a gen-
eralisation of Hoare triples, which we call capability triples. Capability triples allow
explicit quantification over modules, and over code – and thus reflect the open nature
of capability policies. They also allow premises to talk about properties observed in the
configuration before as well as after execution of the code – and thus they reflect the
deny elements of the policies. Finally, the triples not only talk about properties of the
heap (e.g., the balance of an account), but also about accessibility and tracing properties
(e.g., the current stack frame has a path to object o which involves only public fields)
– thus they reflect the program centred elements of capability policies.

To make the meaning of such policies precise, we define some concepts relating to
program execution, accessibility, reachability and tracing. We give the definition of their
manifestation for a Joe-E/Java subset, but we believe that these concepts have a man-
ifestation in most object-oriented programming languages. We use the Mint example
[22] to illustrate our ideas, and gave precise meaning to five out of the six policies pro-
posed informally in that paper. We were surprised by the many different interpretations
we found for the policies. We then give a semi-formal argument showing that certain
code adheres to the capability policy. In doing so, we make heavy use of restrictive lan-
guage features; this was surprising for us, since in traditional program verification, but
also in verification of refinement properties, restrictive features have played no role.

The rest of the paper is organised as follows: Sect. 2 presents the Mint [22] as
an example of object-capability programming, implemented in Joe-E/Java. Based on



3

that example, sect. 3 distills the characteristics of capability policies. Sect 5 informally
explores reasoning about capability policies, and the use restrictive language features.
Sect. 6 discusses further useful policies, not listed in [22]. Section 7 surveys related
work. Sect. 8 concludes.

2 Object-Capability Example

We use as running example a system for electronic money as proposed in [26]. This
example allows for mints with electronic money, purses held within mints, and transfers
of funds between purses. The currency of a mint is the sum of the balances of all purses
created by that mint. Purses trust the mint to which they belong, and programs using
the money system trust their purses (and thus the mint). Crucially, separate users of the
money system do not trust each other.

The standard presentation of the mint example defines six capability policies, which
we repeat here, as they were described in [26]:

Pol 1 With two purses of the same mint, one can transfer money between them.
Pol 2 Only someone with the mint of a given currency can violate conservation of that

currency.
Pol 3 The mint can only inflate its own currency.
Pol 4 No one can affect the balance of a purse they don’t have.
Pol 5 Balances are always non-negative integers.
Pol 6 A reported successful deposit can be trusted as much as one trusts the purse one

is depositing into.

An immediate consequence of these policies is that the mint capability gives its
holder the ability to subvert the currency system by “printing money”. This means that
while purse capabilities may safely be passed around the system, the mint capability
must be carefully protected.

There is also an implicit assumption that no purses are destroyed. This assumption
is necessary because destruction of a purse would decrease the currency of a mint, in
opposition to Pol 3. The implication of this assumption is that there will be no explicit
destruction of purses, but also no garbage collection of purses.

Several different implementations have been proposed for the mint. Fig.2 contains
an implementation in Joe-E [22], a capability-oriented subset of Java, which restricts
static variables and reflection.

In the Joe-E version, the policies are adhered to through the interplay of appropriate
actions in the method bodies (e.g. the check in line 17), with the use of Java’s restrictive
language features (private members are visible to the same class only; final fields
cannot be changed after initialisation; and final classes cannot be extended). The code
concerned with the functional behaviour is tangled with the code implementing the
policy (e.g. in deposit, line 19 is concerned with the functionality, while line 17 is
concerned with Pol 2). The implementation of one policy is scattered throughout the
code, and may use explicit runtime tests, as well as restrictive elements (e.g. Pol 2 is
implemented through a check in line 17, the private and final annotations, and the
initialisations in lines 9 and 13). Note that an apparently innocuous change to this code
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1 public final class Mint { } // the Mint capability
2

3 public final class Purse {
4 private final Mint mint;
5 private long balance;
6

7 public Purse(Mint mint, long balance) {
8 if (balance<0){throw new IllegalArgtException();};
9 this.mint = mint; this.balance = balance;

10 }
11

12 public Purse(Purse pts) {
13 mint = pts.mint; balance = 0;
14 }
15

16 public void deposit(Purse prs, long amnt) {
17 if ( mint!=prs.mint || amnt>prs.balance || amnt+balance

<0 )
18 { throw new IllegalArgtException(); };
19 prs.balance -= amnt; balance += amnt; }
20 }
21 }

— such as a public getMint accessor that returned a purse’s mint — would be enough
to leak the mint to untrusted code, destroying the security of the whole system.

Both the Joe-E and the E versions suffer from tangling of policy with functionality,
and scattering of policy implementations [10].

3 Capability Policies

We use the term capability policy as a description of how capabilities are intended to be
used: which objects are trusted, which are untrusted, and precisely which capabilities
can be accessed by which object. A key feature of capability systems is the principle
of least authority — an object should only be able to access the capabilities (i.e. the
other objects) that it needs in order to function correctly: even a trusted object should
not have access to all the capabilities (objects) in the system [37, 29, 47]. A range of
object capability policies are discernible from the literature [24, 26, 25].

Capability policies generally have the following characteristics:

– They are program centred: they talk about properties of uses of programs rather
than properties of execution of protocols.

– They are fine-grained: they can talk about individual objects, while coarse-grained
policies only talk about large components such as System or DOM.
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– They are open. Open requirements must be satisfied for any use of the code ex-
tended in any possible manner, while closed requirements need only be satisfied
for any use of code itself.

– They have rely as well as deny elements. Rely elements essentially promise that
execution of a given code tin a state satisfying a given pre-condition will reach
another state which satisfies some post-condition [13]. Deny elements promise that
if an execution reaches a certain state, or changes state in a certain way, or accesses
some program entity, then the code must satisfy some given properties.
In other words, rely policies are about sufficient conditions, while deny policies are
about necessary conditions.

None of the terms above are standard; we coined them to delineate our ideas. The
mint’s policies are capability policies; namely::

– They are program centred, since they referto actual programs.
– They are fine grained, as they refer to the individual purses and mints;
– Even though not explicitly stated there, the policy in [26] is expected to be open;

any expansion of the code (through dynamic loading, subclassing, mashups e.t.c.)
should satisfy the requirements.

– They contain rely as well as deny elements:

• Pol 1 is a rely requirement, expressible through classic pre- and post- condi-
tions: namely, execution of deposit in a state satisfying the pre-condition that
the where the two purses belong to the same mint leads to a state satisfying the
post-condition that where the money has been transferred.

• Pol 2 is a deny requirement; it says that a currency may be changed by some
code only if the code contained a function call executed by the mint owning the
currency. Pol 3 is another deny requirement; it says that if the currency should
change, then it increases. Pol 4 is also a deny requirement, preventing objects
that cannot access a purse from modifying its value.

• Pol 5 can be understood as an object invariant, requiring purses’ balances to
always be positive, but also as a deny requirement which requires that any code
preserves this property.

Open policies are central for JavaScript security, which requires that in any mashup,
untrusted code cannot access the trusted security-critical resources of the execution
environment (e.g. the DOM), nor interfere with the execution of any other compo-
nent [19, 15]. These works usually implement coarse-grained, fixed-in-advance poli-
cies. SecureJS [44] leverages local scoping (a restrictive feature) to prove fine-grained
confinement (e.g. decr is confined), but cannot express the high-level policies (e.g. currency
cannot be affected). JSand [1] uses Secure ECMAScript and proxies (other restrictive
features) to isolate the DOM, and then ensures access to that DOM proxy are mediated
by dynamically checking security policies expressed as JavaScript predicates.

Deny policies are related to deny-guarantee specifications [9] which can forbid
given locations from being modified by the current, or the other threads. Deny policies
typically apply throughout program execution, rather than during specific functions, and
refer to any properties of the program (e.g. the currency), rather than specific locations.
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Deny policies are also related to correspondence assertions [49, 12], which require
principals reaching a certain point in a protocol to be preceded by other principals reach-
ing corresponding points. Recently, correspondence assertions have been adapted to re-
fer to program state, and thus can prove that the code adheres to security, authentication,
and privacy policies [3]: functions are annotated by refinement types that require that
the function is only called if its arguments satisfy the type’s conditions.

Deny policies go further than correspondence assertions in the following significant
ways:

– They support implicit properties, i.e. properties that depend on state reachable from
more than one object, perhaps quantifying over the complete heap, or even on the
history of execution. In our example, the currency is the sum of the balance of all
purses from the same mint, and therefore is an implicit property.

– They are pervasive, i.e. they are not attached to one function, and may be affected
by several different methods. For example, the currency may be affected by the
creation of purses and the payments.

– They are persistent, i.e. they allow the comparison of properties of the state at dif-
ferent times in execution. For example, Pol 3 compares the currency between any
two times in execution.

Deny policies could be transformed into equivalent refinement types; however, the
transformation would not be trivial, and the resulting policies would not be open (be-
cause the refinement types cannot prevent the addition of functions which break the
requirements), and less abstract (how would refinement types express that the currency
can only grow?).

4 Towards Capability Policy Specification Languages

In this section we sketch a capability policy specification language. Our specification
language is a generalisation of Hoare triples. We allow quantification over any code,
and the extension of modules by any further modules — thus we deal with the open
nature of policies. Moreover, in the precondition we allow the comparison of the state
before and after execution — thus we deal with the deny part of policies, and can specify
necessary, instead of sufficient, conditions.

We start by introducing the concepts necessary to give precise meaning to policies
(sect 4.1), then use these to describe the meaning of the policies (sect 4.2), and then
outline a capability policy specification language.

4.1 Concepts for Capability Policy Specifications

Capability policies should be expressible regardless of the particular program imple-
menting them and the particular programming language the program was written in,
provided that they (the policies) are expressed in terms of concepts which have their
own individual manifestation in the particular programming language. For example,
the concept of runtime configuration is manifest in programming languages as diverse
as Cobol, Java, or Python, even though its manifestation differs.
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In this section we introduce concepts used to define the meaning of policies. We
describe their manifestation in a “capability-safe” Java-subset, which we call Lngcj.
We give a precise definition of Lngcj and all concepts in appendix A, while here we
bring out the most salient issues.

Modules and Linking In order to reflect the open nature of capability policies, we
need a handle on programs, and on the extension of programs (through subclasses,
mashups, imports etc). For this we use modules, M , to describe parts of programs, and
∗ to describe the combination of two programs into one larger program.

A module is essentially a collection of definitions. In ML, modules could be struc-
tures and functors, in Java they could be class definitions and packages. In Lngcj, mod-
ules are class declarations (c.f. App. A.1). Thus, the class definitions MMint and MPurse

from Fig. 1 are modules.
Remember that adherence to policies often relies on the correct use of restrictive

features. Therefore, in Lngcjwe support annotations like private and final, and the type
rules forbid access to private fields or methods outside their classes, forbid extensions
of final classes and redefinition of method declared as final in the superclass, and forbid
assignment to final fields outside their contractor (c.f. App. A.2).

The operator ∗ is a linking operation. In general, linking performs some compat-
ibility checks, and therefore is only partially defined. For example, because the field
balance is private, MPurse ∗M ′ would be undefined, if M ′ contained somewhere the
expression newPurse( , ).balance. In App. A.3 the operation ∗ is only defined if it
gives rise to a well-formed module.

Modules are not directly executable, but are necessary for the execution of code
snippets. In Lngcjcode snippets are expressions, c.f. App. A.1. We use variables code,
code′ to range over code snippets.

Runtime Execution Context and Expression Evaluation Execution contexts, ctxt, stand
for runtime contexts in which code snippets are executed. In the case of Java, a context is
a stack frame (i.e. a mapping from variable names to object addresses or scalar values),
and a heap (i.e. a mapping from object addresses to objects), c.f. App. A.4.

Execution of a code snippet code for a module M takes a context ctxt and returns
a value v and a new context ctxt′. We describe this through a large step semantics, of
the shape M, ctxt, code ; ctxt′, v′. We define this relation for Lngcj in App. A.4.

Arising Runtime Configurations When considering adherence to policies, we it is es-
sential to examine only those runtime configurations (i.e., context and code pairs) which
may arise through the execution of the given modules. For example, if we allowed any
well-formed configuration (well-formed in the sense of the type system) to be exam-
ined, then we would be unable to ascertain that Pol 5, which guarantees that balances
are always positive, is adhered to.

Thus, Arising(M) is the set of runtime configurations which may occur during ex-
ecution of some initial configuration (ctxt0,expr0). These concepts are defined in App.
A.6; the sets are always defined, even if M, ctxt0, expr0 does not terminate.
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Objects Accessible from a Context; Objects used during execution Object capabilities
draw on the requirement that some heap entities might not be accessible from all the
stack frames. For example, a context containing and having access to a purse object
prs, will also contain the mint object mnt which created that purse, but it need not have
access to that mnt object, since the field mint is private in Purse.

We therefore distinguish between the sets AccAll(M, ctxt) resp. AccPub(M, ctxt)
which return the set of objects which are accessible from the frame in ctxt through any
path resp. through paths which do not visit private fields, unless they belong to objects
of the same class as this. The definitions appear in App. A.8 and A.8.

We use the notation z :ctxt c to indicate that z is the name of an object which exists
in the heap of ctxt and belongs to class c - no requirement that there should be a path
from the frame to this object. The notation z, z′ :ctxt c stands for z :ctxt c ∧ z′ :ctxt c.
Finally, we define Used(M, ctxt, code), as the set of all addresses used during execution
of code in the context ctxt - for full definitions c.f. App. A.7.

4.2 Giving precise meaning to the policies

Armed with the concepts from section 4.1, we turn our attention to the precise meaning
of the six policies. An important aspect of our approach is that we quantify over mod-
ules, extensions to modules, over the code being executed, and over execution contexts.

We discuss the policies in order of increasing complexity of their specification. We
were surprised how many different interpretations we uncovered while developing this
part of the work.

The fifth policy Pol 5, “Balances are always non-negative integers”, is akin to object
invariants [23, 31, 42]. We can express the policy directly, by requiring that a mod-
ule M satisfies Pol 5, if for all M ′ legal extensions of M , and runtime configurations
(ctxt, expr) arising through execution of the augmented program M ∗M ′, the config-
uration (ctxt, expr) will produce a context ctxt′, in which the balance is positive.

Module M satisfies policy Pol 5
iff

∀M ′. ∀(code, ctxt) ∈ Arising(M ∗M ′), and prs :ctxt Purse:
M ∗M ′, ctxt, code ; ctxt′, v ⇒ prs.balancectxt′ ≥ 0

The subscripts in the path expression prs.balance indicate whether the path is
looked up in the old, or the new context (prs.balancectxt vs prs.balancectxt′ ).

Execution uses the extended module M ∗M ′, where M ′ is universally quantified.
This reflects the open nature of capability policies. It is essential to allow M ∗M ′ in
the execution, because this supports calling methods and accessing fields defined in M
but also in M ′.

We implicitly assume that quantification over linked modules only quantifies over
those where the ∗ operator is defined. Thus,
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∀M ′.∀(ctxt, code) ∈ Arising(M ∗M ′)
implicitly stands for

∀M ′s.t.M ∗M ′is defined,∀code, ctxt, s.t.(ctxt, code) ∈ Arising(M ∗M ′).

The third policy Pol 3, stating “The mint can only inflate its own currency”, could mean
that the currency of a mint never decreases, or that the mint cannot affect the currency
of a different mint. As the second meaning is a corollary of Pol 2, we consider the first
meaning only.

We first define the currency of a mint, which is an implicit assertion in the sense
from section 3, as it quantifies over all objects of the heap:

Currencyctxt(mnt) =
∑

p∈Ps(mnt)ctx
p.balancectxt

where Ps(mnt)ctxt = {p | p :ctxt Purse ∧ p.mintctxt = mntctxt}

We can now express the policy.

Module M satisfies policy Pol 3
iff

∀M ′. ∀(ctxt, code) ∈ Arising(M ∗M ′), and mnt:ctxtMint
M ∗M ′, ctxt, code ; ctxt′, v

⇒
Currency(mnt)ctxt ≤ Currency(mnt)ctxt′

Pol 3 describes a monotonic property, and is therefore related to history invariants [17].
However, it differs from history invariants through its open nature, and hence the quan-
tification over M ′. Note that in the conclusion we talk about the values of functions
in the old context (i.e. Currency(mnt)ctxt) as well as those in the new context (i.e.
Currency(mnt)ctxt′ ).

The first policy. Pol 1 states“With two purses of the same mint, one can transfer money
between them”. It can be understood to mean that if p1 and p2 are purses of the same
mint, then the method call p1.deposit(p2, m) will transfer the money. Therefore, it can
specified through a Hoare Logic triple as follows:

{ p1.mint = p2.mint ∧ p1.amount = k1 ∧ p2.amount = k2+ m }
p1.deposit(p2, m)

{ p1.amount = k1+ m ∧ p2.amount = k2 }

Using a similar notation to that we used so far, we can write Pol 1 as:

Module M satisfies policy Pol 1
iff
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∀M ′. ∀ (ctxt, p1.deposit(p2, m)) ∈ Arising(M ∗M ′), with p1,p2:ctxt Purse:
p1.mint ctxt=p2.mintctxt ∧ p2.balancectxt ≥ m

∧M ∗M ′, ctxt, p1.deposit(p2) ; ctxt′, v
⇒

p1.balancectxt′= p1.balancectxt+m ∧ p2.balancectxt′ = p2.balancectxt−m.

The above specification ranges over all module extensions,M ′, and thus covers a larger
set of runtime configurations than if it was expressed without the quantification over
M ′. Therefore it guarantees that the code M ′ can do nothing to break the behaviour of
the deposit method fromM , thus forcing the method deposit to be final, or a system
with contracts which ensures any subclasses will satisfy the same contract.

The above is perhaps an over-specification, as it prescribes how the transfer is to
take place by explicitly calling the p1.deposit(p2) method. Instead, we may want to
only requiring that it should be possible for the transfer to take place, without discussing
features of the program design. Therefore, we define a second, more general version of
the policy, which only requires the existence of some code snippet that performs the
transaction, and which applies existential qualification over the code:

Module M satisfies policy Pol 1, vrs2
iff

∀(ctxt, ) ∈ Arising(M). ∀ p1, p2 :ctxt Purse.
p1.mint ctxt=p2.mintctxt ∧ p2.balance ≥ m ∧ p1, p2 ∈ AccPub(M, ctxt)

⇒
∃ code, such that M, ctxt, code ; ctxt′, v ∧

p1.balancectxt′= p1.balancectxt+m ∧ p2.balancectxt′ = p2.balancectxt−m.

In the above specification, the existentially quantified code only appears in the conclu-
sion of the specification. This gives the correct, existentially quantified meaning to the
selection of code. We require that the two purses are accessible in ctxt without read-
ing private fields (AccPub(M, ctxt)). The specification does not range over extending
modules, because the specification as given here implies the one quantifying over mod-
ule extensions M ′ – proof is further work.

Another possible meaning of Pol 1, however, is that the function deposit may only
be called if the two objects had the same mint:

Module M satisfies policy Pol 1, vrs3
iff

∀M ′, ctxt, (ctxt, p1.deposit(p2))∈Arising(M ∗M ′). ∀ p1, p2 :ctxt Purse.
M ∗M ′, ctxt, p1.deposit(p2, m) ; ctxt′, v
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⇒
p1.mintctxt = p2.mintctxt

Note that in the above specification the conclusion is only concerned with properties
observable in the original context, ctxt, while he premise is concerned with properties
observable in ctxt as well as ctxt′. This reflects the deny nature of the policy.

A fourth possible meaning of Pol 1 would be that a money transfer from p1 to p2

may take place only if p1 and p2 share the mint. This poses the challenge of identifying
the cause of any difference in the balance; we therefore leave it for further work.

Finally, a fifth, and more straightforward meaning would mandate that the balance
of a purse p1 may change, only if deposit was executed on p1 or with p1 as an
argument. This can be expressed as follows:

Module M satisfies policy Pol 1, vrs5
iff

∀M ′.∀(ctxt, code) ∈ Arising(M ∗M ′). ∀p1 :ctxt Purse.
M ∗M ′, ctxt, code ; ctxt′, v ∧ p1.balancectxt 6= p1.balancectxt′

⇒
∃ctxt′, s.t. (ctxt′, p1.deposit( , )) ∈ Reach(M ∗M ′, ctxt, code) or

(ctxt′, .deposit(p1, )) ∈ Reach(M ∗M ′, ctxt, code)

The assertion (ctxt′, p1.deposit( , )) ∈ Reach(M ∗M ′, ctxt, code) expresses that
execution of the configuration (ctxt, code) will reach a point where it calls the method
deposit on the receiver p1 – c.f. App. A.5.

The fourth policy Pol 4, “No one can affect the balance of a purse they don’t have”,
says that if some runtime configuration affects the balance of some purse prs, then the
original runtime configuration must have had access to the prs itself.

Module M satisfies policy Pol 4
iff

∀M ′, (ctxt, code) ∈ Arising(M ∗M ′). ∀prs :ctxt Purse:
M ∗M ′, ctxt ; ctxt′, v ∧ prs.balancectxt 6= prs.balancectxt′

⇒
HasAccess(M ∗M ′, ctxt, code, prs)

Note that we have not yet specified the meaning of HasAccess(M∗M ′, ctxt, code, prs).
We will discuss the possible meanings for this together with the second policy:
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The second policy. Pol 2, stating “Only someone with the mint of a given currency
can violate conservation of that currency.”, is along the pattern of Pol 4, in that it man-
dates that certain changes of state (here change in currency) may only happen if the
originating context had some property (here access to the mint).

Module M satisfies policy Pol 2
iff

∀M ′, (ctxt, code) ∈ Arising(M ∗M ′). ∀mnt :ctxt Mint:
M ∗M ′, ctxt, code ; ctxt′, v ∧ Currencyctxt(mnt) 6= Currencyctxt′(mnt)

⇒
HasAccess(M ∗M ′, ctxt, code, mnt)

We now need to fix the meaning ofHasAccess(M ∗M ′, ctxt, code, mnt). We have the
following three candidates:

1. mnt ∈ AccAll(M, cxtx), i.e. that ctxt has a path from the stack frame to mnt

which involves any fields.
2. mnt ∈ Uses(M, cxtx, code), i.e. that execution of code in the context of ctxt will

at some point use the object mnt.
3. mnt ∈ AccPub(cxtx, code), i.e. that ctxt has a path from the stack frame to mnt

which involves only public fields, or private fields from the same class as the current
recover.

Given lemma 1 from App. A.8, the choices 2) and 3) give stronger guarantees, and
are therefore to be preferred.

The module MPurse ∗MMint satisfies Pol 2 with meaning 2) – and therefore also
with meaning 1), by application of lemma 1. A proof sketch for why MPurse ∗MMint

satisfies Pol 2 with meaning 2) appears in section 5.
Interestingly, MPurse ∗MMint does not satisfy Pol 2 with meaning 3). More im-

portantly, without the concept of package and package-local classes, or some con-
cept of ownership, it is impossible to write an implementation for Purse so that it
satisfies Pol 2 with meaning 3). Namely, we can always write another class Cheat

with a private field myMint of class Mint, and which leaks this field through a public
method leak. Then, in a context where x points to a Cheat object, the code snippet
new Purse(x.leak(), 300), affects the currency of x.myMint, even though the initial
context did not have public access to x.myMint. More discussion in section 6.3.

The sixth policy – “A reported successful deposit can be trusted as much as one trusts
the purse one is depositing into” – relates to trust, a question left to further work.

4.3 Capability Policy Specification Triples

The meanings of policies given in the previous section vary, but they share common
characteristics:
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– They have the form that execution of some code under some conditions, guarantees
some conclusion (except for Pol 2,vrs2).

– Conditions may refer to properties of the state before as well as after execution.
– The code may be universally or existentially quantified, or explicitly given.
– Conclusions may refer to properties of the state before as well as after execution.

We propose policy triples, consisting of three components. The first and third com-
ponent stand for the conditions and conclusions mentioned above, and they describe
properties of the context before as well as after the execution. In order to distinguish
between the latter two, we use the subscripts OLD and NEW. The second component may
fully specify some code, or quantify over all possible codes ANY, or just require that
some code exists SOME.

In the syntax from below, PL Code stands for programming panguage code, Func
stands for user-defined functions (such as Currency) as well as system defined func-
tions (such as AccAll or Used), and Pred stands for user or system-defined predicates
(such as ∈ or ≥).

Policy ::= PolicyTriple∗
PolicyTriple ::= < Cond ,Code,Cond >
Cond ::= Pred(Entity∗) | Cond ∧ Cond | Cond ∨ Cond
Entity ::= ArgAnnot | Func( Arg∗)Annot

Annot ::= OLD | NEW
Arg ::= Path | Value
Code ::= ANY | SOME | PL Code

In figure 2 we express some of the policies through policy triples. Requirements
such as mnt : OLDMint are left implicit, as they follow from the use of the identifiers,
e.g. from Currency(mnt)OLD.

Our triples are a generalisation of Hoare logics. Namely,

– The assumptions and the conclusions may refer to properties of the runtime context
before as well as after execution, while in Hoare triples the assumptions may only
refer to properties of the context before execution of the code.

– The second component may specify the code exactly (as is Hoare triples), or through
existential or universal quantification.

– The properties under consideration may contain accessibility or tracing properties.
– The interpretation of the policy triples is always open, i.e. there is an implicit quan-

tification over modules M ′ extending the module M expected to satisfy the policy.

A module M satisfies a triple < Cond1 ,Cd1 ,Cond2 > iff for all M ′, execution
of Cd1 with code M ∗M ′ in a context ctxt leading to ctxt′, then if Cond1 holds on
ctxt and ctxt′, then Cond2 holds on ctxt and ctxt′. In further work we will define a
mapping from such triples to their interpretation.

5 Towards Reasoning about Capability Policies

The main challenges in reasoning about programs’ adherence to capability policies are
the deny elements of policies, and the combination of rely and deny steps. We have no
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Pol 1,vrs2 ≡ ( p1.mintOLD = p2.mintOLD ∧ p2.balanceOLD ≥ m,
SOME,
p1.balanceNEW = p1.balanceOLD+m ∧
p2.balanceNEW = p2.balanceOLD+m )

Pol 2 ≡ ( Currency( mnt)OLD 6= Currency( mnt)NEW,
ANY,
mntOLD ∈ Used )

Pol 3 ≡ ( true,
ANY,
Currency(mnt)OLD ≤ Currency(mnt)NEW )

Pol 4 ≡ ( prs.balanceOLD 6= prs.balanceNEW,
ANY,
prsOLD ∈ Used )

Pol 5 ≡ ( true,
ANY,
prs.balanceNEW ≥ 0 )

Fig. 1. Some of the five policies expressed through policy triples

full logics yet, but have initial ideas, which we discuss in terms of our example. We
consider briefly the code from Fig.1, and sketch the proof for Pol 1, and Pol 2. The
use of restrictive elements is crucial in reasoning about the Joe-E code. The arguments
have an flavour of abduction, in that we argue that if something were to happen, then
the code or the context in which it happened needs to have a certain property.

Verification sketch of Pol 1 in Joe-E/Java The treatment of Pol 1 requires nothing more
than standard Hoare Logic: if prs1 and prs2 share mints, then a call of

prs1.deposit(prs2, amt)
transfers amt from prs2 to prs1 (for appropriate amounts and balances). This can be
established by using the usual extension of Hoare Logics to reason about object oriented
programs [30, 38]. The treatment of Pol 1, vrs2 then follows directly, by replacing the
existentially quantified code by prs1.deposit(prs2, amt).

Verification sketch of Pol 2 in Joe-E/Java In contrast, Pol 2 requires a novel kind of
reasoning, which involves the calculation of necessary, rather then sufficient conditions
for certain effects to happen. Verification of Pol 2 can be done through the following
steps, annotated by (S1), ... (S11) below:

Assume that Currency(mnt)ctx 6= Currency(mnt)ctxt′ . (S1): Then, by the defini-
tion of Currency, either Ps(mnt)ctxt 6= Ps(mnt)ctxt′ , or there exists some prs∈
Ps(mnt)ctxt, such that prs.balancectxt 6=prs.balancectxt′ .

1st Case: Ps(mnt)ctxt 6= Ps(mnt)ctxt′ . (S2): Then, either ∃ prs∈ Ps(mnt)ctxt \
Ps(mnt)ctxt′ , or ∃ prs∈ Ps(mnt)ctxt′ \ Ps(mnt)ctxt
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1.1st Case: ∃ prs∈ Ps(mnt)ctxt \ Ps(mnt)ctxt′ . (S3): Then, because there is no
garbage collection, prs.mintctxt 6=prs.mintctxt′ . (S4): However, this is im-
possible because the field mint is final.

1.2nd Case: ∃ prs∈ Ps(mnt)ctxt′ \Ps(mnt)ctxt. (S5): If prs was defined in ctxt
then prs.mintctxt 6=prs.mintctxt′ , which is impossible as in the first case.
(S6): If prs was undefined in ctxt′, then it must have been created through
calling one of the two Purse constructors. (S7) The constructor Purse(Purse)
does not affect the currency of the mint. (S8) The constructor Purse(Mint, balance)
does effect the currency of the mint, but does require access to the mint object,
i.e. “uses” it.

2nd Case: Ps(mnt)ctxt = Ps(mnt)ctxt′ , and ∃ prs∈ Ps(mnt)ctxt, such that
prs.balancectxt 6=prs.balancectxt′ . (S9): Since the class Purse is final, and the
fuel balance is private, the only way to modify this fields is through method in
Purse. (S10): The only method that changes a Purse’s balance is deposit. (S11)
However, the method deposit leaves the currency of a Mint constant.

In summary, the argument requires eleven steps (S1)-(S11). Of these steps, three are
about normal bookkeeping and set theoretic manipulations (S1,S2,S5), four are using
restrictive features (S2, S3, S4,S9), one analyses the structure if the code (S6), and three
analyse the semantics of the method bodies (S7,S8,S11).

6 Discussion

In formalising the Mint capability policies, we came across a number of other potential
policies that were not captured explicitly in the original six policies.

6.1 Fresh Mints & Purses

Pol 7A Only fresh mint objects are returned from mints and purses.
Pol 7B Only fresh purse objects are returned from mints and purses.

By a “fresh” object, we mean a newly allocated object that has not previous been
returned out of the mint-and-purse system. These policies are trivially satisfied by the
code in Fig. 2: the construct that returns mints is the default constructor of the Mint

class, and by the semantics of Java, this will always return a new object. Similarly, the
only two methods that return a purse object are the two constructors of the Purse class.

Although not explicit, these polices seem to be required implicitly for the other
policies to be useful to clients of the Mint system. Consider Pol 2: “Only someone with
the mint of a given currency can violate conservation of that currency” and Pol 4: “No
one can affect the balance of a purse they don’t have.” These policies talk about having
a mint or a purse, but don’t say anything about how that mint or purse was obtained.
These policies only make sense if the mint and purse capabilities are strictly controlled.
The underlying assumption is that a capability effectively belongs to whichever client
first requested it, and that only this client can distribute the capability further. Pol 7A
and Pol 7B make this ownership assumption explicit.
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These “fresh obejct” policies may appear trivial because of the simplicity and rela-
tively small size of the mint and purse system. But even a small change to the implemen-
tation of the system can break these policies. For example, adding a public getMint

accessor that returns a purses’s mint (useful, perhaps, for clients with purses from mul-
tiple mints) would break policy Pol 7B and destroy the integrity of the whole system.

6.2 Subsidiary Capabilities

The simplicity of the Mint example code obscures the need for an additional policy:

Pol 8 Objects implementing Purses and Mints must never be exposed to clients.

Consider an alternative implementation of Purses, where the Mint contained a map from
every Purse to its balance. This design is in some sense the complement of Fig. 2: where
that design has a Mint class that is a pure capability (“class Mint(){ }”, with no
state or behaviour), here the Purse objects would be pure capabilites and the state (the
map from purses to their balances) and behaviour (the deposit method) would be
within the Mint class. The risk this offers is that the original six policies do not mention
the internal map object (neither do 7A & B) so an accessor that returned that map would
not breach any policy, even though a client with the map capability could do essentially
anything to a mint and all its purses. The issue here is another assumption: that there no
subsidiary objects in the implementation. Policies such as Pol 8 ensure that the system
will remain secure even if the implementation is changed to require subsidiary objects.

6.3 Supersidiary Capabilities

The third issue we consider relates to supersidiary capabilties, that is, when a Mint or
a Purse is combined into a larger structre. In a crucial sense, the Fig. 2 design already
involves supersidiary capabilities: each Purse holds the capability to its mint.

The problem this rasies can be see with respect to Pol 2: “Only someone with the
mint of a given currency can violate conservation of that currency”. Purses have mints.
So it follows that purses may violate currency conservation. We can guard against this
specific aspect with a final policy:

Pol 9 Purses objects must not manipulate their mint capabilities to inflate the currency.

but we can only know we have to write this policy because the purse objecst are ef-
fectively subsidiary to the module containing all the declarations in the system. The
difficulty is much harder to address when a mint, say is part of some supersidiary sys-
tem — a Country object perhaps:

1 class Country {
2 private final Mint myMint = new Mint();
3 private final Purse myTreasury = new Purse();
4 public void inflate() {
5 Purse tmpPurse = new Purse(myMint,1000000000)
6 myTreasury.deposit(tmpPurse,1000000000)
7 }
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A Country has a mint, and its treasury (a purse belonging to that mint). The
inflate method creates a new temporary purse containing a billion dollars from thin
air, and then deposits that into the treasury — Perhpas this method should have been
called quantitativeEasing. Now consider a supersidiary client of a Country object
— the finance minister say. The finance minister does not have a reference to the mint
(presumably there is an independent central bank) so by Pol 2 she should not be able to
inflate the currency. If, however, the finance minister calls myCountry.inflate then
the currency will be inflated all the same. (This is the complementary situation to the
Purse holding the mint capability and not inflating; here the finance minister doesn’t
hold the mint capability but does inflate). Formally, these distinctions seem to depend
upon the precise semantics of HasAccess (see section 4.2). Elucidating these depen-
dencies in detail we leave to future work.

7 Related Work

Object-capabilities were first introduced [24] seven years ago, and many recent studies
manage or verify safety or correctness of object-capability programs.

Google’s Caja [27] applies sandboxes, proxies, and wrappers to limit components’
access to ambient capabilities. Sandboxing has been validated formally: Maffeis et al.
[19] develop a model of Javascript, demonstrate that it obeys two principles of object-
capability systems and show how untrusted applications can be prevented from inter-
fering with the rest of the system. Alternatively, Taly et al. [44] model JavaScript APIs
in Datalog, and then carry out a Datlog search for an “attacker” from the set of all valid
API calls. This search is similar to the quantification over potential code snippets in
our model. Murray and Lowe [28] model object-capability programs in CSP, and use a
model checker to ensure program executions do not leak information.

Karim et al. apply static analysis on Mozilla’s JavaScript Jetpack extension frame-
work [15], including pointer analyses. Bhargavan et al. x[4] extend language-based
sandboxing techniques to support “defensive” components that can execute success-
fully in otherwise untrusted environments. Meredith et al. [21] encode policies as types
in higher order reflective π-calculus.. Politz et al. [33] use a JavaScript typechecker to
check properties such as “multiple widgets on the same page cannot communicate.”
— somewhat similar in spirit to our Pol 4. Lerner et al. extend this system to ensure
browser extensions observe “private mode” browsing conventions, such as that “no
private browsing history retained” [18]. Dimoulas et al. [8] generalise the language
and typeckecher based approach to enforce explicit policies, that describe which com-
ponents may access, or may influence the use of, particular capabilities.

The WebSand [5, 20] and Jeeves [51] projects use dynamic techniques to monitor
safe execution of policies. Richards et al. [36] extended this approach by incorporating
explicit dynamic ownership of objects (and thus of capabilities), and policies that may
examine the history of objects’ computations. While these dynamic techniques can re-
strict or terminate the execution of a component that breaches its security policies, they
cannot guarantee in advance that such violations can never happen.

Compared with all these approaches, our work focuses on general tecnhiques for
specifying (and ultimately verifying) capability policies, whereas these systems are



18

generally much more specific: focusing on one (or a small number) of actual policies.
A few formal verification frameworks address JavaScript’s highly dynamic, prototype-
based semantics. Gardner et al. [11] developed a formalisation of JavaScript based on
separation logic and verified examples. Xiong and Qin et al. [50, 34] worked on simi-
lar lines. Swamy et al. [43] recently developed a mechanised verification technique for
JavaScript based on the Dijkstra Monad in the F* programming language. Finally, Jang
et al. [14] developed a machine-checked proof of five important properties of a web
browser — again similar to our simple deny policies — such as “cookies may not be
shared across domains” by writing the minimal kernel of the browser in Coq.

8 Conclusions and Future Work

In paper, we have advocated that capability policies are necessary for reasoning about
programs using object-capability security. We have argued that capability policies must
be program centred, fine grained, open, and support both rely and deny elements.

These novel features of the policies require novel features in specifications. We
have proposed capability triples to specify policies, which incorporate quantification
over program code (to model open policies) predicates over pre- and post- conditions
(to handle deny conditions), and by describing paths through programs, are centre upon
those programs’ designs. Finally, we have sketched out informal arguments of how
adherence to policies may be argued, and we have shown how efforts at specifying
policies precisely can uncover additional implicit policies that can be made explicit.

The arguments we have used do not fit the Hoare Logic nor the type-inference for-
mat. Nevertheless, they reflect the way one informally reasons about code. They argue
in terms of the footprint of a property, and of the set of method calls which might affect
that footprint. They consider the uses of restrictive language features (e.g. final) in
the program to reduce that set. They also use rely reasoning (e.g. calls to deposit or
Purse(Purse) preserve the currency in the mint).

We want to develop a formal logic to support reasoning about capability policies.
Such a logic will need to combine both rely and deny steps. It will have the usual Hoare
Logic rules, as well as inference rules for the calculation of footprints of properties, the
effect of restrictive features, for the passing of object capabilities, for lexically scoped
languages. To prove soundness of our logic [35] we will need to expand the approach
to deal with the deny arguments, perhaps applying ideas from provenance [32], and
considerate reasoning [41].
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A Formal Definition of Lngcj

A.1 Modules and Syntax

Modules map class identifiers to their superclass, field definitions and method declara-
tions. Extensibility annotations, ea, are attached to classes and methods, and they forbid
(noext) or allow (exts) subclasses, resp. redefinition of the method in a subclass. Pri-
vacy annotations (pa) are attached to fields and methods, and restrict (priv) or allow
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(pub) access outside the defining class. Mutability annotations, ma, make fields im-
mutable (fin) or mutable (vol). We expect that constructors will be defined as methods
with the identifier constr.

Module = ClassId −→ ( ea ×
ClassId ×
(FieldId −→ ma pa ClassId ) ×
(MethId −→ ea pa methBody ) )

ea ::= noext | exts
pa ::= priv | pub
ma ::= fin | mut
meth ::= ClassId m ( ClassId x ) { e }
Used e ::= e .f | e .f :=e | e .m ( e ) | new c | x | this | null

A.2 The Type System of Lngcj

The lookup functions F andM return corresponding field and method definitions.

F(M , c, f) =

undefined if c = Object,
M (c) ↓3(f) if M (c) ↓3(f) is defined,
F(M ,M (c) ↓1, f) otherwise.

M(M , c, m) =

undefined if c = Object,
M (c) ↓3(m) if M (c) ↓3(m) is defined,
M(M ,M (c)↓1, m) otherwise.

Typing is expressed through the judgment Γ ` e : c, where Γ is a mapping from
{this, x} to the set of class identifiers, and from constr to a boolean (to indicate
whether Γ belongs to a constructor’s method body).

VarThisNull
M (c) is defined
M , Γ ` x : Γ(x)
M , Γ ` this : Γ(this)M , Γ ` null : c

fldRd
M , Γ ` e : c

F(M , c, f) = ma pa c′

pa = pub ∨ Γ (this) = c

M , Γ ` e.f : c′

fldAss
M , Γ ` e : c

F(M , c, f) = ma pa c′′

M , Γ ` e′ : c′

ma = mut ∧ (pa = pub ∨ Γ (this) = c)
M ` c′ ≤ c′′

M , Γ ` e.f := e′ : c′

fldInitConstr
Γ (this) = c

F(M , c, f) = immut pa c′′

Γ (constr) = true
M , Γ ` e′ : c′

M ` c′ ≤ c′′

M , Γ ` this.f := e′ : c′

constrCall
M(M , c, constr) = pa c constr( ) { e }
M , Γ ` e : c′′

pa = pub ∨ Γ (this) = c

M ` c′′ ≤ c′

M , Γ ` new c( e) : c

methCall
M , Γ ` e0 : c M , Γ ` e1 : c1
pa = pub ∨ Γ (this) = c

M(M , c0, m) = ea pa c′ m( c3 x) { }
M ` c1 ≤ c3
M , Γ ` e0.m( e1) : c′
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A.3 Well-formed class and module, linking

well formed class
M (c) = ea c′...
c′ = Object ∨ (ea = exts ∧M (c′) is defined)
∀f : M (c) ↓3 (f) = c′ =⇒ M (c′) is defined ∧ F(M , c′, f)is not defined
∀m : M (c) ↓4 (m) = ea′ pa c′ m( c′′ x) { e } =⇒

M (c′),M (c′′) are defined
Γ (this) = c, Γ (x) = c′′, Γ (constr) = (m = constr)
M , Γ ` e : c′′′ M ` c′′′ ≤ c′

M(M , c′, m) is undefined ∨ (ea′ = exts ∧M(M , c′, m) = ea′ pa c′ m( c′′ x) { } )
M ` c 3

` M � iff ∀c ∈ dom(M ) : M ` c 3

Linking of two modules M and M ′ is the union of their respective mappings, provided
that the domains of the two modules are disjoint, and that the union of the mappings
creates a well-formed module: ∗ : Module×Module −→ Module

M ∗M ′ =
{
M ∗aux M ′, if ` M ∗aux M ′�, and dom(M ) ∩ dom(M ′) = ∅
undefined, otherwise. where

(M ∗aux M ′)(c) = M (c), if M (c) is defined, M ′(c), otherwise.

A.4 Runtime context

The runtime context consists of a stack frame, φ, and a heap χ. The frame is a tuple
consisting of the address belonging to the receiver (this), and the value for the argu-
ment (x). Values are addresses or null). Addresses are ranged over by ι, and they are
natural numbers. The heap maps addresses to objects. Objects are tuples consisting of
the class of the object, and a mapping field identifiers onto values.

ctxt = frame × heap φ ∈ frame = addr × val
χ ∈ heap = addr −→ object v ∈ val = { null } ∪ addr
object = ClassId × ( FieldId −→ val ) ι ∈ addr = N

The Operational Semantics of Lngcj Execution uses module M , and maps a runtime
context ctxt and expression e (code in the general case) onto a new context ctxt′ and a
result.

; : Module × ctxt × expr −→ ctxt × res
res = { nullPntrExc, stuckErr } ∪ val

Here the salient rules for execution; we omit those which raise & propagate exceptions.

val

M , ctxt, v ; ctxt, v

thisPar
ctxt = (ι, v), χ
M , ctxt, this ; ctxt, ι
M , ctxt, x ; ctxt, v

fldRd

M , ctxt, e ; ctxt′, ι
ctxt = , χ′ χ′(ι) ↓2 (f) = v

M , ctxt, e.f ; ctxt′, v

fldAss
M , ctxt, e ; ctxt′′, ι
M , ctxt′′, e′ ; ctxt′′′, v
ctxt′′′ = φ′′′, χ′′′, χ′ = χ′′′[ι 7→χ′′′(ι)[f7→v]]
M , ctxt, e.f := e′ ; (φ′′′, χ′), v
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new
M , ctxt, e ; ctxt′′, v
{f |F(M , c, f) is defined } = {f1, . . . , fr}
ι is new in χ′′

ctxt′′ = φ, χ′′

χ′′′ = χ′′[ι 7→( c, (f1 : null , . . . , fr : null ) ) ]
M(M , c, constr) = ( ) { e′}
ctxt′′′ = (ι, v), χ′′′

M , ctxt′′′, e′ ; ctxt′, v′

M , ctxt, new c( e) ; ctxt′, ι

methCall

M , ctxt, e ; ctxt′′, ι
M , ctxt′′, e′ ; ctxt′′′, v
ctxt′′′ = (ι, v), χ′′′

χ′′′(ι) ↓1= c

M(M , c, m) = m( rp { e′′ }
ctxt′′′′ = (ι, v), χ′′′

M , ctxt′′′′, e′′ ; ctxt′, v
M , ctxt, e.m( e′) ; ctxt′, v

A.5 Reach: Reachable Configurations

Configurations consist of runtime contexts and expressions. A configuration is reach-
able from another configuration, if the former may be required for the evaluation of
the former after ny number of steps. We are only interested in the configurations which
correspond to method calls, or constructor invocations. Reach(M , ctxt, e) returns the
sets of all configurations reachable from ctxt, e:

Reach : Program× Context× Expr 7→ P(Context× Expr)
We define the functionReach by cases on the structure of the expression, and depend-
ing on the execution of the expression. Note that the function Reach(M , ctxt, expr),
even when the execution should diverge. This is important, because it allows us to give
meaning to capability policies without requiring termination. In case of divergence,
Reach(M , ctxt, null) will be an infinite set.
Reach(M , ctxt, null) = ∅
Reach(M , ctxt, this) = ∅
Reach(M , ctxt, x) = ∅
Reach(M , ctxt, e.f) = Reach(ctxt, e)
Reach(M , ctxt, e.f := e′) = Reach(M , ctxt, e)

∪

Reach(M , ctxt′, e′),
if ∃ctxt′, v, s.t : M , ctxt, e ; ctxt′, v

∅, otherwise.

Reach(M , ctxt, new c( e) ) = Reach(M , ctxt, e)

∪



{ctxt′, e′}
if (A) : ∃ctxt′′, v, s.t :
M , ctxt, e ; ctxt′′, v,
M(M , c, constr) = ( ) { e′}
and where ctxt′′ = , χ′′, and ctxt′ = (ι, v), χ′′′

ι new in χ′′, χ′′′ = χ′′[ι 7→( c, (f1 : null , . . . , fr : null ) ) ]
{f | F(M , c, f) is defined } = {f1, . . . , fr}

∅, otherwise.

∪
{
Reach(M , ctxt′, e′), if (A) as above.
∅, otherwise.
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Reach(M , ctxt, e.m( e′) ) = Reach(M , ctxt, e)

∪


Reach(M , ctxt′, e′)

if (B) : ∃ctxt′, ι, s.t :
M , ctxt, e ; ctxt′, ι,

∅, otherwise.

∪



{ctxt′′′, e′′}
if (B) as above, and (C),∃ctxt′′, v, s.t :
M , ctxt′, e′ ; ctxt′′, v,
and where ctxt′′ = , χ′′, χ′′(iota) ↓1= c

M(M , c, m) = m( ) { e′′}
and where ctxt′′′ = (ι, v), χ′′.

∅, otherwise.

∪
{
Reach(M , ctxt′′′, e′′) if (B) and (C), as above.
∅, otherwise.

A.6 Arising: configurations reachable from initial configurations

We define as initial configurations all configurations that may be encountered at the
start of program execution.

Init : Program 7→ P(Context× Expr)
Initial configuration should be as “minimal” as possible, We therefore construct a heap
which has only one object. And we require that the expression be well typed under the
assumption that thisand x are denoting objects of class Object.

Init(M ) = { ( ctxt0, e) | ∃c. M , Γ0 ` e : c }
where ctxt0 = ((ι0, null), χ0),
and dom(χ0) = { ι }, and χ0(ι0) = (Object, ∅),
and Γ = this 7→ Object, x 7→ Object, constr 7→ false.

The arising configurations are those which may be reached by executing an initial
configuration:

Arising : Program 7→ P(Context× Expr)
Arising configurations they are defined as follows:

Arising(M ) =
⋃

(ctxt,e)∈Init(M )Reach(M , ctxt, e)

A.7 Used: the objects reads by execution of a configuration

We are interested in collecting all addresses read during execution of a configuration:
Used : Program× Context× Expr 7→ P(Addr)

Used is defined by cases on the structure of the expression, and depending on the exe-
cution of this expression. We use similar cases as those in the definition in A.5.
Used(M , ctxt, null) = ∅
Used(M , ctxt, this) = {φ(this)} where ctxt = φ,
Used(M , ctxt, x) = {φ(x)} where ctxt = φ,

Used(M , ctxt, e.f) = Used(M , ctxt, e) ∪


{χ′(ι) ↓ (f)}

if ∃ctxt′, ι, s.t :
M , ctxt, e ; (φ′, χ′), ι

∅, otherwise.
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Used(M , ctxt, e.f := e′) = Used(M , ctxt, e.f)

∪


Used(M , ctxt′, e′),

if ∃ctxt′, v, s.t :
M , ctxt, e ; ctxt′, v

∅, otherwise.
Used(M , ctxt, new c( e) ) = Used(M , ctxt, e)

∪
{
{ ι } if (A), where (A) as defined in A.5
∅, otherwise.

∪
{
Used(M , ctxt′, e′), if (A) as above.
∅, otherwise.

Used(M , ctxt, e.m( e′) ) = Used(M , ctxt, e)

∪
{
Used(M , ctxt′, e′) if (B), where (B) as defined in A.5
∅, otherwise.

∪

{ctxt
′′′, e′′}

if (B) and (C), where (B), (C) as defined in A.5
∅, otherwise.

∪
{
Reach(M , ctxt′′′, e′′) if (B) and (C), as above.
∅, otherwise.

A.8 AccAll: objects accessible through any paths, AccPub: objects accessible
through public paths

We collect the addresses of all objects which are accessible from a stack frame through
any paths which go through public or through private fields, through the functionAccAll:
We also collect the addresses of all objects which are accessible from a stack frame
through paths which go through public fields, or through private fields which, however,
belong to objects of the same class as the current receiver:

AccAll : Program× Context 7→ P(Addr)
AccPub : Program× Context 7→ P(Addr)

These sets are defined as follows:

AccAll(M , ctxt) =

 { ι, v } ∪{χ(ι′)↓2 (f) | ι′ ∈ AccAll(M , ctxt)
∧ χ(ι′) ↓1= c′ ∧ F(M , c′, f) = }

where ctxt = ((ι, v), χ).

AccPub(M , ctxt) =


{ ι, v } ∪
{χ(ι′)↓2 (f) | ι′ ∈ AccPub(M , ctxt)
∧ χ(ι′) ↓1= c′ ∧ F(M , c′, f) = pa
∧ (pa = pub ∨ c = c′) }

where ctxt = ((ι, v), χ) and χ(ι) ↓1= c.

Lemma 1. For all M , ctxt, ctxt′, e, v s.t. M, ctxt, e ; ctxt′, v:

AccPub(M , ctxt) ⊆ AccAll(M , ctxt) ∧ Used(M , ctxt, e) ⊆ AccAll(M , ctxt)

The lemma is not surprising, and the full proof is further work. Note that in general,
there is no subset relation between AccPub(M , ctxt) and Used(M , ctxt, e).


