Verified programming
in Dafny

Will Sonnex and Sophia Drossopoulou

An introductory course to the use of Dafny for writing programs with fully verified
specifications.

Acknowledgements: The development of this material has been supported by a gift from
Microsoft Research, and a visit to Microsoft Research, organized and hosted by Judith Bishop,
and Rustan Leino. We thank Judith Bishop for organizing the gift, and all aspects of the visit, and
Rustan Leino for the tool Dafny, and for many useful discussions.

Chapter 1:
Introducing Dafny

Dafny is a hybrid language, with functional and object oriented features, which can automatically
check programs against specifications. By defining theorems, and using pre- and post-conditions,
loop invariants, assertions, and many other constructs, you can build fully verified programs. This
means that any program accepted by the Dafny verifier, is guaranteed to be totally correct —ie
terminate (it will never crash or loop infinitely), and partially correct (if it terminates then it satisfies
its specification). .

Dafny uses a very powerful theorem prover called Z3. This allows it to prove the correctness of
some, but not all, programs. For the cases where the theorem prover cannot do the proofs unaided,
it may require some help from you.

In this course, we shall study how to write Dafny programs, how to write specifications, and how to
augment Dafny code with more help for the theorem prover. We will not cover all features of Dafny.

NOTE: The way you prove a program in Dafny is similar, but not identical, to the way you write by
hand the proof for a program in the course Reasoning about Programs. In particular, Dafny can do
many steps automatically, and your proofs in Dafny will shorter than those for our course.
Moreover, Dafny uses a different syntax, and proofs in Dafny look, in some way, like programs.

An Example: Binary Search

As an example, here is a fully verified implementation of the binary search algorithm:
The parts highlighted in grey are not part of the program itself; they are the parts that are checked
by the Dafny verifier.

method BinarySearch(a: array<int>, key: int)
returns (index: int)

requires a != null && sorted(a);

ensures index >= @ ==> index < a.Length && a[index] == key;

ensures index < @ ==> forall k :: @ <= k < a.Length ==> a[k] != key;
{

var low := 0;

var high := a.Length;
while (low < high)
invariant @ <= low <= high <= a.lLength;
invariant forall i ::
@ <= 1 < a.Length & !(low <= i < high) ==> a[i] != key;

var mid := (low + high) / 2;
if (a[mid] < key) {

low := mid + 1;

}

else if (key < a[mid]) {
high := mid;

}

else {
return mid;

}

}

return -1;

}

Using Dafny from Visual Studio

Visual Studio may be upgraded so as to incorporate Dafny. To use Dafny in Visual Studio, open a .dfy
file in Visual Studio. Try opening the provided “BinarySearch.dfy” file; you should see correct syntax
highlighting.

Visual studio will automatically compile and verify your code once it is loaded. If you edit a part of
your code it will re-compile just that part. It uses coloured bars on the left-hand side of the editor
window to let you know what phase different parts of your code are at:

An orange bar means var mid := (low + high) / 2;
. . if (a[mld] < key {

that this your code differs low := mid +

from the latest version.. }

A purple bar means that

var := (low + high) / 2;
your code is being if (a[mid] < key) {
verified by the theorem low := mid + 1;
prover. }
No bar means the var mid := (low + high) / 2;
checking is complete, but if (a[mid] < key) {
not necessarily that your low := mid + 1;
code is correct. T

Squiggly underlining indicates incorrect or unverifiable code (like a spell checker in a word
processor). Mouse-over the squiggly line to get a popup indicating the exact problem. Here’s an
example where | edited the BinarySearch method to prompt and error:

This squiggly underline
shows that there is a
problem with this part of
the code.

index out of range

(local variable) mid: int

1

The mouse-over message tells us that
Dafny thinks this array might be given an
index outside of its bounds at this point.
Array indexing must always be valid in
Dafny (otherwise the program crashes,
and Dafny programs cannot crash).

key < a[mid]) {

.
]

Moreover, at the bottom of the window you can see a complete list of all errors. (You might need to
enable the viewing of errors, by selecting the View Menu, and then clicking Error List).

21 var low := 0;
22 var hish '= a.lenoth:
100% ~ 4

Error List

T yrey

Description File Line Column
€3 2 index out of range BinarySearch.dfy 29 10
€3 1 insufficient reads clause to read array element BinarySearch.dfy 12 45

Using Dafny from the command line

While we recommend using the Visual Studio integration under Windows (because it’s cooler); you
can also run Dafny from the command line in both Windows and Linux. For example, here is the

compilation of “BinarySearch.dfy”

e Windows PowerShell

PS C:\Users\Will\Drophox\dafnyic\dafny_ic> dafny .\BinarySearch.dfy
Dafny program verifier version 2.2.30785.1126, Copyright {(c> 20883-2012, Microsoft.

Dafny program verifier finished with 3 verified, 8 errors
Compiled assembly into .\BinarySearch.dll
PS C:\Users\Will\Dropbox\dafnyic\dafny_ic>

Here is the compilation of the same file, with the error we demonstrated earlier:

ey Windows PowerShell

PS C:\Users\Will\Drophox\dafnyic\dafny_ic> dafny .\BinarySearch.dfy
Dafny program verifier version 2.2.30785.1126, Copyright {(c)> 2883-2012, Microsoft.

Execution trace:
(B,8>: anonBh
-\BinarySearch.dfy(1?7.3>: anonl1?_LoopHead
(A.8>: anonl?_LoopBody
-\BinarySearch.dfy{1?7.3)>: anon20_Else
(@.8>: anonlB
-\BinarySearch.dfy{1?7.3>: anon25_Else

Dafny program verifier finished with 2 verified,. 1 error
PS C:\Users\Will\Drophox\dafnyic\dafny_ic>

Installing Dafny on a home machine

To download Dafny visit http://dafny.codeplex.com and follow the installation instructions. You will
also need to install Z3 (the theorem prover Dafny uses), from http://z3.codeplex.com. Once

downloaded you can execute “Dafny.exe” from the command line, or if you have Visual Studio run
“DafnyLanguageService.vsix” to install the Visual Studio integration.

One thing they neglect to mention for the Visual Studio integration is that you need to copy the
contents of the Z3 binary directory (e.g. “C:\Program Files\Z3\bin”) into the Dafny Visual Studio
language extension directory (e.g.
“C:\Users\...\AppData\Local\Microsoft\VisualStudio\10.0\Extensions\Microsoft
Research\DafnyLanguageMode\1.0”) after installation.

Chapter 2
Functional programming in Dafny

We will now study how to write functional programs in Dafny, how to write their specification, and
how to help Dafny prove that the programs satisfy their specifications.

1. From Haskell to Dafny - the little differences

The functional part of Dafny is similar to a subset of Haskell. We shall study two examples to
illustrate some small cosmetic differences between the two languages.

1.1 Fibonacci in Haskell and in Dafny

Haskell

In Haskell, we declare the In Haskell, primitive/built-in types
type of a function separately

“::” means “has type” start with an uppercase letter,
from its definition.

‘/ / e.g. Int, Bool.
| S fib :: Int -> Int
—>

fib n = if n k=1
then n
else fib (n-1) + fib (n-2)

In Haskell, we write the return
value of a function after an “=".

In Dafny, primitive/built-in types
start with an lowercase letter,
e.g. int, bool.

In Dafny, we give the type of Dafny
function arguments and the
return type of the function

along with its definition. “.” means “has type"

. /-Function fib(n: int): t
In Dafny, we write the { - - -
return value of a function ifn<=1 fib(n: int): int
between braces. \ then n means fib takes a single
else fib(n-1) + fib(n-2) int argument and

} returns an int.

1.2 Power function in Haskell and in Dafny

Here is a function calculating the n-th power of 2 expressed in Haskell and Dafny. This example
illustrates multiple function arguments, and the declaration of variables:

Multiple arguments are idiomatically

declared using currying.

Functions are called using the

\\ curried argument form.
power :: Int -> Int -> Int
power x n = if n <= 0
then 1
else
Variables are declared ——2 1e£ r = power x (n-1) in
using let, or where. X " ‘i\ . .
let is followed by in.

Dafny does not support
currying; therefore, multiple
arguments have to be declared
using tuples.

function power(x: int, n: int): int

{

if n<=0 var is followed by

then 1 a semi-colon.
else /
var r := power(x, n-1);

X *r
} \

Function calls are done using the
single tupled argument form.

Variables are declared with
var, which acts like a 1let.
Notice the :=instead of =.

2. User defined datatypes and pattern matching

We shall now show how to define algebraic datatypes in Dafny (the data declarations in Haskell),
and then how to perform pattern matching on these types.

2.1 Defining a binary tree

Haskell

data Tree a = Leaf a | Node (Tree a) (Tree a)

In Haskell we give constructor
argument types delimited by spaces,

in Dafny they are parenthesised and
comma delimited.

In Haskell, type parameters are just
written after the type name, in Dafny
they are given in angle brackets.

Dafny

datatype tree<T> = Leaf(T) | Node(tree<T>, tree<T>)

In Haskell, datatype names must start with an
uppercase letter. In Dafny we can use either.

2.2 Defining a mirror function

This example demonstrates pattern matching on our recursive Tree data-type.

Haskell
n Haskell th mirror :: Tree a -> Tree a
nf'a's'e ,tfetyvo mirror (Leaf x) = Leaf x
de |!'1|t|0nso mirror are mirror (Node 1 r) = Node (mirror r) (mirror 1)
equivalent. The
“equational” style of the
mirror :: Tree a -> Tree a

first definition does not
exist in Dafny however.
You can only use the
second style.

mirror t = case t of
Leaf x -> Leaf x
Node 1 r -> Node (mirror r) (mirror 1)

In Dafny, any type
parameters used may be
given after the function
name too. The function is
also seen as being
parameterised by this type.

Dafny

function mirror<T>(t: tree<T>): tree<T>
{
match t
case Leaf(x) => Leaf(x)
case Node(l, r) => Node(mirror(r), mirror(l))

}

2.3 Implicit Polymorphism in Dafny

Note that Dafny can implicitly introduce type missing type parameters into function declarations.
Therefore, the following form compiles

datatype tree<T> = Leaf(T) | Node(tree<T>, tree<T>);

function mirror(t: tree): tree

{

match t

case Leaf(x) => Leaf(x)

case Node(l, r) => Node(mirror(r), mirror(l))
!

3. Pre-conditions and total functions

Dafny requires that functions should never crash, and not loop for ever. We will now illustrate how
we can stop functions from crashing or looping, by using pre-conditions which restrict their inputs.

3.1 Fixing our Fibonacci function

Here is the Dafny Fibonacci function we defined earlier: function fib(n: int): int
if <=1
This is not a correct definition however, ihe: 1
as fib(-1) does not equal 1. else fib(n-1) + fib(n-2)
The function should be undefined for n < 0. }
In Haskell we can define fib like this: fib :: Int -> Int
fib n = if n == 0 || n ==
This function is no longer defined at for then 1
n <0, it will loop instead. else fib (n-1) + fib (n-2)

function fib(n: int): int

However, try to compile this in Dafny: { if (n==0 || n==1)
then 1
else fib(n-1) + fib(n-2)
You will get: }

Error: decreases expression must be bounded below by 0

This is because Dafny only accepts definitions if it is able to prove that they terminate. Therefore, we
need to define the function fib in such a way, that it is never called with an n < 0.

We can add pre-conditions as comments to Haskell functions , for example:

Such comments help programmers, but mean fib :: Int -> Int
nothing to the compiler, which will accept any coopre:n >= °
. . fibn=3if n==0 || n==1
value from Int as aninputto fib. then 1
else fib (n-1) + fib (n-2)

In Dafny, we can add

pre-conditions to a function using “requires”: function fib(n: int): int

requires n >= 0;

Now this function only accepts arguments { if (n==0 || n==1)
greater than or equal to zero. then 1
else fib(n-1) + fib(n-2)
}

In effect, we have refined the input type of fib from “all integers” to “all integers > 0”.
Every time fib is called Dafny will check to make sure its input is > 0.

3.2 Defining list destructors

The head and tail functions from Haskell are known
as the list “destructors”, as they break a list up into head :: [a] -> a
the parts that the cons constructor put together. head (x:xs) = x

tail :: [a] -> [a]

These are not total functions, as they are undefined tail (x:xs) = xs

(will crash) when given an empty list as input.

Hence we cannot define head and tail without further thought in Dafny; the functions below will
not compile:

The error we get is: datatype list<A> = Nil | Cons(A, list<A>);

missing case in case statement: Nil
function head<A>(xs: list<A>): A

We are missing the “case Nil => .” {
in both of th tt tch match xs
in both of these pattern matches case Cons(y, ys) => y
}
“requires” to the rescue again: function tail<A>(xs: list<A>): list<A>
we need to make sure that head/tail {
match xs

case Cons(y, ys) => ys
To observe this, try compiling the following }

function g1(n:int) : int { fib(-4) }

function g2(n: int) : int { fib(n) }

function g3(n: int) : int requires n >=0; { fib(n) }

are only given non-empty lists.

These definitions will compile:

function head<A>(xs: list<A>): A

requires xs != Nil;
{
match xs
case Cons(y, ys) =>y
}
function tail<A>(xs: list<A>): list<A>
requires xs != Nil;
{
match xs
case Cons(y, ys) => ys
}

4. Proving function properties

In this section we will demonstrate how to specify and prove properties of functions within Dafny.

4.1 Specifying natural numbers, and Even and Odd predicates, and addition

Here is the standard definition of datatype natr = Zero | Succ(natr);
N as a recursive data-type in Dafny,
with a recursive function add: predicate 0dd(z: natr)
{
Building on this definition, we can match x
proceed and define predicates for case Zero => false
0dd and Even numbers. Note that case Succ(Zero) => true
the predicates are inductively case Succ(z) => 0dd(z)
defined. }
predicate Even(z: natr)
{
match x
case Zero => true
case Succ(Zero) => false
case Succ(z) => Even(z)
¥

Note: Rather than defining natr, we could use Dafny’s built-in nat type, defined as int = 0, but
defining our own datatype and proving properties will be a useful example.

And we can also specify a recursive function add(x: natr, y: natr): natr

function add: {
match x

case Zero => Yy
case Succ(x') => Succ(add(x', y))
}

One simple property we would like to be able to proveis Vx : N.x 4+ 0 = x.
That is to say:
Vx : natr.add(x,Zero) = x

We declare properties by using post-conditions on “ghost method”s. Ghost methods are code that is
used by the Dafny verifier, but are not part of the executable programme. Post-conditions are
declared using the “ensures” keyword; they specify properties that should hold after the method
executes.

prop_add_Zero: Vx : natr.add(x,Zero) = x

A method is like a function, but featuring
imperative code, rather than functional (they will Pick a meaningful name
be covered in more detail later in the course). for your property.

ghost method prop_add_Zero(x: natr
ensures add(x, Zero) == x; Parameters act like Vs,

as the post-condition

{1
T Vx : natr.add(x, Zero) = x must hold for any
input to the method.

ghost means the method

body is not compiled/output, Itis important to give your ghost
and the method only exists methods a body, if just an empty one.
to check post-conditions. Otherwise they are declared as axioms

and their properties are not checked.

Start a new Dafny file and input the definitions for natr, add and prop_add_Zero, making sure it
compiles.
Notice that Dafny can verify prop_add_Zero automatically, even though the hand-proof requires
induction!

prop_add_Succ: Vx,y : N.Succ(x + y) = x + Succ(y)

Any property that requires a single structural induction step and no auxiliary lemmas Dafny should
be able to prove automatically. Here is another such property of + which you should input:

Vx,y : N.Succ(x +y) = x + Succ(y)

ghost method prop_add_Succ(x: natr, y: natr)
ensures Succ(add(x, y)) == add(x, Succ(y));

1

Now we will specify and prove that our add function is commutative, i.e.
Vx,y:Nx+y=y+x

Input prop_add_comm and re-run Dafny. | o, st method prop_add_comm(x: natr, yv: natr)

ensures add(x, y) == add(y, x);
{1}

You will see that Dafny fails to automatically prove prop_add_comm.:

Error: A postcondition might not hold on this return path.
As we saw earlier, Dafny will apply function definitions and inductive hypotheses automatically,
hence why it can prove prop_add_Zero and prop_add_Succ by itself, as this is all these proofs
require. However, Dafny does not apply lemmas automatically, and prop_add_comm requires two.

To see how we verify this in Dafny we first look at the hand-proof:
Base case:

To Show: Vy : natr.add(Zero,y) = add(y,Zero)
Take an arbitrary y : natr

add(Zero,y)
=y (by definition of add)
= add(y, Zero) (by prop_add_zero)

Inductive step:

Take an arbitrary x : natr

Inductive Hypothesis: Vy : natr.add(x,y) = add(y, x)
To Show: Vy : natr.add(suc(x),y) = add(y, suc(x))

Take an arbitrary y: natr

add(succ(x),y)
= Succ(add(x, y)) (by definition of add)
= Succ(add(y, x)) (by IH)

add(y, Succ(x)) (by prop_add_Succ)

We can now write the corresponding proof in Dafny. We use a case analysis to reflect the Base case,
and the inductive step. We use calc-expressions, to justify each step. The application of the
induction hypothesis corresponds to calling the ghost method itself (here prop_add_comm) with
“smaller” arguments:

“match x” indicates ghost method prop_add_comm(x: natr, y: natr)

proof bv induction on x.\\ ensures add(x, y) == add(y, x);
{

match x {
Ly case Zero =>
/
Base Case gale { Justifications
add(zero, y); for each of
== y{/ definition of add the steps.
= Lo
} ? ? indicated by
Inductive Step ——1—— £, case Succ(x') => “calling” Fhe
cale { corresponding
add(x, v); ghost method.
== { assert X,== succ(x'); } The Induction
add(Succ(x"), y); Hvpothesis i
== // definition of add Ypothesis 13
, . indicated
Succ(add(x', y));
- ' . through
== { prop_add_comm(x', y); } -
. . “calling” the
// Induction Hypothesis
Ny . ghost method
Succ(add(y, x"')); .
, with the
== { prop_add_Succ(y, x'); -
add(y, Succ(x')); appropriate
} ? ? parameters.

Because we are in a method, match requires braces — a syntactic difference between methods and
functions.

Dafny can do several of the above steps implicitly, and therefore the following will also verify:

ghost method prop_add_comm(x: natr, y: natr)
ensures add(x, y) == add(y, x);

{
match x {
case Zero =>
calc {
add(Zero, y)
== { prop_add_Zero(y); }
add(y, Zero);
}
case Succ(x') =>
calc {
add(x, y);
== { prop_add_Succ(y, x"); }
add(y, Succ(x'));
}
}

Dafny can also verify the property just by calling the appropriate ghost methods (lemmas) in the

base case and inductive step. Therefore, the following version also verifies:

ghost method prop_add_comm(x: natr, y: natr)

ensures add(x, y) == add(y, x);
{

Calling a ghost method (or any

match x { ~method) adds its post-conditions
case Zero => " as usable properties for the
prop_add_Zero(y); Dafny checker.

case Succ(x') =>
prop_add_Succ(y, x")#
}
}

By calling prop_add_Succ(y, x') we have added:
Succ(add(y, x’)) == add(y, Succ(x’))

to the facts which Dafny knows at this point, and which it can use to complete the verification.

4.3 Expressing Implications

In order to express an implication in a ghost lemma, we can use the requires clause to express the
condition, and the ensures clause, to express the conclusion. For example, we can encode

Vx,y : N.Odd(x) A 0dd(y) = Even(x + y)

through

ghost method add_0dd_0dd_is_Even(u: natr, v:

requires Odd(u) && 0dd(v);
ensures Even(add(u,v);

{1}

4.4 Conclusions

natr)

Declaring a ghost method == Expressing a lemma.

Calling a ghost method == Using a lemma.

Body of a ghost method == Proving a lemma.

5. Exercises

You can now proceed to do the exercises titled Exercises_Lists and Exercises_Change.

Chapter 3
More on Proof Development

We will now discuss the construction of larger proofs in Dafny, and the tools Dafny provides for the
development of proofs in a “top-down” manner, and which allows us to concentrate on the
“architecture” of the proof, before going on to the detailed proof steps. Dafny offers two features:

* assume statements, which allow us to assume, and use an assertion without proving it,

* the declaration of ghost methods which stand for lemmas, but without supplying the ghost
method’s body; this amounts to a lemma which has not yet been proven, but which can be
used in other proofs — similar to the declaration of a function/method, which can be called
even before the appropriate method/function body is available.

Of course, a proof is not complete until all proof obligations have been discharged, i.e., all assume
statements have been replaced, and all ghost methods have been supplied with appropriate bodies.

In this chapter, we will also show how hand-written proofs can guide the development of the Dafny
proof, while the Dafny tool can give us confidence that all proven properties hold.

As an example, we will study the verification of the function quick-sort (gsort), invented by Tony
Hoare in 1960 (http://en.wikipedia.org/wiki/Quicksort), and which sorts an array or list of n
elements by applying O(n log n) comparisons. In this chapter we will look at the functional version of
the function, and we shall prove:

vxs: list(Z). is_sorted(qsort(xs)) A perm(xs, qsort(xs))

Definitions are provided in “Quicksort.dfy”. The function gsort(xs) sorts a list xs, the predicate
is_sorted(x) says that its argument xs is sorted, and the predicate perm(xs,ys) expresses that xs
is a permutation of ys. Moreover, the functions take_le(y,ys), resp. take_gt(y,ys) return the
sublist of ys containing all elements less-or equal to, respectively greater than, y.

1. Termination of the function qsort

Here is the body of the function gsort

function gsort(xs: list<int>): list<int>

{

match xs

case Nil => Nil The two recursive calls with
case Cons(y, ys) =>

1 t (take_le(3 the terms

var sle := gsort(take_le(y, ys));

vars gt := gsort(take_gt(y, ys)); take_le(y, ys)and
app(sle, Cons(y, sgt)) take_gt(y, ys) as

} arguments.

Dafny requires that every function terminates for every valid input, and will not accept a function
definition unless it can prove this. It will attempt to prove termination automatically, by trying to
show that any recursive calls take place with arguments which are structurally smaller than the
original arguments. However, in the body of gsort, the recurisve calls are made with the arguments
take_le(y, ys) and take gt(y, ys, which are not necessarily structurally decreasing.
Therefore, the function as defined above does not compile in Dafny.

However, we can give Dafny further information to help it prove termination. Namely, we know that
that the length of the input decreases with each nested call. Therefore, we update the definition of
gsort through a decreases clause as follows:

To show termination,
we supply a term
whose value decreases
with every recursive
call. In this case the
length of the input list.

function gsort(xs: list<int>): list<int>

——>> decreases len(xs);
{

match xs

case Nil => Nil

case Cons(y, ys) =>
var sle := gsort(take_le(y, ys));
var sgt := gsort(take_gt(y, ys));

app(sle, Cons(y, sgt))

In general, a decreases clause provides some “measure” that decreases on every recursive call to
the function within the function body.

Note: The argument that gsort terminates because every recursive call takes place on parameters
which are smaller in terms of a decreasing measure corresponds to well-founded induction. Namely,
we define the following well-founded ordering (<):

ys < xs & len(ys) < len(xs)

i.e. ysis “smaller than” xs iff the length of ysis less than the length of ys. And we then prove the

lemma

Vxs:list{Z). gsort(xs) terminates.

using the well-founded ordering on xs.
An equivalent view is, that we prove that

vn: N.Vxs: list(Z). length(xs) =n = qsort(xs) terminates.
in which case the proof goes by mathematical induction.

However, even though we have provided the decreases-measure, the definition of gsort still does
not compile, and Dafny complains: “failure to decrease termination measure”. In order to find out
why, we consider the proof of termination of gsort by well founded ordering.

Take a xs: list(Z) arbitrary
Inductive Hypothesis Vzs:list(Z).zs < xs = qsort(zs) terminates.
To Show: gsort(xs) terminates

1* Case: xs=Nil
To Show: gsort(Nil) terminates
by definition of gsort

2" Case: xs#Nil. Therefore xs=Cons(y,ys) for some y:Z and ys: list(Z).
To Show: gsort(Nil) terminates

(1) take_le(y,ys) terminates by body of take_le (recursive calls on
structurally smaller arguments)

(2) take_gt(y,ys)terminates similar argument to (1)

(3) take_gt(y,ys)<ys by Auxiliary Lemma 1

(4) gsort(take_le(y,ys)) terminates by (1), (2), (3) and IH
(5) gsort(take_gt(y,ys)) terminates similar to (1)-(4), using Auxiliary Lemma 2
(6) gsort(xs)terminates by (1), (2), by body of gsort,

Auxiliary Lemma 1: Vy:Z.Vys:list(Z). take_le(y,ys) < ys

Auxiliary Lemma 2: Vy:Z.Vys:list(Z). take_gt(y,ys) < ys

The important observation is, that in order to prove termination of gsort, we need the two auxiliary
lemmas from above.

We now turn back to the argument about termination of gsort in Dafny. Remember, that Dafny
requires any function defined to be terminating, and therefore, proof of termination cannot be
separated from the definition of the function (as we did in the hand-written proof above). Instead,
the definition of the function, the function body, and the definition the functions used within the
function body, need to provide sufficient information for Dafny to be able to “convince itself” that
the function terminates.

For this reason, we make the two auxiliary lemmas, i.e. Auxiliary Lemma 1 and Auxialliary Lemma 2,
part of the definition of take_le and take_gt:

function take_le(n: int, xs: list<int>): list<int>
ensures len(take_le(n, xs)) <= len(xs);

function take_gt(n: int, xs: list<int>): list<int>
ensures len(take_gt(n, xs)) <= len(xs);

These post-conditions, along with “decreases len(xs);” in the definition of gsort, allow Dafny to
prove that the gsort function terminates. Compare these three lines with of Dafny with our longer,
hand-written proof. As we said earlier, Dafny is often able to find proof steps implicitly.

2 First stab at Partial correctness: structural vs well-founded induction

We will now move onto proving the correctness of our gsort function.

The technique used in this sheet is “top-down” proof, where you start with the eventual goal, and
iteratively break it down into simpler and simpler sub-properties.

Here is our eventual goal:
Vxs: list(Z). is_sorted(qsort(xs)) A perm(xs,qsort(xs))

2.1 First attempt: Structural Induction.

To simplify the discussion, we concentrate first on the following, simpler proof obligation:
vxs: list(Z). is_sorted(qsort(xs))

We define the proof goal in the ghost method prop_gsort.

ghost method prop_gsort(xs: list<int>)
ensures is_sorted(gsort(xs)); The assume keyword

{) introduces an assumption
assume is_sorted(gsort(xs)); €— 1 | which is not checked
) .

Since we have assumed the goal, the file will compile and be verified. It is important to recompile
after each step, so as to make sure that we haven’t made any mistakes.

However, our proof is not complete, and we need to replace the assume clause with appropriate
statements. To do this, we break our property down into simpler sub-properties. We first case-split
on xs, and since the base case is trivial, we expect Dafny to be able to prove it without further
assistance. Hence, the following code compiles:

ghost method prop_gsort(xs: list<int>)
ensures is_sorted(gsort(xs)) ;
{
match xs {
case Nil =>
case Cons(y, ys) =>
var sle := gsort(take_le(y, ys));
var sgt := gsort(take_gt(y, ys));
assume is_sorted(app(sle, Cons(y, sgt)));
}
}

We will now try to prove the inductive step (case where xs is Cons(y,ys)). To do that, we expect to be
able to apply the inductive hypothesis, and obtain, that is_sorted(sgt) and that is_sorted(sgt).
To try this out, we can type

ghost method prop_gsort(xs: list<int>)
ensures is_sorted(gsort(xs)) ;

{
match xs {
case Nil =>
case Cons(y, ys) =>
var sle := gsort(take_le(y, ys));
var sgt := gsort(take_gt(y, ys));
assert is_sorted(sle) && is_sorted(sgt);
assume is_sorted(app(sle, Cons(y, sgt)));
}
}

However, the ghost method from above does not compile, and Dafny complains: assertion
violation.

Similarly, the following ghost method does not compile:

ghost method prop_gsort(xs: list<int>)
ensures is_sorted(gsort(xs)) ;

{
match xs {
case Nil =»>
case Cons(y, ys) =>
var sle := gsort(take_le(y, ys));
var sgt := gsort(take_gt(y, ys));
prop_qgsort(sle);
}
}

And Dafny gives the error message: cannot prove termination, try supplying a decreases clause.

To understand why this is the case, we need to be clear as to what our inductive principle is. In the
method prop_gsort as defined above, the inductive principle is structural induction (because Dafny
applies structural induction unless asked otherwise. And since sle and sgt are not necessarily
structurally smaller than xs.

We can understand the above, if we look into the attempt to hand-prove the property by structural
induction:

Base Case
To Show: is_sorted(qsort(Nil))
by definition of gsort

Inductive Step Take arbitrary y: Z, ys: list(Z)
Inductive Hypothesis is_sorted(gsort(ys))
To Show: is_sorted(gqsort(y :: ys))

The induction hypothesis cannot be used to gives us that
is_sorted(qsort(take_le(y,ys))) , northat is_sorted(qsort(take_gt(y,ys)))

Therefore, we cannot prove correctness of quicksort by structural induction.
We can, however, prove it by well-founded induction, similar to what we did with the proof of
termination in the previous section.

2.2 Second attempt: Well-founded induction

We will be using the well founded ordering <, defines as
ys < xs & len(ys) < len(xs)
Here is the structure of the proof:

Take a xs: list(Z) arbitrary
Inductive Hypothesis Vzs:list(Z). zs < xs = is_sorted(qsort(zs)).
To Show: is_sorted(gsort(xs))

1* Case: xs=Nil
To Show: is_sorted(gsort(Nil))
by definition of gsort

2" Case: xs#Nil. Therefore xs=Cons(y,ys) for some y:Z and ys: list(Z).
To Show: is sorted(gqsort(zs))

(1) is_sorted(gsort(take le(y,ys))) by Auxiliary Lemma 1, and IH
(2) is_sorted(gsort(take gt(y,ys))) by Auxiliary Lemma 2, and IH

(3) is_sorted(app(qsort(take_le(y,ys))), Cons(y, qsort(take_gt(y,ys)))
by (1), (2), and further Auxiliary Lemmas

The proof above shows how to obtain that is_sorted(gsort(take_le(y,ys))) and
is_sorted(gsort(take_le(y,ys))), but leaves open how to use these results to obtain that
is_sorted(app(qsort(take_le(y,ys))), Cons(y, qsort(take_gt(y,ys))).

We can reflect the handwritten proof into Dafny as follows:

Since we are ghost method prop_gsort(xs: list<int>)

defining a ensures is_sorted(qsort(xs));
decreases len(xs);

method we must {

prove it match xs {

terminates. Our case Nil =>

recursive calls case Cons(y, ys) =>

var le := gsort(take_le(y, ys));

are the same as :
assert is_sorted(le);

those to gsort,

SO we can use var gt := gsort(take_gt(y, ys));
the same assert is_sorted(gt);

assume is_sorted(app(le, Cons(y, gt)));

Again, we recompile, to check that this is a valid step.

Our proof is still incomplete because of the assume clause.

3. Partial correctness

We now turn our attention to our full proof aim
sz:Ust(Z)is_sorted(qsort(xs)) A perm(xs, qsort(xs))
and re-organize the code of prop_gsort slightly, to make it easier to work on the proof, as follows

ghost method prop_gsort(xs: list<int>)
ensures is_sorted(qsort(xs)) && perm(xs, gsort(xs));
decreases len(xs);
{
match xs {
case Nil =>
case Cons(y,) =>

var = take_le(y, ys);

var = take_gt(y, ys);

var := gsort(le);

var 1= gsort(gt);

var := app(sle, Cons(y, sgt)) ;

assume is_sorted(res) && perm(xs, res);

In order to complete the proof, we now think about the reasons that gsort is correct:

(1) le[0..le.length) <=y < gt[0..gt.length) properties take_le, take_gt

(2) le++[y]++gt is perm. of xs properties take_le, take_gt

(3) sleis perm. ofle, (1), and IH

(4) sleis sorted IH

(5) sgtis perm. of gt (2), and IH

(6) sgtis sorted IH

(7) sle[0..le.length) <=y < sgt[0..gt.length) (1), (2), (3), (5), properties of perm
(8) app(sle, Cons(y, sgt)) issorted (4), (6), (7) and properties of ++

(9) app(sle, Cons(y, sgt)) isperm.xs (3), (5), (2) and properties of ++, perm

The argument from above mentions further properties which we will need to prove wither through
adding postconditions to our functions, or through the provision of further ghost methods, and their
call within the body of prop_gsort.

In order to be able to discharge (1), we add the following postcondition to take_le and take_ gt:

function take_le(n: int, : list<int>): list<int>
ensures len(take_le(n, xs)) <= len(xs);
ensures forall z:: elem(z,take_le(n, xs)) ==> z<= n;
function take_gt(n: int, : list<int>): list<int>

ensures len(take_gt(n, xs)) <= len(xs);
ensures forall z:: elem(z,take_gt(n, xs)) ==> z> n;

3.1 Formulating the necessary sublemmas

We now further refine the proof as follows:

ghost method prop_gsort(xs: list<int>)
ensures is_sorted(qsort(xs)) && perm(xs,
decreases len(xs);
{
match xs {
case Nil =>
case Cons(y, ys) =>

var le := take_le(y, ys);
var gt := take_gt(y, ys);
assert forall z:: elem(z,le) ==> z<=y;
assert forall z:: elem(z,gt) ==> z>y;

assume perm(ys,app(le,gt));

var sle := gsort(le);
assert is_sorted(sle) && perm(sle, le);
assume forall z:: elem(z,sle) ==> z<=y;

var sgt := gsort(gt);
assert is_sorted(sgt) && perm(sgt, gt);
assume forall z:: elem(z,sle) ==> z>y;

var res := app(sle, Cons(y, sgt)) ;
prop_sorted_app(sle, y, sgt);
assert is_sorted(res);

prop_app_cons_perm(xs,y,le,sle,gt,sgt);
assert perm(xs, res);

gsort(xs));

// (1)
// (1)
/7 (2)

/1 (3), (4)
/71 (7)

/1 (5), (6)
/71 (7)

/7 (8)

/7 (9)

In the proof above, we assumed the properties from steps (2) and (7), and also, we defined two

auxiliary lemmas which will be used in steps (8) and (9).

requires is_sorted(xs);
requires is_sorted(ys);
requires forall z:: elem(z,xs) ==> z<=y;
requires forall z:: elem(z,ys) ==> z>y;
ensures is_sorted(app(xs, Cons(y, ys)));

ghost method prop_sorted_app(xs: list<int>, y: int, ys: list<int>)

ghost method prop_app_cons_perm<T>
(xs: list<T>, y: T, us: list<T>, us': list<T>,
vs: list<T>, vs': list<T>)
requires perm(xs, Cons(y, app(us,vs)))
&8& perm(us,us') && perm(vs,vs');
ensures perm(xs, app(us', Cons(y,vs')));

We now refine our proof:
In order the eliminate the assume clause in step (2), we need a further auxiliary lemma which states

ghost method prop_take_perm(n: int, : list<int>, ¢ list<int>, : list<int>)
ensures perm(xs, app(take_le(n,xs), take_gt(n,xs))) ;

To eliminate the assume clauses for step (7), we inline the necessary proofs in the code.

Therefore, we obtain:

ghost method prop _gsort (xs: list<int>)
ensures is_sorted(gsort(xs)) && perm(xs, qgsort(xs));
decreases len(xs);
{
match xs {
case Nil =>
case Cons(y,) =>

var := take_le(y, ys);

var := take gt(y, ys);

assert forall z:: elem(z,le) ==> z<=y; // (1)
assert forall z:: elem(z,gt) ==> z>y; // (1)
prop_take_perm(y,ys,le,gt);

assert perm(ys,app(le,gt)); /7 (2)

var := gsort(le);

assert is_sorted(sle) && perm(sle, le); // (3), (4)

forall (z:int) ensures elem(z,sle) ==> z<=y; // (7)
{ calc{ elem(z,sle);
==> { prop_perm_elem(z,sle,le) ; }
elem(z,1le);

==>
z <=y; }
}
var := gsort(gt);
assert is_sorted(sgt) && perm(sgt, gt); // (5), (6)

forall (z:int) ensures elem(z,sgt) ==> z>y; /] (7)
{ calc{ elem(z,sgt);
==> { prop_perm elem(z,sgt,gt) ; }

elem(z,gt);

==>

z>y; }

¥

var := app(sle, Cons(y, sgt)) ;
prop_sorted app(sle, y, sgt); // (8)
assert is_sorted(res);
prop_app_cons_perm(xs,y,le,sle,gt,sgt); // (9)
assert perm(xs, res);

Notice, that in order to prove step (7), we formulated a further auxiliary lemma, which guarantees

that any x which appears in a list ys, also appears in any permutation of ys:

ghost method prop_perm_elem<T>(x: T, ys: 1list<T>, zs: list<T>)
requires elem(x,ys) && perm(ys,zs);
ensures elem(x,zs);

3.2 Remaining proof obligations

The proof of the lemma prop_gsort as given in the previous page is incomplete, as it uses auxiliary

lemmas which we have not yet proven. We still need to prove the following lemmas:

ghost method prop_sorted_app(xs: list<int>, y: int, ys: list<int>)
requires is_sorted(xs);
requires is_sorted(ys);
requires forall z:: elem(z,xs) ==> z<=y;
requires forall z:: elem(z,ys) ==> z>y;
ensures is_sorted(app(xs, Cons(y, ys)));

ghost method prop_app_cons_perm<T>
(xs: list<T>, y: T, us: list<T>, us': 1list<T>,
vs: list<T>, vs': list<T>)
requires perm(xs, Cons(y, app(us,vs)))
&& perm(us,us') && perm(vs,vs');
ensures perm(xs, app(us', Cons(y,vs')));

ensures perm(xs, app(take_le(n,xs), take_gt(n,xs))) ;

ghost method prop_take_perm(n: int, xs: list<int>, le: list<int>, gt:

list<int>)

ghost method prop_perm_elem<T>(x: T, ys: list<T>, zs: list<T>)
requires elem(x,ys) && perm(ys,zs);
ensures elem(x,zs);

We leave the proof of these lemmas as an exercise. Some of these lemmas may require further the

proof of further auxiliary lemmas.

3.3 A more succinct version of prop_gsort

The proof of the lemma prop_gsort as given in section 3.1 was written with the aim to provide
some explanations as to how the proof works. However some of the clauses are unnecessary for
Dafny, as Dafny can make several reasoning steps implicitly. In the following we show a shorter,
perhaps less informative version of the proof, which, nevertheless also verifies:

ghost method prop_gsort3 (xs: list<int>)
// the "minimal version"
ensures is_sorted(gsort(xs)) && perm(xs, gsort(xs));
decreases len(xs);
{
match xs {
case Nil =>
case Cons(y, ys) =>

var le :
var gt :

take_le(y, ys);
take_gt(y, ys);

prop_take_perm(y,ys,le,gt);

var sle := gsort(le);
forall (z:int) ensures elem(z,sle) ==> z<=y; // (7)
{ calc{ elem(z,sle);
==> { prop_perm_elem(z,sle,le) ; }
elem(z,1le);

var sgt := gsort(gt);
forall (z:int) ensures elem(z,sgt) ==> z2>y; /! (7)
{ calc{ elem(z,sgt);
==> { prop_perm_elem(z,sgt,gt) ; }

elem(z,gt);

==

z>y; } }
prop_sorted_app(sle, y, sgt); // (8)
prop_app_cons_perm(xs,y,le,sle,gt,sgt); /7 (9)

}

How much detail you give in a Dafny proof is, of course a matter of personal style. We advocate the
use of assert-clauses to indicate what properties have been established so far.

In contrast, in handwritten proofs we will be following the style proposed in the lectures, breaking
the proof into assertion-steps, and justifying each step.

4., Exercises

You can now proceed to do the exercises titled Exercises Tail Recursion. and
Exercises_Flattening.

Chapter 4

Imperative programming in Dafny

In this lecture shall study how to write imperative programs in Dafny, how to write their
specification, and how to help Dafny prove the specifications. We will use pre-conditions and post-
conditions to specify our code. We will use loop invariants and assertions to verify our code.

1. From Java to Dafny - the little differences

The imperative part of Dafny is similar to a subset of Java. We shall study an example to illustrate
some small cosmetic differences between the two languages.

Here is the method “Find”, which returns the index of a given element in an array if it exists within
the array, and the length of the array otherwise.

goes before its name.

The return type of a method

Java

{
int i = 0;
while (i < a.length

&& a[i] != x)

{
}

return i;

}

i++;

Type parameters are themselves
parameterised by the operators they
have to support. Here we say that T

has to support “==".

Return values are declared
after the method’s
parameters, and must be
named, like parameters.
“Find” returns an int,
referred to as “r”.

-

Dafny can infer the
types of variables.

Dafny

method Find<T(Z=2)>(x: T, a: array<T>)

returns (r: int)

{
var i := 0;
while (i < a.Length
&& a[i] != x)
{
i=14+1;

return i;

}

kFind<T>(T x, T[] a)

Array types have special syntax.

v

Variable declarations
must be explicitly typed.

Array types use the regular
parameterised type syntax.

2r‘equir‘es a != null; /

Recall that pre-conditions
are declared using
“requires”. This method
would crash if given a null
array. Because methods
cannot crash in Dafny, we
must add this pre-condition
for the code to compile.

No “++” operator in Dafny.

2. Method Specifications

As for functions, we can use method pre-conditions and post-conditions to describe the method’s

requirements and its beahaviour.

Let’s write a specification for our “Find” method.

The first post-condition we want to verify is: r < a.Length = a[r] = x

method Find<T(==)>(x: T, a: array<T>)
returns (r : int)

requires a != null;

ensures r < a.lLength ==> a[r] == x;
{

var i := 0;

while (i < a.Length

&& a[i] != x)
{
i=1+1;

}

return i;
}

However, if we try to compile the method as above, we get:
Error: index out of range

Naming our return value is
useful, as we can then
refer to it in method post-
conditions.

The error message is referring to a[r] in the post-condition; namely, Dafny does not know that 0 <.

So, we add ensures @ <= r; to our post-conditions,

method Find<T(==)>(x: T, a: array<T>)

returns (r : int)
requires a != null;
ensures 0 <=r;

ensures r < a.length ==> a[r] == x;
{

var i := 0;

while (i < a.Length

&& a[i] != x)
{
ic:=1+1;

}

return i;
1

and it compiles. This means that Dafny has been able to establish automatically that this

postcondition is satisfied without further help from the programmer.

Note that the order in which we write the assertions matters. For example, the following

method Find<T(==)>(x: T, a: array<T>) returns (r :

requires a != null;
ensures r < a.lLength ==> a[r] == x;
ensures 0 <=r;

{ - }

does not compile, and throws: Error: index out of range

3. Verification

3.1 Partial Correctness and Loop Invariants

In the general case, when verifying functional properties of methods which contain loops, we will
need to supply invariants. To demonstrate this, we consider another post-condition for Find:

Vi0<j<r=alj]l #x

We add this postcondition to our code:

method Find<T(==)>(a: array<T>, x: T)

returns (r : int)

requires a != null;
ensures 0 <= r <= a.length;
ensures r < a.Length ==> a[r] == x;
ensures forall j :: @ <= j < r ==> a[j] != x;
var i := 0;
while (i < a.Length && a[i] != x)
{
i:=14+1;
}
return 1i;

Unfortunately, Dafny can verify neither r < a.Length nor Vj.0<j<r = a[j] # x.
Therefore, it creates the error message:

Input(..) Error BP5003 A postcondition might not hold on this return path.

We need to give more help to Dafny and specifically, we need to add invariants to the loop, as

already discussed

in the course.

The loop invariants are

i<a.length and Vj0<j<i=alj]l#x

method Find<T(==)>(a: array<T>, x: T)
returns (r : int)

requires a != null;
ensures @ <= r <= a.length;
ensures r < a.lLength ==> a[r] == x;
ensures forall j :: @ <= j < r ==> a[j] != x;
{
var i := 0;
while (i < a.Length & a[i] != x)
invariant i <= a.lLength;
invariant forall j :: @ <=% < 1 ==> a[]J]| != x;
{ <—
i:=1+ 1;
}
return 1ij;
}

We add invariants
using invariant.

This code compiles successfully and hence all post-conditions and invariants are verified. In
particular, Dafny also was able to prove termination of the loop, as it was able to automatically infer

the loop variant.

3.2 Assertions

We can use assertions, to check whether Dafny can prove that certain properties hold at specific
points in program execution.

method Find<T(==)>(a: array<T>, x: T)

returns (r : int)

requires a != null;

ensures @ <= r <= a.lLength;

ensures r < a.Length ==> a[r] == x;

ensures forall :: @<= J < r ==>al[j] = x;
{

var ‘= 0;

while (i < a.Length && a[i] != x)
invariant i <= a.Length;

invariant forall :1 0 <= 3j < 1i==>a[j] = x;

{ J (31 ’ Assertions
assert a[i] != x; <€~ describe the
i=1+ 1; state before and
assert a[i-1] != x; < after the

¥ assignment to i

r o= 1ij;

The code above compiles, which means that the assertions hold.

However, not all assertions are successful. For example << PUT AN INTERESTING EXAMPLE HERE>>>

3.3 Termination and decreases Clauses

Remember that all methods in Dafny must be proven to terminate. Therefore, loops also need to be
provan to terminate. To do this, Dafny tries to infer the loop variant, and tries to prove that the
variant decreases for every loop iteration, and that it is bouded. In the Find method as given earlier,
Dafny could infer the variant “a.Length - i”, and therefore could automatically prove termination
of the loop.

In the cases where Dafny cannot infer the loop variant, we supply it ourselves using the decreases
keyword. In the example below, we have McCarthy’s 91 function. It returns 91 for any input
x < 100, and x — 10 for any higher input.

method McCarthy91(x: nat) returns (n: nat)

{
n = x;
var i := 1; . . .
while (true) The loop variant is the pair
decreases (10 * i - n) + 90, n; <€ ((10*i-n)+90, n).
{ The ordering on these
if.in(? 100;){{ pairs is the lexicographic
if (i == .
return n - 10; ordering.
}
else {
n :=n - 10;
i=1-1;
}
}
else {
n := + 11;
i:=1+1;
}
}
}

Note that Dafny implicitly choses the lexicographic ordering on the pairs.

4., Exercises

You can now proceed to do the exercises titled Exercises Arithm_Terms_Loops and
Exercises Max_Product.

Chapter 5:
Incremental Development of
Imperative programs

In this chapter we shall study how to develop imperative Dafny programs Dafny in an incremental
manner. The approach mirrors that of functional programs as discussed in chapter 3. We will use
pre-conditions and post-conditions to specify our code, assume statements to allow ourselves to
skip some of the details to be added for later, and assert statements to ask Dafny to confirm that
some expected properties do, indeed, hold. We will also see how to inline method calls.

We will use a similar example as we did for functional programming, namely sorting. And because
we have imperative programming, we will be sorting an array.

The Dafny definitions for the functions and predicates from this chapter can be found in the file
Arrays_BubbleSort.dfy.

Step 1: Preliminaries: predicates and the sequences in Dafny

We will first define what it means for an array a to be sorted:
Sorted(a) & Vi,jinat.0<i<j<a.length - ali] < alj]
SortedBetween(a, from,to)
S

SortedBetween(a, 0, a.Length).

A definition of Sorted in Dafny is given below. Notice the reads clause, which indicates that the
predicate depends on the contents of the whole array.

predicate sorted_between(a: array<int>, from:int, to:int)
requires al= null;

reads a;
{
reads forall i,j :: from<=i<j O<=i<j<a.Length ==> a[i]<=a[j]
}
predicate sorted(a: array<int>) Must declare that the
requires al= null; function depends on
reads a; <€— contents of the whole array.
{
sorted _between(a,0,a.Length)

In order to define whether two arrays are permutations of each other, we use the concept of
sequences. These are introduced in http://rise4fun.com/Dafny/tutorialcontent/Sequences in detail.
In summary, a sequence s of type seq<T> is an ordered list. Sequences are immutable. The length of
a sequence is written as | s|. The slice notation s[i..k], where @<=j<=k<|s| has k-j elements,
starting at the i-th element, and continuing until the k-1*' element, unless the result is empty.
Notice that Dafnyonly supports closed-open intervals, and therefore the Dafny notation s[i..7]
corresponds to our course’s notation s[i..Jj). The notation s[k. .] is a shorthand for
s[k..|s]|], while [t] is asingleton seq<T>, where t is a value of type T, and + is the
concatenation operator.

We now define what it means for an array to be a permutation of another array.
Count(a,m) & card{ilali]=m}

Perm(a,b) & Vm.Count(a,m) = Count(b,m)

The Dafny definitions are as follows:

function count<T>(t:T, seq<T>): nat
{ if (|s] == @)
then ©
else if x == s[0]
then 1 + count(x, s[1..])
else count(x, s[1..])

}
predicate perm<T>(a: seq<T>, b: seq<T>)
{

forall t :: count(t, a) == count(t, b)
}

To obtain a sequence out of an array a, we can use the slice notation, a[..].

Step 2:. bubble Sort, Specification

We give the specification of the sorting function. Notice that in the pre-condition (requires clause)
any mention of the formal parameters (here a) refers to the contents of the parameters upon entry
to the method call, while in the pre-condition (ensures clause) any mention of the formal
parameters refers to their contents of the parameters upon exit from the method call. In the
ensures clause we indicate the value of a term t upon entry, through the notation old(t).
Therefore, 01d(a) is the value of the array pointer upon entry, while old(a[..]) is the value of
the contents of the array upon entry.

method bubbleSort(a: array<int>)) —
requires al!= null; Must declare that it modifies the
modifies a; N contents of the arrav.

ensures perm(a[..],old(a[..])) && sorted(a);

Therefore, in the above, the ensures clause requires that upon exit from the
function call, the contents of the array is a permutation of its contents upon entry, and moreover,
that it will be sorted.

Step 3:. bubbleSort, sketching the body

We now take a first stab at the method body for bubbleSort . We can assume that we will be sorting
the array gradually from left to right, while maintaining the property that the array is a permutation
of the original array:

method bubbleSort(a: array<int>)

requires a != null; We have not yet
modifies a; specified how we
ensures perm(a[..],old(a[..])) && sorted(a); will sort the

{ _ array..
var i: nat := 0;

while i < a.Length
invariant @ <= i <= a.lLength:
invariant sortedBetweenta; 0, i) && perm(a[..],old(a[..]));
decreases a.lLength—="1;

i:= i1,
assume sortedBetween(a, 9, i) && perm(a[..],old(al[..]));

Note that we have an assume clause in the method body. This means that the method cannot be
compiled. Instead, we need to replace the assume clause by a piece of code which will provide an
implementation for the guarantee given by the assume clause.

Step 4:. Introducing an auxiliary method

We now replace the assume clause by a call to a method which is supposed to achieve the
difference that is required by each loop iteration. This is done by the method pushToRight:

method bubbleSort (a: array<int>)
requires a != null && a.Length > ©;
modifies a;
ensures perm(old(al[..]),a[..]) && sorted(a);

var 1: nat := 1;
assert sortedBetween(a, 9, i);
while i < a.lLength
invariant @ < i <= a.lLength;
invariant perm(old(af[..]),a[..]) && sortedBetween(a, 0. i);:

decreases a.lLength - i; We have not yet
{)) given a method
pushToRight(a, i); body for
} i:=14+1; pushToRight

assert sortedBetween(a, 9, a.Length);

}

method pushToRight(a: array<int>, i: nat)
requires al!=null && ©<i<=a.Length && sortedBetween(a,0,i-1);
modifies a;
ensures sortedBetween(a,0,i) && perm(old(al[..]),a[..1);

The method as given above does not verify. In fact, Dafny gives the error message that it cannot
prove that the invariant “perm(old(a[..]),a[..])” is preserved by the loop body. We
therefore need to give some help to Dafny to make this proof. The logical argument that underpins
that the loop body does, indeed, preserve the invariant is, that at the beginning of the loop body,
and before the call to pushToRight, the value of a[. .] is a permutation of old(a[..]), and,
because of the specification of pushToRight, after the call, a[. .] is a permutation of what a[..]
was before the call. Therefore, because the permutation relation is transitive, we also have that at
the end of the loop body, the value of a[. .] is a permutation of the value of old(a[..]).

In order to express this argument, we need to a) introduce ghost variables for the value of al[..] at the
start and at the end of the loop body, and b) prove a lemma that guarantees that permutation is a
transitive relation. Note that ghost variables are indicated by the keyword ghost. They form part of
the correctness argument and may appear in the call of ghost methods, but not in the normal
calculations of a method.

The lemma that guarantees that permutation is a transitive relation is given here

ghost method perm_trans<T>(a: seq<T>, b: seq<T>, c: seq<T>)
requires perm(a,b) && perm(b,c);
ensures perm(a,c);

{ }

We now complete the argument for the preservation of the invariant within the loop body. We
introduce ghost variables a_before and a_after to distinguish the contents of a[. .] before and
after the call of pushToRight.

method bubbleSort (a: array<int>)
requires a != null && a.lLength > ©;
modifies a;
ensures perm(old(al[..]),a[..]) && sorted(a);

var i: nat := 1;

assert sortedBetween(a, 9, i);

while i < a.Length
invariant @ < i <= a.lLength;
invariant perm(old(a[..]),a[..]) && sortedBetween(a, 0, i);
decreases a.Length - 1i;

{
ghost var a_before := a[..];
assert perm(old(a[..]), a_before);
pushToRight(a, i);
ghost var a_after := a[..];
perm_trans(old(a[..],a_before,a after);
assert perm(old(af[..],a_after);
i:=1+ 1;

}

The method as defined above now verifies in Dafny. We can also make a shorter version:

method bubbleSort (a: array<int>)
requires a != null && a.Length > 0;
modifies a;
ensures perm(old(a[..]),a[..]) && sorted(a);

var 1i: nat := 1;

assert sortedBetween(a, 9, i);

while i < a.Length
invariant @ < i <= a.lLength;
invariant perm(old(a[..]),a[..]) && sortedBetween(a, 0, i);
decreases a.lLength - 1i;

{
ghost var a_before := a[..];
pushToRight(a, i);
perm_trans(old(a[..],a_before,a[..]);
i:=14+ 1;

}

Step 5:. The body of method pushToRight

We now give a method body for pushToRight. This method, in its turn, calls method swap(_, ,),
which swaps the contents of array a at indices j-1 and j.

method pushToRight(a: array<int>, i: nat)
requires a != null & & © < i < a.Length && sortedBetween(a, 0, i);
modifies a;
ensures perm(old(af[..]),a[..]) && sortedBetween(a, 0, i + 1);

var j: nat := i;

while j > @ && a[j - 1] > a[j]
invariant @ <= j <= 1i;
invariant perm(old(a[..]),a[..]);
invariant sortedBetween(a, 9, j) && sortedBetween(a, j, i + 1);
invariant forall k, k' :: @ <=k < jJ && j +1<=k"' <i+1
==> a[k] <= a[k'];

Swap(a:j'l:j);
joi=3-1;
}
}

method swap<T>(a: array<T>, i: nat, j:nat)
// swaps a[i] and a[j] in the array a
requires al!=null && ©<=i<a.Length && 0©<=j<a.Length ;
modifies a;
ensures swapped(old(a[..]),a[.-.1,1i,3);

predicate swapped<T>(a:seq<T>, b:seq<T>, i: nat, j:nat)
requires |a|==|b| && @<=i<|a| && 0@<=j<|al;
{ (forall k:: @<=k<|a| & k!=i && k!=j ==> a[k]==b[k])
&&
(b[j]==a[i])
&&

(b[i]==a[]j]) }

Notice that Dafny can independently infer the variant, and we do not need to supply an explicit
decreases clause.

However, Dafny cannot prove the correctness of method pushToRight, and in particular, it cannot
prove that the method body preserves “perm(old(al..]),a[..]);”. The argument here hinges
on the fact that swapping elements in sequences creates permutations, as stated in lemma
swap_implies_ perm below. As in step 4, we need to introduce a ghost variable to “remember”
the contents of a[. .] before swapping and use this variable when calling the lemma.

The following version of the method body verifies in Dafny:

method pushToRight(a: array<int>, i: nat)
requires a != null & © < i < a.Length && sortedBetween(a, 0, i);
modifies a;
ensures perm(old(a[..]),a[..]) && sortedBetween(a, @, i + 1);

var j: nat := i;

while j > @ & & a[j - 1] > a[j]
invariant @ <= j <= i;
invariant perm(old(a[..]),a[..]);
invariant sortedBetween(a, 9, j) && sortedBetween(a, j, i + 1);
invariant forall k, k' :: @ <=k < j & j +1<=k"' <1i+1
==> a[k] <= a[k'];

ghost var a before := a[..];
Swap(a)j'l)j);
swap_implies perm(a_before,al[..],3-1,3);
ji=3-1;
}
}

ghost method swap_implies_perm<T>(a:seq<T>, b:seq<T>, i: nat, j:nat)
requires|al==|b| && @<=i<|a| && ©<=j<|a| && swapped(a,b,i,j);
ensures perm(a,b);

Step 6:. The method body of swap

We now write the method body for swap, which verifies in Dafny without further need for
justification:

method swap<T>(a: array<T>, i: nat, j:nat)
// swaps a[i] and a[j] in the array a
requires al=null && ©@<=i<a.lLength & & ©<=j<a.Length ;
modifies a;
ensures swapped(old(al[..]),a[..]1,1,3);

{
var temp : T := a[i];
a[i]:=a[]];
a[j]:=temp;

Step 7:. Inlining the body of method pushToRight within method bubbleSort

We can now replace the method call to swap inside body of bubbleSort by its body, and we can
replace the call to pushToRight inside the loop body within method bubbleSort, by its body.
We will also inline the invariants accordingly:

method bubbleSort(a: array<int>)
requires a != null && a.Length > 0;
modifies a;
ensures perm(a[..], old(a[..])) && sorted(a);

var i: nat := 1;

while i < a.Length
invariant @ < i1 <= a.lLength;
invariant perm(a[..], old(a[..])) && sortedBetween(a, 0, i);
decreases a.Length - i;

{ wvar j: nat := i;

while j > 0 && a[j-1] > a[j]
invariant @ <= j <= 1i;
invariant perm(a[..], old(a[..]));
invariant sortedBetween(a, 0, j) && sortedBetween(a, j, i + 1);
invariant forall k, k' :: @ <=k < jJ && j +1<=k"' <i+1
==> a[k] <= a[k'];

{
ghost var a_before := a[..];
var temp: int := a[j - 1]; a[j - 1] := a[j]; a[j] := temp;
ghost var a after := a[..];
swap_implies_perm(a_before,a_after,j-1,3);
j o= 3-1;
}
i:=1+1;
}
}
Exercises

You can now proceed to do the exercises titled Exercises Insertion_Sort..

