Verified programming in Dafny

Will Sonnex and Sophia Drossopoulou

An introductory course to the use of Dafny for writing programs with fully verified specifications.

Acknowledgements: The development of this material has been supported by a gift from Microsoft Research, and a visit to Microsoft Research, organized and hosted by Judith Bishop, and Rustan Leino. We thank Judith Bishop for organizing the gift, and all aspects of the visit, and Rustan Leino for the tool Dafny, and for many useful discussions.

Chapter 1: Introducing Dafny

Dafny is a hybrid language, with functional and object oriented features, which can automatically check programs against specifications. By defining theorems, and using pre- and post-conditions, loop invariants, assertions, and many other constructs, you can build fully verified programs. This means that any program accepted by the Dafny verifier, is guaranteed to be totally correct – ie terminate (it will never crash or loop infinitely), and partially correct (if it terminates then it satisfies its specification).

Dafny uses a very powerful theorem prover called Z3. This allows it to prove the correctness of some, but not all, programs. For the cases where the theorem prover cannot do the proofs unaided, it may require some help from you.

In this course, we shall study how to write Dafny programs, how to write specifications, and how to augment Dafny code with more help for the theorem prover. We will not cover all features of Dafny.

NOTE: The way you prove a program in Dafny is similar, but not identical, to the way you write by hand the proof for a program in the course Reasoning about Programs. In particular, Dafny can do many steps automatically, and your proofs in Dafny will shorter than those for our course. Moreover, Dafny uses a different syntax, and proofs in Dafny look, in some way, like programs.

An Example: Binary Search

As an example, here is a fully verified implementation of the binary search algorithm:

The parts highlighted in grey are not part of the program itself; they are the parts that are checked by the Dafny verifier.

```
method BinarySearch(a: array<int>, key: int)
  returns (index: int)
  requires a != null && sorted(a);
  ensures index >= 0 ==> index < a.Length && a[index] == key;</pre>
  ensures index < 0 ==> forall k :: 0 <= k < a.Length ==> a[k] != key;
  var low := 0;
  var high := a.Length;
  while (low < high)</pre>
    invariant 0 <= low <= high <= a.Length;</pre>
    invariant forall i ::
      0 \leftarrow i \leftarrow a.Length \&\& !(low \leftarrow i \leftarrow high) ==> a[i] != key;
    var mid := (low + high) / 2;
    if (a[mid] < key) {</pre>
      low := mid + 1;
    else if (key < a[mid]) {</pre>
      high := mid;
    else {
      return mid;
  return -1;
}
```

Using Dafny from Visual Studio

Visual Studio may be upgraded so as to incorporate Dafny. To use Dafny in Visual Studio, open a .dfy file in Visual Studio. Try opening the provided "BinarySearch.dfy" file; you should see correct syntax highlighting.

Visual studio will automatically compile and verify your code once it is loaded. If you edit a part of your code it will re-compile just that part. It uses coloured bars on the left-hand side of the editor window to let you know what phase different parts of your code are at:

An orange bar means that this your code differs from the latest version..

```
var mid := (low + high) / 2;
if (a[mid] < key) {
   low := mid + 1;
}</pre>
```

A purple bar means that your code is being verified by the theorem prover.

```
var mid := (low + high) / 2;
if (a[mid] < key) {
   low := mid + 1;
}</pre>
```

No bar means the checking is complete, but not necessarily that your code is correct.

```
var mid := (low + high) / 2;
if (a[mid] < key) {
    low := mid + 1;
}</pre>
```

Squiggly underlining indicates incorrect or unverifiable code (like a spell checker in a word processor). Mouse-over the squiggly line to get a popup indicating the exact problem. Here's an example where I edited the BinarySearch method to prompt and error:

Moreover, at the bottom of the window you can see a complete list of all errors. (You might need to enable the viewing of errors, by selecting the View Menu, and then clicking Error List).

Using Dafny from the command line

While we recommend using the Visual Studio integration under Windows (because it's cooler); you can also run Dafny from the command line in both Windows and Linux. For example, here is the compilation of "BinarySearch.dfy"

```
Windows PowerShell

PS C:\Users\Will\Dropbox\dafnyic\dafny_ic\ dafny \BinarySearch.dfy
Dafny program verifier version 2.2.30705.1126, Copyright (c) 2003-2012, Microsoft.

Dafny program verifier finished with 3 verified, 0 errors
Compiled assembly into \BinarySearch.dll
PS C:\Users\Will\Dropbox\dafnyic\dafny_ic\

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
```

Here is the compilation of the same file, with the error we demonstrated earlier:

```
Windows PowerShell

PS C:\Users\Will\Dropbox\dafnyic\dafny_ic\ dafny .\BinarySearch.dfy

Dafny program verifier version 2.2.30705.1126, Copyright (c) 2003-2012, Microsoft.

\[
\text{NBinarySearch.dfy(23,10): Error: index out of range}
\]

Execution trace:

(0,0): anon0

\[
\text{NBinarySearch.dfy(17,3): anon19_LoopHead}

(0,0): anon19_LoopBody
\]
\[
\text{NBinarySearch.dfy(17,3): anon20_Else}

(0,0): anon10
\]
\[
\text{NBinarySearch.dfy(17,3): anon25_Else}
\]

Dafny program verifier finished with 2 verified, 1 error

PS C:\Users\Will\Dropbox\dafnyic\dafny_ic\\

\[
\text{V}
\]
```

Installing Dafny on a home machine

To download Dafny visit http://dafny.codeplex.com and follow the installation instructions. You will also need to install Z3 (the theorem prover Dafny uses), from http://z3.codeplex.com. Once

downloaded you can execute "Dafny.exe" from the command line, or if you have Visual Studio run "DafnyLanguageService.vsix" to install the Visual Studio integration.

One thing they neglect to mention for the Visual Studio integration is that you need to copy the contents of the Z3 binary directory (e.g. "C:\Program Files\Z3\bin") into the Dafny Visual Studio language extension directory (e.g.

"C:\Users\...\AppData\Local\Microsoft\VisualStudio\10.0\Extensions\Microsoft Research\DafnyLanguageMode\1.0") after installation.

Chapter 2 Functional programming in Dafny

We will now study how to write functional programs in Dafny, how to write their specification, and how to help Dafny prove that the programs satisfy their specifications.

1. From Haskell to Dafny - the little differences

The functional part of Dafny is similar to a subset of Haskell. We shall study two examples to illustrate some small cosmetic differences between the two languages.

1.1 Fibonacci in Haskell and in Dafny

1.2 Power function in Haskell and in Dafny

Here is a function calculating the n-th power of 2 expressed in Haskell and Dafny. This example illustrates multiple function arguments, and the declaration of variables:

2. User defined datatypes and pattern matching

We shall now show how to define algebraic datatypes in Dafny (the data declarations in Haskell), and then how to perform pattern matching on these types.

2.1 Defining a binary tree

Haskell

2.2 Defining a mirror function

This example demonstrates pattern matching on our recursive Tree data-type.

In Haskell, the two definitions of mirror are equivalent. The "equational" style of the first definition does not exist in Dafny however. You can only use the second style.

```
mirror :: Tree a -> Tree a
mirror (Leaf x) = Leaf x
mirror (Node l r) = Node (mirror r) (mirror l)

mirror :: Tree a -> Tree a
mirror t = case t of
    Leaf x -> Leaf x
    Node l r -> Node (mirror r) (mirror l)
```

In Dafny, any type parameters used may be given after the function name too. The function is also seen as being parameterised by this type.

Dafny

```
function mirror<T>(t: tree<T>): tree<T>
{
   match t
   case Leaf(x) => Leaf(x)
   case Node(1, r) => Node(mirror(r), mirror(1))
}
```

2.3 Implicit Polymorphism in Dafny

Note that Dafny can implicitly introduce type missing type parameters into function declarations. Therefore, the following form compiles

```
datatype tree<T> = Leaf(T) | Node(tree<T>, tree<T>);
function mirror(t: tree): tree
{
  match t
  case Leaf(x) => Leaf(x)
  case Node(1, r) => Node(mirror(r), mirror(1))
}
```

3. Pre-conditions and total functions

Dafny requires that functions should never crash, and not loop for ever. We will now illustrate how we can stop functions from crashing or looping, by using pre-conditions which restrict their inputs.

3.1 Fixing our Fibonacci function

Here is the Dafny Fibonacci function we defined earlier:

This is not a correct definition however, as fib(-1) does not equal 1.

The function should be undefined for n < 0.

```
function fib(n: int): int
{
   if n <= 1
    then 1
   else fib(n-1) + fib(n-2)
}</pre>
```

In Haskell we can define fib like this:

This function is no longer defined at for n < 0, it will loop instead.

However, try to compile this in Dafny:

```
function fib(n: int): int
{
   if (n == 0 || n == 1)
   then 1
   else fib(n-1) + fib(n-2)
}
```

You will get:

Error: decreases expression must be bounded below by 0

This is because Dafny only accepts definitions if it is able to prove that they terminate. Therefore, we need to define the function fib in such a way, that it is never called with an n < 0.

We can add pre-conditions as comments to Haskell functions, for example:

Such comments help programmers, but mean nothing to the compiler, which will accept any value from Int as an input to fib.

In Dafny, we can add pre-conditions to a function using "requires":

Now this function only accepts arguments greater than or equal to zero.

```
function fib(n: int): int
  requires n >= 0;
{
  if (n == 0 || n == 1)
   then 1
  else fib(n-1) + fib(n-2)
}
```

In effect, we have refined the input type of fib from "all integers" to "all integers ≥ 0 ". Every time fib is called Dafny will check to make sure its input is ≥ 0 .

3.2 Defining list destructors

The head and tail functions from Haskell are known as the list "destructors", as they break a list up into the parts that the cons constructor put together.

These are not total functions, as they are undefined (will crash) when given an empty list as input.

```
head :: [a] -> a
head (x:xs) = x
tail :: [a] -> [a]
tail (x:xs) = xs
```

Hence we cannot define head and tail without further thought in Dafny; the functions below will not compile:

```
The error we get is:
                                             datatype list<A> = Nil | Cons(A, list<A>);
   missing case in case statement: Nil
                                            function head<A>(xs: list<A>): A
                                            {
We are missing the "case Nil => ..."
                                               match xs
   in both of these pattern matches
                                            > case Cons(y, ys) => y
                                            }
"requires" to the rescue again:
                                            function tail<A>(xs: list<A>): list<A>
we need to make sure that head/tail
                                            match xs
                                               case Cons(y, ys) => ys
     To observe this, try compiling the following }
    function g1(n: int) : int { fib(-4) }
   function g2(n: int) : int { fib(n) }
   function g3(n: int) : int requires n >= 0; { fib(n) }
```

are only given non-empty lists.

These definitions will compile:

```
function head<A>(xs: list<A>): A
  requires xs != Nil;
{
  match xs
  case Cons(y, ys) => y
}

function tail<A>(xs: list<A>): list<A>
  requires xs != Nil;
{
  match xs
  case Cons(y, ys) => ys
}
```

4. Proving function properties

In this section we will demonstrate how to specify and prove properties of functions within Dafny.

4.1 Specifying natural numbers, and Even and Odd predicates, and addition

Here is the standard definition of \mathbb{N} as a recursive data-type in Dafny, with a recursive function add:

Building on this definition, we can proceed and define predicates for Odd and Even numbers. Note that the predicates are inductively defined.

```
datatype natr = Zero | Succ(natr);

predicate Odd(z: natr)
{
    match x
        case Zero => false
        case Succ(Zero) => true
        case Succ(z) => Odd(z)
}

predicate Even(z: natr)
{
    match x
        case Zero => true
    case Succ(Zero) => false
        case Succ(z) => Even(z)
}
```

Note: Rather than defining natr, we could use Dafny's built-in nat type, defined as $int \ge 0$, but defining our own datatype and proving properties will be a useful example.

And we can also specify a recursive function add:

```
function add(x: natr, y: natr): natr
{
  match x
  case Zero => y
  case Succ(x') => Succ(add(x', y))
}
```

One simple property we would like to be able to prove is $\forall x : \mathbb{N}. x + 0 = x$. That is to say:

 $\forall x : natr. add(x, Zero) = x$

4.2 Using ghost methods to express properties

We declare properties by using post-conditions on "ghost method"s. Ghost methods are code that is used by the Dafny verifier, but are not part of the executable programme. Post-conditions are declared using the "ensures" keyword; they specify properties that should hold after the method executes.

4.2.a Property prop_add_Zero: $\forall x : natr. add(x, Zero) = x$

Start a new Dafny file and input the definitions for natr, add and prop_add_Zero, making sure it compiles.

Notice that Dafny can verify prop_add_Zero *automatically*, even though the hand-proof requires induction!

```
4.2.b. Property prop_add_Succ: \forall x, y : \mathbb{N}. Succ(x + y) = x + Succ(y)
```

Any property that requires a single structural induction step and no auxiliary lemmas Dafny should be able to prove automatically. Here is another such property of + which you should input:

```
\forall x,y: \mathbb{N}. Succ(x+y) = x + Succ(y)
```

```
ghost method prop_add_Succ(x: natr, y: natr)
  ensures Succ(add(x, y)) == add(x, Succ(y));
{ }
```

4.3 Verification when proofs require auxiliary lemmas

Now we will specify and prove that our add function is commutative, i.e.

```
\forall x, y : \mathbb{N}. x + y = y + x
```

Input prop_add_comm and re-run Dafny.

```
ghost method prop_add_comm(x: natr, y: natr)
  ensures add(x, y) == add(y, x);
{ }
```

You will see that Dafny fails to automatically prove prop add comm.:

Error: A postcondition might not hold on this return path.

As we saw earlier, Dafny will apply function definitions and inductive hypotheses automatically, hence why it can prove prop_add_Zero and prop_add_Succ by itself, as this is all these proofs require. However, Dafny does not apply lemmas automatically, and prop_add_comm requires two.

To see how we verify this in Dafny we first look at the hand-proof:

```
Base case:
To Show: \forall y : natr. add(Zero, y) = add(y, Zero)
Take an arbitrary y : natr
add(Zero, y)
                               (by definition of add)
= y
                               (by prop_add_Zero)
= add(y, Zero)
Inductive step:
Take an arbitrary x : natr
Inductive Hypothesis: \forall y : natr. add(x, y) = add(y, x)
To Show: \forall y : natr. add(suc(x), y) = add(y, suc(x))
Take an arbitrary y: natr
add(succ(x), y)
= Succ(add(x,y))
                               (by definition of add)
= Succ(add(y,x))
                               (by IH)
= add(y, Succ(x))
                               (by prop_add_Succ)
```

We can now write the corresponding proof in Dafny. We use a case analysis to reflect the Base case, and the inductive step. We use calc-expressions, to justify each step. The application of the induction hypothesis corresponds to calling the ghost method itself (here prop_add_comm) with "smaller" arguments:

Dafny can do several of the above steps implicitly, and therefore the following will also verify:

```
ghost method prop_add_comm(x: natr, y: natr)
  ensures add(x, y) == add(y, x);
{
  match x {
    case Zero =>
       calc {
           add(Zero, y)
        == { prop_add_Zero(y); }
           add(y, Zero);
      }
    case Succ(x') =>
      calc {
           add(x, y);
        == { prop_add_Succ(y, x'); }
           add(y, Succ(x'));
      }
  }
}
```

Dafny can also verify the property just by calling the appropriate ghost methods (lemmas) in the base case and inductive step. Therefore, the following version also verifies:

```
ghost method prop_add_comm(x: natr, y: natr)
  ensures add(x, y) == add(y, x);
{
  match x {
    case Zero =>
        prop_add_Zero(y);
    case Succ(x') =>
        prop_add_Succ(y, x'),*
    }
}
Calling a ghost method (or any method) adds its post-conditions as usable properties for the Dafny checker.
```

```
By calling prop_add_Succ(y, x') we have added:
Succ(add(y, x')) == add(y, Succ(x'))
to the facts which Dafny knows at this point, and which it can use to complete the verification.
```

4.3 Expressing Implications

In order to express an implication in a ghost lemma, we can use the requires clause to express the condition, and the ensures clause, to express the conclusion. For example, we can encode

```
\forall x, y : \mathbb{N}. Odd(x) \land Odd(y) \Rightarrow Even(x + y)
```

through

```
ghost method add_Odd_Odd_is_Even(u: natr, v: natr)
    requires Odd(u) && Odd(v);
    ensures Even(add(u,v);
{ }
```

4.4 Conclusions

Declaring a ghost method == Expressing a lemma.

Calling a ghost method == Using a lemma.

Body of a ghost method == Proving a lemma.

5. Exercises

You can now proceed to do the exercises titled Exercises_Lists and Exercises_Change.

Chapter 3 More on Proof Development

We will now discuss the construction of larger proofs in Dafny, and the tools Dafny provides for the development of proofs in a "top-down" manner, and which allows us to concentrate on the "architecture" of the proof, before going on to the detailed proof steps. Dafny offers two features:

- assume statements, which allow us to assume, and use an assertion without proving it,
- the declaration of ghost methods which stand for lemmas, but without supplying the ghost
 method's body; this amounts to a lemma which has not yet been proven, but which can be
 used in other proofs similar to the declaration of a function/method, which can be called
 even before the appropriate method/function body is available.

Of course, a proof is not complete until all proof obligations have been discharged, *i.e.*, all assume statements have been replaced, and all ghost methods have been supplied with appropriate bodies.

In this chapter, we will also show how hand-written proofs can guide the development of the Dafny proof, while the Dafny tool can give us confidence that all proven properties hold.

As an example, we will study the verification of the function quick-sort (*qsort*), invented by Tony Hoare in 1960 (http://en.wikipedia.org/wiki/Quicksort), and which sorts an array or list of n elements by applying O(n log n) comparisons. In this chapter we will look at the functional version of the function, and we shall prove:

 $\forall xs: list(\mathbb{Z}). is_sorted(qsort(xs)) \land perm(xs, qsort(xs))$

Definitions are provided in "Quicksort.dfy". The function qsort(xs) sorts a list xs, the predicate $is_sorted(x)$ says that its argument xs is sorted, and the predicate perm(xs,ys) expresses that xs is a permutation of ys. Moreover, the functions $take_le(y,ys)$, resp. $take_gt(y,ys)$ return the sublist of ys containing all elements less-or equal to, respectively greater than, y.

1. Termination of the function qsort

Here is the body of the function qsort

```
function qsort(xs: list<int>): list<int>
{
    match xs
    case Nil => Nil
    case Cons(y, ys) =>
        var sle := qsort(take_le(y, ys));
    vars gt := qsort(take_gt(y, ys));
    app(sle, Cons(y, sgt))
}
The two recursive calls with the terms
take_le(y, ys) and
take_gt(y, ys) as arguments.
```

Dafny requires that every function terminates for every valid input, and will not accept a function definition unless it can prove this. It will attempt to prove termination automatically, by trying to show that any recursive calls take place with arguments which are *structurally* smaller than the original arguments. However, in the body of qsort, the recurisve calls are made with the arguments take_le(y, ys) and take_gt(y, ys, which are not necessarily *structurally* decreasing. Therefore, the function as defined above does not compile in Dafny.

However, we can give Dafny further information to help it prove termination. Namely, we know that that the *length* of the input decreases with each nested call. Therefore, we update the definition of qsort through a decreases clause as follows:

```
To show termination,
we supply a term
whose value decreases
with every recursive
call. In this case the
length of the input list.

function qsort(xs: list<int>): list<int>
decreases len(xs);

{
    match xs
    case Nil => Nil
    case Cons(y, ys) =>
    var sle := qsort(take_le(y, ys));
    var sgt := qsort(take_gt(y, ys));
    app(sle, Cons(y, sgt))
}
```

In general, a decreases clause provides some "measure" that decreases on every recursive call to the function within the function body.

Note: The argument that qsort terminates because every recursive call takes place on parameters which are smaller in terms of a decreasing measure corresponds to well-founded induction. Namely, we define the following well-founded ordering (<):

```
ys < xs \Leftrightarrow len(ys) < len(xs)
```

i.e. ys is "smaller than" xs iff the length of ys is less than the length of ys. And we then prove the lemma

```
\forall xs: list(\mathbb{Z}). \ qsort(xs) \ terminates.
```

using the well-founded ordering on xs.

An equivalent view is, that we prove that

```
\forall n: \mathbb{N}. \, \forall xs: list(\mathbb{Z}). \ length(xs) = n \Rightarrow qsort(xs) \ terminates.
```

in which case the proof goes by mathematical induction.

However, even though we have provided the decreases-measure, the definition of qsort still does not compile, and Dafny complains: "failure to decrease termination measure". In order to find out why, we consider the proof of termination of qsort by well founded ordering.

```
Take a xs: list(\mathbb{Z}) arbitrary
Inductive Hypothesis \forall zs: list(\mathbb{Z}). zs \prec xs \Rightarrow qsort(zs) terminates.
To Show: qsort(xs) terminates
1<sup>st</sup> Case: xs=Nil
To Show: qsort(Nil) terminates
by definition of qsort
2<sup>nd</sup> Case: xs \neq Nil. Therefore xs = Cons(y,ys) for some y:\mathbb{Z} and ys: list(\mathbb{Z}).
To Show: qsort(Nil) terminates
(1) take_le(y,ys) terminates
                                           by body of take le (recursive calls on
                                           structurally smaller arguments)
(2) take_gt(y,ys) terminates
                                           similar argument to (1)
(3) take\_gt(y,ys) < ys
                                           by Auxiliary Lemma 1
(4) qsort(take_le(y,ys)) terminates
                                           by (1), (2), (3) and IH
(5) qsort(take\_gt(y,ys)) terminates similar to (1)-(4), using Auxiliary Lemma 2
(6) qsort(xs) terminates
                                           by (1), (2), by body of qsort,
```

```
Auxiliary Lemma 1: \forall y : \mathbb{Z}. \forall y s : list(\mathbb{Z}). \quad take\_le(y, ys) < ys
```

```
Auxiliary Lemma 2: \forall y : \mathbb{Z}. \forall y s : list(\mathbb{Z}). \quad take\_gt(y, ys) \prec ys
```

The important observation is, that in order to prove termination of qsort, we need the two auxiliary lemmas from above.

We now turn back to the argument about termination of qsort in Dafny. Remember, that Dafny requires any function defined to be terminating, and therefore, proof of termination cannot be separated from the definition of the function (as we did in the hand-written proof above). Instead, the definition of the function, the function body, and the definition the functions used within the function body, need to provide sufficient information for Dafny to be able to "convince itself" that the function terminates.

For this reason, we make the two auxiliary lemmas, i.e. Auxiliary Lemma 1 and Auxialliary Lemma 2, part of the definition of take_le and take_gt:

```
function take_le(n: int, xs: list<int>): list<int>
  ensures len(take_le(n, xs)) <= len(xs);</pre>
```

```
function take_gt(n: int, xs: list<int>): list<int>
  ensures len(take_gt(n, xs)) <= len(xs);</pre>
```

These post-conditions, along with "decreases len(xs);" in the definition of qsort, allow Dafny to prove that the qsort function terminates. Compare these three lines with of Dafny with our longer, hand-written proof. As we said earlier, Dafny is often able to find proof steps implicitly.

2 First stab at Partial correctness: structural vs well-founded induction

We will now move onto proving the correctness of our qsort function.

The technique used in this sheet is "top-down" proof, where you start with the eventual goal, and iteratively break it down into simpler and simpler sub-properties.

Here is our eventual goal:

```
\forall xs: list(\mathbb{Z}). is\_sorted(qsort(xs)) \land perm(xs, qsort(xs))
```

2.1 First attempt: Structural Induction.

To simplify the discussion, we concentrate first on the following, simpler proof obligation:

```
\forall xs: list(\mathbb{Z}). is\_sorted(qsort(xs))
```

We define the proof goal in the ghost method prop_qsort.

```
ghost method prop_qsort(xs: list<int>)
  ensures is_sorted(qsort(xs));
{
  assume is_sorted(qsort(xs));
}
The assume keyword
introduces an assumption
which is not checked.
```

Since we have assumed the goal, the file will compile and be verified. It is important to recompile after each step, so as to make sure that we haven't made any mistakes.

However, our proof is not complete, and we need to replace the assume clause with appropriate statements. To do this, we break our property down into simpler sub-properties. We first case-split on xs, and since the base case is trivial, we expect Dafny to be able to prove it without further assistance. Hence, the following code compiles:

```
ghost method prop_qsort(xs: list<int>)
  ensures is_sorted(qsort(xs));
{
  match xs {
  case Nil =>
  case Cons(y, ys) =>
    var sle := qsort(take_le(y, ys));
   var sgt := qsort(take_gt(y, ys));
   assume is_sorted(app(sle, Cons(y, sgt)));
}
```

We will now try to prove the inductive step (case where xs is Cons(y,ys)). To do that, we expect to be able to apply the inductive hypothesis, and obtain, that $is_sorted(sgt)$ and that $is_sorted(sgt)$. To try this out, we can type

```
ghost method prop_qsort(xs: list<int>)
  ensures is_sorted(qsort(xs));
{
  match xs {
  case Nil =>
  case Cons(y, ys) =>
    var sle := qsort(take_le(y, ys));
    var sgt := qsort(take_gt(y, ys));
    assert is_sorted(sle) && is_sorted(sgt);
    assume is_sorted(app(sle, Cons(y, sgt)));
}
```

However, the ghost method from above does not compile, and Dafny complains: assertion violation.

Similarly, the following ghost method does not compile:

```
ghost method prop_qsort(xs: list<int>)
  ensures is_sorted(qsort(xs));
{
  match xs {
  case Nil =>
  case Cons(y, ys) =>
    var sle := qsort(take_le(y, ys));
    var sgt := qsort(take_gt(y, ys));
    prop_qsort(sle);
    ...
}
```

And Dafny gives the error message: cannot prove termination, try supplying a decreases clause.

To understand why this is the case, we need to be clear as to what our inductive principle is. In the method prop_qsort as defined above, the inductive principle is structural induction (because Dafny applies structural induction unless asked otherwise. And since sle and sgt are not necessarily structurally smaller than xs.

We can understand the above, if we look into the attempt to hand-prove the property by structural induction:

```
Base Case To Show: is\_sorted(qsort(Nil)) by definition of qsort Inductive Step Take arbitrary y: \mathbb{Z}, ys: list(\mathbb{Z}) Inductive Hypothesis is\_sorted(qsort(ys)) To Show: is\_sorted(qsort(y::ys)) The induction hypothesis cannot be used to gives us that is\_sorted(qsort(take\_le(y,ys))) , nor that is\_sorted(qsort(take\_gt(y,ys)))
```

Therefore, we cannot prove correctness of quicksort by structural induction.

We can, however, prove it by well-founded induction, similar to what we did with the proof of termination in the previous section.

2.2 Second attempt: Well-founded induction

We will be using the well founded ordering \prec , defines as $ys \prec xs \Leftrightarrow len(ys) < len(xs)$

Here is the structure of the proof:

```
Take a xs: list\langle \mathbb{Z} \rangle arbitrary
Inductive Hypothesis \forall zs: list\langle \mathbb{Z} \rangle. zs \prec xs \Rightarrow is\_sorted(qsort(zs)).

To Show: is\_sorted(qsort(xs))

1st Case: xs=Nil

To Show: is\_sorted(qsort(Nil))
by definition of qsort

2nd Case: xs \neq Nil. Therefore xs=Cons(y,ys) for some y:\mathbb{Z} and ys: list\langle \mathbb{Z} \rangle.

To Show: is\_sorted(qsort(zs))

(1) is\_sorted(qsort(take\_le(y,ys))) by Auxiliary Lemma 1, and IH
(2) is\_sorted(qsort(take\_gt(y,ys))) by Auxiliary Lemma 2, and IH
(3) is\_sorted(app(qsort(take\_le(y,ys))), Cons(y, qsort(take\_gt(y,ys))) by (1), (2), and further Auxiliary Lemmas
```

The proof above shows how to obtain that $is_sorted(qsort(take_le(y,ys)))$ and $is_sorted(qsort(take_le(y,ys)))$, but leaves open how to use these results to obtain that $is_sorted(app(qsort(take_le(y,ys))), Cons(y, qsort(take_gt(y,ys)))$.

We can reflect the handwritten proof into Dafny as follows:

```
ghost method prop_qsort(xs: list<int>)
Since we are
                                ensures is_sorted(qsort(xs));
defining a
                              decreases len(xs);
method we must
prove it
                                match xs {
terminates. Our
                                case Nil =>
                                case Cons(y, ys) =>
recursive calls
                                  var le := qsort(take_le(y, ys));
are the same as
                                  assert is_sorted(le);
those to gsort,
so we can use
                                  var gt := qsort(take_gt(y, ys));
the same
                                  assert is sorted(gt);
                                  assume is_sorted(app(le, Cons(y, gt)));
                                }
                              }
```

Again, we recompile, to check that this is a valid step.

Our proof is still incomplete because of the assume clause.

3. Partial correctness

We now turn our attention to our full proof aim

```
\forall xs: list(\mathbb{Z}). is\_sorted(qsort(xs)) \land perm(xs, qsort(xs))
```

and re-organize the code of prop_qsort slightly, to make it easier to work on the proof, as follows:

```
ghost method prop_qsort(xs: list<int>)
    ensures is_sorted(qsort(xs)) && perm(xs, qsort(xs));
    decreases len(xs);
{
    match xs {
      case Nil =>
      case Cons(y, ys) =>

        var le := take_le(y, ys);
      var gt := take_gt(y, ys);

      var sle := qsort(le);
      var sgt := app(sle, Cons(y, sgt));
      assume is_sorted(res) && perm( xs, res);
    }
}
```

In order to complete the proof, we now think about the reasons that qsort is correct:

```
(1) le[0..le.length) \le y \le gt[0..gt.length)
                                                          properties take_le, take_gt
(2) le++[y]++gt is perm. of xs
                                                         properties take le, take gt
(3) sle is perm. of le,
                                                         (1), and IH
(4) sle is sorted
                                                         ΙH
(5) sgt is perm. of gt
                                                         (2), and IH
(6) sgt is sorted
                                                         ΙH
(7) sle[0..le.length) \le y < sgt[0..gt.length)
                                                         (1), (2), (3), (5), properties of perm
(8) app(sle, Cons(y, sgt)) is sorted
                                                         (4), (6), (7) and properties of ++
(9) app(sle, Cons(y, sgt)) is perm. xs
                                                         (3), (5), (2) and properties of ++, perm
```

The argument from above mentions further properties which we will need to prove wither through adding postconditions to our functions, or through the provision of further ghost methods, and their call within the body of prop_qsort.

In order to be able to discharge (1), we add the following postcondition to take_le and take_gt:

```
function take_le(n: int, xs: list<int>): list<int>
  ensures len(take_le(n, xs)) <= len(xs);
  ensures forall z:: elem(z,take_le(n, xs)) ==> z<= n;</pre>
```

```
function take_gt(n: int, xs: list<int>): list<int>
  ensures len(take_gt(n, xs)) <= len(xs);
  ensures forall z:: elem(z,take_gt(n, xs)) ==> z> n;
```

We now further refine the proof as follows:

```
ghost method prop qsort(xs: list<int>)
    ensures is_sorted(qsort(xs)) && perm(xs, qsort(xs));
   decreases len(xs);
{
  match xs {
  case Nil =>
  case Cons(y, ys) =>
   var le := take_le(y, ys);
   var gt := take_gt(y, ys);
    assert forall z:: elem(z,le) ==> z<=y; // (1)</pre>
    assert forall z:: elem(z,gt) ==> z>y;
                                             // (1)
   assume perm(ys,app(le,gt));
                                              // (2)
   var sle := qsort(le);
    assert is_sorted(sle) && perm(sle, le ); // (3), (4)
    assume forall z:: elem(z,sle) ==> z<=y;</pre>
                                              // (7)
   var sgt := qsort(gt);
   assert is_sorted(sgt) && perm(sgt, gt );
                                               // (5), (6)
   assume forall z:: elem(z,sle) ==> z>y;
                                                // (7)
   var res := app(sle, Cons(y, sgt));
                                                 // (8)
    prop_sorted_app(sle, y, sgt);
    assert is sorted(res);
   prop_app_cons_perm(xs,y,le,sle,gt,sgt);
                                                // (9)
   assert perm( xs, res);
  }
}
```

In the proof above, we assumed the properties from steps (2) and (7), and also, we defined two auxiliary lemmas which will be used in steps (8) and (9).

```
ghost method prop_sorted_app(xs: list<int>, y: int, ys: list<int>)
    requires is_sorted(xs);
    requires is_sorted(ys);
    requires forall z:: elem(z,xs) ==> z<=y;
    requires forall z:: elem(z,ys) ==> z>y;
    ensures is_sorted(app(xs, Cons(y, ys)));
```

```
ghost method prop_app_cons_perm<T>
   (xs: list<T>, y: T, us: list<T>, us': list<T>,
    vs: list<T>, vs': list<T>)
   requires perm(xs, Cons(y, app(us,vs)))
    && perm(us,us') && perm(vs,vs');
   ensures perm(xs, app(us', Cons(y,vs')));
```

We now refine our proof:

In order the eliminate the assume clause in step (2), we need a further auxiliary lemma which states

```
ghost method prop_take_perm(n: int, xs: list<int>, le: list<int>, gt: list<int>)
    ensures perm( xs, app(take_le(n,xs), take_gt(n,xs)) );
```

To eliminate the assume clauses for step (7), we inline the necessary proofs in the code.

Therefore, we obtain:

```
ghost method prop_qsort (xs: list<int>)
    ensures is_sorted(qsort(xs)) && perm(xs, qsort(xs));
    decreases len(xs);
  match xs {
  case Nil =>
  case Cons(y, ys) =>
    var le := take_le(y, ys);
    var gt := take_gt(y, ys);
                                              // (1)
    assert forall z:: elem(z,le) ==> z<=y;</pre>
    assert forall z:: elem(z,gt) ==> z>y;
                                                // (1)
    prop_take_perm(y,ys,le,gt);
                                                 // (2)
    assert perm(ys,app(le,gt));
    var sle := qsort(le);
    assert is_sorted(sle) && perm(sle, le ); // (3), (4)
    forall (z:int) ensures elem(z,sle) ==> z<=y; // (7)</pre>
         { calc{ elem(z,sle );
                 ==> { prop_perm_elem(z,sle,le); }
                 elem(z,le);
                 ==>
                z <=y; }
          }
    var sgt := qsort(gt);
    assert is_sorted(sgt) && perm(sgt, gt ); // (5), (6)
    forall (z:int) ensures elem(z,sgt) ==> z>y; // (7)
         { calc{ elem(z,sgt );
                 ==> { prop_perm_elem(z,sgt,gt) ; }
                 elem(z,gt);
                 ==>
                 z > y; }
          }
    var res := app(sle, Cons(y, sgt));
                                                  // (8)
    prop_sorted_app(sle, y, sgt);
    assert is_sorted(res);
    prop_app_cons_perm(xs,y,le,sle,gt,sgt);
                                                  // (9)
    assert perm( xs, res);
  }
}
```

Notice, that in order to prove step (7), we formulated a further auxiliary lemma, which guarantees that any \times which appears in a list ys, also appears in any permutation of ys:

```
ghost method prop_perm_elem<T>(x: T, ys: list<T>, zs: list<T>)
    requires elem(x,ys) && perm(ys,zs);
    ensures elem(x,zs);
```

3.2 Remaining proof obligations

The proof of the lemma prop_qsort as given in the previous page is incomplete, as it uses auxiliary lemmas which we have not yet proven. We still need to prove the following lemmas:

```
ghost method prop_sorted_app(xs: list<int>, y: int, ys: list<int>)
    requires is_sorted(xs);
    requires is_sorted(ys);
    requires forall z:: elem(z,xs) ==> z<=y;
    requires forall z:: elem(z,ys) ==> z>y;
    ensures is_sorted(app(xs, Cons(y, ys)));
```

```
ghost method prop_app_cons_perm<T>
  (xs: list<T>, y: T, us: list<T>, us': list<T>,
  vs: list<T>, vs': list<T>)
  requires perm(xs, Cons(y, app(us,vs)))
       && perm(us,us') && perm(vs,vs');
  ensures perm(xs, app(us', Cons(y,vs')));
```

```
ghost method prop_take_perm(n: int, xs: list<int>, le: list<int>, gt: list<int>)
    ensures perm( xs, app(take_le(n,xs), take_gt(n,xs)) );
```

```
ghost method prop_perm_elem<T>(x: T, ys: list<T>, zs: list<T>)
    requires elem(x,ys) && perm(ys,zs);
    ensures elem(x,zs);
```

We leave the proof of these lemmas as an exercise. Some of these lemmas may require further the proof of further auxiliary lemmas.

The proof of the lemma prop_qsort as given in section 3.1 was written with the aim to provide some explanations as to how the proof works. However some of the clauses are unnecessary for Dafny, as Dafny can make several reasoning steps implicitly. In the following we show a shorter, perhaps less informative version of the proof, which, nevertheless also verifies:

```
ghost method prop qsort3 (xs: list<int>)
// the "minimal version"
    ensures is_sorted(qsort(xs)) && perm(xs, qsort(xs));
    decreases len(xs);
{
 match xs {
  case Nil =>
  case Cons(y, ys) =>
   var le := take_le(y, ys);
   var gt := take_gt(y, ys);
   prop_take_perm(y,ys,le,gt);
   var sle := qsort(le);
    forall (z:int) ensures elem(z,sle) ==> z<=y; // (7)</pre>
         { calc{ elem(z,sle );
                ==> { prop_perm_elem(z,sle,le); }
                elem(z,le);
                ==>
                z <=y; } }
    var sgt := qsort(gt);
    forall (z:int) ensures elem(z,sgt) ==> z>y; // (7)
         { calc{ elem(z,sgt );
                ==> { prop_perm_elem(z,sgt,gt); }
                elem(z,gt);
                ==>
                 z > y; }
    prop_sorted_app(sle, y, sgt);
                                                  // (8)
   prop_app_cons_perm(xs,y,le,sle,gt,sgt);
                                                 // (9)
}
```

How much detail you give in a Dafny proof is, of course a matter of personal style. We advocate the use of assert-clauses to indicate what properties have been established so far.

In contrast, in handwritten proofs we will be following the style proposed in the lectures, breaking the proof into assertion-steps, and justifying each step.

4. Exercises

You can now proceed to do the exercises titled Exercises_Tail_Recursion. and Exercises Flattening.

Chapter 4 Imperative programming in Dafny

In this lecture shall study how to write imperative programs in Dafny, how to write their specification, and how to help Dafny prove the specifications. We will use pre-conditions and post-conditions to *specify* our code. We will use loop invariants and assertions to *verify* our code.

1. From Java to Dafny - the little differences

The imperative part of Dafny is similar to a subset of Java. We shall study an example to illustrate some small cosmetic differences between the two languages.

Here is the method "Find", which returns the index of a given element in an array if it exists within

the array, and the length of the array otherwise. Array types have special syntax. lava The return type of a method goes before its name. int Find<T>(T x, T[] a) Variable declarations must be explicitly typed. int i = 0; while (i < a.length</pre> && a[i] != x)i++; return i; } Type parameters are themselves parameterised by the operators they Array types use the regular have to support. Here we say that T parameterised type syntax. has to support "==". Dafny Recall that pre-conditions are declared using method Find<T(=)>(x: T, a: array<T>) Return values are declared "requires". This method returns (r: int) after the method's requires a != null; would crash if given a null parameters, and must be array. Because methods named, like parameters. cannot crash in Dafny, we var i := 0; "Find" returns an int, while (i < a.Length must add this pre-condition && a[i] != x)referred to as "r". for the code to compile. i := i + 1; **←** Dafny can infer the return i; types of variables. No "++" operator in Dafny.

2. Method Specifications

As for functions, we can use method pre-conditions and post-conditions to describe the method's requirements and its beahaviour.

Let's write a specification for our "Find" method.

The first post-condition we want to verify is: r < a. Length $\Rightarrow a[r] = x$

However, if we try to compile the method as above, we get:

Error: index out of range

The error message is referring to a[r] in the post-condition; namely, Dafny does not know that $0 \le r$.

So, we add ensures 0 <= r; to our post-conditions,

and it compiles. This means that Dafny has been able to establish automatically that this postcondition is satisfied without further help from the programmer.

Note that the order in which we write the assertions matters. For example, the following

```
method Find<T(==)>(x: T, a: array<T>) returns (r : int)
  requires a != null;
  ensures r < a.Length ==> a[r] == x;
  ensures 0 <=r;
{ .... }</pre>
```

does not compile, and throws: Error: index out of range

3.1 Partial Correctness and Loop Invariants

In the general case, when verifying functional properties of methods which contain loops, we will need to supply invariants. To demonstrate this, we consider another post-condition for Find:

$$\forall j. 0 \le j < r \Longrightarrow a[j] \ne x$$

We add this postcondition to our code:

```
method Find<T(==)>(a: array<T>, x: T)
  returns (r : int)
  requires a != null;
  ensures 0 <= r <= a.Length;
  ensures r < a.Length ==> a[r] == x;
  ensures forall j :: 0 <= j < r ==> a[j] != x;
{
  var i := 0;
  while (i < a.Length && a[i] != x)
  {
    i := i + 1;
  }
  return i;
}</pre>
```

Unfortunately, Dafny can verify neither $r \le a. Length$ nor $\forall j. \ 0 \le j < r \implies a[j] \ne x$. Therefore, it creates the error message:

Input(..) Error BP5003 A postcondition might not hold on this return path.

We need to give more help to Dafny and specifically, we need to add invariants to the loop, as already discussed in the course.

The loop invariants are

```
i \le a. Length and \forall j. 0 \le j < i \implies a[j] \ne x
```

This code compiles successfully and hence all post-conditions and invariants are verified. In particular, Dafny also was able to prove termination of the loop, as it was able to automatically infer the loop variant.

We can use assertions, to check whether Dafny can prove that certain properties hold at specific points in program execution.

```
method Find<T(==)>(a: array<T>, x: T)
  returns (r : int)
  requires a != null;
  ensures 0 <= r <= a.Length;</pre>
  ensures r < a.Length ==> a[r] == x;
  ensures forall j :: 0 \leftarrow j \leftarrow r \Longrightarrow a[j] != x;
{
  var i := 0;
  while (i < a.Length && a[i] != x)</pre>
    invariant i <= a.Length;</pre>
    invariant forall j :: 0 <= j < i ==> a[j] != x;
                                                                       Assertions
                                                                       describe the
        assert a[i] != x; ←
                                                                       state before and
       i := i + 1;
       assert a[i-1] != x;
                                                                       after the
  }
                                                                       assignment to i
  r := i;
}
```

The code above compiles, which means that the assertions hold.

However, not all assertions are successful. For example << PUT AN INTERESTING EXAMPLE HERE>>>

3.3 Termination and decreases Clauses

Remember that all methods in Dafny must be proven to terminate. Therefore, loops also need to be provan to terminate. To do this, Dafny tries to infer the loop variant, and tries to prove that the variant decreases for every loop iteration, and that it is bouded. In the Find method as given earlier, Dafny could infer the variant "a.Length - i", and therefore could automatically prove termination of the loop.

In the cases where Dafny cannot infer the loop variant, we supply it ourselves using the decreases keyword. In the example below, we have McCarthy's 91 function. It returns 91 for any input x < 100, and x - 10 for any higher input.

```
method McCarthy91(x: nat) returns (n: nat)
  n := x;
  var i := 1;
                                                         The loop variant is the pair
  while (true)
                                                             ((10*i-n)+90, n).
    decreases (10 * i - n) + 90, n;
                                                         The ordering on these
    if (n > 100) {
                                                          pairs is the lexicographic
      if (i == 1) {
                                                          ordering.
        return n - 10;
      }
      else {
        n := n - 10;
        i := i - 1;
      }
    }
    else {
      n := n + 11;
      i := i + 1;
  }
}
```

Note that Dafny implicitly choses the lexicographic ordering on the pairs.

4. Exercises

You can now proceed to do the exercises titled Exercises_Arithm_Terms_Loops and Exercises_Max_Product.

Chapter 5: Incremental Development of imperative programs

In this chapter we shall study how to develop imperative Dafny programs Dafny in an incremental manner. The approach mirrors that of functional programs as discussed in chapter 3. We will use pre-conditions and post-conditions to *specify* our code, assume statements to allow ourselves to skip some of the details to be added for later, and assert statements to ask Dafny to confirm that some expected properties do, indeed, hold. We will also see how to inline method calls.

We will use a similar example as we did for functional programming, namely sorting. And because we have imperative programming, we will be sorting an array.

The Dafny definitions for the functions and predicates from this chapter can be found in the file Arrays_BubbleSort.dfy.

Step 1: Preliminaries: predicates and the sequences in Dafny

We will first define what it means for an array a to be sorted:

```
Sorted(a) \Leftrightarrow \forall i, j: nat. 0 \leq i < j < a. Length \rightarrow a[i] \leq a[j]
SortedBetween(a, from, to)
\Leftrightarrow
SortedBetween(a, 0, a. Length).
```

A definition of Sorted in Dafny is given below. Notice the <u>reads</u> clause, which indicates that the predicate depends on the contents of the whole array.

```
predicate sorted_between(a: array<int>, from:int, to:int)
    requires a!= null;
    reads a;
{
    reads forall i,j :: from<=i<j<to-&& 0<=i<j<a.Length ==> a[i]<=a[j]
}

predicate sorted(a: array<int>)
    requires a!= null;
    reads a;
{
    sorted_between(a,0,a.Length)

Must declare that the
function depends on
contents of the whole array.
```

In order to define whether two arrays are permutations of each other, we use the concept of sequences. These are introduced in http://rise4fun.com/Dafny/tutorialcontent/Sequences in detail. In summary, a sequence s of type seq<T> is an ordered list. Sequences are immutable. The length of a sequence is written as |s|. The slice notation s[i...k], where 0<=j<=k<|s| has k-j elements, starting at the i-th element, and continuing until the k-1st element, unless the result is empty. Notice that Dafnyonly supports closed-open intervals, and therefore the Dafny notation s[i..j] corresponds to our course's notation s[i..j]. The notation s[k..] is a shorthand for s[k..|s|], while [t] is a singleton seq<T>, where t is a value of type T, and + is the concatenation operator.

We now define what it means for an array to be a permutation of another array.

```
Count(a, m) \Leftrightarrow card\{i \mid a[i] = m\}

Perm(a, b) \Leftrightarrow \forall m. Count(a, m) = Count(b, m)
```

The Dafny definitions are as follows:

```
function count<T>(t:T, seq<T>): nat
{
    if (|s| == 0)
        then 0
        else if x == s[0]
            then 1 + count(x, s[1..])
        else count(x, s[1..])
}

predicate perm<T>(a: seq<T>, b: seq<T>)
{
    forall t :: count(t, a) == count(t, b)
}
```

To obtain a sequence out of an array a, we can use the slice notation, a[..].

Step 2:. bubble Sort, Specification

We give the specification of the sorting function. Notice that in the pre-condition (requires clause) any mention of the formal parameters (here a) refers to the contents of the parameters upon entry to the method call, while in the pre-condition (ensures clause) any mention of the formal parameters refers to their contents of the parameters upon exit from the method call. In the ensures clause we indicate the value of a term t upon entry, through the notation old(t). Therefore, old(a) is the value of the array pointer upon entry, while old(a[..]) is the value of the contents of the array upon entry.

```
method bubbleSort(a: array<int>)
requires a!= null;
modifies a;
ensures perm(a[..],old(a[..])) && sorted(a);

Must declare that it modifies the contents of the array.
```

Therefore, in the above, the **ensures** clause requires that upon exit from the function call, the contents of the array is a permutation of its contents upon entry, and moreover, that it will be sorted.

Step 3:. bubbleSort, sketching the body

We now take a first stab at the method body for bubbleSort . We can assume that we will be sorting the array gradually from left to right, while maintaining the property that the array is a permutation of the original array:

```
method bubbleSort(a: array<int>)
  requires a != null;
                                                               We have not yet
  modifies a;
                                                              specified how we
  ensures perm(a[..],old(a[..])) && sorted(a);
                                                               will sort the
{
                                                              array..
  var i: nat := 0;
  while i < a.Length
    invariant 0 <= i <= a.Length:</pre>
    invariant sortedBetween(a, 0, i) && perm(a[..],old(a[..]));
    decreases a.Length - i;
    assume sortedBetween(a, 0, i) && perm(a[..],old(a[..]));
  }
}
```

Note that we have an assume clause in the method body. This means that the method cannot be compiled. Instead, we need to replace the assume clause by a piece of code which will provide an implementation for the guarantee given by the assume clause.

Step 4:. Introducing an auxiliary method

We now replace the assume clause by a call to a method which is supposed to achieve the difference that is required by each loop iteration. This is done by the method pushToRight:

```
method bubbleSort (a: array<int>)
  requires a != null && a.Length > 0;
  modifies a;
  ensures perm(old(a[..]),a[..]) && sorted(a);
  var i: nat := 1;
  assert sortedBetween(a, 0, i);
  while i < a.Length</pre>
    invariant 0 < i <= a.Length;</pre>
    invariant perm(old(a[..]),a[..]) && sortedBetween(a, 0. i);
    decreases a.Length - i;
                                                            We have not yet
  {
                                                            given a method
    pushToRight(a, i);
                                                            body for
    i := i + 1;
                                                             pushToRight
  assert sortedBetween(a, 0, a.Length);
}
method pushToRight(a: array<int>, i: nat)
   requires a!=null && 0<i<=a.Length && sortedBetween(a,0,i-1);</pre>
   modifies a;
   ensures sortedBetween(a,0,i) && perm(old(a[..]),a[..]);
```

The method as given above does not verify. In fact, Dafny gives the error message that it cannot prove that the invariant "perm(old(a[..]),a[..])" is preserved by the loop body. We therefore need to give some help to Dafny to make this proof. The logical argument that underpins that the loop body does, indeed, preserve the invariant is, that at the beginning of the loop body, and before the call to pushToRight, the value of a[..] is a permutation of old(a[..]), and, because of the specification of pushToRight, after the call, a[..] is a permutation of what a[..] was before the call. Therefore, because the permutation relation is transitive, we also have that at the end of the loop body, the value of a[..] is a permutation of the value of old(a[..]).

In order to express this argument, we need to a) introduce ghost variables for the value of a[..] at the start and at the end of the loop body, and b) prove a lemma that guarantees that permutation is a transitive relation. Note that ghost variables are indicated by the keyword ghost. They form part of the correctness argument and may appear in the call of ghost methods, but not in the normal calculations of a method.

The lemma that guarantees that permutation is a transitive relation is given here:

```
ghost method perm_trans<T>(a: seq<T>, b: seq<T>, c: seq<T>)
    requires perm(a,b) && perm(b,c);
    ensures perm(a,c);
{
    }
```

We now complete the argument for the preservation of the invariant within the loop body. We introduce ghost variables a_before and a_after to distinguish the contents of a[..] before and after the call of pushToRight.

```
method bubbleSort (a: array<int>)
   requires a != null && a.Length > 0;
   modifies a;
   ensures perm(old(a[..]),a[..]) && sorted(a);
{
   var i: nat := 1;
   assert sortedBetween(a, 0, i);
   while i < a.Length</pre>
     invariant 0 < i <= a.Length;</pre>
     invariant perm(old(a[..]),a[..]) && sortedBetween(a, 0, i);
     decreases a.Length - i;
     ghost var a_before := a[..];
     assert perm(old(a[..]), a_before);
     pushToRight(a, i);
     ghost var a_after := a[..];
     perm_trans(old(a[..],a_before,a_after);
     assert perm(old(a[..],a_after);
     i := i + 1;
   }
}
```

The method as defined above now verifies in Dafny. We can also make a shorter version:

```
method bubbleSort (a: array<int>)
   requires a != null && a.Length > 0;
   modifies a;
   ensures perm(old(a[..]),a[..]) && sorted(a);
{
   var i: nat := 1;
   assert sortedBetween(a, 0, i);
   while i < a.Length</pre>
     invariant 0 < i <= a.Length;</pre>
     invariant perm(old(a[..]),a[..]) && sortedBetween(a, 0, i);
     decreases a.Length - i;
   {
     ghost var a before := a[..];
     pushToRight(a, i);
     perm_trans(old(a[..],a_before,a[..]);
     i := i + 1;
   }
}
```

We now give a method body for pushToRight. This method, in its turn, calls method swap(_,_,), which swaps the contents of array a at indices j-1 and j.

```
method pushToRight(a: array<int>, i: nat)
  requires a != null && 0 < i < a.Length && sortedBetween(a, 0, i);</pre>
  modifies a;
  ensures perm(old(a[..]),a[..]) && sortedBetween(a, 0, i + 1);
  var j: nat := i;
  while j > 0 && a[j - 1] > a[j]
    invariant 0 <= j <= i;</pre>
    invariant perm(old(a[..]),a[..]);
    invariant sortedBetween(a, 0, j) && sortedBetween(a, j, i + 1);
    invariant forall k, k' :: 0 <= k < j && j + 1 <= k' < i + 1
                                             ==> a[k] <= a[k'];
  {
    swap(a,j-1,j);
    j := j - 1;
  }
}
method swap<T>(a: array<T>, i: nat, j:nat)
   // swaps a[i] and a[j] in the array a
   requires a!=null && 0<=i<a.Length && 0<=j<a.Length ;</pre>
   modifies a;
   ensures swapped(old(a[..]),a[..],i,j);
predicate swapped<T>(a:seq<T>, b:seq<T>, i: nat, j:nat)
    requires |a|==|b| && 0<=i<|a| && 0<=j<|a|;
{ ( forall k:: 0 <= k < |a| && k!=i && k!=j ==> a[k]==b[k] )
            &&
  (b[j]==a[i])
  ( b[i]==a[j] ) }
```

Notice that Dafny can independently infer the variant, and we do not need to supply an explicit decreases clause.

However, Dafny cannot prove the correctness of method pushToRight, and in particular, it cannot prove that the method body preserves "perm(old(a[..]),a[..]);". The argument here hinges on the fact that swapping elements in sequences creates permutations, as stated in lemma swap_implies_perm below. As in step 4, we need to introduce a ghost variable to "remember" the contents of a[..] before swapping and use this variable when calling the lemma.

The following version of the method body verifies in Dafny:

```
method pushToRight(a: array<int>, i: nat)
  requires a != null && 0 < i < a.Length && sortedBetween(a, 0, i);</pre>
  modifies a;
  ensures perm(old(a[..]),a[..]) && sortedBetween(a, 0, i + 1);
{
  var j: nat := i;
  while j > 0 && a[j - 1] > a[j]
    invariant 0 <= j <= i;</pre>
    invariant perm(old(a[..]),a[..]);
    invariant sortedBetween(a, 0, j) && sortedBetween(a, j, i + 1);
    invariant forall k, k' :: 0 <= k < j \&\& j + 1 <= k' < i + 1
                                              ==> a[k] <= a[k'];
  {
    ghost var a_before := a[..];
    swap(a,j-1,j);
    swap_implies_perm(a_before,a[..],j-1,j);
    j := j - 1;
}
ghost method swap_implies_perm<T>(a:seq<T>, b:seq<T>, i: nat, j:nat)
     requires|a|==|b| && 0<=i<|a| && 0<=j<|a| && swapped(a,b,i,j);</pre>
     ensures perm(a,b);
```

Step 6:. The method body of swap

We now write the method body for swap, which verifies in Dafny without further need for justification:

```
method swap<T>(a: array<T>, i: nat, j:nat)
    // swaps a[i] and a[j] in the array a
    requires a!=null && 0<=i<a.Length && 0<=j<a.Length ;
    modifies a;
    ensures swapped(old(a[..]),a[..],i,j);
{
        var temp : T := a[i];
        a[i]:=a[j];
        a[j]:=temp;
}</pre>
```

Step 7:. Inlining the body of method pushToRight within method bubbleSort

We can now replace the method call to swap inside body of bubbleSort by its body, and we can replace the call to pushToRight inside the loop body within method bubbleSort, by its body. We will also inline the invariants accordingly:

```
method bubbleSort(a: array<int>)
  requires a != null && a.Length > 0;
  modifies a;
  ensures perm(a[..], old(a[..])) && sorted(a);
  var i: nat := 1;
 while i < a.Length</pre>
    invariant 0 < i <= a.Length;</pre>
    invariant perm(a[..], old(a[..])) && sortedBetween(a, 0, i);
    decreases a.Length - i;
  { var j: nat := i;
     while j > 0 && a[j-1] > a[j]
        invariant 0 <= j <= i;</pre>
        invariant perm(a[..], old(a[..]));
        invariant sortedBetween(a, 0, j) && sortedBetween(a, j, i + 1);
        invariant forall k, k' :: 0 <= k < j && j + 1 <= k' < i + 1
                                    ==> a[k] <= a[k'];
      {
        ghost var a_before := a[..];
        var temp: int := a[j - 1]; a[j - 1] := a[j]; a[j] := temp;
        ghost var a_after := a[..];
        swap_implies_perm(a_before,a_after,j-1,j);
        j := j-1;
      }
       i := i + 1;
 }
 }
```

Exercises

You can now proceed to do the exercises titled Exercises_Insertion_Sort..