A String of Ponies

Transparent Distributed Programming with Actors

Sebastian Blessing

Supervised by Prof. Sophia Drossopoulou and Sylvan Clebsch

M.Sc in Computing Science (Software Engineering), 13. September 2013

(Concurrent) Pony

Object-oriented

Actor-based with causal messaging
— Zero-copy message passing semantics

Fully concurrent garbage collection of actors and
objects

— No “stop-the-world“ step necessary
One kernel thread per core

Work stealing scheduler
Termination based on quiescence

Extend Pony with transparent

Distribution
e Distribution through Actor mobility

* Requirements and Contributions
— Networking Layer (Async. I/O multiplexing)

1. Causal Messaging in Distributed Systems
2. Join nodes to a cluster of Ponies
3. Distributed Work Stealing Scheduler

a. Proxies and causality
4. Serialisation and Deserialisation
5. Distributed Garbage Collection of Actors and Objects

6. Distributed Termination

rchitectural Overview

Distributed Pony Concurrent Pony

serialize and 1 1
deserialise
for migration actor_t

Distribution Actor

heap_t ‘
distribution.h B
distributionc

actorq_t ‘0— message_t
as linked list
f 1 1
|
1
I
I

holds pointer to actor as linked list

. \

send and receive / \
and accept /

new nodes /

-

mpmcq_node_t ‘—0 mpmcq

A
Helper Modules Network Layer Stream Buffer | | n

<
<

hash.c network.h streambuf.h !

trace.c network.c streambuf.c ! ! .
invokes actor_run(actor_t* actor)

! _ e scheduler }

I
I
| oo srver M S

trigger remote steal 1

\y - _ - _ _ -

Message Protocol picks actor to migrate

message.h
message.c

. Causal Messaging in Distributed
Systems

Causality: m1->m3 atC

3. Distributed Work Stealing

* Challenges:

— Detect resources that or not used to capacity
— Migrate Actors to nodes in a network

* Problem: busy nodes should not cause their
children to suffer from starvation

* Leverage tree topology

3. Distributed Work Stealing

Dashed UP arrows: report free core counts (transitively)

Dashed DOWN arrows: report free cores reachable via parent

total core count: 132

3. Distributed Work Stealing

(2,16,0)

(4,0,14) (8,0,10) (0,0,18) (0,0,18)

3a. Migrated Actors become Proxies

Node A Node B

(1) m1 from Al '

(3) m3 from B1

A
(1) m1 to A2

(2) m2 to B1

(3) m3 to A2

m1l -> m3 guaranteed

3a. Problem: Migration can break
causality

Node A

2

\

Alj > A2p
(1) m1 to A2 ///\\I’/

|
/

I

|

(2) m2 to B1 \

\
OELIND
DRSS

(3.1) become local

(3) migrate
but m1 still in queue

m1l -> m3 not guaranteed

Node B

\’/"\
| A2)

(1) m1 from Al

A

-~

3a. Answer: Causality-aware Migration
Protocol

* Force A2 to have processed m1 before
migration
* Introduce conf-ack cycle

— Stop delegating messages once proxy received
conf. message

— Migrate when remote actor receives ack. message

5. Garbage Collection: Cycle Detection

* (Concurrent) Pony employs a cycle detector
(implemented as actor)

* A blocked actor sends its ID, its ref-count and the set of
actors it references to the cycle detector

* |f an actor unblocks, it sends UNBLOCK(ID) to the cycle
detector

* Cycle detector determines perceived actor state

* Problem: Asynchronicity, actor states may be out of
sync.

5. True Cycle Detection Protocol

e Cycle detector sends CONF(t) to all actorsin a
perceived cycle

e Actors respond with ACK(t)

* Causality helps:

— If the cycle detector received ACK(t) from all
actors in t without having received UNBLOCK(a)

after CONF(t) from some actor, the perceived
cycle must be a true cycle and can be collected

5. Distributed Cycle Detection

5. Distributed Cycle Detection

5. Distributed Cycle Detection

5. Distributed Cycle Detection

6. Distributed Termination

Re-use conf-ack protocol from cycle detection
Employ central termination detector on the master node

Nodes starved from work report “idle”
Once work is available report “busy”

The termination detector having received “idle” from all nodes (including
the master) sends CONF(t) to all nodes

Nodes acknowledge the termination attempt t.

If all nodes have acknowledged termination without a single node having
sent “idle”, the detector sends a termination message to its children
(which delegate the message). Otherwise, the termination attempt is
cancelled.

Evaluation

Pony vs. Erlang

Micro Benchmark

Create create

prime factorisation prime factorisation

spawn ring | spawn ring

token is sent p-times

Computation-Boundness

——

Create create

prime factorisation prime factorisation

__

spawn ring | spawn ring

token is sent p-times

(seconds)

Execution Time

Concurrent Setting

50

! T T ! ! ! !
Dist. Erlang - 4 cores

Dist. Erlang - 8 cores (HT) --—--
45 I Pony - 4 cores

Pony - 8 cores (HT) -

0 ! ! ! ! ! ! !
10 20 30 40 50 60 70 80

#Factorisation Actors

100

(seconds)

Execution Time

2 nodes

35

Dist. Erlang - 16 (HT) cores -——-----

! ! ! ! ! ! ! !
Dist. Erlang - 8 cores

Pony - 8 cores

Pony - 16 (HT) cores - .

20 30 40 50 60 70 80 90 100

#Factorisation Actors

(seconds)

Execution Time

35

3 nodes

Dist. Erlang - 24 (HT) cores

! T ! ! ! ! ! !
Dist. Erlang - 12 cores

Pony - 12 cores
Pony - 24 (HT) cores - .

20 30 40 50 60 70 80 90 100

#Factorisation Actors

(seconds)

Execution Time

4 nodes

35

Dist. Erlang - 32 (HT) cores

! T ! ! ! ! ! !
Dist. Erlang - 16 cores

Pony - 16 cores
Pony - 32 (HT) cores -~ .

20 30 40 50 60 70 80 90 100

#Factorisation Actors

(seconds)

Execution Time

35

30

25

5 nodes

Dist. Erlang - 40 (HT) cores -——-----

! T T ! ! ! ! !
Dist. Erlang - 20 cores

Pony - 20 cores
Pony - 40 (HT) cores - .

20 30 40 50 60 70 80 90 100

#Factorisation Actors

(seconds)

Execution Time

35

30

25

6 nodes

Dist. Erlang - 48 (HT) cores -——-----

! T T ! ! ! ! !
Dist. Erlang - 24 cores

Pony - 24 cores
Pony - 48 (HT) cores -~ .

20 30 40 50 60 70 80 90 100

#Factorisation Actors

100 Factorisation Actors

Execution Time (seconds),

35

30

Trend

!
Dist. Erlang
Dist. Erlang (HT)
Pony
Pony (HT)

12

16
#Physical Cores

24

m Dist. Erlang Dist.Erlang (HT) Pony (HT)

o u1 A W N -

473.85s
241.45s
165.45s
126.11s
101.91s
86.76s

380.55s
205.43s
142.70s
115.62s
87.53s
75.07s

393.39s
321.90s
276.37s
239.23s
223.22s
225.25s

1 node = 1x Intel i7 — Quad Core @ 3.40 GHz HT, 8 GB Memory

1000 Factorisation Actors

244 .35s
184.98s
157.22s
143.14s
141.13s
142.16s

Future Work

mprove 1/O Multiplexing

~ailure Detection and Dynamic Tree Topology
 ocality-aware Tree Topology

Tune Distributed Work Stealing and Migration
Compiler, Type System, Formal Models
Generalisation

Publications

Backup Slides

Joining new Slave Nodes

Adding new nodes at runtime
Configure Tree Topology

Challenges:
— No need for maintaining global view at each node

— Nodes should not be required to store any information in order
to determine the path via which a new slave should be
delegated

— Guarantee that the tree is almost balanced at any point in time

Answer: Find a location of a new node based on its ordinal
number

Joining new Slave Nodes

Joining Algorithm

d
All(d)= > K
1=1,2€N
Ord: N*— N

Ord(ay...aq) = All(d — 1)+ (((a1 xk+ag) xk+a3)) xk+ ... +aq_1) ¥k +aqg+1

Ord ! :N* 5 N
Vm € N* : Ord~!(m) = a;...a,, such that Vi € N* : 0 < a; < kA Ord(a;...a,) =m

bp=m—All(p—1)—1
for i in range(p, 1):
a; := b; mod k

(bi — a;)
k

bi—1 :=

Handling Actor References

I
\\ref: al

Node A

m: {type_Al, glob_ID_A1}

deser. m
and creates
proxy for Al

Object Identity Comparison

Node A

02

) _
&@ ///

____/

Distributed Reference Counting

Node A

(Actors)

m: {type_Al, glob_ID_A1}

deser. m
and creates
proxy for Al

Distributed Reference Counting

(Objects)

Node A

delegate

""-.__.DEC message

{ref_obj_C}

Determine owner,

{glob_ID_C,
DEC(count)}

Node B
local ref
owner of Cb
is Db
/ If Cb

_//unreachable by B2
/ send DEC to Db

allocate

_ [Heap Db
R Cb: {...} object at
address Cb

