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(Concurrent) Pony

Object-oriented

Actor-based with causal messaging
— Zero-copy message passing semantics

Fully concurrent garbage collection of actors and
objects

— No “stop-the-world“ step necessary
One kernel thread per core

Work stealing scheduler
Termination based on quiescence



Extend Pony with transparent

Distribution
e Distribution through Actor mobility

* Requirements and Contributions
— Networking Layer (Async. I/O multiplexing)

1. Causal Messaging in Distributed Systems
2. Join nodes to a cluster of Ponies
3. Distributed Work Stealing Scheduler

a. Proxies and causality
4. Serialisation and Deserialisation
5. Distributed Garbage Collection of Actors and Objects

6. Distributed Termination
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. Causal Messaging in Distributed
Systems

Causality: m1->m3 atC



3. Distributed Work Stealing

* Challenges:

— Detect resources that or not used to capacity
— Migrate Actors to nodes in a network

* Problem: busy nodes should not cause their
children to suffer from starvation

* Leverage tree topology



3. Distributed Work Stealing

Dashed UP arrows: report free core counts (transitively)

Dashed DOWN arrows: report free cores reachable via parent

total core count: 132




3. Distributed Work Stealing
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3a. Migrated Actors become Proxies

Node A Node B

(1) m1 from Al '

(3) m3 from B1

A
(1) m1 to A2

(2) m2 to B1

(3) m3 to A2

m1l -> m3 guaranteed




3a. Problem: Migration can break
causality
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3a. Answer: Causality-aware Migration
Protocol

* Force A2 to have processed m1 before
migration
* Introduce conf-ack cycle

— Stop delegating messages once proxy received
conf. message

— Migrate when remote actor receives ack. message



5. Garbage Collection: Cycle Detection

* (Concurrent) Pony employs a cycle detector
(implemented as actor)

* A blocked actor sends its ID, its ref-count and the set of
actors it references to the cycle detector

* |f an actor unblocks, it sends UNBLOCK(ID) to the cycle
detector

* Cycle detector determines perceived actor state

* Problem: Asynchronicity, actor states may be out of
sync.



5. True Cycle Detection Protocol

e Cycle detector sends CONF(t) to all actorsin a
perceived cycle

e Actors respond with ACK(t)

* Causality helps:

— If the cycle detector received ACK(t) from all
actors in t without having received UNBLOCK(a)

after CONF(t) from some actor, the perceived
cycle must be a true cycle and can be collected



5. Distributed Cycle Detection




5. Distributed Cycle Detection




5. Distributed Cycle Detection




5. Distributed Cycle Detection




6. Distributed Termination

Re-use conf-ack protocol from cycle detection
Employ central termination detector on the master node

Nodes starved from work report “idle”
Once work is available report “busy”

The termination detector having received “idle” from all nodes (including
the master) sends CONF(t) to all nodes

Nodes acknowledge the termination attempt t.

If all nodes have acknowledged termination without a single node having
sent “idle”, the detector sends a termination message to its children
(which delegate the message). Otherwise, the termination attempt is
cancelled.



Evaluation

Pony vs. Erlang



Micro Benchmark
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Computation-Boundness
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Future Work

mprove 1/O Multiplexing

~ailure Detection and Dynamic Tree Topology
 ocality-aware Tree Topology

Tune Distributed Work Stealing and Migration
Compiler, Type System, Formal Models
Generalisation

Publications



Backup Slides



Joining new Slave Nodes

Adding new nodes at runtime
Configure Tree Topology

Challenges:
— No need for maintaining global view at each node

— Nodes should not be required to store any information in order
to determine the path via which a new slave should be
delegated

— Guarantee that the tree is almost balanced at any point in time

Answer: Find a location of a new node based on its ordinal
number



Joining new Slave Nodes



Joining Algorithm

d
All(d)= > K
1=1,2€N
Ord: N*— N

Ord(ay...aq) = All(d — 1)+ (((a1 xk+ag) xk+a3)) xk+ ... +aq_1) ¥k +aqg+1

Ord ! :N* 5 N
Vm € N* : Ord~!(m) = a;...a,, such that Vi € N* : 0 < a; < kA Ord(a;...a,) =m

bp=m—All(p—1)—1
for i in range(p, 1):
a; := b; mod k

(bi — a;)
k

bi—1 :=



Handling Actor References

I
\\ref: al

Node A

m: {type_Al, glob_ID_A1}

deser. m
and creates
proxy for Al




Object Identity Comparison

Node A
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Distributed Reference Counting

Node A

(Actors)

m: {type_Al, glob_ID_A1}

deser. m
and creates
proxy for Al




Distributed Reference Counting

(Objects)

Node A

delegate

""-.__.DEC message

{ref_obj_C}

Determine owner,

{glob_ID_C,
DEC(count)}

Node B
local ref
owner of Cb
is Db
/ If Cb

_//unreachable by B2
/ send DEC to Db

allocate

\_ [Heap Db
R Cb: {...} object at
address Cb




