
First Steps towards

Reasoning about Risk and Trust
in the open world:

the Escrow example

Sophia Drossopoulou & James Noble

Based on a talk given at iFM 2014 on the 9th September 2014, Bertionoro, Italy

October 2014

Risk and Trust in the open world
- in terms of the Escrow example

In the open world, code of unknown provenance is dynamically
loaded and linked, without prior static checks.

Thus, trusted objects co-operate with untrusted objects. , and
are, unavoidably, exposed to risks.

Through the use of object capabilities, code can be written so as
to reduce risks to objects.

We want to be able to
• Describe establishing trust.

• Formally specify the risk to objects.

• Reason how code adheres to trust/risk specification.

We will demonstrate our ideas in terms of the Escrow example,
proposed by Mark Miller et al, ESOP’2013.

2

The Escrow Example

3

Escrow - buying apples securely

4

• Setup

• Buyer has 100 €, and 20 .
• Seller has 55 €, and 25 .
• Buyer wants to buy 10 for 5 €.
• Seller wants to sell 10 for 5 €.

• Seller and Buyer do not trust each other.

• Questions:

• How to organize the € and transfer?

• What are the risks?

Mint

Mint

Buying Apples - before

5

Buyer Seller

:Purse, 20

buyerEuro, 100 €

sellerEuro, 55 €

:Purse, 25

Mint

Mint

Buying Apples - after

6

Buyer Seller

:Purse, 20+10

:Purse, 100-5 €

:Purse, 55 +5€

-

:Purse, 25-10

Mint

Mint

Buying Apples – how?

7

Buyer Seller

:Purse, 20

:Purse, 100 €

:Purse, 55 €

:Purse, 25

Mint

Mint

Buying Apples 1st attempt: pass purses

sellerEuros.transfer(5,buyerEuros);

8

Buyer Seller

:Purse, 20

:Purse, 100-5 €

:Purse, 55+5 €

:Purse, 25

Mint

Mint

Buying Apples 1st attempt: pass purses

sellerEuros.transfer(5,buyerEuros);

buyerApples.transfer(10,sellerApples);

9

Buyer Seller

:Purse, 20

:Purse, 100 €

:Purse, 55 €

-

:Purse, 25

Mint

Mint

Buying Apples 1st attempt pass purses - Risk

10

Buyer Seller

:Purse, 20

:Purse, 100 €

:Purse, 55 €

-

:Purse, 25

Risk to Buyer: - 100 €, 0
Risk to Seller: 0€, -15

Mint

Mint

Buying Apples 2nd Attempt: tmp purses

11

Buyer Seller

:Purse, 20

:Purse, 100 €

:Purse, 55 €

-

:Purse, 25

Mint

Mint

Buying Apples – 2nd Attempt: tmp purses

buyerEurosTmp = buyerEuros.makePurse();

buyerEurosTmp.transfer(5,buyerEuros);

 12

Buyer Seller

:Purse, 20

:Purse, 95 €

:Purse, 55 €

-

:Purse, 25

:Purse, 5 €

Mint

Mint

Buying Apples – 2nd Attempt: tmp purses

buyerEurosTmp = buyerEuros.makePurse();

buyerEurosTmp.transfer(5,buyerEuros);

sellerApplesTmp = sellerApples.makePurse();

sellerApplesTmp.transfer(10,sellerApples);

13

Buyer Seller

:Purse, 20

:Purse, 95 €

:Purse, 55 €

-

:Purse, 15

:Purse, 5 €

:Purse, 10

Mint

Mint

Buying Apples – 2nd Attempt: tmp purses

buyerEurosTmp = buyerEuros.makePurse();

buyerEurosTmp.transfer(5,buyerEuros);

SellerApplesTmp = sellerApples.makePurse();

sellerApplesTmp.transfer(10,sellerApples);

sellerEuros.transfer(5,buyerEurosTmp);

buyerApples.transfer(10,sellerApplesTmp);

14

Buyer Seller

:Purse 30

:Purse, 95 €

:Purse, 60 €

-

:Purse, 15

:Purse, 0 €

:Purse, 0

Mint

Mint

Buying Apples – 2nd Attempt: tmp purses

buyerEurosTmp = buyerEuros.makePurse();

buyerEurosTmp.transfer(5,buyerEuros);

sellerEurosTmp = sellerApples.makePurse();

sellerEurosTmp.transfer(10,sellerApples);

sellerEuros.transfer(5,buyerEurosTmp);

buyerApples.transfer(10,sellerEurosTmp);

15

Buyer Seller

:Purse, 20

:Purse, 95 €

:Purse, 55 €

-

:Purse, 15

:Purse, 5 €

:Purse, 10

Mint

Mint

Buying Apples 2nd Attempt: tmp purses - Risk

16

Buyer Seller

:Purse, 20

:Purse, 95 €

:Purse, 55 €

-

:Purse, 15

:Purse, 5 €
-

:Purse, 10

Risk to Buyer: - 5 €, 0
Risk to Seller: 0€, -10

Mint

Mint

Buying Apples 2nd Attempt: tmp purses - Risk

17

Buyer Seller

:Purse, 20

:Purse, 95 €

:Purse, 55 €

-

:Purse, 15

:Purse, 5 €
-

:Purse, 10

Risk to Buyer: - 5 €, 0
Risk to Seller: 0€, -10

… what if Buyer/Seller use tmp-Purses to
steal from other Purses, or Mint itself?

Mint

Mint

Buying Apples – 3rd Attempt Escrow

18

Buyer Seller

:Purse, 20

:Purse, 95 €

:Purse, 55 €

-

:Purse, 15

EscrowAgent

The risks of using potentially
untrustworthy objects

Challenges – our contributions
• Develop code of Escrow, so as to minimize the risk to which it

exposes its clients, cf Miller et al, ESOP 2014

• Specify the Escrow’s behaviour when Buyer and Seller are
trustworthy, cf Hoare Logics, JML, jStar, C-sharp, etc.

• Write Escrow without Escmascript features

• Develop Specification Language

• Specify the Bank and Mint.

• Specify the Escrow’s behaviour when Buyer is trustworthy and
Seller in not; and the opposite.

• Develop proof methodology

• Prove that Escrow code indeed satisfies the specification.

19

Electronic Money,
Mints and Purses
-
or,
 Banks and Accounts

20

Mints and Purses

The electronic money as proposed in [MillerEtAl,FinCrypto’00]

• Mints with electronic money,

• Purses held within mints,

• Transfers of funds between purses.

• A purse’s balance “guarded” by the purse.

• The currency of a mint is the sum of balances of its purses.

• The currency “guarded" by the mint (no devaluation).

21

Mint & Purse code – vrs1
public final class Mint { }

public final class Purse {

private final mint;

private long balance;

 public Purse(mint, balance) {

 if (balance<0) { throw … };

 this.mint = mint; this.balance = balance; }

 public Purse sprout() {

 p = new Purse;

 p.mint = this.mint; p.balance = 0;

 return p; }

 public transfer(prs, amnt) {

 if (mint!=prs.mint || amnt>prs.balance

 || amnt+balance<0)

 { throw … };

 prs.balance -= amnt; balance += amnt; }

}

The final, private field annotations are dynamically checked.

22

Mint & Purse – objects– vrs1

aPurse_1
balance: 5

23

aMint_1

aPurse_2
balance: 15

aPurse_3
balance: 8

aMint_1.currency = 5 +15 + 8

The currency of a mint is the sum of balances of its purses

Mint & Purse – objects– vrs1

aPurse_1
balance: 5

24

aMint_1

aPurse_2
balance: 15

aPurse_3
balance: 8

aPurse_4
balance: 12

aMint_2

aMint_1.currency = 5 +15 + 8
aMint_2.currency = 12

The currency of a mint is the sum of balances of its purses

Mint & Purse – objects– vrs1

aPurse_1
balance: 5

25

aMint_1

aPurse_2
balance: 15

aPurse_3
balance: 8

aPurse_4
balance: 12

aMint_2

aMint_1.currency = 5 +15 + 8
aMint_2.currency = 12

The currency of a mint is the sum of balances of its purses

The currency of a mint is a model field of the mint.

Mint & Purse – Java code – vrs2
public final class Purse { }

public final class Mint {

 private final HashMap<Purse,long> database

 = new HashMap <>();

 public Purse makePurse(balance) {

 Purse p = new Purse();

 database.put(p,balance);

 return p; }

 public transfer

 (from, into, long amnt){

 if((amount<0) || (!database.contains(from))

 || (database.get(from) < amnt)

 || (!database.contains(into)))

 { throw new IlleglArgtException(); };

 database.put(from, database.get(from)-amnt);

 database.put(into, database.get(into) +amnt);

 }

}
26

Mint & Purse – objects– vrs2

aPurse_1

27

aMint_1

aPurse_2

aPurse_3

aMint_1.currency = 5 +15 + 8
aMint_2.currency = 12

The currency of a mint is the sum of balances of its purses

Database

5 15 8

Mint & Purse – objects– vrs2

aPurse_1

28

aMint_1

aPurse_2

aPurse_3

aPurse_4

aMint_2

aMint_1.currency = 5 +15 + 8
aMint_2.currency = 12

The currency of a mint is the sum of balances of its purses

Database Database

5 15 8 12

Mint & Purse – objects– vrs2

aPurse_1

29

aMint_1

aPurse_2

aPurse_3

aPurse_4

aMint_2

aMint_1.currency = 5 +15 + 8 aMint_2.currency = 12

The currency of a mint is the sum of balances of its purses

Database Database

5 15 8 12

The currency of a mint,
and the balance of a purse are model fields.

Mint & Purse code – vrs3
public final class Purse {

 private final Mint mint;

 public deposit(amt, from){mint.transfer(from,this.amt) ; }

 public sprout(){ return mint.makePurse(0); }

}

public final class Mint {

 private final HashMap<Purse,long> database

 = new HashMap <>();

 public makePurse(balance) {

 Purse p = new Purse();

 database.put(p,balance);

 return p; }

 public transfer(from, into, long amnt){

 if((amount<0) || (!database.contains(from))

 || (database.get(from) < amnt)

 || (!database.contains(into)))

 { throw new IlleglArgtException(); };

 database.put(from, database.get(from)-amnt);

 database.put(into, database.get(into) +amnt); }

}

30

Mint & Purse – objects– vrs3

aPurse_1

31

aMint_1

aPurse_2

aPurse_3

aPurse_4

aMint_2

aMint_1.currency = 5 +15 + 8 aMint_2.currency = 12

Database Database

5 15 8 12

Capability Policies Mints & Purses

• Pol_1 With two purses of the same mint, one can
transfer money between them.

• Pol_2 Only someone with the mint of a given currency
can violate conservation of that currency.

• Pol_3 The mint can only inflate its own currency.

• Pol_4 No one can affect the balance of a purse they
don't have.

• Pol_5 Balances are always non-negative integers.

• Pol_6 A reported successful deposit can be trusted as
much as one trusts the purse one is depositing into.

32

Capability Policies go beyond
classical specifications

We claim that capability policies go beyond classical
specifications. Because capability policies are:

• Open – They apply to a module and all its possible
extensions.

• Pervasive – they apply across any two consecutive
point of execution

• They sometimes talk about necessary rather than
sufficient conditions.

• They sometimes talk about trust.

33

Mint example – “classical” specification
public final class Mint { }

public final class Purse {

private final Mint mint;

private long balance;

INV balance >= 0;

 public Purse(Mint mint, long balance)

 PRE balance >= 0;

 public Purse sprout() { … }

 public void transfer(long amnt, Purse prs)

 PRE prs.mint=this.mint &&

 this.balance+amnt>= && prs.balance-amnt >=0;

 POST this.balancenew=this.balanceold+amount &&

 prs.balancenew = this.balancenew-amount

}

nce34

Classical spec. does not imply policies!

final class Mint { }

final class Purse {

private final Mint mint;

private long balance;

 public Purse(Mint mint, long balance) {

 if (balance<0) { throw … };

 this.mint = mint; this.balance = balance; }

 public Purse sprout() {

 Purse p = new Purse;

 p.mint = prs.mint; p.balance = 0;

 return p; }

 void transfer(long amnt, Purse prs) {

 if (mint!=prs.mint || amnt>prs.balance

 || amnt+balance<0) { throw … };

 prs.balance -= amnt; balance += amnt; }

}

nce35

Code below satisfies classical specification, but breaks policies.
allows mint to be set externally;

thus may affect currency of a

mint without access to it

(breaks Pol 2)

allows balance to be set externally;

thus may transfer money without access
to second Purse, or may affect

currency of a mint
(breaks Pol 1, and Pol 2)

Classical spec. does not imply policies - 2

final class Mint { }

final class Purse {

final private Mint mint;

private long balance;

 public Purse(Mint mint, long balance) {

 …

 Purse(Purse prs) {

 …

 void transfer(Purse prs, long amnt) {

 …

 void subvert() //

 { new Purse(mint, 200000,45); }

}

nce36

Code below satisfies classical specification, but breaks policies.
Nor does it prevent:

 Our Policy Specification Language - 1

• Take a module M

• Take condition Q

• Policies may have the form Q

• We say that module M adheres to a policy Q

37

M ⊨ Q

iff

∀M’. ∀ (κ, _)∈Arising(M*M’).

M*M’, κ ⊨ Q

• Arising(M) is the set of all configuration, code pairs which may

arise through execution of the initial configuration with M.

 Our Policy Specification Language - 1

38

M ⊨ Q

iff

∀M’. ∀ (κ, _)∈Arising(M*M’).

M*M’, κ ⊨ Q

Open policy,
increases number of
configurations considered

 Our Policy Specification Language - 1

39

M ⊨ Q

iff

∀M’. ∀ (κ, _)∈Arising(M*M’).

M*M’, κ ⊨ Q

Open policy,
increases number of
configurations conisdered

Only reachable configurations,
i.e. decrease number of
configurations considered.

 Our Policy Specification Language -2

• Take a module M and some code code

• Take conditions Q and R

• Policies have the form Q or { Q } code { R }

• We define adherence to a policy

40

M ⊨ { Q } code { R }
iff

∀M’. ∀ (κ, _)∈Arising(M*M’).
M*M’, κ ⊨ Q ∧ M*M’, code, κ ↝ κ’, v.

⇒
M*M’, κ’ ⊨ R.

• M*M’, code, κ ↝ κ’, v is the large steps semantics.

 Our Policy Specification Language -2

41

M ⊨ { Q } code { R }
iff

∀M’. ∀ (κ, _)∈Arising(M*M’).
M*M’, κ ⊨ Q ∧ M*M’, code, κ ↝ κ’, v.

⇒
M*M’, κ’ ⊨ R.

Open policy

Only reachable configurations,
considered.

Pol_1: With two purses of the same mint,

 one can transfer money between them.

Pol_1 ≣

{ p1 is PurseSpec,

 p2 is PurseSpec,

 p1.balance >= amt,

 p1.mint = p2.mint }

 p1.transfer(amt, p2)

 { p1.balance = p1.balanceold – amt,

 p2.balance = p1.balanceold + amt,

 “nothing else changed” }

42

Pol_1: With two purses of the same mint,
 one can transfer money between them.

Pol_1 ≣

{ p1 is PurseSpec,

 p2 is PurseSpec,

 p1.balance >= amt,

 p1.mint = p2.mint }

 p1.transfer(amt, p2)

 { p1.balance = p1.balanceold – amt,

 p2.balance = p1.balanceold + amt,

 “nothing else changed” }

Note the use of model fields in the spec.
43

Pol_2: Only someone with the mint of a given currency
can violate conservation of that currency.

Pol_2 ≣

∀m : MintSpec. ∀o : Object.

MayAffect(o, m.currency)
⇒

MayAccess(o, m)

This is an execution invariant.

Again, we are using model fields.

Note predicates MayAccess, and MayAffect.
44

The meaning of MayAffect

• Take a runtime configuration κ, module M, a variable x,
and a pure expression e

45

M, κ ⊨ MayAffect(x,e)

iff

∃ m. M, x.m(…), κ ↝ κ’, _ ∧ ⎡ e ⎦κ ≠ ⎡ epure ⎦κ’

In the above, we are using notation as follows

• Large step semantics M, expr, κ ↝ κ’, v

• The value of a pure expression epure in context of κ is ⎡ epure ⎦κ

The meaning of MayAccess

• For a configuration κ, and variables x and y

46

M, κ ⊨ MayAccess(x,y)

iff

∃ f1,…fn. ⎡x.f1.f2. … fn⎦κ=⎡y⎦κ

• For a configuration κ, and variable x

MayAccess(x)κ = { o | ∃ f1,…fn. ⎡x.f1.f2. … fn⎦κ= o }

Pol_3: The mint can only inflate its own currency.

Pol_3 ≣

∀m : MintSpec.

{ true }

any

{ m.currency >= m.currencyold }

47

Pol_4: No one can affect the balance of a purse they do not
have.

Pol_4 ≣

∀p : PurseSpec. ∀o : Object.

MayAffect(o, p.balance)
⇒

MayAccess(o, p)

48

Pol_4: No one can affect the balance of a purse they do not
have.

Pol_4 ≣

∀p : PurseSpec. ∀o : Object.

MayAffect(o, p.balance)
⇒

MayAccess(o, p)

Note use of model fields, and predicates
MayAccess, and MayAffect.

49

The meaning of PublicAccess

• For a configuration κ, and variables x and y

50

M, κ ⊨ PublicAccess(x,y)

iff

⎡x⎦κ=⎡y⎦κ

∨ ∃ field f. ⎡x.f⎦κ=⎡y⎦κ

∃ public methods m1,…mn. ⎡x.m1(…).m2(…). … mn(…)⎦κ=⎡y⎦κ

Pol_4, revisited: No one can affect the balance of a purse they
do not have.

We had defined
Pol_4 ≣ ∀p : PurseSpec. ∀o : Object.
 MayAffect(o, p.balance)

 ⇒
 MayAccess(o, p)

Pol_4 is perhaps too weak. What about?
Pol_4.a ≣ ∀p : PurseSpec. ∀o : Object.
 MayAffect(o, p.balance)

 ⇒
 PublicAccess(o, p)

 Too strong. Cannot be satisfied.

51

Pol_4, re-revisited: No one can affect the balance of a
 purse they do not have.

Pol_4.b ≣ ∀p : PurseSpec. ∀o : Object.
 p∈ ThisModule, o ∉ThisModule.

 MayAffect(o, p.balance)
 ⇒

 ∃o’ ∉ThisModule.
 PublicAccess(o’, p)

52

ThisModule stands for the module which is expected to satisfy
the policy.

o∈ M says that o “belongs” to M, ie that the class of has
been defined in module M,
or that o is owned (or was created) by object o’∈ M.

 Our Policy Specification Language - 3

53

M ⊨ Q

iff

∀M’. ∀ (κ, _)∈Arising(M*M’).

M*M’, κ ⊨ Q[ThisModule/M]

Open policy,

increases number of
configurations considered

 Our Policy Specification Language - 3

54

M ⊨ Q

iff

∀M’. ∀ (κ, _)∈Arising(M*M’).

M*M’, κ ⊨ Q[ThisModule/M]

We now give meaning to variable ThisModule

Pol_5: Balances are always non-negative.

Pol_5 ≣

∀p : PurseSpec. p.balance >= 0

.

55

Pol_6: A reported successful deposit can be trusted as much
 as one trusts the purse one is depositing into.

We introduce the notation

 p is PurseSpec

To express that p adheres to specification PurseSpec.

56

Pol_6: A reported successful deposit can be trusted as much
 as one trusts the purse one is depositing into.

Pol_6,a ≣

{ true }

 res = p.transfer(amt,p’)

{ res ∧ p is PurseSpec

 ⇒

 p’ is PurseSpec

 ∧ p.mint == p’.mint

 ∧ p’.balanceold >= amt

 ∧ p’.balance = p’.balanceold – amt

 ∧ p.balance = p.balanceold + amt }

. 57

Pol_6: A reported successful deposit can be trusted as much
 as one trusts the purse one is depositing into.

Pol_6,a ≣

{ true }

 res = p.transfer(amt,p’)

{ res ∧ p is PurseSpec

 ⇒

 p’ is PurseSpec

 ∧ p.mint == p’.mint

 ∧ p’.balanceold >= amt

 ∧ p’.balance = p’.balanceold – amt

 ∧ p.balance = p.balanceold + amt }

. 58

Pol_6: A reported successful deposit can be trusted as much
 as one trusts the purse one is depositing into.

Pol_6,b ≣

{ true }

 res = p.sprout()

{ res ∧ p is PurseSpec

 ⇒

 res is PurseSpec

 ∧ p.mint == res.mint

 ∧ res.balance = 0

 ∧ “all else is unmodified” }

.
59

Capability Policies characteristics

• Open

• Pervasive

• Hypothetical actions (MayAffect)

• Necessary rather than sufficient conditions (MayAffect
requires MayAccess)

• Establishing trust

• Provenance of effects (who caused the balance change)

We do not claim that the proposed specifications are the final
word for the precise meanings for these policies.

But we have proposed a language with which to explore the
meanings of the mint policies.

And we used the Mint policies to prove the Escrow policies.

60

Dynamic Types and Trust

61

Trust? Back to the Escrow

• Seller wants to sell amt apples, for price Euros.

• Buyer wants to buy amt apples, for price Euros.

• Buyer trusts his Purses, but does not trust Seller’s purses.

• Seller trusts his Purses, but does not trust Buyer’s purses.

• Buyer and the Seller trust the Escrow.

• Escrow does not trust either Seller or Buyer.

62

Trust?
The Escrow Example

63

• The Escrow needs to cater for the following:
• Can the Seller’s purses be trusted?
• Can the Buyer’s purses be trusted?
• Might the Seller withdraw goods during the transaction?
• Might the Buyer withdraw money during transaction?
• Could a malicious Seller harm the Buyer?
• Could a malicious Buyer harm the Seller?

The Escrow – 1st case
public bool deal(

 buyerEuros, buyerApples, // buyer’s Purses

 sellerEuros, sellerApples, // seller’s Purses

 amount // amount apples

 price // Euro-price of goods

)

 // transfer amnt and price,

 // provided that

 // buyerEuros, sellerEuros are PurseSpec’s

 // buyerApples, sellerApples are PurseSpec’s

 // buyerEuros and sellerEuros from same mint

 // buyerApples, and sellerAuros from same mint

 // buyerEuros has more than price euros

 // sellerApples has more than amount apples

 64

The Escrow specification - 1st case

65

public bool deal(

 buyerEuros, buyerApples sellerEuros, sellerApples,

 amount, price)

POST:

[res=true ∧
 (buyerEuros, buyerApples,
 sellerEuros, sellerApples is PurseSpec)

The Escrow specification - 1st case

66

public bool deal(

 buyerEuros, buyerApples sellerEuros, sellerApples,

 amount, price)

POST:

[res=true ∧
 (buyerEuros, buyerApples,
 sellerEuros, sellerApples is PurseSpec)

 ∧
 buyerEuros.mint == sellerEuros.mint ∧
 buyerApples.mint == sellerAuros.mint ∧

The Escrow specification - 1st case

67

public bool deal(

 buyerEuros, buyerApples sellerEuros, sellerApples,

 amount, price)

POST:

[res=true ∧
 (buyerEuros, buyerApples,
 sellerEuros, sellerApples is PurseSpec)

 ∧
 buyerEuros.mint == sellerEuros.mint ∧
 buyerApples.mint == sellerAuros.mint ∧
 buyerEuros.balancepre >= price ∧
 sellerApples.balancepre >= amnt ∧

The Escrow specification - 1st case

68

public bool deal(

 buyerEuros, buyerApples sellerEuros, sellerApples,

 amount, price)

POST:

[res=true ∧
 (buyerEuros, buyerApples,
 sellerEuros, sellerApples is PurseSpec)

 ∧
 buyerEuros.mint == sellerEuros.mint ∧
 buyerApples.mint == sellerAuros.mint ∧
 buyerEuros.balancepre >= price ∧
 sellerApples.balancepre >= amnt ∧
 buyerEuros.balance == buyerEuros.balancepre – price ∧
 sellerEuros.balance == sellerEuros.balancepre + price ∧
 buyerApples.balance == buyerApples.balancepre + amt ∧
 buyerApples.balance == buyerApples.balancepre – amt ∧

The Escrow specification - 1st case

69

public bool deal(

 buyerEuros, buyerApples sellerEuros, sellerApples,

 amount, price)

POST:

[res=true ∧
 (buyerEuros, buyerApples,
 sellerEuros, sellerApples is PurseSpec)

 ∧
 buyerEuros.mint == sellerEuros.mint ∧
 buyerApples.mint == sellerAuros.mint ∧
 buyerEuros.balancepre >= price ∧
 sellerApples.balancepre >= amnt ∧
 buyerEuros.balance == buyerEuros.balancepre – price ∧
 sellerEuros.balance == sellerEuros.balancepre + price ∧
 buyerApples.balance == buyerApples.balancepre + amt ∧
 buyerApples.balance == buyerApples.balancepre – amt ∧

 ∀p:pre PurseSpec. p.balance == p.balancepre]

The Escrow specification - 1st case

70

public bool deal(

 buyerEuros, buyerApples sellerEuros, sellerApples,

 amount, price)

POST:

[res=true ∧
 (buyerEuros, buyerApples,
 sellerEuros, sellerApples is PurseSpec)

 ∧
 buyerEuros.mint == sellerEuros.mint ∧
 buyerApples.mint == sellerAuros.mint ∧
 buyerEuros.balancepre >= price ∧
 sellerApples.balancepre >= amnt ∧
 buyerEuros.balance == buyerEuros.balancepre – price ∧
 sellerEuros.balance == sellerEuros.balancepre + price ∧
 buyerApples.balance == buyerApples.balancepre + amt ∧
 buyerApples.balance == buyerApples.balancepre – amt ∧

 ∀p:pre PurseSpec. p.balance == p.balancepre]

 ∨

 … 2nd case …

The Escrow – 2nd case
public bool deal(

 buyerEuros, buyerApples, // buyer’s Purses

 sellerEuros, sellerApples, // seller’s Purses

 amount // amount apples

 price // Euro-price of goods

)

 // leave everything unaffected,

 // if

 // buyerEuros, sellerEuros are PurseSpec’s

 // buyerApples, sellerApples are PurseSpec’s

 // buyerEuros and sellerEuros from same mint

 // buyerApples, and sellerApples from same mint

 // but

 // buyerEuros not got enough euros, or

 // sellerApples has not got enough apples

71

The Escrow specification - 2nd case

72

public bool deal(

 buyerEuros, buyerApples, sellerEuros, sellerApples,

 amount, price)

POST:

… 1st case …

 ∨

[res=false ∧
 (buyerEuros, buyerApples,
 sellerEuros, sellerApples is PurseSpec)

 ∧
 buyerEuros.mint == sellerEuros.mint ∧
 buyerApples.mint == sellerAuros.mint ∧
 (buyerEuros.balancepre < price ∨
 sellerApples.balancepre < amnt) ∧
 ∀p:pre PurseSpec. p.balance == p.balancepre]

 ∨

 … 3rd case …

The Escrow – 3rd case
public bool deal(

 buyerEuros, buyerApples, // buyer’s Purses

 sellerEuros, sellerApples, // seller’s Purses

 amount // amount apples

 price // Euro-price of goods

)

 // leave everything unaffected,

 // if

 // buyerEuros is PurseSpec

 // NOT(sellerApples is PurseSpec)

 // or buyerEuros and sellerEuros not same mint

73

The Escrow specification - 3rd case

74

public bool deal(

 buyerEuros, buyerApples, sellerEuros, sellerApples,

 amount, price)

POST:

… 1st case … ∨ … 2nd case …

 ∨

[res=false ∧
 buyerEuros is PurseSpec ∧
 (¬ (sellerEuros is PurseSpec)∨

 sellerEuros.mint ≠ buyerEuros.mint)

The Escrow specification - 3rd case, vrs 1

75

public bool deal(

 buyerEuros, buyerApples, sellerEuros, sellerApples,

 amount, price)

POST:

… 1st case … ∨ … 2nd case …

 ∨

[res=false ∧
 buyerEuros is PurseSpec ∧
 (¬ (sellerEuros is PurseSpec)∨

 sellerEuros.mint ≠ buyerEuros.mint)

 ∧
 ∀p:pre PurseSpec. p.balance == p.balancepre]

Namely, what if seller had access to prs, a PurseSpec object with
prs.mint=buyerMoney.mint, and calls
 prs.transfer(300000,buyerMoneyTmp);

Too strong!

The Escrow specification - 3rd case, vrs 2

76

public bool deal(

 buyerEuros, buyerApples, sellerEuros, sellerApples,

 amount, price)

POST:

… 1st case … ∨ … 2nd case …

 ∨

[res=false ∧
 buyerEuros is PurseSpec ∧
 (¬ (sellerEuros is PurseSpec)∨

 sellerEuros.mint ≠ buyerEuros.mint)

 ∧
 ∀p:pre PurseSpec. p.balance == p.balancepre
 ∨ MayAffect(sellerEuros,p)pre]

The Escrow specification - 3rd case, vrs 2

77

public bool deal(

 buyerEuros, buyerApples, sellerEuros, sellerApples,

 amount, price)

POST:

… 1st case … ∨ … 2nd case …

 ∨

[res=false ∧
 buyerEuros is PurseSpec ∧
 (¬ (sellerEuros is PurseSpec)∨

 sellerEuros.mint ≠ buyerEuros.mint)

 ∧
 ∀p:pre PurseSpec. p.balance == p.balancepre
 ∨ MayAffect(sellerEuros,p)pre]

 Namely, what if seller had access to g, an object of class Gullible,

 with g.prs=buyerEuros, and calls g.duped(buyerMoneyTmp).
 class Gullible {

 … prs …

 method duped(p’){ p’.transfer(300000,prs); }

 }

Too strong!

The Escrow specification - 3rd case, vrs 3

78

public bool deal(

 buyerEuros, buyerApples, sellerEuros, sellerApples,

 amount, price)

POST:

… 1st case … ∨ … 2nd case …

 ∨

[res=false ∧
 buyerEuros is PurseSpec ∧
 (¬ (sellerEuros is PurseSpec)∨

 sellerEuros.mint ≠ buyerEuros.mint)

 ∧
 ∀p:PRE PurseSpec. p.balance == p.balancepre
 ∨ PubAccess(sellerEuros,p)pre]

This specification is satisfied by Escrow.deal, :-),
provided that PurseSpec also satisfies
 Pol_7 ≣ ∀p,p’ : PurseSpec. p≠p’ ⇒ ￢ MayAccess(p, p’)

Pol_7 is satisfied by class Purse, vrs1 and vrs 2 :-),

But, is too low level! :-(, and is not satisfied by class Purse, vrs 3 :-(.

The Escrow specification - 3rd case, vrs 4

79

public bool deal(

 buyerEuros, buyerApples, sellerEuros, sellerApples,

 amount, price)

POST:

… 1st case … ∨ … 2nd case …

 ∨

[res=false ∧
 buyerEuros is PurseSpec ∧
 (¬ (sellerEuros is PurseSpec)∨

 sellerEuros.mint ≠ buyerEuros.mint)

 ∧
 ∀p:PRE PurseSpec. p.balance == p.balancepre
 ∨ (∃∉ Module(sellerEuros)⋃ Purse*Bank∧
 PubAccess(o,p)pre)]

 This specification is satisfied by Escrow.deal, :-),
provided that PurseSpec also includes Pol_4.b.
Remember, Pol_4.b ≣ ∀p : PurseSpec. ∀o : Object. p∈ ThisModule, o ∉ThisModule.
 MayAffect(o, p.balance ⇒∃o’ ∉ThisModule. PublicAccess(o’, p)

Pol_4.b is satisfied by class Purse, vrs1 and vrs 2 and vrs 3 : -).

The Escrow specification - 4th, 5th, … cases

80

 are similar

Calculating Trust and Risk

81

The Access Propagation Rules

Method calls may increase the MayAccess – ibility.

Or, in Mark Miller’s terms: Connectivity begets Connectivity.

82

Access Propagation - Rule 1

{ true }

 x.m(y)

 { ∀z,z’:pre Object.

 MayAccess(z,z’)pre

 ⇒

 MayAccess(z,z’)pre

 ∨ MayAccess(x,z’)pre

 ∨ MayAccess(y,z’)pre
 }

These restrictions on MayAccess not only apply for the snapshot after
execution of x.m(y), but also for any snapshot reached during
execution of x.m(y), including within nested method calls.

This is not expressed by the Hoare triple above.

We need to find a way of expressing this.

83

Access Propagation - Rule 2

{ true }

 x.m(y)
 {

∀z:pre Object.

 MayAccess(z)pre∩(MayAccess(x)pre⋃ MayAccess(y)pre) = ∅
 ⇒

 MayAccess(z) = MayAccess(z)pre

 }

84

As for Access Propagation Rule 1, the restrictions on
MayAccess apply for any snapshot reached during
execution of x.m(y), including within nested method calls.

Reasoning about Escrow code’s
adherence to policy

85

We will outline how to demonstrate that Escrow.deal
 adheres to its specification version 3.

Escrow.deal – outline

86

Buyer Seller

:Purse, 20

:Purse, 100 €

:Purse, 55 €

:Purse, 25

The method Escrow.deal
1. Establishes that the Buyer’s and the Selle’r Euro Purses have the same

trustworthiness. Aborts, if unsuccessful.
2. Establishes that the Buyer’s and the Selle’r Apple Purses have the same

trustworthiness. Aborts, if unsuccessful.
3. Transfers price from Seller into a temporary Purse. Aborts, if unsuccessful.
4. Takes amount from Buyer and puts into temporary Purse. If unsuccessful,

reimburses Seller with price, and aborts. If successful, then transfers price
from temporary Purse to Seller, and amount from temporary Purse to Buyer.

For (1) and (2) it uses the method deposit from PurseSpec. This exposes Seller to
Buyer and opposite. The challenge is how to restrict the risk to Seller and Buyer.
We shall discuss (1) and its verification.

Mint

(1) Seller and Buyer Trustworthiness

87
Buyer Seller

buyerEuro, 100 €

sellerEuro, 55 €

EscrowAgent

buyerEuroTmp: 0 €

sellerEuroTmp: 0 €

Mint

…

 same trustworthiness

void deal(sellerMoney, sellerGoods, // seller’s money and goods

 buyerMoney, buyerGoods, // buyer’s money and goods

 price, amnt // price and amount

){

// Create sellerMoneyTmp purse, of same credibility as sellerMoney

1: sellerMoneyTmp = sellerMoney.sprout();

{ sellerMoney is PurseSpec -> sellerMoneyTmp is PurseSpec

88

void deal(sellerMoney, sellerGoods, // seller’s money and goods

 buyerMoney, buyerGoods, // buyer’s money and goods

 price, amnt // price and amount

){

// Create sellerMoneyTmp purse, of same credibility as sellerMoney

1:

sellerMoneyTmp = sellerMoney.sprout();

{ sellerMoney is PurseSpec -> sellerMoneyTmp is PurseSpec

 ∧ sellerMoney is PurseSpec ->

 (sellerMoney.balance == sellerMoney.balance_pre ∧

 sellerMoneyTmp.balance == 0)

89

void deal(sellerMoney, sellerGoods, // seller’s money and goods

 buyerMoney, buyerGoods, // buyer’s money and goods

 price, amnt // price and amount

){

// Create sellerMoneyTmp purse, of same credibility as sellerMoney

1:

sellerMoneyTmp = sellerMoney.sprout();

{ sellerMoney is PurseSpec -> sellerMoneyTmp is PurseSpec

∧ sellerMoney is PurseSpec ->

 (sellerMoney.balance == sellerMoney.balance_pre ∧

 sellerMoneyTmp.balance == 0)

∧ ∀p:_old PurseSpec.

 (p.balance == p.balancePRE ∨ MayAccess(sellerMoney,p) PRE)

∧ ∀o: Object.
 MayAccess(o) ⊆ MayAccess(o) PRE ∪ MayAccess(sellerMoney) PRE }

90

{ sellerMoney is PurseSpec -> sellerMoneyTmp is PurseSpec
∧ sellerMoney is PurseSpec ->
 (sellerMoney.balance == sellerMoney.balance_pre ∧
 sellerMoneyTmp.balance == 0)
∧ ∀p:_old PurseSpec.
 p.balance == p.balancePRE ∨ MayAccess(sellerMoney,p) PRE
∧ ∀o: Object.
 MayAccess(o) ⊆ MayAccess(o) PRE ∪ MayAccess(sellerMoney) PRE }

2: res=sellerMoneyTmp.transfer(0,sellerMoney);

{ sellerMoney is PurseSpec -> sellerMoneyTmp is PurseSpec
∧ (sellerMoneyTmp is PurseSpec && res) -> sellerMoney is PurseSpec
∧ sellerMoney is PurseSpec ->
 (sellerMoney.balance == sellerMoney.balance_pre ∧
 sellerMoneyTmp.balance == 0)
∧ ∀p:_old PurseSpec.
 (p.balance == p.balancePRE ∨ MayAccess(sellerMoney) PRE)
∧ ∀o: Object.
 MayAccess(o) ⊆ MayAccess(o) PRE ∪ MayAccess(sellerMoney) PRE }

91

{ sellerMoney is PurseSpec -> sellerMoneyTmp is PurseSpec

∧ (sellerMoneyTmp is PurseSpec && res) -> sellerMoney is PurseSpec

∧ sellerMoney is PurseSpec ->

 (sellerMoney.balance == sellerMoney.balance_pre ∧

 sellerMoneyTmp.balance == 0) ∧

∧ ∀p:PRE PurseSpec.

 (p.balance == p.balancePRE ∨ MayAccess(sellerMoney,p) PRE)

∧ ∀o: Object.
 MayAccess(o) ⊆ MayAccess(o) PRE ∪ MayAccess(sellerMoney) PRE }

3: if not(res) then {

∀p:PRE PurseSpec.

 p.balance == p.balance_pre || MayAccess(sellerMoney,p)_pre

∀o: Object.
 MayAccess(o) ⊆ MayAccess(o)_pre ∪ MayAccess(sellerMoney)_pre

// this fulfils the spec of deal!

 return res;

}

92

Several steps later …

{ sellerMoney is PurseSpec <-> sellerMoneyTmp is PurseSpec

∧ buyerMoney is PurseSpec <-> buyerMoneyTmp is PurseSpec

∧ ∀p:PRE PurseSpec. (p.balance == p.balancePRE

 ∨ MayAccess(sellerMoney,p) PRE ∨ MayAccess(buyerMoney,p) PRE)

∧ ∀o: Object.
 MayAccess(o) ⊆ MayAccess(o) PRE

 ∪ MayAccess(sellerMoney) PRE ∪ MayAccess(buyerMoney) PRE }

 8: res=sellerMoneyTmp.transfer(0,buyerMoneyTmp);
 if (not res) return false;

{ sellerMoney is PurseSpec <-> sellerMoneyTmp is PurseSpec

∧ buyerMoney is PurseSpec <-> buyerMoneyTmp is PurseSpec

∧ sellerMoneyTmp is PurseSpec -> buyerMoneyTmp is PurseSpec

∧ ∀p:PRE PurseSpec. (p.balance == p.balancePRE

 ∨ MayAccess(sellerMoney,p) PRE ∨ MayAccess(buyerMoney,p) PRE)

∧ ∀o: Object.
 MayAccess(o) ⊆ MayAccess(o) PRE

 ∪ MayAccess(sellerMoney) PRE ∪ MayAccess(buyerMoney) PRE }

93

Conclusions

• We argued that capability policies are open, hypothetical, and
necessary.

• We proposed a capability policy specification language.

• We used it to formally specify the policy for mints and purses.

• We have proven adherence of code to these policies – not
these slides.

• We have specified the trust/risk policy of the Escrow.

• We have shown adherence of the Escrow code to the policies
using the specification for Purses (more in separate document
available on demand).

94

Further Work

• Revisit, Rethink everything.

• Revisit Formal System

• Find a natural expression of module and
encapsulation

• Prove Escrow.deal adherence to
specification version 4

• More Case Studies

• Expand Inference Rules

• Tool Development 95

Thank you

96

