Fully Concurrent Garbage Collection of Actors

Sylvan Clebsch, Sophia Drossopoulou

Imperial College

OOPSLA13

Motivation

@ Actor collection is equivalently useful to object collection.
@ We can do it manually.

» But this is a problem for correctness, performance and productivity.
» It also leads to less dynamic actor topologies.

@ We can use a tracing collector (Agha).

» But this is a problem for performance.
» Actor execution must be halted during tracing.

Goals

@ Fully concurrent actor collection.

» No execution halting at any time.
» No read or write barriers.

@ Use message passing only.

» No other synchronisation primitives.
» No reliance on shared memory.

Message-based collection

@ We can use reference counting...
@ And use messages for increments and decrements...
@ And use a form of deferred reference counting for performance...

@ ...and we still have cyclic graphs of actors that don't get collected.

Cycle detection

@ We'll introduce a dedicated cycle detector actor...
@ And actors will tell it when they block and unblock...
@ And when they block, they will tell the CD:

» Their own reference count.
» The set of other actors referenced in their working set.

@ The CD can then detect cycles and collect them.

This doesn't work

In-flight (sent but not yet received) messages may alter the topology
of the system.

@ An actor's view of it's own topology may be out of date.
» Pending reference count increment and decrement messages.
@ The CD's view of the global topology may be out of date.
» An actor that reported itself blocked may no longer be blocked.

@ The challenge is to correctly determine when the true topology is the
same as the perceived topology...

@ ...and will stay that way forever.

Actors, topology, CD, ext ref cnt -1

Start with three active actors: A, B and C, linked in a chain:

True Topology

)
)

oF Nwl—|>

Actors, topology, CD, ext ref cnt - 2

External reference count = # actors referring to current actor:

True Topology
A # refs: 1
B # refs: 2

(D

C # refs: 1

Actors, topology, CD, ext ref cnt -3

Moreover, message queues are empty:

True Topology

Al # refs: 1| queue:

()

B|# refs: 2| queue:

()

C|#_refs: 1| queue: _

Actors, topology, CD, ext ref cnt - 4

Cycle Detector has not yet received information about A, B, C:

True Topology CD-perceived Topology

Al # refs: 1| queue:

()

B|# refs: 2| queue:

()

C|# refs: 1| queue:

Out of date view - 1

Actor A blocks and informs cycle detector CD:

|"""""""""""'- ..

True Topology

A'# refs: 1: queue

L >

B

refs: 2

queue

()

refs: 1

queue: _

CD-perceived Topology

A # refs: 1

Out of date view - 2

B sends to C some message m containing reference to A:

|"""""""""""" ..

True Topology

A'# refs: 1: queue INC

L >

B|# refs:2 queue
C|# refs: 1| queue: m(..,A)

CD-perceived Topology

A #_refs:1

Out of date view - 3

C drops reference to B, and stores reference to A:

True Topology

'----------------------— --

LY >

_#_réfs: 1

Bl # refs: 2

queue: DEC

(

Cl# refs: 1

queue:

Out of date view - 4

B drops reference to C, processes the DEC message, and blocks:

True Topology CD-perceived Topology
'"A""#"'Fé'f's""i"'iji]éijé"'l'ﬁé """"""""""" A #_refs:1
.. -
_x ... x ______

‘B! #_refs: 1! queue: _ B # refs 1

L---_ ..

C|# _refs: 0| queue:

ERROR!

CD now thinks that A and B form a cycle and removes them!

True Topology CD-perceived Topology
"A'"'#""r'é'f'sl'"i"'ijii'éijé"'l'ﬁé """"""""""" A #_refs:1
__ -
_x ... x ______

‘B! #_refs: 1! queue: _ B # refs 1

L---— ..

C|# _refs: 0| queue:

The conf-ack protocol

@ We introduce a conf-ack protocol to reconcile out of date views of the
topology.

@ When the CD detects a perceived cycle it does not collect it...

» It sends a confirmation message to each actor in the cycle.
» The actors respond with an acknowledge message - always.

o If the CD gets acknowledge messages from all actors without any
actor in the cycle unblocking, then the perceived cycle is a true cycle
and can be collected.

@ If any actor in a perceived cycle unblocks before acknowledging, the
perceived cycle is discarded.

@ This really works! There's a formal proof in the paper.

Reconciling the out of date view - 1

e Each perceived cycle is uniquely identified with a token T
e Instead of collecting, CD sends confirmation requests:

True Topology CD-perceived Topology

e \‘ .
;__B{#_refs: 1 \queue: CONF(r)

.......................................

B,’C # refs: 1

C|# _refs: 0 |queue:

Reconciling the out of date view - 2

A unblocks before confirming; CD updates perceived topology:

True Topology

Al # refs: 2

queue: CONF(1)
- -

. A
B! # _refs: 1 queue: CONF(t) 5

C|# refs: 0

CD-perceived Topology

A

\'\
.

B # refs: 1)

What does acknowledgement mean?

@ When the CD receives an acknowledgement message from an actor...
e If that actor is still blocked...

@ The CD knows its view of that actor’s topology was the true topology
at the moment that perceived cycle was detected.

Initial benchmarks

Language Time (s) Throughput (msg/s)

Erlang OTP ~9 ~333,333
Erlang ~7 ~428,571
Scala (react) ~9 ~333,333
libcppa 5.5 545,454
MAC, disable CD 0.24 12,500,000
MAC, normal CD 0.24 12,500,000
MAC, force CD 0.24 12,500,000

Table : Message handling: 3 million messages, 2 cores

Benchmarking

@ There are more benchmarks in the paper, all taken from the excellent
benchmarking work done by the libcppa project.

@ But we need even more.

@ A standard benchmark suite for actor-model languages would be a
helpful research tool.

Why did we build this?

@ | have a day job at a large financial institution.

» We build high performance time-dependent event-stream processors.
> ...just like everyone else.

@ Why not use threads, or thread pools, or TBB, or OpenMP, or...7

» We do! C/C++ with all of the above.
» Too many programmer errors, too inflexible, too slow.

@ Why not just use an existing actor-model language?

» We do! Erlang, Scala/Java with Akka.
» Improvement in robustness and flexibility, but not speed.

Production use case

@ We create tens of thousands of new actors per second...

» Each may have a complex relationship with existing actors.
» Lifetime depends not just on 1/O related to that actor...
» ...but on future I/O with an unknown set of future actors.

e Fast, lightweight actors give us maximum parallelism.

» But it also means a single process often has millions of actors.

» And they form many unrelated cyclic graphs.

» And they have unpredictable lifetimes.

» Manual lifetime management is much more difficult than manual
memory management.

Future work

@ We are extending this work to the distributed setting.

» Distributed causal messaging.

» Hierarchical cycle detection.

» Using the conf-ack protocol to solve other issues.
» ...such as distributed termination detection.

» ...and transparent actor migration.

@ We have developed a capabilities-based type system for data race
freedom.

» We use this to extend this work to cover passive object collection.

