
Fully Concurrent Garbage Collection of Actors

Sylvan Clebsch, Sophia Drossopoulou

Imperial College

OOPSLA13

Motivation

Actor collection is equivalently useful to object collection.
We can do it manually.

I But this is a problem for correctness, performance and productivity.
I It also leads to less dynamic actor topologies.

We can use a tracing collector (Agha).
I But this is a problem for performance.
I Actor execution must be halted during tracing.

Goals

Fully concurrent actor collection.
I No execution halting at any time.
I No read or write barriers.

Use message passing only.
I No other synchronisation primitives.
I No reliance on shared memory.

Message-based collection

We can use reference counting...
And use messages for increments and decrements...
And use a form of deferred reference counting for performance...
...and we still have cyclic graphs of actors that don’t get collected.

Cycle detection

We’ll introduce a dedicated cycle detector actor...
And actors will tell it when they block and unblock...
And when they block, they will tell the CD:

I Their own reference count.
I The set of other actors referenced in their working set.

The CD can then detect cycles and collect them.

This doesn’t work

In-flight (sent but not yet received) messages may alter the topology
of the system.
An actor’s view of it’s own topology may be out of date.

I Pending reference count increment and decrement messages.

The CD’s view of the global topology may be out of date.

I An actor that reported itself blocked may no longer be blocked.

The challenge is to correctly determine when the true topology is the
same as the perceived topology...
...and will stay that way forever.

Actors, topology, CD, ext ref cnt -1

Start with three active actors: A, B and C, linked in a chain:

 queue: _#_refs: 1

 queue: _

#_refs: 1

C

#_refs: 2

True Topology

A

B

Actors, topology, CD, ext ref cnt - 2

External reference count = # actors referring to current actor:

 queue: _#_refs: 1

 queue: _

A #_refs: 1

C

B #_refs: 2

True Topology

Actors, topology, CD, ext ref cnt - 3

Moreover, message queues are empty:

A #_refs: 1 queue: _

C #_refs: 1 queue: _

B #_refs: 2 queue: _

True Topology

Actors, topology, CD, ext ref cnt - 4

Cycle Detector has not yet received information about A, B, C:

A #_refs: 1 queue: _

C #_refs: 1 queue: _

B #_refs: 2 queue: _

True Topology CD-perceived Topology

Out of date view - 1

Actor blocks and informs cycle detector CD: A

A #_refs: 1 queue: _

C #_refs: 1 queue: _

B #_refs: 2 queue: _

True Topology CD-perceived Topology

A #_refs: 1

B

Out of date view - 2

B sends to C some message m containing reference to A:

A #_refs: 1 queue: INC

C #_refs: 1 queue: m(..,A)

B #_refs: 2 queue: _

True Topology CD-perceived Topology

A #_refs: 1

B

Out of date view - 3

C drops reference to B, and stores reference to A:

A #_refs: 1 queue: INC

C #_refs: 1 queue: _

B #_refs: 2 queue: DEC

True Topology

A #_refs: 1

B

Out of date view - 4

B drops reference to C, processes the DEC message, and blocks:

A #_refs: 1 queue: INC

C #_refs: 0 queue: _

B #_refs: 1B #_refs: 1 queue: _

True Topology CD-perceived Topology

A #_refs: 1

ERROR!

CD now thinks that A and B form a cycle and removes them!

A #_refs: 1 queue: INC

C #_refs: 0 queue: _

B #_refs: 1B #_refs: 1 queue: _

True Topology CD-perceived Topology

A #_refs: 1

The conf-ack protocol

We introduce a conf-ack protocol to reconcile out of date views of the
topology.
When the CD detects a perceived cycle it does not collect it...

I It sends a confirmation message to each actor in the cycle.
I The actors respond with an acknowledge message - always.

If the CD gets acknowledge messages from all actors without any
actor in the cycle unblocking, then the perceived cycle is a true cycle

and can be collected.
If any actor in a perceived cycle unblocks before acknowledging, the
perceived cycle is discarded.
This really works! There’s a formal proof in the paper.

Reconciling the out of date view - 1
x Each perceived cycle is uniquely identified with a token W

x Instead of collecting, CD sends confirmation requests:

A #_refs: 1 queue: INC, CONF(W)

C #_refs: 0 queue: _

A,W #_refs: 1

B,W #_refs: 1B #_refs: 1 queue: CONF(W)

True Topology CD-perceived Topology

Reconciling the out of date view - 2

A unblocks before confirming; CD updates perceived topology:

A #_refs: 2 queue: CONF(W�

C #_refs: 0 queue: _

A

B #_refs: 1B #_refs: 1 queue: CONF(W)

True Topology CD-perceived Topology

What does acknowledgement mean?

When the CD receives an acknowledgement message from an actor...
If that actor is still blocked...
The CD knows its view of that actor’s topology was the true topology
at the moment that perceived cycle was detected.

Initial benchmarks

Language Time (s) Throughput (msg/s)

Erlang OTP ~9 ~333,333

Erlang ~7 ~428,571

Scala (react) ~9 ~333,333

libcppa ~5.5 ~545,454

MAC, disable CD 0.24 12,500,000

MAC, normal CD 0.24 12,500,000

MAC, force CD 0.24 12,500,000

Table : Message handling: 3 million messages, 2 cores

Benchmarking

There are more benchmarks in the paper, all taken from the excellent
benchmarking work done by the libcppa project.
But we need even more.
A standard benchmark suite for actor-model languages would be a
helpful research tool.

Why did we build this?

I have a day job at a large financial institution.
I We build high performance time-dependent event-stream processors.
I ...just like everyone else.

Why not use threads, or thread pools, or TBB, or OpenMP, or...?
I We do! C/C++ with all of the above.
I Too many programmer errors, too inflexible, too slow.

Why not just use an existing actor-model language?
I We do! Erlang, Scala/Java with Akka.
I Improvement in robustness and flexibility, but not speed.

Production use case

We create tens of thousands of new actors per second...
I Each may have a complex relationship with existing actors.
I Lifetime depends not just on I/O related to that actor...
I ...but on future I/O with an unknown set of future actors.

Fast, lightweight actors give us maximum parallelism.
I But it also means a single process often has millions of actors.
I And they form many unrelated cyclic graphs.
I And they have unpredictable lifetimes.
I Manual lifetime management is much more difficult than manual

memory management.

Future work

We are extending this work to the distributed setting.
I Distributed causal messaging.
I Hierarchical cycle detection.
I Using the conf-ack protocol to solve other issues.
I ...such as distributed termination detection.
I ...and transparent actor migration.

We have developed a capabilities-based type system for data race
freedom.

I We use this to extend this work to cover passive object collection.

