
PONY
Sylvan Clebsch, Sebastian Blessing, Sophia Drossopoulou,
Andrew Mc Neil

Causality Ltd and Imperial College London

Pony – a programming language

• for concurrent (distributed) programming,
• very fast,
• easy to learn, easy to use,
• data-race free and atomicity.

aiming

Very fast?

 • Measures rate of random updates of memory

GUPS benchmark (from Linpack suite)

• First Pony implementation
(~4 days of work)

• Pony outperforms
heavily optimized
 MPI version

• 44% source code
 reduction

Very fast?

 • Create ~1M actors
• Run on 12 core, 2.3 GHz Opteron, 64 GByte

Actor creation - (from CAF suite)

• Pony outperforms
all except of CAF

• CAF does no gc

Very fast?

 • Highly contended mailbox, and mixed case (factorizarion)
• Run on 12 core, 2.3 GHz Opteron, 64 GByte

Mailbox and Mixed - (from CAF suite)

• Pony outperforms
all in both

easy to learn, easy to use?

• Pony API adopted as the back-end for the EU project

UPSCALE; API currently used by 10 programmers
• Pony was taken up by a PhD student after a 2 hour

introduction
• Pony has been unofficially taken up by another 8

programmers in the financial sector
• We have developed a 10K lines Pony standard library

(incl. file handling, collections, networking, http client and
server, SSL/TLS, timers and timing, random numbers)

• We have developed several “real world” analytics
programs

• Only 10.7% of types require annotations (later)

Remaining talk – Pony language design

 • Pony concurrency model
• Pony Types to prevent data races
• Pony_ORCA: Garbage Collection Objects
• Pony_AGC: Garbage Collection Actors
• Language Design Observations

Pony Concurrency Model

• Based on actor paradigm
• Actor ~ active object
• Actors/objects may send synchronous messages

to actors/objects, and asynchronous messages to
actors

• Asynchronous messages stored in queue;
executed one at a time

• No other synchronization primitive
•  Imperative Features
• Objects may be passed in messages, no copying

Pony Types to prevent data races
 • capability annotations for each type;

• capabilities ~ points in a matrix of actions denied to
local/global aliases

deny global
read alias

deny global
write alias

Deny nothing
to glob.alias

Pony Types to prevent data races
 • capability annotations for each type;

• capabilities ~ points in a matrix of actions denied to
local/global aliases

deny global
read alias

deny global
write alias

Deny nothing
to glob.alias

deny local
read alias

deny local
write alias

Deny nothing
to locl.alias

Pony Types to prevent data races
 • capability annotations for each type;

• capabilities ~ points in a matrix of actions denied to
local/global aliases

deny global
read alias

deny global
write alias

Deny nothing
to glob.alias

deny local
read alias ✗ ✗

deny local
write alias ✗
Deny nothing
to locl.alias

Pony Types to prevent data races

deny global
read alias

deny global
write alias

Deny nothing
to glob.alias

deny local
read alias iso ✗ ✗

deny local
write alias trn val ✗
Deny nothing
to locl.alias ref box tag

Pony Types to prevent data races
– what the holder may do

deny global
read alias

deny global
write alias

Deny nothing
to glob.alias

deny local
read alias iso ✗ ✗

deny local
write alias trn val ✗
Deny nothing
to locl.alias ref box tag

Write Read Ident

Sendable references
•  iso can be sent to other actor after being consumed
•  val and tag can be sent to other actors
•  no copying required

deny global
read alias

deny global
write alias

Deny nothing
to glob.alias

deny local
read alias iso ✗ ✗

deny local
write alias trn val ✗
Deny nothing
to locl.alias ref box tag

Writeable Readable Opaque

Valid local aliases deny
global read
alias

deny
global
write alias

Deny
nothing

deny local
read alias

iso ✗ ✗

deny local
write alias

trn val ✗

Deny
nothing

ref box tag

Writeable Readable Opaque

iso trn ref box val

Valid local aliases deny
global read
alias

deny
global
write alias

Deny
nothing

deny local
read alias

iso ✗ ✗

deny local
write alias

trn val ✗

Deny
nothing

ref box tag

Writeable Readable Opaque

iso trn ref
box

box val ref val,
box

box,
val

box ref

Valid local, and
global aliases

deny
global read
alias

deny
global
write alias

Deny
nothing

deny local
read alias

iso ✗ ✗

deny local
write alias

trn val ✗

Deny
nothing

ref box tag

Writeable Readable Opaque

iso trn ref
box

box val ref val,
box box,

val
box

ref

val,
box

val,
box

Permanent alias inside an iso-bubble
iso

???

Permanent alias inside an iso-bubble
iso

CC

iso
ref

trn

box val

val,
box val,

box

Permanent and temporary alias
inside a iso-bubble

iso

CC

iso
ref

trn

box val

val,
box val,

box

iso

Permanent alias inside a trn-bubble

trn

CC

iso
ref

trn

box val

val,
box val,

box

box box

Permanent and temporary alias
inside a trn-bubble

trn

CC

iso
ref

trn

box val

val,
box val,

box

box box iso trn

Pony type system

• Further issues

• Recover expressions
• Type if field read (viewpoint adaptation)
• Type of method call
• Type of field write
• Proofs

• More at
 http://www.doc.ic.ac.uk/~scd/fast-cheap.pdf

• More features – implemented
• Algebraic types and Pattern Matching
• Generics
• Non-null

• More features – perhaps
• Reflection

Pony ORCA: Object Garbage Collection

• Actors perform GC fully concurrenty.
• Objects are owned by the actor which created them.
• Actor garbage collect owned objects.
• Challenge: objects may be accessible from other actors
• Approach: Weighted deferred reference counts: actor

keep reference count for a) owned objects reachable from
other actors, b) objects owned by other actors and
reachable from the actor.

Pony ORCA: Object Garbage Collection.2

• Actors (α) , Object (o), owning actor (Own)
• Actor keep reference count for a) owned objects

reachable from other actors, b) objects owned by other
actors and reachable from the actor.

• RC(Own(o),o)
 = Σα≠Own(o)RC(α,o) +# {(α,i) | Mssg(a,i) reaches o }

• When sending/receiving messages, trace, and for all
reachable objects adjust RC accordingly.

• When tracing, and non-owned object becomes
inaccessible

Pony ORCA: Object Garbage Collection.2

• Actors (α) , Object (o), owning actor (Own)
• Actor keep reference count for a) owned objects

reachable from other actors, b) objects owned by other
actors and reachable from the actor.

• RC(Own(o),o) + Σmi where Mssg(Own(o),i)=INC(m,o)
 = Σα≠Own(o)RC(α,o) +# {(α,i) | Mssg(a,i) reaches o }

• When sending/receiving messages, trace, and for all
reachable objects o adjust RC accordingly. If RC gets to 0
then add k to own, and send to INC(k+1,o) to Onw(o).

• When tracing, and non-owned object becomes
inaccessible, set own RC to 0, and send INC(-old(RC),o)
to Onw(o).

Pony ORCA: Object Garbage Collection.3

• Tracing functions using the type system, and therefore

no race conditions
• Used the actor paradigm (messages) to implement

garbage collection.
• Used causal message delivery for Garbage Collection.
• Object Reference cycles not an issue.

• More at
 http://www.doc.ic.ac.uk/~scd/ogc.pdf

Pony Actor Collection

•  Actor collection requires detection of Actor Cycles.
• This is done by a separate actor – the cycle detector.
• Actors keep a count of all external referring actors, and

the set of actors they refer to.
• When blocking, they send this information to the cycle

detector.
• This information is sufficient for the cycles detector to

identify, and remove cycles.

Pony Actor Collection.2

• This is done by a separate actor – the cycle detector.
• Actors keep a count of all external referring actors, and

the set of actors they refer to.
• When blocking, they send this information to the cycle

detector.
• But, actors’ views of themselves may be out of sync

with “real” state (another actor drops/gains reference
to them).

• Also, cycle detector’s view of actor may be out of sync
with actor’s view (a blocked actor may wake up).

Pony Actor Collection.3

• This is done by a separate actor – the cycle detector.
• Actors keep a count of all external referring actors, and the

set of actors they refer to.
• When blocking, they send this information to the cycle

detector.
• But, actors’ views of themselves may be out of sync with

“real” state (another actor drops/gains reference to them).
In this case, send appropriate INC/DEC messages.

• Also, cycle detector’s view of actor may be out of sync with
actor’s view (a blocked actor may wake up). The cycle
detector sends ACK, and awaits CONF messages from
blocked actors.

Pony Actor Collection.4

• Adaptation of reference counting protocol.
• Used the actor paradigm.
• Causal Message Delivery a prerequisite.
• Fun Proof.
• More at

S. Clebsch and S. Drossopoulou.
Fully concurrent garbage collection of actors on many-core
machines. OOPLSA 2013.

More on Pony

• Native code compiler
• Pony actor runtime, including scheduler, memory allocator,

message queues, and garbage collector
• Debugger
• Several applications developed
•  Implementation fast; language relatively easy to learn/use
• Even though model is subtle, language feels simple
• Good defaults and good error messages are crucial
• Tutorial at http://causalityltd.github.io/pony-tutorial/
• Sandbox implementation at http://sandbox.ponylang.org
• Cheers, Jeers, Help, Collaboration, Feedback, welcome

Language Design Conclusions

• Actor Paradigm applied to the GC problem; messages
sent when an actor’s view of world out of sync with the
state of world

• Data Race freedom, Causal Message Delivery
prerequisites for Garbage Collection – and distribution.

• Starting from Principles Delivers
• Formal Models Deliver
• Finding the Invariant is key
• Finding ways not to think of time is key

