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Relationships, Objects, Roles, and Queries in 

Modern Programming Languages

S Researchers in programming language design wish to bridge the gap between 
implementation and design. ...

S Researchers in program analysis are interested in raising the level of abstraction in 
programming languages.....

S Researchers in databases are keen to bridge the ``impedance mismatch'' between 
programs and databases...

S In the absence of language support for querying, many commonly used operations need 
to be expressed using nested loops and complex conditional statements. ...

S Researchers in modelling languages and knowledge representation want to clarify 
whether roles and relationships are dual notions,....
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Session Types and Multiparty 

Session Types

S A session is such a sequence of interactions between two parties. It starts after a connection

S has been established. During the session, each party may execute its own local

S computation, interleaved with several communications with the other party. Communications

S take the form of sending and receiving values over a channel, and additionally,

S throughout interaction between the two parties, there should be a perfect matching of

S sending actions in one with receiving actions in the other, and vice versa
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S A session is a sequence of  interactions between two parties. 

S It starts after a connection has been established. 

S During the session, each party may execute its own local 
computation, interleaved with communications with the 
other party. 

S Communications take the form of  sending and receiving 
values over a channel.

S Throughout interaction between the two parties, there 
should be a perfect matching of  sending actions in one with 
receiving actions in the other, and vice versa.
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? ProdId !Price ? Decision
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Session Types - 4

S sequence of  interactions between 
two parties. 

S … connection has been established. 

S each party may execute its own 
local computation, interleaved with 
communications with the other 
party. 

S Communications take the form of  
sending and receiving values over a 
channel.

S perfect match between 
sending/receiving

S session composition and 
higher order sessions



S Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Sophia Drossopoulou, 
Nobuko Yoshida,
Sessions Types for object oriented 
programmhttp://www.doc.ic.ac.uk/~yoshida/multiparty/multiparty.pdfing
,
ECOOP 2005

S Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini, Mario Coppo, 
Amalgamating the Session Types and the Object Oriented Programming 
Paradigms Multiparadigm Programming with OO Languages 2007 (an 
ECOOP workshop)

S ..... 

S .....

Session Types for OO

http://pubs.doc.ic.ac.uk/sessionsAmalgamateOO/
http://pubs.doc.ic.ac.uk/sessionsAmalgamateOO/


Multiparty 

Kohei Honda, Nobuko Yoshida and Marco Carbone

Multiplarty Asynchronous Session Types

POPL'2008

S generalize binary sessions to multiparty 

asynchronous sessions

Multiparty Session Types - 1



Multiparty

S generalize binary sessions to multiparty 

asynchronous sessions

S three participants; they all talk to each other; 

two buyers collaborate to buy an item. 

Multiparty Session Types - 2



Multirole Session Types

S A session is such a sequence of interactions between two parties. It starts after a connection

S has been established. During the session, each party may execute its own local

S computation, interleaved with several communications with the other party. Communications

S take the form of sending and receiving values over a channel, and additionally,

S throughout interaction between the two parties, there should be a perfect matching of

S sending actions in one with receiving actions in the other, and vice versa



Multirole session types – why?

S Why just two buyes? 

S Seller aware of  how many/who individual buyers are …

S Could number of  buyers vary statically/dynamically?

S We revisit the two-buyers example from earlier



S The concept of  several participants playing the same role is 

natural.

Multirole session types – why? -2



Multirole session types - when

S Auction (several bidders, one auctioneer, several secretaries)

one conversation, auction of  n items

participants may join/leave dynamically

S Virtual PC  meeting (PC chair, PC members, reviewers and subreviewers)

n sub-conversations for n papers,

participants may play different roles in different conversations

S Court (judge, jury, prosecutor, investigator)

….

S Discussion Forum (moderator, participant)

…

S Electronic commerce 

….



Multirole session types - what

S Conversations group related communications/actions

S Two or mote roles in one conversation

S One or more participants per role

S Conversation instances created

S Roles communicate with other roles on a channel

S Participants belong to one or more roles

S Participants send/receive messages on the channels corresponding to their role

S Conversations may be nested

S ….

S on top of  an oo language



Conversations – e.g.

conversation Auction{

roles Auctioneer, Bidder, Secretary;

channel ch1 for Auctioneer to Bidder: 

(  ! Item. (! Price.? Bid)* )*

channel ch2 for Auctioneer to Secretary:

( ! Item. (!keep or !Price.!BidId ) )*

}



Design Issues and Further Work

S A session is such a sequence of interactions between two parties. It starts after a connection

S has been established. During the session, each party may execute its own local

S computation, interleaved with several communications with the other party. Communications

S take the form of sending and receiving values over a channel, and additionally,

S throughout interaction between the two parties, there should be a perfect matching of

S sending actions in one with receiving actions in the other, and vice versa



Design Issues

S Of what kind are the participants of  a role? Objects or processes?

S May a participant play more than one role?

S How does a participant join a role? Push/pull/authenticate?

S Is communication synchronous/asynchronous?

S Is there a global clock?

S Do all participants in a role send/receive in sync with each other? or 
according to a “leader”? or according to another role?

S Can a participant join/leave a role while a conversation is running?

S What if  a role is empty?  

S Which message is read when receiving messages from a role with more than 
one participant: the “first” message, an arbitrary message, all messages?



Design Issues - 2

S Of what kind are the participants of  a role? Objects or Processes?

S May a Process play more than one role? YES

S How does a participant join a role? Push/Pull/authenticate?

S Is communication synchronous/asynchronous?

S Is there a global clock? NO

S Do all participants in a role send/receive in sync with each other? NO 
according to a “leader”? NO, or according to another role? NO

S Can participant join/leave role while conversation is running? NOT YET

S What if  a role is empty? NOT YET

S Which message is read when receiving messages from a role with more than 
one participant: the “first” message, an arbitrary message, all messages? 
IT DOES NOT MATTER THAT MUCH!



Expressions are ...

S this | e.m(e) | e.f | e.f := e’ | new C   usual oo stuff

S spawn e | suspend e usual concurrent stuff

S new cv create a conversation

S e.r.join | e.r.leave join/leave a role in conversation

S e.start start a conversation

S e.ch.send(e’) |  e.ch.receive send/receive one message

S e.ch.receiveAll(x){ e’ } repeatedly receive messages 

and execute e’



Modelling challenge
Communication is

S Asynchronous

S Multicast (potentially in both ways)

S Different participants in the same role may be in different “stages” of  
communication

For this we introduced 

S a noticeboard per conversation instance and channel, which contains 

the values sent so far per “communication stage”

S a status per process, conversation and channel consisting of

S Read stage

S Read index

S Write stage



runtime organization

h
S Object ==  ClassId x ( FldId Value )

S Value ==  true | false | null | Addr

S Heap ==    Addr  ( Object or  Conversation )

S Conversation ==

ConvId x

( RoleId ProcAddr* ) x participants per role

( ChId x stage Value* ) noticeboard per channel

S Heap ==    Addr  ( Object   or  Conversation )  and

( ProcAddr x ConvAddr x ChanID



stage x int x stage )

read stage, read index, write stage



Receiving

???

k.ch.receive, p, h  ???

where h is a heap, p/k are process/convers. addr. 



Receiving

h(p,k,ch) = (rdStage, rdIndx, wrStg)

k.ch.receive, p, h  v, p, h’

where h is a heap, p/k are process/convers. addr. 

Read the progress status of   p, k, ch



Receiving

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’= h[p,k,ch |-> (rdStage+1, rdIndx, wrStage) ]    

k.ch.receive, p, h  v, p, h’

where h is a heap, p/k are process/convers. addr. 

Increment the read stage of   p, k, ch



Receiving

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’= h[p,k,ch |-> (rdStage+1, rdIndx, wrStage) ]    

h(k,chId)=vals vals[rdStage] = … v …

k.ch.receive, p, h  v, p, h’

where h is a heap, p/k are process/convers. addr. 

Read arbitrary value from the noticeboard of   k, ch of rdStage



Receiving

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’= h[p,k,ch |-> (rdStage+1, rdIndx, wrStage) ]    

h(k,chId)=vals vals[rdStage] = … v …

k.ch.receive, p, h  v, p, h’

where h is a heap, p/k are process/convers. addr. 

h(p,k,ch)  =   (rdStage, rdIndx, wrStg)

h’= h[p,k,ch |-> (rdStage, rdIndx+1, wrStage) ]    

h(k,chId)=vals vals[rdStage,rdIndx] = v

k.ch.receiveAll(x){e}, p, h  e[v/x]; k.ch.receiveAll(x){e}, p, h’



Sending

???

k.ch.send(v), p, h  ???



Sending

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’’= h[p,k,ch |-> (rdStage, rdIndx, wrStage+1) ]    

k.ch.send(v), p, h  null, p, h’



Sending

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’’= h[p,k,ch |-> (rdStage, rdIndx, wrStage+1) ]    

h’ = h’’[k,ch,wrStage|-> h(k,ch,wrStage)::v ]

k.ch.send(v), p, h  null, p, h’



Design Issues - 3

S …

S Can participant join/leave role while conversation is running? 

AT FIXED POINTS OF THE CONVERSATION

S What if  a role is empty? 

THROW EXCEPTION WHEN TIMEOUT

S Undo session  part / failure of  subconversation

S Do we want to indicate/restrict the possible number of  parameters in 

a role (eg exactly one auctioneer)

S Garbage collect noticeboards no longer needed



From channel-centric session types:

conversation Auction{

…

channel ch1 for Auctioneer to Bidder: 

(  ! Item. (! Price.? Bid)* )*

channel ch2 for Auctioneer to Secretary:

( ! Item. (!keep or !Price.!BidId ) )*

}

to participant-centric session types

conversation Auction{

…

communications Auctioneer:

( ! Bidder.Item. ! Secretary.Item. 

(! Bidder.Price.? Bidder.Bid)*.

Secretary.(!keep or Secretary.!Price.!BidId ) )*

}

Design Issues - 4



Further Work

hS Types

S Soundness proof

S Examples

S Advanced Features

S Case Studies

S Implementation

S Integration with GUI builder



Thank you!

Thank you!

Thank you!

Thank you!


