
S

Multirôle Session Types

Sophia Drossopoulou

Imperial College London

very preliminary, and ongoing, joint work with

Azalea Raad and Susan Eisenbach

based on earlier work with

Elena Giachino, Matthew Sackman, and Susan Eisenbach

Relationships, Objects, Roles, and Queries in

Modern Programming Languages

S Researchers in programming language design wish to bridge the gap between
implementation and design. ...

S Researchers in program analysis are interested in raising the level of abstraction in
programming languages.....

S Researchers in databases are keen to bridge the ``impedance mismatch'' between
programs and databases...

S In the absence of language support for querying, many commonly used operations need
to be expressed using nested loops and complex conditional statements. ...

S Researchers in modelling languages and knowledge representation want to clarify
whether roles and relationships are dual notions,....

Relationships, Objects, Roles, and Queries in

Modern Programming Languages

S Researchers in programming language design wish to bridge the gap between
implementation and design. ...

S Researchers in program analysis are interested in raising the level of abstraction in
programming languages.....

S Researchers in databases are keen to bridge the ``impedance mismatch'' between
programs and databases...

S In the absence of language support for querying, many commonly used operations need to
be expressed using nested loops and complex conditional statements. ...

S Researchers in modelling languages and knowledge representation want to clarify
whether roles and relationships are dual notions,....

Overview

S Session Types, and

multiparty session types

S Multirole session types

S Design Issues & Further Work

Session Types and Multiparty

Session Types

S A session is such a sequence of interactions between two parties. It starts after a connection

S has been established. During the session, each party may execute its own local

S computation, interleaved with several communications with the other party. Communications

S take the form of sending and receiving values over a channel, and additionally,

S throughout interaction between the two parties, there should be a perfect matching of

S sending actions in one with receiving actions in the other, and vice versa

K. Honda. Types for dyadic interaction. CONCUR’93,

volume 715 of LNCS

S A session is a sequence of interactions between two parties.

S It starts after a connection has been established.

S During the session, each party may execute its own local
computation, interleaved with communications with the
other party.

S Communications take the form of sending and receiving
values over a channel.

S Throughout interaction between the two parties, there
should be a perfect matching of sending actions in one with
receiving actions in the other, and vice versa.

Session Types - 1

Session Types - 3

S sequence of interactions
between two parties.

S … connection has been
established.

S each party may execute its own
local computation, interleaved
with communications with the
other party.

S Communications take the form
of sending and receiving values
over a channel.

Session Types - 3

S sequence of interactions
between two parties.

S … connection has been
established.

S each party may execute its own
local computation, interleaved
with communications with the
other party.

S Communications take the form
of sending and receiving values
over a channel.

S Buyer’s view:
! ProdId ?Price ! Decision

S Seller’s view:
? ProdId !Price ? Decision

S perfect match between

sending/receiving

Session Types - 4

S sequence of interactions between
two parties.

S … connection has been established.

S each party may execute its own
local computation, interleaved with
communications with the other
party.

S Communications take the form of
sending and receiving values over a
channel.

S perfect match between
sending/receiving

S session composition and
higher order sessions

S Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Sophia Drossopoulou,
Nobuko Yoshida,
Sessions Types for object oriented
programmhttp://www.doc.ic.ac.uk/~yoshida/multiparty/multiparty.pdfing
,
ECOOP 2005

S Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini, Mario Coppo,
Amalgamating the Session Types and the Object Oriented Programming
Paradigms Multiparadigm Programming with OO Languages 2007 (an
ECOOP workshop)

S

S

Session Types for OO

http://pubs.doc.ic.ac.uk/sessionsAmalgamateOO/
http://pubs.doc.ic.ac.uk/sessionsAmalgamateOO/

Multiparty

Kohei Honda, Nobuko Yoshida and Marco Carbone

Multiplarty Asynchronous Session Types

POPL'2008

S generalize binary sessions to multiparty

asynchronous sessions

Multiparty Session Types - 1

Multiparty

S generalize binary sessions to multiparty

asynchronous sessions

S three participants; they all talk to each other;

two buyers collaborate to buy an item.

Multiparty Session Types - 2

Multirole Session Types

S A session is such a sequence of interactions between two parties. It starts after a connection

S has been established. During the session, each party may execute its own local

S computation, interleaved with several communications with the other party. Communications

S take the form of sending and receiving values over a channel, and additionally,

S throughout interaction between the two parties, there should be a perfect matching of

S sending actions in one with receiving actions in the other, and vice versa

Multirole session types – why?

S Why just two buyes?

S Seller aware of how many/who individual buyers are …

S Could number of buyers vary statically/dynamically?

S We revisit the two-buyers example from earlier

S The concept of several participants playing the same role is

natural.

Multirole session types – why? -2

Multirole session types - when

S Auction (several bidders, one auctioneer, several secretaries)

one conversation, auction of n items

participants may join/leave dynamically

S Virtual PC meeting (PC chair, PC members, reviewers and subreviewers)

n sub-conversations for n papers,

participants may play different roles in different conversations

S Court (judge, jury, prosecutor, investigator)

….

S Discussion Forum (moderator, participant)

…

S Electronic commerce

….

Multirole session types - what

S Conversations group related communications/actions

S Two or mote roles in one conversation

S One or more participants per role

S Conversation instances created

S Roles communicate with other roles on a channel

S Participants belong to one or more roles

S Participants send/receive messages on the channels corresponding to their role

S Conversations may be nested

S ….

S on top of an oo language

Conversations – e.g.

conversation Auction{

roles Auctioneer, Bidder, Secretary;

channel ch1 for Auctioneer to Bidder:

(! Item. (! Price.? Bid)*)*

channel ch2 for Auctioneer to Secretary:

(! Item. (!keep or !Price.!BidId))*

}

Design Issues and Further Work

S A session is such a sequence of interactions between two parties. It starts after a connection

S has been established. During the session, each party may execute its own local

S computation, interleaved with several communications with the other party. Communications

S take the form of sending and receiving values over a channel, and additionally,

S throughout interaction between the two parties, there should be a perfect matching of

S sending actions in one with receiving actions in the other, and vice versa

Design Issues

S Of what kind are the participants of a role? Objects or processes?

S May a participant play more than one role?

S How does a participant join a role? Push/pull/authenticate?

S Is communication synchronous/asynchronous?

S Is there a global clock?

S Do all participants in a role send/receive in sync with each other? or
according to a “leader”? or according to another role?

S Can a participant join/leave a role while a conversation is running?

S What if a role is empty?

S Which message is read when receiving messages from a role with more than
one participant: the “first” message, an arbitrary message, all messages?

Design Issues - 2

S Of what kind are the participants of a role? Objects or Processes?

S May a Process play more than one role? YES

S How does a participant join a role? Push/Pull/authenticate?

S Is communication synchronous/asynchronous?

S Is there a global clock? NO

S Do all participants in a role send/receive in sync with each other? NO
according to a “leader”? NO, or according to another role? NO

S Can participant join/leave role while conversation is running? NOT YET

S What if a role is empty? NOT YET

S Which message is read when receiving messages from a role with more than
one participant: the “first” message, an arbitrary message, all messages?
IT DOES NOT MATTER THAT MUCH!

Expressions are ...

S this | e.m(e) | e.f | e.f := e’ | new C usual oo stuff

S spawn e | suspend e usual concurrent stuff

S new cv create a conversation

S e.r.join | e.r.leave join/leave a role in conversation

S e.start start a conversation

S e.ch.send(e’) | e.ch.receive send/receive one message

S e.ch.receiveAll(x){ e’ } repeatedly receive messages

and execute e’

Modelling challenge
Communication is

S Asynchronous

S Multicast (potentially in both ways)

S Different participants in the same role may be in different “stages” of
communication

For this we introduced

S a noticeboard per conversation instance and channel, which contains

the values sent so far per “communication stage”

S a status per process, conversation and channel consisting of

S Read stage

S Read index

S Write stage

runtime organization

h
S Object == ClassId x (FldId Value)

S Value == true | false | null | Addr

S Heap == Addr  (Object or Conversation)

S Conversation ==

ConvId x

(RoleId ProcAddr*) x participants per role

(ChId x stage Value*) noticeboard per channel

S Heap == Addr  (Object or Conversation) and

(ProcAddr x ConvAddr x ChanID



stage x int x stage)

read stage, read index, write stage

Receiving

???

k.ch.receive, p, h  ???

where h is a heap, p/k are process/convers. addr.

Receiving

h(p,k,ch) = (rdStage, rdIndx, wrStg)

k.ch.receive, p, h  v, p, h’

where h is a heap, p/k are process/convers. addr.

Read the progress status of p, k, ch

Receiving

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’= h[p,k,ch |-> (rdStage+1, rdIndx, wrStage)]

k.ch.receive, p, h  v, p, h’

where h is a heap, p/k are process/convers. addr.

Increment the read stage of p, k, ch

Receiving

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’= h[p,k,ch |-> (rdStage+1, rdIndx, wrStage)]

h(k,chId)=vals vals[rdStage] = … v …

k.ch.receive, p, h  v, p, h’

where h is a heap, p/k are process/convers. addr.

Read arbitrary value from the noticeboard of k, ch of rdStage

Receiving

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’= h[p,k,ch |-> (rdStage+1, rdIndx, wrStage)]

h(k,chId)=vals vals[rdStage] = … v …

k.ch.receive, p, h  v, p, h’

where h is a heap, p/k are process/convers. addr.

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’= h[p,k,ch |-> (rdStage, rdIndx+1, wrStage)]

h(k,chId)=vals vals[rdStage,rdIndx] = v

k.ch.receiveAll(x){e}, p, h  e[v/x]; k.ch.receiveAll(x){e}, p, h’

Sending

???

k.ch.send(v), p, h  ???

Sending

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’’= h[p,k,ch |-> (rdStage, rdIndx, wrStage+1)]

k.ch.send(v), p, h  null, p, h’

Sending

h(p,k,ch) = (rdStage, rdIndx, wrStg)

h’’= h[p,k,ch |-> (rdStage, rdIndx, wrStage+1)]

h’ = h’’[k,ch,wrStage|-> h(k,ch,wrStage)::v]

k.ch.send(v), p, h  null, p, h’

Design Issues - 3

S …

S Can participant join/leave role while conversation is running?

AT FIXED POINTS OF THE CONVERSATION

S What if a role is empty?

THROW EXCEPTION WHEN TIMEOUT

S Undo session part / failure of subconversation

S Do we want to indicate/restrict the possible number of parameters in

a role (eg exactly one auctioneer)

S Garbage collect noticeboards no longer needed

From channel-centric session types:

conversation Auction{

…

channel ch1 for Auctioneer to Bidder:

(! Item. (! Price.? Bid)*)*

channel ch2 for Auctioneer to Secretary:

(! Item. (!keep or !Price.!BidId))*

}

to participant-centric session types

conversation Auction{

…

communications Auctioneer:

(! Bidder.Item. ! Secretary.Item.

(! Bidder.Price.? Bidder.Bid)*.

Secretary.(!keep or Secretary.!Price.!BidId))*

}

Design Issues - 4

Further Work

hS Types

S Soundness proof

S Examples

S Advanced Features

S Case Studies

S Implementation

S Integration with GUI builder

Thank you!

Thank you!

Thank you!

Thank you!

