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Abstract
Verification of object-oriented programs relies on object invariants
which express consistency criteria of objects. The semantics of
object invariants is subtle, mainly because of call-backs, multi-
object invariants, and subclassing.

Several verification techniques for object invariants have been
proposed. These techniques are complex and differ in restrictions
on programs (e.g., which fields can be updated), restrictions on
invariants (what an invariant may refer to), use of advanced type
systems (such as Universe types or ownership), meaning of invari-
ants (in which execution states are invariants assumed to hold), and
proof obligations (when should an invariant be proven). As a re-
sult, it is difficult to understand whether/why these techniques are
sound, whether/why they are modular, and to compare their ex-
pressiveness. This general lack of understanding also hampers the
development of new approaches.

In this paper, we develop and formalise a unified framework
to describe verification techniques for object invariants. We distil
seven parameters, which characterise a verification technique, and
identify sufficient conditions on these parameters under which a
verification technique is sound. We also define what it means for a
technique to be modular. To illustrate the generality of our frame-
work, we instantiate it with six verification techniques from the
literature. We show how our framework facilitates the assessment
and comparison of the soundness, modularity, and expressiveness
of these techniques.

1. Introduction
Object invariants play a dominant role in the specification and ver-
ification of object-oriented programs, and have been an integral
part of all major specification languages for object-oriented pro-
grams such as Eiffel [31], the Larch languages [4, 17, 18], the Java
Modeling Language JML [19], and Spec# [2]. Object invariants ex-
press consistency criteria for objects, which guarantee their correct
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class C {
int a, b;
invariant 0 <= a < b;

C() { a := 0; b := 3; }

void m() {
int k := 100 / (b − a);
a := a + 3;
n() ;
b := (k + 4) ∗ b;

}
void n() { m(); }

}

class Client {
C c;
invariant c.a <= 10;

/∗ methods omitted ∗/
}

class D extends C {
invariant a <= 10;

/∗ methods omitted ∗/
}

Figure 1. An example (adapted from [23]) illustrating the three
main challenges for the verification of object invariants.

working. These criteria range from simple properties of single ob-
jects (for instance, that a field is non-null) to complex properties of
whole object structures (for instance, the sorting of a tree).

Most of the existing verification techniques expect object invari-
ants to hold in the pre-state and post-state of method executions,
often referred to as visible states [34]. Invariants may be violated
temporarily between visible states. This semantics is illustrated by
class C in Fig. 1. The invariant is established by the constructor.
It may be assumed in the pre-state of method m. Therefore, the
first statement in m’s body can be proven not to cause a division-
by-zero error. The invariant might temporarily be violated by the
subsequent assignment to a, but it is later re-established by m’s last
statement; thus, the invariant holds in m’s post-state.

While the basic idea of object invariants is simple, verification
techniques for practical OO-programs face challenges. These chal-
lenges are more daunting for modular verification where classes
are verified without knowledge of their clients and subclasses:

Call-backs: Methods that are called while the invariant of an ob-
ject o is temporarily broken might call back into o and find the
object in an inconsistent state. In our example (Fig. 1), during
execution of new C().m() the assignment to a violates the in-
variant, and the call-back via n() leads to a division by zero.

Multi-object invariants: When the invariant of an object p de-
pends on the state of another object o, modifications of o poten-
tially violate the invariant of p. In our example, a call o.m might
break the invariant of a Client object p where p .c = o. Alias-
ing makes the proof of preservation of p’s invariant difficult. In
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particular, for modular verification of m, Client ’s invariant is
not known and, thus, cannot be expected to be preserved.

Subclassing: When the invariant of a subclass D refers to fields
declared in the superclass C then methods of C potentially
violate D’s invariant by assigning to C’s fields. In particular, for
modular verification of C, the subclass invariant is in general
not known and, thus, cannot be expected to be preserved.

A number of verification techniques have been suggested to address
some or all of these problems [1, 3, 14, 20, 23, 29, 32, 33, 34,
38]. These techniques share many commonalities, but differ in the
following important aspects:

1. Invariant semantics: What invariants are expected to hold in
which execution states? Some techniques require all invariants
to hold in all visible states, whereas others address the multi-
object invariant challenge by excluding certain invariants.

2. Proof obligations: What is required to be proven? Some tech-
niques require proofs for invariants relating to the current active
object whereas others require invariant proofs for all objects in
the heap.

3. Invariant restrictions: What objects may invariants depend on?
Some techniques use unrestricted invariants, whereas others
address the subclassing challenge by preventing invariants from
referring to inherited fields.

4. Program restrictions: What objects may be used as receivers
of field updates and method calls? Some techniques permit ar-
bitrary field updates, whereas others simplify modular verifica-
tion by allowing updates to fields of the current receiver only.

5. Type systems: What syntactic information is used for reasoning?
Some techniques are designed for arbitrary programs, whereas
others use ownership types to facilitate verification.

These differences, together with the fact that the verification tech-
niques are at times not formally specified or otherwise intertwined
with the type system, make it hard to understand exactly why ver-
ification techniques satisfy claimed properties such as soundness
and modularity, and complicate direct comparisons. More impor-
tantly though, this general lack of understanding makes it hard to
propose new approaches and to choose which techniques to adopt
in specification languages.

In this paper, we present a unified framework that formalises the
proposed verification techniques, abstracts away from their differ-
ences, and allows direct comparisons. We also formalise soundness
and modularity for such verification techniques. Our work concen-
trates on those techniques that require invariants to hold in visible
states. These techniques constitute the vast majority of the tech-
niques described in the literature.

Approach. Our framework uses seven parameters to capture the
first four aspects in which verification techniques differ. To de-
scribe these parameters, we use object-areas (areas for short) and
invariant-regions (regions for short). The former statically char-
acterise sets of objects, while the latter statically characterise sets
of object-class pairs, and thus represent object invariants (each of
which is an object, and the class that declares the invariant). The
class component is important to handle subclassing.

Thus, we describe the first four aspects as follows (the differ-
ences in type systems are discussed later):

1. Invariant semantics: The region X describes the invariants that
are expected to hold in visible states. The region V describes
the invariants that are vulnerable to a given method, that is,
the invariants that the method may break while the control is
within the method. The latter parameter is necessary because

void m() {

int k := 100 / (b − a);

a := a + 3;

n() ;

b := (k + 4) ∗ b;

}

assume X�

check this in U�

check this in C�
prove P
check this in U�

prove E�

assume X�

X \ V holds

?

6

Figure 2. Role of framework parameters for method m (Fig. 1).

most techniques require some invariants to hold even between
visible states, for instance, subclass invariants.

2. Invariant restrictions: The region D describes the invariants
that may depend on a given heap location. This characterises
indirectly the locations an invariant may depend on.

3. Proof obligations: The regions P and E describe the invariants
that have to be proven to hold in the pre-state of a method call
and at the end of a method body, respectively.

4. Program restrictions: The areas U and C describe the permitted
receivers for field updates and method calls, respectively.

Fig. 2 illustrates the role of these parameters. In the pre- and post-
state of a method, X may be assumed to hold. Between these visible
states, some object invariants may be broken, but X \ V is known
to hold throughout the method body. Field updates and method
calls are allowed if the receiver object (here, this ) is in U and C,
respectively. Before a method call, P must be proven. At the end
of the method body E must be proven. Finally, D (not shown in
Fig. 2) constrains the effects of field updates on invariants. Thus,
assignments to a and b affect at most D.

Developing our framework was challenging because different
verification techniques (1) use different type systems to restrict pro-
grams and invariants, and do not make a clear distinction between
the type system and the verification technique, (2) use different
specification languages to express invariants, and (3) use different
verification logics. To deal with this diversity within one unified
framework, we take the following approach:

1. We make a clear delineation between the framework and the
type system and instead of describing one particular type sys-
tem, we state requirements on the type systems used with our
framework.

2. We assume a judgment that describes that an object satisfies
the invariant of a class in a heap. We require that a field update
preserves the invariant if it does not fall within D.

3. We express proof obligations via a special construct prv r,
which throws an exception if the invariants in region r cannot
be proven, and has an empty effect otherwise.

Contributions. The contributions of this paper are:

1. We present a unified formalism for verification techniques for
object invariants. These techniques are described in terms of
seven framework parameters.

2. We formalise soundness for verification techniques.

3. We identify conditions on the framework parameters that guar-
antee soundness of a verification technique.

4. We identify conditions on the framework parameters that guar-
antee modularity of a verification technique.
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5. We show that our framework indeed describes all major verifi-
cation techniques for visible state invariants. We use our frame-
work to compare these techniques.

Outline. The paper is organised as follows. Sec. 2 formalises
programs and invariant semantics. Sec. 3 describes our framework
and defines soundness and modularity. Sec. 4 presents sufficient
conditions for a verification technique to be sound, and states a
general soundness theorem. Sec. 5 instantiates our framework with
existing verification techniques. We discuss related work in Sec. 6.

2. Invariant Semantics
We formalise invariant semantics through an operational semantics.
This semantics defines visible states, execution points at which in-
variants are expected to hold. In order to cater for the different tech-
niques, the semantics is parameterised by regions; these regions are
used to express proof obligations and what invariants are expected
to hold. In this section, we focus on the main ideas of our seman-
tics and relegate the less interesting definitions to the appendix. Our
language description aims at being as generic as possible, since we
intend to apply our analysis to different languages. Thus, instead of
describing precisely what the language entities are, we group them
as structures and state operations and properties on such structures.
The actual entities of a language are then instantiations of these
structures, implementing the necessary operations and satisfying
the required properties.

We assume sets of identifiers for class names CLS, field names
FLD, and method names MTHD, and use variables c ∈ CLS, f ∈
FLD and m ∈ MTHD.

Runtime Structures. A runtime structure is a tuple consisting of a
set of heaps HP, addresses ADR, and values VAL = ADR∪{null},
with the convention that h ∈ HP and ι ∈ ADR. A runtime structure
provides the following operations: dom represents the domain of
a heap; cls yields the class of the object at a given address; fld
yields the value of a field of the object at a given address in a
heap; upd yields the new heap after a field update; new yields
the heap and address resulting from an object creation. We do
not describe how these operations work, but require properties
about their behaviour, for instance, that upd only modifies the
corresponding field of the object at the given address, and leaves
the remaining heap unmodified. To express such requirements, we
also define relations ' and �, denoting heap equivalence and heap
extension, respectively. See Def. 32 in the appendix for details.

A stack frame σ ∈ STK = ADR×ADR×MTHD×CLS is a tuple
of a receiver address, an argument address, a method identifier, and
a class. The latter two items indicate the method currently being
executed and the class where it is defined.

Area/Region Structures and Types. An area/region structure
(Def. 33 in the appendix) consists of a set A of object-areas and a
set R of invariant-regions. An area a ∈ A is a syntactic representa-
tion for a set of objects; a region r ∈ R is a syntactic representation
for a set of object-class pairs.

Several verification techniques specify the invariants that may
be assumed or have to be proven relative to a given viewpoint ob-
ject. For instance, verification techniques using ownership [1, 29,
34] typically allow a method to assume the invariants of the view-
point this and of all objects owned by this . To capture viewpoints,
area/region structures provide the viewpoint adaptation operator .
[7], which adapts a region to the viewpoint described by an area.

We define a type, t ∈ TYP, as a tuple of an area and a class.
The area allows us to cater for types that express the topology of
the heap, without being specific about the underlying type system.

Expressions. In Fig. 3, we define the source expressions e ∈
EXPR. Besides the usual basic object-oriented constructs, we in-

e ::= this (this) | x (variable)
| null (null) | new t (new object)
| e.f (access) | e.f := e (assignment)
| e.m(e) (method call) | e prv r (proof annotat.)

er ::= . . . (as source exprs.) | v (value)
| verfExc (verif exc.) | fatalExc (fatal exc.)
| σ ·er (nested call) | call er (launch)
| ret er (return)

Figure 3. Source and runtime expression syntax.

clude proof annotations, e prv r, for an expression e. As we will
see later, such a proof annotation first executes the expression e
and then proves the invariants characterised by the region r. It is
crucial that our syntax is parametric with the specific area/region
structure; we use different structures to model different verification
techniques.

In Fig. 3, we also define runtime expressions er ∈ REXPR.
A runtime expression is a source expression, a value, a nested call
with its stack frame σ, an exception, or a decorated runtime expres-
sion. A verification exception verfExc indicates that a proof obli-
gation failed. A fatal exception fatalExc indicates that an expected
invariant does not hold. Runtime expressions can be decorated with
call er and ret er to mark the beginning and end of a method call,
respectively.

In the appendix (Def. 34), we define evaluation contexts, E[·],
which describe contexts within one activation record and extend
these to runtime contexts, F [·], which also describe nested calls.

Programming Languages. We define a programming language
as a tuple consisting of a set PRG of programs, a runtime structure,
and an area/region structure (see Def. 35 in the appendix). Each
P ∈ PRG comes equipped with the following operations. F (c, f)
yields the type of field f in class c as well as the class in which
f is declared (c or a superclass of c). M (c, m) yields the type of
the (single) parameter and the result type of method m in class c.
B(c, m) yields the expression constituting the body of method m in
class c as well as the class in which m is declared. Moreover, there
are operators to denote subclasses and subtypes (<:), inclusion of
areas (v), and projection ([[·]]) of areas and regions to sets of objects
and sets of object-class pairs, respectively. The projections also take
an address to interpret areas and regions that are specified relatively
to the current object as it is often the case in ownership systems.

We require that . represents viewpoint adaptation. That is, the
projection of a viewpoint-adapted region a . r wrt. an address ι is
equal to the union of the projections of r wrt. each object in the
projection of a:

[[a . r]]h,ι =
[

ι′∈[[a]]h,ι

[[r]]h,ι′

Each program also comes with typing judgments Γ ` e : t and
h ` er : t for source and runtime expressions, respectively. An
environment, Γ ∈ ENV, is a tuple of the class containing the current
method, the method identifier, and the type of the sole argument.

Finally, the judgment h |= ι, c expresses that in heap h, the
object at address ι satisfies the invariant declared in class c. The
judgment trivially holds if the object is not allocated (ι 6∈ dom(h))
or is not an instance of c (cls(h, ι) 6<: c). We say that the region r is
valid in heap h wrt. address ι if all invariants in [[r]]h,ι are satisfied.
We denote validity of regions by h |= r, ι defined as

h |= r, ι ⇔ ∀(ι′, c) ∈ [[r]]h,ι. h |= ι′, c

We sometimes find it convenient to write h |= [[r]]h,ι for h |= r, ι.

Operational Semantics. Given a program P and a region Xc,m

that characterises the invariants that are expected to hold in the
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(rVarThis)
σ = (ι, v, , )

σ ·this, h −→ σ ·ι, h
σ ·x, h −→ σ ·v, h

(rNew)
σ = (ι, , , )
h′, ι′ = new(h, ι, t)
σ ·new t, h −→ σ ·ι′, h′

(rDer)
v = fld(h, ι, f)

σ ·ι.f, h −→ σ ·v, h

(rAss)
h′ = upd(h, ι, f, v)

σ ·ι.f := v, h −→ σ ·v, h′

(rCall)
B(m, cls(h, ι)) = e, c σ′ = (ι, v, c, m)

σ ·ι.m(v), h −→ σ ·σ′ ·call e, h

(rCxtEval)
σ ·er, h −→ σ ·e′r, h′

σ ·E[er], h −→ σ ·E[e′r], h′

(rCxtFrame)
er, h −→ e′r, h′

σ ·er, h −→ σ ·e′r, h′

(rLaunch)
σ=(ι, , c, m)
h |=Xc,m, ι
σ ·call e, h −→ σ ·ret e, h

(rLaunchEx)
σ=(ι, , c, m)
h 6|=Xc,m, ι
σ ·call e, h −→ σ ·fatalExc, h

(rFrame)
σ=(ι, , c, m)
h |=Xc,m, ι
σ ·ret v, h −→ v, h

(rFrameEx)
σ=(ι, , c, m)
h 6|=Xc,m, ι
σ ·ret v, h −→ fatalExc, h

(rPrf)
σ = (ι, , , ) h |= r, ι
σ ·v prv r, h −→ σ ·v, h

(rPrfEx)
σ = (ι, , , ) h 6|= r, ι

σ ·v prv r, h −→ σ ·verfExc, h

Figure 4. Reduction rules of operational semantics.

visible states of a method m of class c, the runtime semantics is
the relation with the following signature, defined in Fig. 4:

−→ ⊆ REXPR × HP × REXPR × HP

The first seven rules are rather standard for an imperative object-
oriented language. Note that in rNew, a new object is created using
the function new, which takes a type as third parameter rather
than a class, thereby making the semantics parametric wrt. the
type system: different type systems may use different extensions,
expressed here as areas, to describe heap topological information.
Similarly, through the use of upd and fld we can afford to be
agnostic about the representation of a heap. The rule rCall describes
method calls; it stores the class where the method body is defined
in the new stack frame σ, and introduces the ”marker” call er at the
beginning of the method body.

Our reduction rules abstract away from the program verification
and describe only its effect. Thus, rLaunch, rLaunchExc, rFrame,
and rFrameExc check whether Xc,m is valid at the beginning and
end of any method execution m defined in class c, and throw a fatal
exception, fatalExc, if the check fails. This represents the visible
state semantics discussed in the introduction. Proof obligations
e prv r are verified once e reduces to a value (rPrf and rPrfExc);
if r is not valid, a verification exception verfExc is thrown.

Static verification amounts to showing all proof obligations in
a program logic, based on the assumption that expected invariants
hold in visible states. A verification technique is therefore sound
if it does not make any false assumptions, that is, if it guarantees
that fatalExc is never thrown. Soundness does allow verfExc to be
thrown, but this will never happen in a verified program.

3. Verification Techniques
In this section, we formalise verification techniques and their con-
nection to programs. Moreover, we define what it means for a veri-
fication technique to be sound and modular.

A verification technique is essentially a 7-tuple, where the com-
ponents of the tuple provide instantiations for the seven parameters
of our framework. These instantiations are expressed in terms of the
areas and regions provided by the programming language. To allow
the instantiations to refer to the program, for instance, to look up
field declarations, we define a verification technique as a mapping
from programs to 7-tuples.

Definition 1 (Verification Technique). A verification technique V
for a programming language is a mapping from programs into a
tuple:

V : PRG → EXP×VUL×DEP×PRE×END×CLL×ASS

where
EXP = CLS × MTHD → R
VUL = CLS × MTHD → R
DEP = CLS → R
PRE = CLS × MTHD ×A → R
END = CLS × MTHD → R
CLL = CLS × MTHD × CLS → A
ASS = CLS × MTHD × CLS × MTHD → A

For a the verification technique applied to a program, we use
Xc,m, Vc,m, Dc, Pc,m,a, Ec,m, Cc,m,c′,m′ , and Uc,m,c′ for the
application of the first component to a class and method name, etc.
The meaning of these components is:

Xc,m: the region expected to be valid at the beginning and end
of the body of method m in class c. The parameters c and
m allow a verification technique to expect different invariants
in the visible states of different methods. For instance, JML’s
helper methods [20, 21] do not expect any invariants to hold.

Vc,m: the region vulnerable to method m of class c, that is, the
region whose validity may be broken while control is inside
m. Method m can break an invariant by updating a field or
by calling a method that breaks, but does not re-establish the
invariant (for instance, a helper method). The parameters c and
m allow a verification technique to require that invariants of
certain classes (for instance, c’s subclasses) are not vulnerable.

Dc: the region that depends on a field declared in class c. The
parameter c is used, for instance, to prevent invariants from
depending on fields declared in c’s superclasses [20, 34].

Pc,m,a: the region whose validity has to be proven before calling a
method on a receiver in area a from the execution of a method
m in class c. The parameters allow a verification technique to
impose proof obligations depending on the calling method and
the ownership relation between caller and callee.

Ec,m: the region whose validity has to be proven at the end of
method m in class c. The parameters allow a verification tech-
nique to require different proofs for different methods to ex-
clude subclass invariants or helper methods.

Uc,m,c′ : the area of allowed receivers for an update of a field in
class c′, within the body of method m in class c. The parameters
allow a verification technique, for instance, to prevent field
updates within pure methods.

Cc,m,c′,m′ : the area of allowed receivers for a call to method m′ of
class c′, within the body of method m of class c. The parameters
allow a verification technique to permit calls depending on
attributes (such as purity or effect specifications) of the caller
and the callee.
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(vs-null)

Γ V̀ null

(vs-Var)

Γ V̀ x

(vs-this)

Γ V̀ this

(vs-new)

Γ V̀ new t

(vs-fld)
Γ V̀ e

Γ V̀ e.f

(vs-ass)
Γ ` e : a c′ F (c′, f) = , c a v UΓ,c Γ V̀ e Γ V̀ e′

Γ V̀ e.f := e′

(vs-call)
Γ ` e : a c′ B(c′, m) = , c a v CΓ,c,m Γ V̀ e Γ V̀ e′

Γ V̀ e.m(e′ prv PΓ,a)

(vs-class)

B(c, m) = e, c
M (c, m) = t, t′

ff
⇒

(
e = e′ prv Ec,m

c, m, t V̀ e′

V̀ c

Figure 5. Well-Verified source expressions and classes.

Role of the Seven Components. The operational semantics uses
a verification technique to specify the invariants expected in visible
states, whereas the static analysis imposed by the verification tech-
nique describes program restrictions and proof obligations. More
precisely, the operational semantics uses X, to be checked at vis-
ible states; soundness requires that X \ V holds during a method
activation. Well-verification static analysis describes proof obliga-
tions using P and E, and ensures program restrictions, through U
and C, are respected. Finally, D restricts invariants for well-verified
programs (cf. Def. 2). Sec. 4 gives five conditions on these compo-
nents that guarantee soundness.

It might be initially surprising that we need as many as seven
components. This number is justified by the variety of concepts
used by modern verification techniques, such as accessibility of
fields, purity, helper methods, ownership, and effect specifications.
Note for instance that V would be redundant if all methods were to
re-establish the invariants they break; in such a setting, a method
could break invariants only through field updates, and V could be
derived from U and D. However, in the presence of helper methods
and ownership, methods may break but not re-establish invariants.

The seven components depend on class and method identifiers;
these can be extracted from an environment Γ or a stack frame σ
in the obvious way. Thus, for Γ = c, m, , σ = (ι, , c, m), and
σ′ =( , , c′, m′), we use XΓ, Xσ as shorthands for Xc,m; we also
use PΓ,a and Pσ,a as shorthands for Pc,m,a.

Well-Verified Programs. The judgement Γ V̀ e expresses that
expression e is well-verified according to verification technique V .
The rules for this well-verification judgement are shown in Fig. 5.

The first five rules express that literals, variable lookup, and
object creation, and field read do not require proofs. The receiver of
a field update must fall into U (vs-ass). The receiver of a call must
fall into C (vs-call). Moreover, we require the proof of P before
a call. Finally, a class is well-annotated if the body of each of its
methods is well-annotated and ends with a proof obligation for E
(vs-class).

A program P is well-verified wrt. V , denoted as V̀ P, if all
classes are well-verified and all class invariants respect the depen-
dency restrictions dictated by D. More precisely, (W2) below states
that the invariant of an object ι′ declared in a class c′ may be af-
fected by an update of a field of a class c only if the invariant is
within Dc.

V1

V1

V1

1

2

3

4

5

6

X2X2
V2

X1

X1

X1

X1

Figure 6. Open calls and valid invariants in a heap

Definition 2 (Well-Verified Programs).

V̀ P ⇔
(W1) ∀c ∈ P. V̀ c

(W2)
F (cls(h, ι), f) = , c
(ι′, c′) 6∈ [[Dc]]h,ι,
h |= ι′, c′

9=; ⇒ upd(h, ι, f, v) |= ι′, c′

Fig. 13 in the appendix defines the judgment h V̀ er for well-
annotated runtime expressions. Most of the rules correspond to
those from Fig. 5. The others deal with values and nested calls.

Valid States. The regions X and X \ V characterise the invari-
ants that are known to hold in the visible states and between visible
states of the current method execution, respectively. That is, they
reflect the local knowledge of the current method, but do not de-
scribe globally all the invariants that need to hold in a given state.

For any state with heap h and execution stack σ, the function
vi(σ, h) yields the set of valid invariants, that is, invariants that are
known to hold (emp denotes the emptyset of object invariants):

Definition 3 (Valid Invariants in a Heap).

vi(σ, h) =

(
emp if σ = ε

(vi(σ1, h) ∪ [[Xσ ]]h,σ)\[[Vσ ]]h,σ if σ = σ1 ·σ

An empty stack occurs in the initial program state where no invari-
ants hold as there are no allocated objects. For each additional stack
frame σ, we know that the corresponding method m requires Xσ .
Thus, we add these invariants to the valid invariants. Method m
may break its vulnerable invariants even if they are not vulnerable
to its callers, provided that m re-establishes these invariants before
it terminates. Consequently, we subtract Vσ from the set of valid
invariants.

Fig. 6 depicts this mechanism of invariant violation and reestab-
lishing for the execution of two consecutive calls. The regions
X1, V1 denote the expected and vulnerable regions of the outer call
and X2, V2 are the expected and vulnerable regions of the subcall.
The first call violates V1 but X1 \ V1 hold throughout the call (1).
Before making the subcall, it establishes all of X2 (2). The subcall
violates V2 (3) but reestablishes all of X2 before returning (4); sim-
ilarly, after the first call resumes control (5), it re-establishes X1 at
the end of its execution (6).

Not all stacks are valid with respect to well-verification. The
verification component C prohibits certain sequences of stack
frames because the receiver of a stack frame must be in the callable
area of the preceding stack frame.
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Definition 4 (Valid Stacks). Stack σ is valid wrt. heap h and a
verification technique V , denoted as h V̀ σ iff:

σ=σ1 ·σ ·σ′ ·σ2 ⇒
(
∃c. σ′ = (ι, , c′, m), h, σ ` ι : a

c′ <: c, a v Cσ,c,m

Assuming a function stack : REXPR → STK∗, which extracts a
stack from a runtime expression, defined as

stack(E[er]) =

(
σ ·stack(e′r) if er = σ ·e′r
ε otherwise

we can define the notion of a valid state for an execution stack. A
state with heap h and stack σ is valid iff:

(V1) σ is a valid stack, h V̀ σ, meaning that the receivers of
consecutive method calls are within the respective C areas.

(V2) The valid invariants vi(σ, h) hold.

(V3) If the state is a visible state, additionally the expected invari-
ants Xσ hold (σ is the topmost frame, i.e., σ = σ′ ·σ).

These properties are formalised in Def. 5. A state is determined by
a heap h and a runtime expression er .

Definition 5 (Valid State). A state with heap h and runtime expres-
sion er is valid for a verification technique V , denoted by er |=V h,
iff:

(V1) h V̀ stack(er)
(V2) h |= vi(stack(er), h)
(V3) er ∈ {F [σ ·call e], F [σ ·ret v]} ⇒ h |= Xσ , σ

Soundness. Intuitively, a verification technique is sound if veri-
fied programs only produce valid states and do not throw fatal ex-
ceptions (cf. rLaunchEx and rFrameEx in Fig. 4). More precisely, a
verification technique V is sound for a programming language PL
iff for all well-formed and well-annotated programs P ∈ PL, any
well-typed and well-annotated runtime expression er executed in
a valid state reduces to another well-annotated expression e′r with
a resulting valid state. Note that a well-annotated e′r contains no
fatalExc (see Fig. 13).

We stress the separation of concerns, i.e., the distinction be-
tween verification technique soundness, as defined below, and type
system soundness. At the same time we note that the definition of
the former relies on properties of the latter. Well-formedness of a
program P is denoted by ẁf P (see Def. 36 in the appendix). Well-
typedness of a runtime expression er is denoted by h ` er : t (see
Def. 35 in the appendix). Type soundness is a requirement on the
type system and is assumed here.

Definition 6 (Sound Verification Technique). A verification tech-
nique V is sound for a programming language PL iff for all pro-
grams P ∈ PL:

ẁf P, h ` er : t,

V̀ P, er |=V h, h V̀ er,
er, h −→ e′r, h′

9=; ⇒ e′r |=V h′, h′ V̀ e′r

Modularity. A verification technique is modular if all proof obli-
gations for a class c can be shown using the code for c, c’s super-
classes, and the classes used by c [22]. We call this set of classes the
classes that are visible in c. Subclasses and client classes of c are in
general not visible in c. We assume a reflexive, transitive predicate
vis(c, c′) that expresses that class c is visible in class c′. A verifi-
cation technique can define vis in various ways, for instance, using
an import-relation among modules [33] or the accessibility of class
members [20].

Definition 7. A verification technique is modular if it only imposes
proof obligations for invariants of visible classes:

P1

V1

X2

X1

E

V

X

(S1) (S2)

V1
X2

V2\X2

V2

Xc

Xc’

Vc’

Vc

Vc\Xc Vc’\Xc’

(S3) (S5)

Figure 7. Well Structured Conditions

(M1) (ι′, c′) ∈ [[Pc,m,a]]h,ι ⇒ vis(c′, c)
(M2) (ι′, c′) ∈ [[Ec,m]]h,ι ⇒ vis(c′, c)

4. Well-Structured Verification Techniques
In this section, we identify conditions on the components of a
verification technique that are sufficient for soundness.

Definition 8 (Well-Structured Verification Methodology). A veri-
fication technique is well-structured if, for all programs in the pro-
gramming language:

(S1) a v Cc,m,c′m′ ⇒ (a . Xc′,m′ ) \ (Xc,m \ Vc,m) ⊆ Pc,m,a

(S2) Vc,m ∩ Xc,m ⊆ Ec,m

(S3) Cc,m,c′,m′ . (Vc′,m′ \ Xc′,m′ ) ⊆ Vc,m

(S4) Uc,m,c′ . Dc′ ⊆ Vc,m

(S5) c <: c′ ⇒
(

Xc,m ⊆ Xc′,m,

Vc,m\Xc,m ⊆ Vc′,m \ Xc′,m

In the above, the set theoretic symbols have the obvious inter-
pretation in the domain of regions. For example (S2) is short for
∀h, ι : [[Vc,m]]h,ι ∩ ([[Xc]]h,ι ⊆ [[Ec,m]]h,ι.

The first two constraints, (S1) and (S2), relate proof obligations
with the expected invariants at visible states. (S1) ensures that the
invariants that are expected to hold at the beginning of a subcall,
which do not presently hold in the current call, need to be included
in the proof obligation prescribed before the subcall. (S2) ensures
that the invariants that held at the beginning of the call, where
subsequently violated during the call and are required to hold
again at the end of the call are included in the prescribed proof
obligation at the end of the method body. The top two quadrants
of Fig. 7 informally depict region scenarios that would result from
(S1) and (S2) ; as in previous examples, regions appended by 1
denote regions of the caller, whereas regions appended by 2 denote
regions of the callee. The darkest shades denote regions that must
be included in the proof obligations.

Constraint (S3) restricts the invariants that can be violated dur-
ing a subcall but not reestablished at the end through E, i.e., V \X.
More precisely, these residue violated invariants must be included
in the vulnerable invariants of the caller (bottom-left quadrant of
Fig. 7).

Constraint (S4) ensures that the invariants violated directly in
an active method through the area it is allowed to update, U, is
bounded by the vulnerable region of that method.

Finally, (S5) establishes constraints for subclasses in a well-
structured Verification Methodology: An overridden method in a
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subclass may assume less invariants to hold at visible states than
that same method in its superclass. Moreover, the residue violated
invariants (those broken but not reestablished) of an overridden
method in a subclass , denoted by the region Vc \Xc in the bottom
right quadrant of Fig. 7, have to be included in the residue violated
invariants of that same method in its superclass, i.e., Vc′ \ Xc′ in
Fig. 7.

To further motivate the well-structured requirements of Def. 8,
let us refer back to Fig. 6. (S1) ensures that by proving P before
making the subcall, we can safely make move (2) and reach a valid
visible state at the beginning of the subcall. (S2) ensures that by
proving E at the end of both method bodies we can make moves
(4) and (6) and reach a valid visible states at the end of both calls.
Constraint (S3) ensures that when the caller resumes control after
the subcall, we can make move (5) and reach a state where X1\V1
holds in the heap. (S4) guarantees that X\V always hold for any call
by ensuring that V is an adequate upper limit for the effect of a call.
Finally, but crucially, (S5) permits static analysis of the relationship
between X and V in the presence of dynamic dispatch of subclass
methods because static region information of what is expected
to hold at the visible states and what are the residue vulnerable
invariants of the superclass imply the corresponding regions for the
same method in the subclass.

The five conditions from Def. 8 guarantee soundness, as stated
in Def. 6.

Theorem 9 (Soundness For Visible-State Verification Techniques).
A well-structured verification technique built on top of a PL with a
sound type system is sound.

4.1 Proof of Soundness Theorem
The proof of Theorem 9 uses a number of lemmas we briefly
discuss here. For a start, we require to show the correspondence
between well-verified source expressions (Fig. 5) and well-verified
runtime expressions (Fig. 13).

Lemma 10 (Substitution/Instantiation).

Γ V̀ e, Γ ` h, σ ⇒ h V̀ σ ·e

Proof. By induction on the derivation of Γ V̀ e.

We also require the following lemma stating that the adaptation
operation is adequate and monotonic.

Lemma 11 (Adaptation Correspondence).

1. h ` σ ·ι : a, ⇒ [[r]]h,ι ⊆ [[a . r]]h,σ

2. a1 v a2 ⇒ a1 . r ⊆ a2 . r
3. r1 v r2 ⇒ a . r1 ⊆ a . r2

Proof. The first clause is straightforward from (T6) of Def. 37 and
(P5) of Def. 35. The second and third clauses are also immediate as
a result of (P5) of Def. 35.

We also require a number of lemmas dealing with the reduction
rules and heap validity. For instance, the following lemma states
that heaps can only grow as a result of a reduction.

Lemma 12. er, h −→ e′r, h′ ⇒ h � h′

Proof. By induction on the derivation of er, h −→ e′r, h′ and
Definition 32.

The following lemma states that a well-verified runtime expres-
sion remains well-verified in an extended heap and also that well-
verified values are independent of any guarding stack frame. The
latter property is useful when we consider a return from a subcall
in the main proof.

Lemma 13.

1. h V̀ er, h � h′ ⇒ h′ V̀ er

2. h V̀ σ ·v ⇒ h V̀ σ′ ·v

Heap validity depends solely on the stack frames of a runtime
expression, thus evaluation contexts are non-influential.

Lemma 14 (Valid States). If stack(er) = σ1 · . . . · σn then

1. σ′ ·er |=V h ⇔ σ′ ·E[er] |=V h

2. σ′ ·er |=V h ⇔

8><>:
h |= Xσ′ \ Vσ′ \ Vσ1 \ . . . \ Vσn

h V̀ σ′ · σ1 · . . . · σn

er |=V h

Proof. Immediate from Definition 5.

In order to determine the effect of updates on valid invariants in
a heap we require the following lemma.

Lemma 15 (Invariant Satisfaction Effect).

V̀ P
h |= [[r]]h,ι′

cls(h, ι) <: c′

F (c′, f, =) , c
h′ = upd(h, ι, f, v)

9>>>=>>>; ⇒ h′ |= [[r]]h′,ι′\[[Dc]]h′,ι

Proof. Immediate from (W2) of Def. 2

Thus for a well structured verification technique, we are guar-
anteed that certain invariants are unaffected by reductions.

Lemma 16 (Computation effects). For arbitrary invariant set s =
{(ι1, c1), . . . , (ιn, cn)}, if V is well-structured then:

h |= s
er, h −→ e′r, h′

stack(e′r) = σ1 · . . . · σn

9=; ⇒ h′ |= s \ Vσ1 \ . . . \ Vσn

Proof. By induction on the derivation of er, h −→ e′r, h′, Lemma 15
and (S4) of Definition 8.

Finally, we restate the soundness theorem, Theorem 9, in full
and prove the main cases.

Theorem 9 Soundness for Visible-State Verification Techniques
If V is well-structured, then:

ẁf P, h ` er : t,

V̀ P, er |=V h, h V̀ er,
er, h −→ e′r, h′

9=; ⇒ e′r |=V h′, h′ V̀ e′r

Proof. The proof is by induction on the derivation of er, h −→
e′r, h′. As a shorthand, we find it convenient to write h |= Xσ

and h |= a . Xσ instead of h |= [[Xσ]]h,σ and h |= [[a . Xσ]]h,σ

respectively, and similarly for the framework component Vσ . For
convenience we also enumerate the premises of the Theorem as

ẁf P, (1)
h ` er : t, (2)

V̀ P, (3)
er |=V h, (4)
h V̀ er, (5)

er, h −→ e′r, h′ (6)

We here focus on the main cases for the derivation of (6) and leave
the remaining simpler cases for the interested reader.
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rAss: From the conclusion and the premises of the rule we know

er = σ ·ι.f := v (7)

e′r = σ ·v (8)

h′ = upd(h, ι, f, v) (9)

From (7) we know (5) could only have been derived using vd-
ass and from the premises of this rule we know

h ` σ ·ι : a c′ (10)

F (c′, f) = , c (11)
a v Uσ,c (12)
h V̀ σ ·ι (13)
h V̀ σ ·v (14)

From (9) and Def. 32 (H4) we know

h ' h′ which implies h � h′ (15)

Thus by (14), (15) and Lemma 14.1 and then by (8) we derive
that the resultant configuration is still well-verified, i.e.,

h′ V̀ e′r

We still need to show that (6) reduces to a valid state. From (4)
and Def. 5 we know

h |= Xσ \ Vσ (16)

Also, from (10) and Def. 37(T4) we know

cls(h, ι) <: c′ (17)

By (3), (16), (17), (11) (9) and Lemma 15 we obtain

h′ |= Xσ \ Vσ \ [[Dc]]h,ι (18)

By (10) and Lemma 11.1 we get

[[Dc]]h,ι ⊆ [[a . Dc]]h,σ (19)

By (12) and Lemma 11.2 we get

[[a . Dc]]h,σ ⊆ [[Uσ,c . Dc]]h,σ (20)

Since we assume that our verification technique V is well-
structured, by 8(S4) we also get

[[Uσ,c . Dc]]h,σ ⊆ [[Vσ]]h,σ (21)

Thus, from (18), (19), (20), (21) and set inclusion transitivity
we obtain

h′ |= Xσ \ Vσ

which by (8) and Def. 5 means we get the valid state

e′r |=V h′

rCall: From the conclusion and the premises of the rule we know

er = σ ·ι.m(v) (22)

e′r = σ ·σ′ ·call eb (23)
B(cls(h, ι), m) = eb, c (24)

σ′ = (ι, v, c, m) (25)

h′ = h (26)

From (22) we know that (5) could only have been derived using
vd-call-2, and thus from the premises of this rule we get

h ` σ ·ι : a c′ (27)

B(c′, m) = , c′′ (28)
h |= Pσ,a, σ (29)
a v Cσ,c′′,m (30)
h V̀ σ ·ι (31)
h V̀ σ ·v (32)

From (3), Def. 2(W1) and vs-class we know

eb = e prv Ec,m (33)
(c, m, ) V̀ e (34)

From (24) and Def. 35(P2) we know

cls(h, ι) <: c (35)

This allows us to deduce that h, σ′ is well-formed wrt. the
environment (c, m, ) since by (25), (35) and Def. 36 we get

(c, m, ) ẁf h, σ′ (36)

By (34), (36) and Lemma 10 we derive

h V̀ σ′ ·e (37)

Hence, by (37) and vd-start we get

h V̀ σ ·σ′ ·call e prv Eσ′

and by (26), (23), (33) and (25) we obtain

h′ V̀ e′r
We still need to show that (6) reduces to a valid state, that is
e′r |=V h′. From (27), Def. 37(T4) we know

cls(h, ι) <: c′ (38)

and by (38), (28), (24), (1) and Def. 36(F4) we deduce

c <: c′′ (39)

Since V is well-structured, then by Def. 8(S5) and (39) we
obtain

Xc,m ⊆ Xc′′,m (40)

which, by Lemma 11.2 yields

a . Xc,m ⊆ a . Xc′′,m (41)

Moreover from Def. 8(S1) and (30) we get

(a . Xc′′,m) \ (Xσ \ Vσ) ⊆ Pσ,a (42)

From (41) and (42) we obtain

(a . Xc,m) \ (Xσ \ Vσ) ⊆ Pσ,a (43)

From (4) and Def. 5, and then from (29) we know

h |= Xσ \ Vσ ∪ Pσ,a (44)

and from (43) and (44) we obtain

h |= Xσ \ Vσ ∪ (a . Xc,m) (45)

From (25), (27) and Lemma 11.1 we know

[[Xσ′ ]]h,σ′ ⊆ [[a . Xc,m]]h,σ (46)

and by (45) and (46) we obtain Def. 5(V2) and (V3), i.e.,

h |= Xσ \ Vσ ∪ Xσ′ (47)

Also by (25), (27), (30), (39) and Def. 4 we deduce Def. 5(V1),
i.e.,

h V̀ σ ·σ′ (48)
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and by (48), (47), Def. 5, and by (23) and (26) we get, as
required,

e′r |=V h′ (49)

rCxtFrame: From the conclusion and the premises of the rule we
know

er = σ ·e1
r (50)

e′r = σ ·e2
r (51)

e1
r, h −→ e2

r, h′ (52)

From (50) and (52)1 we know that (5) could have been derived
using either of the following three subcases:
1. vd-start: From the conclusion and premises of this rule we

know

e1
r = σ′ ·call e prv Eσ′ (53)

h V̀ σ′ ·e (54)

As a result of (53), we know that (52) could have only
been derived using either rLaunch or rLaunchEx. Moreover,
because of (4), (50), (53), i.e., σ ·σ′ ·call e prv Eσ′ |=V h,
and 5, we also know

h |= Xσ \ Vσ ∪ Xσ′ (55)

h V̀ σ ·σ′ (56)

Now (55), in particular h |= Xσ′ , rules out the use of
rLaunchEx to derive (52). Thus, if (52) was derived using
rLaunch, we know

e2
r = σ′ ·ret e prv Eσ′ (where e′r = σ ·e2

r) (57)

h′ = h (58)

By (54), (57), (58) and vd-frame we deduce

h′ V̀ e′r
and by (55), (56), (57), (58) and the fact that V is well-
structured we deduce

e′r |=V h′

2. vd-frame: From the conclusion and premises of this rule we
know

e1
r = σ′ ·ret e3

r prv Eσ′ (59)

h V̀ σ′ ·e3
r (60)

From (59), we know (52) could have been derived using
either of the following 3 subcases:
(a) rCxtEval with

E[·] = ret [·] prv Eσ′ (61)

σ′ ·e3
r, h −→ σ′ ·e4

r, h′ (62)

e2
r = σ′ ·E[e4

r] (63)

From (4), (50), (59), (61) and Lemma 14.1 and then
Lemma 14.2 we obtain

σ′ ·e3
r |=V h (64)

h V̀ σ ·σ′ (65)
h |= Xσ \ Vσ \ Vσ′ \ Vstack(e3r) (66)

Also, from (2), (50), (59), (61) and 37(T6) we know

h ` σ′ ·e3
r : t (67)

1 The fact that e1r reduces means that e1r contains at least one more stack
frame, since all reduction rules in Fig. 4 are defined over runtime expres-
sions of the form σ ·er .

Thus by (1), (67), (3), (64), (60), (62) and inductive
hypothesis we infer

h′ V̀ σ′ ·e4
r (68)

σ′ ·e4
r |=V h′ (69)

By (68), (61), (63), (51) and vd-frame we derive

h′ V̀ e′r
By (69), (61), (63) and Lemma 14.1 we deduce

e2
r |=V h′ (70)

From (66), (62) and Lemma 16 we get

h′ |= Xσ \ Vσ \ Vσ′ \ Vstack(e4r) (71)

and by (69), (71), (63), (51) and Lemma 14.2 we obtain,
as required,

e′r |=V h′

(b) rCxtEval, rPrf with

E[·] = ret [·] and e3
r = v (72)

σ′ ·v prv Eσ′ , h −→ σ′ ·v, h (73)

e2
r = σ′ ·v and h′ = h (74)

h |= Eσ′ , σ′ (75)

From (72), (74), (51), (60) and vd-end we obtain

h′ V̀ e′r

Since e′r is a visible state, Def. 5 requires us to prove that
more invariants hold for the resultant state to be valid.
From V being well-structured, 8(S2) and (75) we deduce

h |= Xσ′ ∩ Vσ′ (76)

and by (74), (72), (50), (51), (59), (4) we know

h |= ((Xσ \ Vσ) ∪ Xσ′) \ Vσ′ (77)

And thus by (76), (77) and then Def. 5 we deduce e′r |=V
h′

(c) rCxtEval, rPrfEx with

E[·] = ret [·] and e3
r = v

σ′ ·v prv Eσ′ , h −→ σ′ ·verfExc, h

e2
r = σ′ ·verfExc and h′ = h

h 6|= Eσ′ , σ′

This case is similar to the previous case and is left for
the interested reader.

3. vd-end: from the conclusion and the premises of the rule,
we obtain

e1
r = σ′ ·ret v (78)

h V̀ σ′ ·v (79)

From (78) we know (52) could only have been derived using
either rFrame or rFrameEx. However, from (4), (50) and (78)
we know that er is in a visible state at σ′ and thus

h |= Xσ′ (80)

which rules out the possibility of using rFrameEx. Thus by
rFrame we know

e2
r = v (81)

h′ = h (82)

By (51), (81), (82), (79) and Lemma 13.2 we obtain

h′ V̀ e′r
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From (50), (78), (4) and Def. 5, Def. 4 and Def. 3 we know

h |= ((Xσ \ Vσ) ∪ Xσ′) \ Vσ′ ∪ Xσ′ (83)

σ′ = (ι, , c′, m), h ` σ ·ι : a , c′ <: c, a v Cσ,c,m

(84)

We can rewrite (83) as

h |= (Xσ \ Vσ) \ (Vσ′ \ Xσ′) ∪ Xσ′ (85)

By (84) and Lemma 11.1 we have

[[Vσ′ \ Xσ′ ]]h,σ′ ⊆ [[a . (Vσ′ \ Xσ′)]]h,σ (86)

Also by (84) and Lemma 11.2 we have

a . (Vσ′ \ Xσ′) ⊆ Cσ,c,m . (Vσ′ \ Xσ′) (87)

Since we assume our verification technique V to be well-
structured, then by 8(S3) we know

Cσ,c,m . (Vc,m \ Xc,m) ⊆ Vσ (88)

and by (S5) and (84) we also know

(Vσ′ \ Xσ′) ⊆ (Vc,m \ Xc,m) (89)

and by (89) and Lemma 11.3 we get

Cσ,c,m . (Vσ′ \ Xσ′) ⊆ Cσ,c,m . (Vc,m \ Xc,m) (90)

By (86), (87), (90) and (88) we can rewrite (85) as

h |= (Xσ \ Vσ) ∪ Xσ′ (91)

and by (91), (82), (81) and (51) we obtain

e′r |=V h′

as required.

5. Instantiations
In this section, we instantiate our framework to describe six veri-
fication techniques from the literature. We discuss modularity and
compare their expressiveness. We also prove their soundness using
Def. 8 and Theorem 9 from Sec. 4.

An optimal verification technique would allow maximal expres-
sivity of the invariants (i.e., large D), impose as few program re-
strictions as possible (i.e., large U and C), and require as few proof
obligations as possible (i.e., small P and E). Obviously, these are
contradictory goals, and some trade-offs need to be struck.

The first three techniques use information about classes to im-
prove the tradeoff, whereas the latter three also use information
about the topology of the heap. We call them unstructured heap
and structured heap techniques, respectively.

5.1 Verification Techniques for Unstructured Heaps
Unstructured heap techniques make trade-offs by using information
about classes, visibility, and access paths used in definitions of
invariants. The instantiations are summarised in Fig. 8 whereby the
keyword all denotes the set of all object invariants.

5.1.1 Poetzsch-Heffter
Poetzsch-Heffter [38] devised the first verification technique that is
sound for call-backs and multi-object invariants. His technique nei-
ther restricts programs nor invariants. To deal with this generality,
it requires extremely strong proof obligations.

The absence of restrictions is reflected by the areas and regions
needed to model Poetzsch-Heffter’s technique. We define a single-
ton area set A = {any} and a singleton region set R = {any}
with interpretations [[any]]h,ι = dom(h) and [[any]]h,ι = all.

Poetzsch-Heffter Huizing &
Kuiper

Leavens &
Müller

Xc any any any
Vc,m any vul〈c〉 any〈c〉

Dc any vul〈c〉 self〈c〉
Pc,m,a any vul〈c〉 any〈c〉
Ec,m,c′ any vul〈c〉 any〈c〉

Uc,m,c′ any self
any if visF(c′, c)
emp otherwise

Cc,m,c′,m′ any any any

Figure 8. Verification techniques for unstructured heaps.

As shown in Fig. 8, this technique requires all invariants to hold
in visible states. It does not restrict invariants; D allows a field
update to affect any invariant. U and C permit arbitrary receivers
for field updates and method calls. Consequently, any invariant is
vulnerable to each method. This requires proof obligations for all
invariants before method calls (to handle call-backs) and at the end
of the method. Thus, Poetzsch-Heffter’s technique is not modular.

5.1.2 Huizing & Kuiper
Huizing and Kuiper’s technique [14] is almost as liberal as Poetzsch-
Heffter’s, but imposes fewer proof obligations. It achieves this by
determining syntactically for each field the set of invariants that are
potentially invalidated by updating the field. Proof obligations are
imposed only for those vulnerable invariants.

We define the area set A = {self, any} with the interpretation
[[self]]h,ι = {ι} and [[any]]h,ι = dom(h). The area self is used to re-
strict the receivers of field updates to this (see Fig. 8). The concept
of vulnerability is captured by the region set R = {vul〈c〉, any}
with the following interpretation:

[[vul〈c〉]]h,ι = {(ι′, c′) | the invariant of c′ contains an expression
this .g1 . . . gn.f (n ≥ 0) where F (c, f) = , ∧
fld(h, fld(h, fld(h, ι′, g1), . . .), gn) = ι} ∪
{(ι, c′) | cls(h, ι) <: c′}

[[any]]h,ι = all

Given an address ι and a class c, the set of vulnerable invariants
contains the invariants of all client objects ι′ of ι that refer to a field
f of c via an access path g1 . . . gn, as well as all invariants of ι. The
interpretation shows that this technique inspects client invariants
syntactically to determine whether they are vulnerable or not.

As shown in Fig. 8, this technique requires all invariants to
hold in visible states. It does not restrict invariants; therefore, D
describes exactly the set of vulnerable invariants. These invariants
are vulnerable to each method and must be proven before method
calls and at the end of each method.

Formalizing Huizing and Kuiper’s technique in our framework
reveals that it is very similar to Poetzsch-Heffter’s. The main dif-
ference is that the former technique uses a syntactic analysis and
restricts field updates to reduce proof obligations. However, this
analysis is non-modular.

5.1.3 Leavens & Müller
Leavens and Müller [20] studied information hiding in interface
specifications, based on the notion of visibility defined by access
control of the programming language. For instance in Java, private
field are visible only within their class. Their technique allows
classes to declare several invariants and to specify the visibility of
these invariants.

Since our formalization does not cover the visibility of fields
and assumes exactly one invariant per class, we model a special
case of Leavens and Müller’s technique. We assume that all fields
of a class have the same visibility. The predicate visF(c′, c) yields
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whether the fields declared in class c′ are visible in class c. We
assume that each class declares exactly one invariant and specifies
its visibility. The predicate visI(c′, c) yields whether the invariant
declared in class c′ is visible in class c. A generalization is possible,
but does not provide any deeper insights.

We define the area set A = {emp, any} with the interpretation
[[emp]]h,ι = ∅ and [[any]]h,ι = dom(h). This technique permits
field updates on arbitrary receivers as long as the field is visible in
the method performing the update (see Fig. 8). Method calls are not
restricted

The visibility of invariants is captured by the region set R =
{any, self〈c〉, any〈c〉} with the following interpretation:

[[any]]h,ι = all [[any〈c〉]]h,ι =
˘
(ι′, c′) | visI(c′, c)

¯
[[self〈c〉]]h,ι =

˘
(ι, c) | ∀c′.visF(c, c′) ⇔ visI(c, c′)

¯
D allows invariants to depend on fields of the same object declared
in the same class, provided that the invariant is visible wherever the
field is. This requirement enforces that any method that potentially
breaks an invariant can see it and, thus, re-establish it. This require-
ment is very restrictive, as it disallows multi-object invariants and
prevents invariants from depending on inherited fields.

The technique guarantees that only visible invariants are vul-
nerable; therefore, only visible invariants need to be proven before
method calls and at the end of methods. It also supports helper
methods, which we omit here for brevity

The visibility predicate visI is stronger than the usual definitions
of the visibility predicate vis in Def. 7. Therefore, this technique is
modular.

5.1.4 Comparison
We compare invariant restrictions, program restrictions, and proof
obligations.

Invariant Restrictions (D). Poetzsch-Heffter allows invariants to
depend on arbitrary locations, in particular, his technique supports
multi-object invariants. Huizing and Kuiper require for multi-object
invariants the existence of an access path from the object containing
the invariant to the object it depends on. This excludes, for instance,
universal quantifications over objects. Leavens and Müller focus on
invariants of single objects, and address the subclass challenge by
disallowing dependencies on inherited fields.

Program Restrictions (U and C). All three techniques permit
arbitrary method calls. Huizing and Kuiper restrict field updates
to the receiver this . Leavens and Müller require the updated field
to be visible; a requirement enforced by the type system anyway,
thus they are not limiting expressiveness.

Proof Obligations (P and E). Both Poetzsch-Heffter and Huiz-
ing and Kuiper impose proof obligations for invariants of essen-
tially all classes of a program (even though Huizing and Kuiper
use a syntactic analysis to exclude invariants that are not vulnera-
ble). This makes both techniques highly non-modular. Leavens and
Müller’s technique requires proof obligations only for visible in-
variants, which makes this technique modular.

Lemma 17 (Well-Structuredness of Verification Techniques for
Unstructured Heaps). The Poetzsch-Heffter, Huizing and Kuiper
and Leavens and Müller are well-structured.

Proof. We here outline the proof for Poetzsch-Heffter and leave
the proof of the remaining two for the interested reader. Accord-
ing to Def. 8, the components of the Poetzsch-Heffter verification
technique, given earlier in Fig. 8, have to satisfy the following 5
criteria:

(S1): From (a . Xc′,m′) \ (Xc,m \ Vc,m) ⊆ Pc,m,a we get:

any . any \ (any \ any) ⊆ any

any . any \ ∅ ⊆ any

any ⊆ any

(S2): From Vc,m ∩ Xc,m ⊆ Ec,m we get:

any ∩ any ⊆ any

any ⊂ any

(S3): From Cc,m,c′,m′ . (Vc′,m′ \ Xc′,m′) ⊆ Vc,m we get:

any . (any \ any) ⊆ any

any . ∅ ⊆ any

∅ ⊆ any

(S4): From Uc,m,c′ . Dc′ ⊆ Vc,m we get:

any . any ⊆ any

any ⊆ any

(S5): For c <: c′, from Xc,m ⊆ Xc′,m we get

any ⊆ any

and from Vc,m \ Xc,m ⊆ Vc′,m \ Xc′,m we get

any \ any ⊆ any \ any

5.2 Verification Techniques for Structured Heaps
We consider three techniques which strike a better trade-off by us-
ing the heap topology enforced by ownership types, and summarise
them in Fig. 9.

5.2.1 Müller et al.
Müller, Poetzsch-Heffter, and Leavens [34] present two techniques
for multi-object invariants, called ownership technique and visi-
bility technique (OT and VT for short). Both techniques utilise
the hierarchic heap topology enforced by Universe types [8, 33].
Universe types associate reference types with ownership modifiers,
which specify ownership relative to the current object. The mod-
ifier rep expresses that an object is owned by the current object;
peer expresses that an object has the same owner as the current
object; any expresses that an object may have any owner.

Both OT and VT forbid fields f and g declared in different
classes cf and cg , of the same object o to reference the same
object. This subclass separation is formalised elegantly by using
an ownership model where each object is owned by an object-class
pair [23]. In this model, the object referenced from o.f is owned by
(o, cf ), whereas the object referenced from o.g is owned by (o, cg).
Since they have different owners, these objects must be different.

We assume a heap operation that yields the owner of an object
in a heap: ownr : HP × ADR → ADR × CLS . The set of areas is:

a ∈ A ::= emp | self | rep〈c〉 | peer | any |a t a

with the following interpretation:
[[self]]h,ι = {ι} [[any]]h,ι = dom(h) [[emp]]h,ι = ∅

[[rep〈c〉]]h,ι =
˘
ι′ | ownr(h, ι′) = ι c

¯
[[peer]]h,ι =

˘
ι′ | ownr(h, ι′) = ownr(h, ι)

¯
[[a1 t a2]]h,ι = [[a2]]h,ι ∪ [[a2]]h,ι

These areas essentially reflect the ownership modifiers rep, peer,
and any of Universe types. The rep area is parameterised by a class
to express ownership by object-class pairs.
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Müller et al. (OT ) Müller et al. (VT ) Lu et al. (Oval’)
Xc,m own ; rep+ own ; rep+ I ; rep∗

Vc,m
emp if pure
super〈c〉 t own+ otherwise

emp if pure
peer〈c〉 t own+ otherwise E ; own∗

Dc self〈c〉 t own+ peer〈c〉 t own+ self ; own∗

Pc,m,a
super〈c〉 if peer v a,¬pure
emp otherwise

peer〈c〉 if peer v a,¬pure
emp otherwise emp

Ec,m
emp if pure
super〈c〉 otherwise

emp if pure
peer〈c〉 otherwise

self if I = E
emp otherwise

Uc,m,c′
self if ¬pure
emp otherwise

peer if vis(c′, c),¬pure
emp otherwise

self if I = E
emp otherwise

Cc,m,c′,m′
emp, if pure,¬pure′

rep〈c〉 t peer otherwise
emp, if pure,¬pure′

rep〈c〉 t peer otherwise
F
a, with SC(I,E,I′,E′,Oa,c) a

where pure ≡ c ::m is pure method
pure′ ≡ c′ ::m′ is pure method

pure ≡ c ::m is pure method
pure′ ≡ c′ ::m′ is pure method

I = I(c, m)
E = E(c, m)
I′ = a ; I(c′, m′)
E′ = a ; E(c′, m′)

Figure 9. Verification techniques for structured heaps.

The two techniques require a rather rich set of regions to deal
with the various aspects of ownership and subclassing:
r ∈ R ::= emp | self〈c〉 | super〈c〉 | peer〈c〉 | rep | own | rep+| own+| r; r
with the following interpretations:

[[emp]]h,ι = ∅ [[self〈c〉]]h,ι = {(ι, c) | cls(h, ι) <: c}
[[super〈c〉]]h,ι =

˘
(ι, c′) | c <: c′

¯
[[peer〈c〉]]h,ι =

˘
(ι′, c′) | ownr(h, ι′) = ownr(h, ι) ∧ vis(c′, c)

¯
[[rep]]h,ι =

˘
(ι′, c′) | ownr(h, ι′)= ι

¯
[[own]]h,ι ={ownr(h, ι)}

[[r1; r2]]h,ι =
S

(ι′,c)∈[[r1]]h,ι
[[r2]]h,ι′

[[rep+]]h,ι = [[rep]]h,ι ∪ [[rep; rep+]]h,ι

[[own+]]h,ι = [[own]]h,ι ∪ [[own; own+]]h,ι

Here we exploit that owners and object invariants both are object-
class pairs. Therefore, we can use the owner (o, c) of an object to
denote the object invariant for object o declared in class c.

Ownership Technique. As shown in Fig. 9, OT requires that in
visible states, all objects owned by the owner of this must satisfy
their invariants, as expressed by X.

Invariants are allowed to depend on fields of the object itself (at
the current class) and all its rep objects. Therefore, a field update
potentially affects the invariant of the modified object and of all
its (transitive) owners (D). Dependencies on inherited fields are
disallowed to address the subclass challenge.

To guarantee that pure methods are side-effect free, they must
not update fields (U) and may only call pure methods (C). There-
fore, pure methods cannot break any invariants (V is empty) and do
not require proof obligations (P and E are empty).

A non-pure method may update fields of this (U). Type correct-
ness guarantees that the updated field is declared in the enclosing
class or a superclass. Therefore, potentially affected by the update
are the invariants of this for the enclosing class and its superclasses
as well as the invariants of the (transitive) owners of this (V).

OT handles multi-object invariants by allowing invariants to
depend on fields of owned objects (D); thus, methods may break the
invariants of the transitive owners of this (V). E.g., the invariant of
Client (Fig. 1) is admissible only if c is a rep field. In this case, C’s
method m need not preserve Client ’s invariant. This is reflected by
the definition of E: Only the invariants of this are proven at the
end of the method, while those of the transitive owners may remain
broken; it is the responsibility of the owners to re-establish them.
E.g., Client has to re-establish its invariant after a call to c.m().

Since the invariants of the owners of this might not hold, both
OT and VT disallows calls on any references, as expressed by C.

The proof obligations for method calls (P) must cover those
invariants expected by the callee that are vulnerable to the caller.
This intersection contains the invariant of the caller, if caller and
callee are peers, and is empty otherwise.

Visibility Technique. VT relaxes the restrictions of OT in two
ways. First, it permits invariants to depend on fields of peer objects
of a class c, provided that these invariants are visible in class
c (D). We denote the visibility of class c′ from c as vis(c′, c)
and assume that visibility is reflexive, symmetric and transitive.
Thus the invariant is also visible wherever fields of c are updated.
Second, VT permits field updates on peers of this (U).

These relaxations make more invariants vulnerable. Therefore,
V, P and E includes additionally the invariants of the peers of this .
This addition is also reflected in the proof obligations before peer
calls (P) and before the end of a non-pure method (E).

Both OT and VT are modular. In particular, verification of
c does not require knowledge of c’s subclasses because subclass
invariants must not depend on inherited fields.

Lemma 18. OT and VT are well-structured.

Proof. The proof assumes the following definition of area inclusion
for the universe type system, defined as the least relation charac-
terised by the rules below. It is not hard to see that this definition
satisfies constraint (P4) of Def. 35. Other definitions for universe
set inclusion are possible.

(u-emp)

emp v a

(u-any)

a v any

(u-self)

self v peer
(u-union)

a1 v a1 t a2

a2 v a1 t a2

(u-relf)

a v a

(u-trans)
a1 v a2

a2 v a3

a1 v a3

We start by showing that OT is well-structured from the compo-
nents given in Fig. 9.

(S1): There are a number of areas that satisfy a v Cc,m,c′m′ . We
here give the proof for the main two cases, i.e., peer and rep〈c〉.
For a = peer we have:

(peer . own ; rep+) \ (own ; rep+ \ super〈c〉 t own+)

⊆ super〈c〉

When we adapt own ; rep+, i.e., everything beneath the owner
of the current receiver, by peer, i.e., peer . own ; rep+, we still
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get own ; rep+ since peers share the same owner. Thus we get

own ; rep+ \ (own ; rep+ \ super〈c〉 t own+) ⊆ super〈c〉
Using the set identity

A \ (B \ C) = (A ∩ C) ∪ (A \B) (92)

on the left hand of the inclusion we get:

(own ; rep+ ∩ super〈c〉 t own+) ∪ (own ; rep+\own ; rep+)

⊆ super〈c〉
and thus

(own ; rep+ ∩ super〈c〉 t own+) ∪ ∅ ⊆ super〈c〉 (93)

From the interpretations given, we can show that

own ; rep+ ∩ super〈c〉 t own+ = super〈c〉
and as a result, from (93) we obtain

super〈c〉 ⊆ super〈c〉
For the second case, i.e., a = rep〈c〉 we have

(rep〈c〉 . own ; rep+) \ (own ; rep+ \ super〈c〉 t own+)

⊆ emp

When we adapt own ; rep+ by rep〈c〉 we get all objects transi-
tively owned by the current receiver, namely rep+ and thus we
get

rep+ \ (own ; rep+ \ super〈c〉 t own+) ⊆ emp

At this point we apply the set identity (92) from the previous
case and get

(rep+ ∩ super〈c〉 t own+) ∪ (rep+ \ own ; rep+) ⊆ emp

Since rep+ does not include the current receiver, we know
rep+ ∩ super〈c〉 t own+ = ∅. Also since rep+ ⊆ own ; rep+,
we also know rep+ \ own ; rep+ = ∅ and hence we get

∅ ∪ ∅ ⊆ emp

(S2): We have two cases, for pure and non-pure methods.
• If the method is pure, then Vc,m = emp and Ec,m = emp

and thus we obtain

emp ∩ own ; rep+ ⊆ emp

Since the interpretation of emp is the emptyset, the above
becomes trivially true.

• If the method is non-pure we have

super〈c〉 t own+ ∩ own ; rep+ ⊆ super〈c〉 (94)

From the interpretations, it is not hard to show directly that

super〈c〉 ∩ own ; rep+ = super〈c〉 (95)

own+ ∩ own ; rep+ = ∅ (96)

from which (94) follows.
(S3): Instantiating the components of Fig. 9 we obtain

rep〈c′〉 t peer . ((super〈c〉 t own+)\own ; rep+)

⊆ super〈c′〉 t own+

where we highlight the different roles played by the classes c
and c′ in the above statement. From the previous identities (95)
and (96) we obtain

(super〈c〉 t own+) \ own ; rep+ = own+ (97)

and thus

rep〈c′〉 t peer . (own+) ⊆ super〈c′〉 t own+

From the interpretations we derive the identities:

rep〈c′〉 . own+ = self〈c′〉 t own+ (98)

peer . own+ = own+ (99)

and thus, from the direct interpretation of t we obtain

self〈c′〉 ∪ own+ ⊆ super〈c′〉 ∪ own+

which is immediately true since, from the interpretations we
know self〈c′〉 ⊆ super〈c′〉

(S4): Once again we have two cases.
• For pure methods we have

emp . self〈c〉 t own+ ⊆ super〈c〉 t own+

Since the interpretation of emp is ∅, anything adapted by the
viewpoint emp given emp and thus

emp ⊆ super〈c〉 t own+

which is trivially true.
• For non-pure methods we have

self . self〈c〉 t own+ ⊆ super〈c〉 t own+

Any adaptation by self acts as the identity and thus we
obtain

self〈c〉 t own+ ⊆ super〈c〉 t own+

which is true by the same reasons we gave for case (S3)
above.

(S5): For c <: c′ we have to show

1. own ; rep+ ⊆ own ; rep+

2.

„
super〈c〉 t own+\
own ; rep+

«
⊆

„
super〈c′〉 t own+\
own ; rep+

«
The first statement is trivially true whereas the second statement
is true because (97) is true for any c, so substituting the right
hand side of (97) gives us own+ on both sides.

The proof of well-structuredness of the VT is similar to that of the
OT :

(S1): Like before, the two cases for a we consider are peer and
rep〈c〉. For peer we have the proof

peer . own ; rep+ \
„

own ; rep+\
peerc t own+

«
⊆ peer〈c〉

own ; rep+ \
„

own ; rep+\
peerc t own+

«
⊆ peer〈c〉„

own ; rep+∩
peer〈c〉 t own+

«
∪

„
own ; rep+\
own ; rep+

«
⊆ peer〈c〉„

own ; rep+∩
peer〈c〉 t own+

«
∪ ∅ ⊆ peer〈c〉

Here we use the property

own ; rep+ ∩ peer〈c〉 t own+ = peer〈c〉 (100)

derived directly from the interpretations and get

peer〈c〉 ∪ ∅ ⊆ peer〈c〉
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For the case of rep〈c〉 we have the proof:

rep〈c〉 . own ; rep+ \
„

own ; rep+\
peerc t own+

«
⊆ emp

rep+ \
„

own ; rep+\
peerc t own+

«
⊆ emp

(rep+ ∩ peer〈c〉 t own+) ∪ (rep+ \ own ; rep+) ⊆ emp

∅ ∪ ∅ ⊆ emp

(S2): There are two cases.
• For pure methods we have

emp ∩ own ; rep+ v emp

emp v emp

• For non-pure methods we have

peer〈c〉 t own+ ∩ own ; rep+ v peer〈c〉

which is true from (100) earlier.
(S3): There are four cases to consider here, depending on the purity

of the two methods. We here give the proof for two cases.
• If m is pure and m′ is non-pure we have

emp . (peer〈c〉 t own+ \ own ; rep+) v emp

emp v emp

• When both m and m′ are non-pure, then by (100) we have

rep〈c〉 t peer .

„
peer〈c′〉 t own+

\own ; rep+

«
v peer〈c〉 t own+

rep〈c〉 t peer . own+ v peer〈c〉 t own+

At this point we use the identities (98), (99) derived earlier
to obtain

self〈c〉 t own+ v peer〈c〉 t own+

which is true because we can show self〈c〉 v peer〈c〉.
(S4): We have two cases.

• If Uc,m,c′ = emp we have two of cases and here we
consider the case where m is not pure (the other case is
similar).

emp . peer〈c′〉 t own+ v peer〈c〉 t own+

emp v peer〈c〉 t own+

• If Uc,m,c′ = peer then we know that m is not pure and that
c is visible from c′, i.e., vis(c′, c). We therefore obtain the
proof

peer . peer〈c′〉 t own+ v peer〈c〉 t own+

peer〈c′〉 t own+ v peer〈c〉 t own+

and by the symmetric property of vis(c′, c) and the interpre-
tation of peer〈c〉 we derive the identity peer〈c〉 = peer〈c′〉
which make the above true.

(S5): This is similar to (S5) for OT .

5.2.2 Lu et al.
In [29], Lu, Potter, and Xue define Oval, a verification technique
based on ownership types. The distinctive features of this technique
are 1) invariant dependencies are restricted to object representa-
tions, defined by the ownership structure 2) standard and vulner-
able invariants are specific to every methods in a class 3) before
subcalls no proof obligations are used 4) the end of a method body

proof obligation involves at most the current receiver object 5) sub-
calls and method overriding are regulated by “subcontracting”.

Here we describe Oval’, an adaptation of Oval, where i ) we omit
non-rep fields, a refinement whereby the invariant of the current
object cannot depend on such fields (but its owners can), and ii ) we
drop the existential class parameter ”*” annotation - both features
enhance programming expressivity of Oval, but are deemed as non-
central to our analysis. Oval’ also used different restrictions for
method overriding, because the original restrictions defined in Oval
lead to unsoundness [28], as we discuss later on. In [29] description
of the Oval verification technique is intertwined with that of the
ownership type system it is based on. However, for the presentation
of Oval’, we strive to disentangle the two.

Oval’ classes have owner parameters, indicated by X, Y , and
the subclass relationship is described through a judgment c〈X〉C
c′〈X ′〉 defined as:

class c〈X〉 extends c〈X〉 . . .
c〈X〉Cc〈X〉
c〈X〉Cc′〈X ′〉

c〈X〉Cc′〈X ′〉
c′〈Y 〉Cc′′〈Y ′〉

c〈X〉Cc′′〈{X′/Ȳ }Ȳ ′〉

where X are the disjoint formal class parameters of c in the pro-
gram.

For simplicity we require that the formal class parameters are
disjoint for every class. This assumption is very powerful, as, in
contrast to usual systems, it allows the C relationship to be context
independent.

An Oval program also defines an ”inside” partial order relation,
� for parameters of the same class.

Whenever B(c, m) is defined, Oval’ programs also offer func-
tions I and E from which method specific standard and vulnerable
regions can be obtained

I : CLS × MTHD ⇀ L E : CLS × MTHD ⇀ L
where L ::= top | bot | this |X K ::= L |K ; rep

“Contexts” L, obtained from [29], are syntactic descriptions of
the standard and vulnerable regions. As in [29], the type system
extends L to K to described context abstraction[29], i.e., objects
owned by class parameters, and generalises the partial ordering �
to K as a lattice bounded by top and bot, using rules from [29]. As
in [29], the type system defines the judgement

c〈K〉 <: c〈K〉 ⇔ c〈X〉Cc′〈X ′〉, ∀i.K′
i = {K/X̄}X̄ ′

As in [29], the type system also requires all classes c and
methods m to satisfy

I(c, m) � E(c, m) I(c, m) = E(c, m) ⇒ I(c, m) = this
(101)

which guarantees that the expected and the vulnerable invariants of
every method can intersect at most at the current object. Central
to Oval is subcontracting, which we adopt from Oval’(modulo
renaming)

Definition 19 (Subcontracting).

SC(I, E, I′, E′, K) ⇔

8>>><>>>:
I ≺ E ⇒ I′ � I

I = E ⇒ I′ ≺ I

I′ ≺ E′ ⇒ E � E′

I = E = this ⇒ E � K

In Oval’, subcontracting restricts subcalls, but it does not restrict
methods overrides, as is the case from Oval, because it leads to
unsoundness[28]. We revisit this point in Sec. 5.3. For Oval’, we
simply assume subclassing is governed by condition (S5) of Def. 8.
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emp v a

c〈X〉C c〈X ′〉
c〈K〉 v c〈{K/X}X ′〉 a v a t a

′

K v K ; rep∗ K v K ; own∗

K � K′

K ; rep∗ v K′ ; rep∗
K � K′

K′ ; own∗ v K ; own∗

Figure 10. The v relation for Oval’

The heap model defines an additional operation typ which gives
the runtime type of each object, c〈ι〉 where:

typ(h, ι) = c〈ι〉 ⇒ cls(h, ι) = c, c〈X〉Cc′〈X ′〉, |ι| = |X|

The owner of ι above is ι1. We define address runtime typing and
address ownership as:

h ` ι : c〈ι〉 ⇔

(
typ(h, ι) = c′〈ι′〉, c′〈X ′〉Cc〈X〉,
∀i.ιi = {ι′/X′}Xi

h ` ι′ � ι ⇔ typ(h, ι′) = c〈ι, ι〉
h ` ι′ �∗ ι ⇔ ι′ = ι ∨ ∃ι′′.h ` ι′ � ι′′, h ` ι′′ �∗ ι

Definition 20. Oval’ areas and regions are defined as follows:

a ∈ A ::= emp | this | c〈K〉 | a t a

r ∈ R ::= emp | K | K ; rep∗ | K ; own∗

Remark 21. Note, that our definition of areas introduces some
redundancy, because a type t = a c would have the shape,
e.g.,C<rep,o2> C. This redundancy is harmless.

The interpretation for areas and regions is based on the interpre-
tation of extended contexts:

[{top}]h,ι = [{bot}]h,ι = ∅ [{this}]h,ι = {ι}
[{X}]h,ι =

˘
ι′i | h ` ι : c〈ι〉, c〈X〉C , X = Xi

¯
[{K ; rep}]h,ι =

˘
ι′ | ι′′ ∈ [{oEffK}]h,ι, h ` ι′ � ι′′

¯
The interpretation of areas is:

[[emp]]h,ι =∅ [[this]]h,ι ={ι} [[a t a
′]]h,ι =[[a]]h,ι ∪ [[a′]]h,ι

[[c〈K〉]]h,ι =
˘
ι′ | h ` ι′ : c〈ι〉, ∀i. ιi ∈ [{Ki}]h,ι

¯
The interpretation for regions is as follows:

[[emp]]h,ι = [[top]]h,ι = [[bot]]h,ι = ∅
[[K]]h,ι =

˘
(ι′, c) | ι′ ∈ [{K}]h.ι, cls(h, ι′) <: c

¯
[[K; r]]h,ι =

(
all K= top, r= rep∗ ∨ K=bot, r=own∗S

(ι′,c)∈[[K]]h,ι
[[r]]h,ι′ r ∈ {rep∗, own∗}

[[rep∗]]h,ι =
˘
ι′ | h ` ι′ �∗ ι

¯
[[own∗]]h,ι =

˘
ι′ | h ` ι �∗ ι′

¯
Based on the ordering �, we define the reflexive and transitive

judgment v for areas and regions in Fig. 10. Based on the view-
point type adaptation of the Oval type system[29] we define the
“adaptation” operation ; between areas and contexts L, returning
extended contexts K :

a ; L =

8>>><>>>:
L if a = this;

Ki if a = c〈K〉, L = Xi;

K1 ; rep if a = c〈K〉, L = this

⊥ otherwise.

from which we define the viewpoint adaptation operation

a . r =

8>>>>>>><>>>>>>>:

emp a = emp ∨ r = emp

r a = this

r1 t r2 a = a1 t a2, ri = ai . r

K1; rep a = c〈K〉, r = this

Ki a = c〈K〉, r = Xi

(a; K); r′ a = c〈K〉, r = K; r′, r′ ∈ {rep, rep∗, own∗}

Lemma 22. Oval’ is a programming language in the sense of
definition 35. Also, Oval’ has a sound type system in the sense of
definition 37.

Remark 23. Note also, that usually in ownership type systems,
and indeed in most systems with parameterized classes, the field
and method lookup functions, F , M and B are defined on types,
rather than classes. For instance, one would expect to have
F(c〈o1, o2〉, f) rather than F(c, f) as in our framework. In con-
trast, in our framework, these functions are defined on classes.
Namely, as we have requested the owner parameters to be disjoint
across different classes, the meaning of. e.g.,, F(c, f) is, implic-
itly that of F(c〈c1, c2〉, f) where c1, c2 are the formal ownership
parameters of class c.

Furthermore, in contrast to usual practice in ownership types,
and parameterized classes, the type of an inherited field (or
method) remains the same (as required in Def. 35, part F2 and
F3 of Def. 36. Again, because the owner parameters are disjoint
across classes, we can make this simplification. For example, for

class C<c1>{ A<c1> f; }
class D<d1> extends C<c1> { }

we would have that F(C, f)=F(D, f)=A<c1> A.
Our framework does not require the underlying type system of

the programming language to be expressed in terms of the func-
tions F and M. Nevertheless, the underlying type system could be
expressed in terms of these functions. For example, for field access,
we would have the underlying type system rule:

Γ ` e : a c F(c, f) = a
′ c′

Γ ` e.f : (a . a′) c′

where we define R, the owner parameter extraction function so
that it extracts all owner parameters out of a context sequence, i.e.,
R(top) = R(bot) = R(this) = ε, R(X) = X , R(K ; rep) =
R(K), and where R(K, K) = R(K),R(K), and where the formal
parameters of a class are defined through OP (c)=X iff class c
has formal owner parameters X , and where we define the area
adaptation operator . as follows:

c〈K〉.c′〈K′〉 =

8>><>>:
c′〈K′〉 if R(K′) = ε

c′〈[K/X ′′]K′〉 if c〈X〉C c′′〈X ′′〉
and R(K′) ⊆ OP (c′′)

⊥ otherwise.
For example D<o3> . A<c1> = A<o3>.

We define owner extraction function O as follows

Oa,c =

8><>:
K1, if a = c〈K〉
X1, if a = this, c〈X〉C
⊥ otherwise

These functions are used to describe the Oval’ verification tech-
nique, as shown in Fig. 9.

Lemma 24. Oval’ is well-structured.

Proof. We use the shorthand I = I(c, m), E = E(c, m), I′ =
I(c′, m′) and E′ = E(c′, m′) where we recall that they all come
from the domain of L. We also use the following Lemmas:
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Lemma 25. K ≺ K′ ⇒

8><>:
K ; rep∗ ⊆ K′ ; rep∗

K′ ; own∗ ⊆ K ; own∗

K ; rep∗ ∩ K′ ; own∗ = ∅

Lemma 26. If a; L 6= ⊥ then a; L = a . L

Lemma 27. this ; rep∗ ∩ this ; own∗ = this

Lemma 28. K ≺ this ⇒ K ; rep∗ ⊆ (this ; rep∗ \ this)

(S1): We need to show

a . I′ ; rep∗ \ (I ; rep∗ \ E ; own∗) ⊆ emp (102)

If a v Pc,m,c′,m′ then by Fig. 9 we know

SC(I, E,a ; I′,a ; E′,Oa,c) (103)

and from (103) and Def. 19 we obtain two subcases
I ≺ E: From this subcase’s clause, i.e., I ≺ E, and Def. 19 we

also know

a; I′ � I (104)

and thus, since the ordering � is not defined for ⊥ values,
we conclude

a; I′ 6= ⊥ (105)

From the subcase clause, I ≺ E, and Lemma 25 we obtain

I ; rep∗ \ E ; own∗ = I ; rep∗

and thus from (102) we get

a . I′ ; rep∗ \ I ; rep∗ ⊆ emp (106)

From (105) and Lemma 26 we can rewrite (104) as a.I′ � I
and by Lemma 25 we obtain

a . I′ ; rep∗ ⊆ I ; rep∗

and thus a . I′ ; rep∗ \ I ; rep∗ = emp satisfying (106).
I = E = this: Similar to the case before, from I = E, Def. 19

and Lemma 26 we get

a . I′ ≺ this (107)

From the subcase clause, I = E = this, and Lemma 27 we
can derive

this ; rep∗ \ this ; own∗ = this ; rep∗ \ this

and thus by (102) we obtain

a . I′ ; rep∗ \ (this ; rep∗ \ this) ⊆ emp

Finally, from (107) and Lemma 28 we derive that

a . I′ ; rep∗ \ (this ; rep∗ \ this) = emp

which satisfies the above.
(S2): Immediate from (101), Lemma 25 and Lemma 27.
(S3): We recall that

Pc,m,c′,m′ = tai such that SC(I, E,ai ; I′,ai ; E′,Oai,c)

We here prove that for every such ai

ai . (Vc′,m′ \ Xc′,m′) ⊆ Vc,m

From which (S3) follows from the monotonicity of .. For this
proof we find it convenient to distribute the adaptation in (S3)
and show

ai . Vc′,m′ \ ai . Xc′,m′ ⊆ Vc,m (108)

From the subcontract definition, we have two subcases:

1:A’

2:B’

3:C’
5:E’

4:D’

6:E’

Figure 11. Heap h0, with objects at addresses 1–6 belonging to
indicated classes. Objects atop a box own those inside it. Assume
that A’ is a subclass of A and analogously for the other classes.

ai ; I′ ≺ ai ;E′: From the subcase clause ai ; I′ ≺ ai ; E′,
Lemma 26 and Lemma 25 we deduce

ai . Vc′,m′\ai . Xc′,m′

= ai . E′ ; own∗ \ ai . I′ ; rep∗

= ai . E′ ; own∗

and thus from (108) we obtain

ai . E′ ; own∗ ⊂ E ; own∗ (109)

From the subcase and Def. 19 we also know E � ai ; E′,
thus by Lemma 26 we have E � ai . E′ and hence by
Lemma 25 we obtain (109) as required.

ai ; I′ = ai ;E′ = this: From Lemma 27, Lemma 26 and (108)
we obtain

ai . E′ ; own∗ \ this ⊆ E ; own∗ (110)

From the subcase and Def. 19 we also know E � Oai,c

which proves (110) as required.
(S4): By (101) we have tow subcases to consider:

I ≺ E: From 9 we know Uc,m,c′ = emp thus we have the proof

emp . (this ; own∗) ⊆ E ; own∗

emp ⊆ E ; own∗

I = E = this: From 9 we know Uc,m,c′ = this thus we have
the proof

this . (this ; own∗) ⊆ this ; own∗

this ; own∗ ⊆ this ; own∗

(S5): Immediate from the assumptions of Oval’.

5.2.3 Comparison
We illustrate differences between the techniques for structured
heaps using the heap h0 in Fig. 11. Fig. 12 shows the values of
the components of the three techniques for class C and object 3.

OT and VT require knowledge of the class at which on object
is owned; this information is shown in the last row of Fig. 12. For
Oval, the methods have I and E as given in the last row.

Invariant Restrictions (D). Both OT and Oval support multi-
object invariants by permitting the invariant of an object o to de-
pend on fields of o and of objects (transitively) owned by o. How-
ever, OT requires that fields of o are declared in the same class as
the invariant to address the subclass challenge. For instance, D for
OT does not include (3,C’), whereas D for Oval does.

In addition, VT allows dependencies on peers (therefore, D
includes (4,D)) and thus can handle multi-object structures that are
not organised hierarchically.

Program Restrictions (U and C). In OT and Oval, an object may
only modify its own fields, whereas VT also allows modifications
of peers; thus, object 4 is part of U for VT . In Oval, an object may

short description of paper 16 2007/8/30



Müller et al. (OT ) Müller et al. (VT ) Lu et al.

1. [[XC,m]]h0,3
{ (4, D) , (4, D’) , (3, C),

(3, C’), (5, E), (5, E’) }
{ (4, D) , (4, D’) , (3, C),

(3, C’), (5, E), (5, E’) }
{ (3, C), (3, C’),
(5, E), (5, E’) }

2. [[VC,m]]h0,3 { (3, C), (2, B), (1, A’) } { (3, C), (2, B), (1, A’), (4, D) } { (2, B), (2, B’) , (1, A) , (1, A’) }

3. [[DC]]h0,3 { (3, C), (2, B), (1, A’) } { (3, C), (2, B), (1, A’), (4, D) }
{ (3, C), (3, C’) , (2, B), (2, B’) ,

(1, A) , (1, A’) }

4. [[PC,m,a]]h0,3
∅ if a = rep〈C〉
{ (3, C) } if a = peer

∅ if a = rep〈C〉
{ (3, C), (4, D) } if a = peer

∅

5a. [[EC,m]]h0,3 { (3, C) } { (3, C), (4, D) } ∅
5b. [[EC,m1]]h0,3 { (3, C) } { (3, C), (4, D) } { (3, C), (3,C’) }

6a. [[UC,m,Objct]]h0,3 { 3 } { 3, 4 } ∅
6b. [[UC,m1,Objct]]h0,3 { 3 } { 3, 4 } { 3 }
7. [[CC,m,Objct,m2]]h0,3 { 3, 4, 5 } { 3, 4, 5 } { 1 , 2 , 3, 4, 5, 6 }

assuming that

C::m not pure
ownr(h0, 5) = 3, C’,
ownr(h0, 3) = 2, B,
ownr(h0, 4) = 2, B’,
ownr(h0, 2) = 1, A

C::m not pure
ownr(h0, 5) = 3, C’,
ownr(h0, 3) = 2, B,
ownr(h0, 4) = 2, B’,
ownr(h0, 2) = 1, A
vis(C, D),¬vis(C, D’)

I(C, m) = this
E(C, m) = X, and X maps to 2
I(C, m1) = E(C, m1) = this
I(Obj, m2) = bot
E(Obj, m2) = top

Figure 12. Comparison of techniques for structured heaps; differences are highlighted in grey.

only modify its own fields if the I, E annotations are this; this is
why U is empty for m but contains 3 for m1.

Method calls in OT and VT are restricted to the peers and reps
of an object; thus, a call on a rep object o cannot call back into one
of o’s (transitive) owners, whose invariants might not hold.

In Oval, the receiver of a method call may be anywhere within
the owners of the current receiver, provided that the I and E an-
notations of the called method satisfy the subcontract requirement.
Therefore, C for Oval includes for instance object 2, which is not
permitted in OT and VT .

Proof Obligations (P and E). Since OT uses rather restricted
invariants, it has a small vulnerable set V and, thus, few proof
obligations. The dependencies on peers permitted by VT lead to
a larger vulnerable set and more proof obligations. For instance,
(4,D) is part of the vulnerable set V (because executions on 3 might
break 4’s D-invariant ). Hence, of the proof obligations P and E.

Oval imposes end-of-body proof obligation only when I and E
are the same (i.e. m1). Since Oval permits invariants to depend on
inherited fields, it requires proof obligations for subclass invariants.
For instance, (3,C’) is part of E for m1. OT and VT disallow such
dependencies and their proof obligations do not include (3,C’).
This restriction is important for modularity.2 Oval never impose
proof obligations before method calls (P is empty), and prevents
potentially dangerous call-backs through the subcontract require-
ment.

5.3 Soundness of Verification Techniques
Instead of proving soundness for every single verification technique
discussed in this section, Theorem 9 reduces this complex task to
merely checking that the seven components of every instantiations
satisfy the five (fairly simple) well-structured conditions of Def. 8.
Assuming that the underlying type system is sound, once we show
well-structuredness for a technique, verification technique sound-
ness (Def. 6) follows.

Lemma 29 (Type System Soundness for Universes). The Uni-
verses Type System satisfies Def. 37.

2 The Oval developers plan to solve this modularity problem by requiring
that any inherited method has to be re-verified in the subclass [28].

Proof. The typing rules together with the soundness proof for the
Universes type system has already been given in [6] bar the rules
for the (novel) construct e prv r and the exceptions verfExc and
fatalExc. The typing of the proof annotation construct however
depends exclusively on the typing of the subexpression e; typically
this construct would be typechecked using a rule such as the one
shown below. Also, the type system should typecheck exceptions
related to the verification technique as shown below.

Γ ` e : t
Γ ` e prv r : t

Γ ` verfExc : t
Γ ` fatalExc : t

With these additions, it is not hard to check that the type system
satisfies the requirements set out by Def. 37.

Lemma 30 (Type System Soundness for Oval’). The Oval’ Type
System satisfies Def. 37.

Proof. From [29].

Corollary 31. The verification techniques by Poetzsch-Heffter, by
Huizing & Kuiper, by Leavens & Müller, by Müller et al. (OT), by
Müller et al. (VT), and Oval’ are sound.

Proof. Immediate from Theorem 9, Lemmas 29 and 30, and Lem-
mas 17, 18, 24.

Soundness of Oval. The original Oval proposal [29] requires
subcontracting for method overriding, using the analogy between
dynamic dispatch and that of the superclass’s overridden method
making a subcall to the overridden method in the subclass. This
analogy however is misleading because a subcalls contains a proof
at the end of the method body of the superclass. This proof does not
appear in dynamic dispatch and as a result, the overridden method
would be allowed to have more residue vulnerable invariants. More
precisely, the Oval subcontract requirement for overriding methods
gives (in our terminology) Vc,m\Xc,m v Vc′,m. This is clearly
weaker than what we require in (S5) of Def. 6, and makes the
system unsound. The following counter example elucidates this
unsoundness.
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class D<o> {
C1<this> c = new C2<this>();
void m() <this,o> { c.mm() }

}
class C1<o>{

void mm() <this,this> {...}
}
class C2<o> extends C2<o> {

void mm() <bot,this> {...}
}

The above example typechecks and is well-verified according to
the rules given in [29]3. More specifically, according to the rule
[EXP-CAL], c.mm() is a valid subcall for m() of D because the
contract of mm() in C1, i.e., <this, this> is a subcontract of <this
,o>, the contract of m() in D. Moreover, C2 is a valid subclass of
C1 because the rule [METHOD] in [29] ensures that the overridden
method mm() of C2 satisfies subcontracting for mm() of C1 (i.e.,
<bot,this> is a subcontract of <this, this>). At runtime, m() of D
calls c.mm() under the assumption that c, owned by this , will be
valid after the subcall returns since the contract <this, this> means
that this may be violated during the call but re-established at the
end of the call. However, the dynamically dispatched mm() of C2
is allowed to break the invariant of c without having to reestablish
them, which clearly violates the contract of m() in D.

We discovered this unsoundness by noticing the discrepancy
with (S5) ; we contacted the authors [28] who confirmed this, hav-
ing independently discovered the error, and applied the same fix as
in Oval’.

6. Related Work
In this section, we discuss related work other than the verification
techniques covered in Sec. 5.

The idea of areas and regions is inspired from type and effects
systems[42], which have been extremely widely applied, e.g., to
support race-free programs and atomicity [10], or restricted effect
of computations on predicates [5, 41, 40].

Object invariants trace back to Hoare’s implementation invari-
ants [12] and monitor invariants [13]. They were popularised in
object-oriented programming by Meyer [30]. Their work, as well
as other early work on object invariants [25, 26] did not address the
three challenges described in the introduction. Since they were not
formalised, it is difficult to understand the exact requirements and
soundness arguments (see [34] for a detailed discussion). However,
once the requirements are clear, a formalization within our frame-
work seems straightforward.

The verification techniques based on the Boogie methodology
[1, 3, 23, 24] do not use a visible state semantics. Instead, each
method specifies in its precondition which invariants it requires.
This fine-grained specification is beyond the expressiveness of our
type-based framework. However, the Spec# language [2] encour-
ages a stylised usage of the Boogie methodology which is very sim-
ilar to the ownership technique [34] and which can be formalised
in our framework.

We only know of one verification technique based on visible
states, which cannot be expressed in our framework. The work by
Middelkoop et al. [32] uses proof obligations that refer to the heap
of the pre-state of a method execution. To formalise this technique,
we have to generalise our proof obligations to take two invariant-
regions, one for the pre-state heap and one for the post-state heap.
Since this generality is not needed for any of the other techniques,
we omitted a formal treatment in this paper.

3 We recall that in [29], the type system and the verification technique are
given as one set of static rules as opposed to the disentangling advocated by
our work.

Some verification techniques exclude the pre- and post-states
of so-called helper methods from the visible states [20, 21]. Helper
methods can easily be expressed in our framework by choosing dif-
ferent parameters for helper and non-helper methods. For instance
in JML, X, P, and E are empty for helper methods, because they
neither assume nor are they required to preserve any invariants.

Once established, strong invariants [11] hold throughout pro-
gram execution. They are especially useful to reason about con-
currency and security properties. Our framework can easily model
strong invariants, essentially by preventing them from occurring in
V.

Existing techniques for visible state invariants have only limited
support for object initialization. Constructors are prevented from
calling methods because the callee method in general requires all
invariants to hold, but the invariant of the new object is not yet
established. Fähndrich and Xia developed delayed types [9] to
control call-backs into objects that are being initialised. Delayed
types support monotonous invariants, which, once established, are
never broken. Modeling delayed types in our framework is future
work.

Even though separation logic [15, 39] has been used to reason
about invariants of modules with one instance [35], object invari-
ants are not as important as in other verification techniques. In-
stead, verifiers are encouraged to write predicates to express con-
sistency criteria [36]. Abstract predicate families [37] allow one to
do so without violating abstraction and information hiding. As for
the Boogie methodology, the general predicates of separation logic
provide more flexibility than can be expressed by our framework.

7. Conclusions
We presented a framework that describes verification techniques for
object invariants in terms of seven parameters. The framework ad-
vocates for the separation between verification concerns from type
system concerns. Thus, our formalism is parametric wrt. the type
system of the programming language, the regions used to describe
assumptions and proof obligations, and the meaning of validity of
an invariant. We illustrated the generality of our framework by in-
stantiating it to describe six existing verification techniques. We
identified sufficient generic conditions on the framework compo-
nents that guarantee soundness and modularity, and we proved a
universal soundness theorem.

A unified framework with the above separation of concerns,
offers, in our opinion, three important advantages over several
independent formalisms. First, it allows a simpler understanding
of the verification mechanisms (under the assumption that the type
system is sound). Second, it facilitates comparisons between such
verification mechanisms. Third, we found that checking the well-
structured conditions of a verification technique is significantly
simpler than developing soundness proofs from scratch. We are
confident that our framework will simplify the development of
further verification techniques.

As future work, we want to combine the flexibility of heap
topology offered by ownership types [27] with the more liberal
conditions on regions affecting invariants from [34]. We also plan
to extend our framework to techniques that do not use visible
state semantics. For instance, verification techniques for concurrent
programs [16] check invariants at the end of lock blocks, and the
Boogie methodology uses designated expose blocks to delimit code
in which an invariant need not hold [1]. The verification of frame
properties, in particular in the presence of model fields, is very
similar to the verification of invariants [22, 33]. An interesting
direction for future work is to extend our framework to frame
properties.
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A. Appendix
A.1 Language Definitions
Definition 32. A runtime structure is a tuple

RSTRUCT = (HP, ADR,',�, dom, cls, fld, upd, new)

where HP, and ADR are sets, and where
' ⊆ HP × HP � ⊆ HP × HP
dom : HP → P(ADR)
cls : HP × ADR ⇀ CLS
fld : HP × ADR × FLD ⇀ VAL
upd : HP × ADR × FLD × VAL → HP
new : HP × ADR × TYP → HP × ADR

where VAL = ADR ∪ {null} for some element null 6∈ ADR. For all
h ∈ HP, ι, ι′ ∈ ADR, v ∈ VAL, we require:

(H1) ι ∈ dom(h) ⇒ ∃c.cls(h, ι) = c

(H2) h ' h′ ⇒
(

dom(h) = dom(h′),

cls(h, ι) = cls(h′, ι)

(H3) h � h′ ⇒

8><>:
dom(h) ⊆ dom(h′),

∀ι ∈ dom(h).

cls(h, ι) = cls(h′, ι)

(H4) upd(h, ι, f, v) = h′ ⇒

8>>><>>>:
h ' h′

fld(h′, ι, f) = v

ι 6= ι′ or f 6= f ′ ⇒
fld(h′, ι′, f ′) = fld(h, ι′, f ′)

(H5) new(h, ι, t) = h′, ι′ ⇒
(

h � h′

ι′ ∈ dom(h′)\dom(h)

Definition 33. An area/region structure is a tuple
ASTRUCT = (A,R, .)

where A and R are sets, and . is an operation with signature:
. : A×R → R

Definition 34. E[·] and F [·] are defined as follows:
E[·] ::= [·] | E[·].f | E[·].f := e | ι.f := E[·] | E[·].m(e)

| ι.m(E[·]) | E[·] prv r | ret E[·]
F [·] ::= [·] | F [·].f | F [·].f := e | ι.f := F [·] | F [·].m(e)

| ι.m(F [·]) | F [·] prv r | σ ·F [·] | call F [·] | ret F [·]

Definition 35. A programming language is a tuple
PL = (PRG, RSTRUCT, ASTRUCT)

where PRG is a set where every P ∈ PRG is a tuple

P =

0@ F , M , B, <: (class definitions)
v, [[·]] (inclusion and projections)
|=,` (invariant and type satisfaction)

1A
with signatures:

F : CLS × FLD ⇀ TYP × CLS
M : CLS × MTHD ⇀ TYP × TYP
B : CLS × MTHD ⇀ EXPR × CLS
<: ⊆ CLS × CLS ∪ TYP × TYP
v ⊆ A×A
[[·]] : A× HP × ADR → P(ADR)
[[·]] : R× HP × ADR → P(ADR × CLS)
|= ⊆ HP × ADR × CLS
` ⊆ (ENV × EXPR ∪ HP × STK × REXPR)× TYP

(vd-null)

h V̀ σ ·null

(vd-addr)
ι ∈ dom(h)
h V̀ σ ·ι

(vd-new)

h V̀ σ ·new t

(vd-Var)

h V̀ σ ·x
(vd-this)

h V̀ σ ·this

(vd-verEx)

h V̀ F [verfExc]

(vd-ass)
h ` σ ·er : a c′

F (c′, f) = , c
a v Uσ,c

h V̀ σ ·er

h V̀ σ ·e′r
h V̀ σ ·er.f := e′r

(vd-fld)
h V̀ σ ·er

h V̀ σ ·er.f

(vd-end)
h V̀ σ′ ·v

h V̀ σ ·σ′ ·ret v

(vd-call)
h ` σ ·er : a c′

B(c′, m) = , c
a v Cσ,c,m

h V̀ σ ·er

h V̀ σ ·e′r
h V̀ σ ·er.m(e′r prv Pσ,a)

(vd-call-2)
h ` σ ·v : a c′

B(c′, m) = , c
h |= Pσ,a, σ
a v Cσ,c,m

h V̀ σ ·v
h V̀ σ ·v′
h V̀ σ ·v.m(v′)

(vd-start)
h V̀ σ′ ·e

h V̀ σ ·σ′ ·call e prv Eσ′

(vd-frame)
h V̀ σ′ ·er

h V̀ σ ·σ′ ·ret er prv Eσ′

Figure 13. Well-annotated runtime expressions.

where every P ∈ PRG must satisfy the constraints:
(P1) F (c, f) = t, c′ ⇒ c <: c′

(P2) B(c, m) = e, c′ ⇒ c <: c′

(P3) F (cls(h, ι), f) = t, ⇒ ∃v.fld(h, ι, f) = v
(P4) a1 v a2 ⇒ [[a1]]h,ι ⊆ [[a2]]h,ι

(P5) [[a . r]]h,ι =
S

ι′∈[[a]]h,ι
[[r]]h,ι′

(P6) [[a]]h,ι ⊆ dom(h)
(P7) h � h′ ⇒ [[r]]h,ι ⊆ [[r]]h′,ι
(P8) a c <: a′ c′ ⇒ a v a

′, c <: c′

Definition 36. For every program, the judgement:
ẁf : (HP × STK × STK ×A) ∪ (ENV × HP × STK) ∪ PRG

is defined as:

• h, σ ẁf σ′ : a ⇔ σ′ = (ι, , , ), h, σ ` ι : a

• Γ ẁf h, σ ⇔

8<: ∃c, m, t, ι, v.
Γ = c, m, t, σ = (ι, v, c, m),
cls(h, ι) <: c, h, σ r̀ v : t

• ẁf P ⇔

8>>>>>>>>>><>>>>>>>>>>:

(F1) M (c, m) = t, t′ ⇒
∃e. B(c, m) = e, , c, m, t ` e : t′

(F2) c <: c′, F (c′, f) = t, c′′ ⇒
F (c, f) = t′, c′′, t′ = t

(F3) c <: c′, M (c, m) = t, t′,
M (c′, m) = t′′, t′′′ ⇒

t = t′′, t′ = t′′′′

(F4) c <: c′, B(c′, m) = e′, c′′ ⇒
∃c′′′. B(c, m) = e, c′′′, c′′′ <: c′′

The judgement h, σ ẁf σ′ : a expresses that the receiver of
σ′ is within a as seen from the point of view of σ. Γ ẁf h, σ
expresses that h, σ respect the typing environment Γ. ẁf P defines
well-formed programs as those where method bodies respect their
signatures (F1), fields are not overridden (F2), overridden methods
preserve typing (F3), and do not “skip superclasses” (F4).

Definition 37. A programming language PL has a sound type
system if all programs P ∈ PL satisfy the constraints:
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(T1) Γ ` e : t, t <: t′ ⇒ Γ ` e : t′

(T2) h ` er : t, t <: t′ ⇒ h ` er : t′

(T3) h ` er : t, h � h′ ⇒ h′ ` er : t

(T4) h ` σ ·ι : c ⇒ cls(h, ι) <: c

(T5) h ` σ ·ι.m(v) : t ⇒

8><>:
h ` σ ·ι : a c

M (c, m) = t′, t

h ` σ ·v : t′

(T6) h ` σ ·σ′ ·ret er prv r : t ⇒ h ` σ′ ·er : t

(T7) σ = (ι, , , ), h ` σ ·ι′ : a ⇒ ι′ ∈ [[a]]h,ι

(T8) Γ ` e : a c, Γ ` h, σ ⇒ h, σ ` e : a c

(T9) ∀X.
` P, h ` er : t
er, h −→ e′r, h′

ff
⇒ h′ ` e′r : t

(T1) and (T2) express subsumption. (T3) states that runtime ex-
pression typing does not depend on the field values assigned in the
heap. (T4) states that addresses are typed according to their class
in the heap. (T5) and (T6) are a technical constraint stating that
method call typing implies that the parameter type and return type
set by M for that method are respected and that proof obligations
do not interfere with typing. (T7) states that the area component of
a type assigned to an address respects the projection given for that
area with respect to the same viewpoint of the typing. The most
important constraints are (T8) and (T9) : (T8) states the correspon-
dence between typing source expressions and runtime expressions
for heaps and stack frames that respect the typing environment;
(T9) states that for all well-formed programs, reduction preserves
typing.
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