
Rationally Reconstructing the Escrow Example

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Sophia Drossopoulou
Imperial College, London

scd@doc.ic.ac.uk

Abstract
The Escrow Exchange Contract has been used as a case study of
building up complex and trustworthy systems from basic object
capabilities, in the context of concurrent and distributed program-
ming. In this short paper we present a Rational Reconstruction of
the Escrow Exchange Contract case study, expressed in Grace, con-
centrating on the most essential issues of trustworthiness, and ig-
noring issues to do with distribution or more complex protocols.
We then use our notation for capability policies to specify the key
features of the reconstructed case study.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.4.6 [Security and
Protection]: Verification; K.4.4 [Electronic Commerce]: Payment
Schemes, Security

1. Introduction
Miller, Cutsem, and Tulloh [10]’s Escrow Exchange Contract case
study aims to demonstrate how “contracts can be specified ele-
gantly and executed safely, given an appropriate distributed, se-
cure, persistent, and ubiquitous computational fabric”. An escrow
exchange contract is a trusted third party that guarantees that two
other mutually untrusting services can exchange rights with one
another — for example, trading an agreed number of shares in a
company for an agreed amount of a virtual currency. For reasons
both political and technical, Miller, Cutsem, and Tulloh [10]’s de-
sign does not assume a universal clearing service, a government or
supranational agency, laws of contract or tort, nor their correspond-
ing components of a software architecture such as a shared database
or a trusted transaction service. Rather, the entire mechanism of
contracts is built from the bottom up based on object capabilities.
The Exchange Escrow Contract case study is important precisely
because it is useful to gauge how well object-capability systems in
fact support building up larger scale structures of cooperation and
trust, even between mutually untrusting counterparties.

One of Miller et al. [10]’s goals for their case study is that “non-
experts should be able to write smart contracts understandable by
other non-experts.” While the design of the case study is indeed
clear and elegant, the code unavoidably tangles a number of cross-
cutting concerns (especially concurrency and distribution) with the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FTfJP’14, July 29 2014, Uppsala, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2866-1/14/07. . . $15.00.
http://dx.doi.org/10.1145/2635631.2635850

type Purse = {
hashcode −> Number
name −> String
makePurse −> Purse
deposit(amt : Number, src : Purse) −> Done

}

Figure 1. The type Purse

code that manipulates the object-capabilities. To give a little of the
chthonic flavour of the code from Miller et al. [10], the lines

var makeEscrowPurseP =
Q.join(srcPurseP ! makePurse, dstPurseP ! makePurse);

test whether the srcPurse and dstPurse objects belong to the same
mint, in part by an asynchronous object identity test on the lambda
closure object stored in each purse’s makePurse field. In the version
in this paper, we don’t need this check, but if we did, it would be
written something like: “srcPurse.mint == dstPurse.mint.”

In our previous work [4], we analysed Miller’s Mint and Purse
example [8] by expressing it in Joe, a Java subset without reflection
and static fields, and discussed the six capability policies that char-
acterise the correct behaviour of the program, as proposed in [8].
We argued that these policies require a novel approach to specifi-
cation, and showed some first ideas on how to use temporal logic.
In our yet unpublished technical report [5], we propose a specifica-
tion language, and use it to fully specify the six policies from [8];
however, their formalization showed that they allowed several pos-
sible interpretations. We also uncovered the need for another four
policies and formalized them as well.

Contributions In this paper we provide a rational reconstruction
[2] of the Escrow case study into Grace [1]. Our version con-
centrates on the main features of the case study: the fact that a
buyer and seller who do not trust each other may safely agree on a
(trusted) contract, and expect, when they fulfil their side of the obli-
gation, the contract to go through, or to receive a reimbursement.
Moreover each party may back out of a contract that has not yet
been completed. We do not directly address issues of synchroniza-
tion, persistence, or distribution here; rather we assume an effec-
tively object-synchronous programming model (either with actors,
fully-synchronized Java-style objects, or a single threaded event
loop) where underlying middleware deals with all issues of com-
munications failure, replication, etc. We propose capability policies
crucial to the correct operation of the translated case study, and ex-
press them in our policy notation [5].

Outline of paper and Structure of our Solution We first give an
outline of our solution. We have a class mint which creates, and
keeps in a ledger, objects of type Purse, and a singleton object
escrowAgent, which creates and keeps track of objects of class
contract.

class mint.new(name’ : String) −> Mint {

def ledger = col .map.new // maps Purse to Numbers
method name −> String {name’}

method newPurse(name’’ : String,
amount : Number) −> Purse {

def p = object { // makes a new object every time
method hashcode {name’’.hashcode}
method mint is confidential {outer}
method balance is confidential {ledger.get(self)}
method name −>

String {"{name’’}@{name’} {balance}"}
method makePurse −>

Purse { newPurse(name’’ ++ "mP", 0) }
method deposit(amt : Number, src : Purse) −> Done
{ mint.deposit(self , amt, src)}

}
ledger.put(p, amount)
return p

}

method deposit(to : Purse, amount : Number,
from : Purse) −> Done {

if ((amount >= 0) && ((ledger.get(from) − amount) >= 0)
&& (ledger.contains(to)))

then {
ledger.put(from, ledger.get(from) − amount)
ledger.put(to , ledger.get(to) + amount)

} else {
Error. raise "DEPOSIT FAILURE"

}
}

}

Figure 2. The Mint expressed in Grace.

The class mint has type Mint, and it may transfer funds be-
tween purses, provided they both belong to the same mint object.
The escrowAgent creates a fresh contract, and returns no more than
two references to the contract – one to the buyer and one to the
seller. Following the ideas from [10], the class contract receives
the goods (e.g. shares) from the seller inside a Purse object, and
the money from the buyer, again inside a Purse object, and then
performs the exchange using further Purses provided by both par-
ties. The seller may cancel the transaction by emptying the goods
purse they supplied.

The code for the mint and purse, the escrowAgent, and the
contract, appear in sections 2, 4, and 5. This code should be rela-
tively straightforward — note that in Grace, classes are convention-
ally named in lowercase, and types in uppercase. As an example,
we show the type Purse in figure 1. We outline the key features of
our policy specification language in section 3— for more technical
details see [5], and use this language in sections 4, and 5 to specify
policies for the escrow agent and the contract.

2. The mint
Figure 2 shows the Mint example [9, 10] translated into Grace [1].
A mint represents a fungible value — perhaps a fiat currency, a
crypto-currency, or a corporate share registry, or even an amount of
goods that can be bought and sold. A Purse holds some amount of
the value of the Mint. A holder of a mint capability can inflate the
currency of the mint, that is increase the sum of all the purses in
that mint, while the holder of a purse capability can transfer funds
from that purse into another purse of the same mint.

To make a secure payment, the payer will typically make a
new, empty, temporary purse via makePurse, and deposit only
enough funds for the payment into the temporary purse. The payer

then passes the temporary purse to the payee, who then empties it
back into their primary purse. This allows two mutually untrusting
components to transfer funds, provided that they both trust the mint
and purse system. Thus, if the payer has a payerMainPurse account,
and the payee has a payeeMainPurse account, then the transaction
may take place as follows:

// payer creates temp purse
def tempPurse = payerMainPurse.makePurse
tempPurse.deposit(100, payerMainPurse)
// payer passes tempPurse to payee
payee.acceptPayment(100, tempPurse)
// payee
payeeMainPurse.deposit(100, tempPurse)

A feature of the Grace implementation is that each mint stores
a ledger that tracks the balance of its purses. The ledger is an in-
stance of the col .map class, that is the map implementation from
the standard collection library. We use a map to store every purse’s
balance, rather than a field in purse, say, because Grace’s encap-
sulation is per-instance, like Smalltalk, not per-class, like Java or
Joe. The is confidential annotation (with the antonym is public)
declares a field or method accessible only from self (confidential)
or from any object (public) — fields are confidential by default,
methods public by default. A confidential balance field could not
be read or assigned from outside the object, but a public field would
certainly leak information and potentially could be overwritten in
such a way that the program would crash.

Finally, it is important for the wider system that the deposit
method will run to completion only if both purses are listed in

the mint’s legder and that the source purse has sufficient funds
— otherwise the deposit ends by raising an error. If the caller
doesn’t handle the error with Grace’s try{}catch{} statement then
the calling routine will also be terminated.

The mint was first proposed in [9] together with six capability
policies. In [5] we propose how to formalize these policies. In this
paper, we formulate and formalize some of the policies for the
more complex escrowAgent and contract objects. For this, we first
outline concepts for the specification of capability policies.

3. Concepts for Capability Policy Specification
In this section we briefly sketch the most crucial concepts needed
for capability specifications. The concepts are essentially observa-
tions of program execution. With the exception of execution histo-
ries, introduced at the end of the section, all these concepts have
been defined for a subset of Java in [5] - their definition can be
easily adapted to Grace.

Modules and Linking To model the open nature of capability
policies, we need to describe both the program we are check-
ing, and potential extensions of that program (through subclasses,
mashups, imports etc). For this we use modules, M, to denote pro-
grams, and ∗ to describe the combination of two programs into one
larger program.

The ∗ operator links modules together into new modules. Link-
ing performs compatibility checks, and therefore ∗ is only partially
defined. For example, because the method balance is confidential,
Mmint ∗ M′ would be undefined, if M′ contained the expression
m.newPurse(,).balance where m was an object of class mint.

Runtime Configurations and Expression Evaluation Execution
takes place in the context of runtime configurations κ. A configura-
tion is a stack frame and heap. A stack frame is a tuple consisting of
the following four components: the address of the receiver, a map-
ping giving values to the formal parameters, the class identifier,
and the method identifier of the method being executed. A heap is
a mapping from object addresses to objects.

Execution of a code snippet, code for a module M takes a
configuration κ and returns a value v and a new configuration κ′.
We assume large step semantics of shape M, κ, code ; κ′, v′.

Paths We support path expressions p (i.e., expressions which
only involve field reads). For example, mint, and prs.mint are
paths. Paths are interpreted in the context of runtime configurations,
d·c : Path −→ RTConf −→ Value

so that dpcκ = v if p is a path and ∅, κ, p ; κ, v.

Reached and Arising Snapshots When defining adherence to
policies, it is essential to consider only those snapshots (i.e., con-
figuration and code pairs) which may arise through the execution of
the given modules. For example, if we considered any well-formed
snapshots (well-formed in the sense of the type system), then we
would be unable to show, e.g. , that balances are always positive
as mandated in [9, 10]. Namely, a configuration with a negative
balance would be well-formed, but will never actually arise in the
execution of the program.
Reach(M, κ, code) [5] is the set of snapshots corresponding to

the start of the execution of the body of any constructor or method
called in the process of executing code in the context of M and κ.
Note that Reach(M, κ, code), corresponds to the complete body
of a method.
Arising(M) is the set of snapshots which may be reached

during execution of some initial snapshot, κ0, code0.

Accessible Objects AccAll(M, κ) is the set of objects accessible
from the frame in κ through any path, including confidential fields.

The notation z :κ c ndicates that z is the name of an object
which exists in the heap of κ and belongs to class c — with no
requirement that there should be a path from the frame to this
object. The notation κ ∈ c expresses that the currently executing
method in κ comes from c, while κ ∈ M expresses that the class of
the currently executing method is defined in M.

Execution Histories An execution history, h, is a sequence of
snapshots containing all the method calls which arise during one
execution, in the order in which these calls were received, and
where the snapshots of nested calls follow the snapshot of the
nesting call. We use the operator · to compose histories, for example
h1 · (κ, code) · h2 is a history. The setHistories(M) is the set of
all histories which execute code from M.

4. Escrow Agent
The basic mint and purse system allows two untrusting components
to make a payment (see section 2 above). But this payment is a
one way transaction: a payer pays a payee. Supporting “electronic
rights” (in Miller et al. [10]’s redolent phrase) requires contracts,
that is, two way exchanges where some currency and some goods
(e.g shares) change hands atomically — again in an environment
where neither payee nor payer trust each other. The remainder
of the Escrow case study uses mints and purses to build such a
Escrow Contract system. We now describe our Grace translation
/ simplification of the escrow system, showing its implementation
and the capability policies that are crucial to its correctness.

Given that each side is untrusting of the other, the first challenge
is for both sides to have received the same contract object with
the same understanding that this object will embody the actual
contract. Following Miller et al. [10]’s design we provide a trusted
escrow agent object that issues contracts to buyers and sellers.

Our escrow agent is shown in figure 3. Compared with Miller
et al. [10]’s escrow agent, this is simpler and more straightfor-
ward, because again our code intentionally focuses on the core
behaviour of the design, especially regarding the object capabili-
ties, rather than details of middleware infrastructure. Our design

def escrowAgent = object { // well known singleton

class contract.new(name’ : String) { ... } // see fig 4

var terms : String
var currentContract : Contract
var waitingForSeller := true

// called by seller to request a seller−side contract
method getSellerContract(terms’: String) −> Contract {

if (! waitingForSeller)
then { Error. raise "already has seller" }

terms := terms’
waitingForSeller := false // now waiting for a buyer
currentContract := contract .new(terms)
return currentContract

}

// called by buyer to request a buyer−side contract
method getBuyerContract(terms’ : String) −> Contract {

if (waitingForSeller) then {
Error. raise "waiting for a seller" }

if (terms != terms’) then {
Error. raise "terms don’t match" }

def thisContract = currentContract
waitingForSeller := true
return thisContract

}

}

Figure 3. The core of the Escrow Agent translated into Grace.

also makes a number of other simplifications: we assume Grace
objects and classes are single-threaded as if in fully-synchronized
Java; and we adopt a very asymmetric protocol where the seller
(payee) must always ‘move’ first, followed by the buyer (payer).
The waitingForSeller variable keeps track of who should move next,
the buyer or the seller.

Thus, the seller asks for and is returned a contract; when a
matching buyer arrives they will be issued the same contract object.

// Alice the seller moves first
def alice = object {

def alicesContract =
escrowAgent.getSellerContract("some terms")

...
// Bob the buyer moves second
def bob = object {

def bobsContract =
escrowAgent.getBuyerContract("some terms")

...
Of course, a real implementation would need to keep track of a

list of potential buyers, so that a buyer requesting a contract with
no matching seller would not deadlock — but these are essentially
bookkeeping issues that do not affect the exercise of object capa-
bilities within the system.

Compared with Miller et al. [10] we also rely on a number of
end-to-end arguments. For example there is no way for a seller to
determine that no buyer has accepted the contract, or for a buyer
or seller to explicitly reject a contract when issued. The reason we
don’t deal with these issues here is that the contract object itself,
and the protocol around its use, seamlessly resolve all these issues
in the end-to-end context of the system as a whole.

4.1 Capability Policies for the Escrow Agent
We propose some policies which govern the class escrowAgent.
We believe that the policies below are essential, but giving a com-
plete set of policies is beyond the scope of this paper.

4.1.1 Pol A1: getSellerContract returns fresh contracts.
The method getSellerContract returns fresh contracts, or throws
an exception. We distinguish two versions of the policy:

Module M satisfies policy Pol A1, vrs1
iff

∀κ. M, κ, escrowAgent.getSellerContract() ; κ′, v
=⇒

v ∈ Error ∨ (v :κ′ contract ∧ v /∈ dom(κ))

In other words, if we execute escrowAgent.getSellerContract(),
then we either obtain an exception (v ∈ Error), or we obtain a fresh
contract (v /∈ dom(κ) and v :κ′ contract).

On the other hand, Pol A1, vrs2 gives sufficient conditions
under which the execution will not throw an error, and describes
the state after execution of getSellerContract().

Module M satisfies policy Pol A1, vrs2
iff

∀κ, txt : String. descrowAgent.waitingForSellercκ.
∧ M, κ, escrowAgent.getSellerContract(txt) ; κ′, v

=⇒
v :κ′ contract ∧ v /∈ dom(κ)

∧ descrowAgent.waitingForSellercκ′ = false
∧ descrowAgent.contractcκ′ = v ∧ dv.termscκ′ = txt

∧ descrowAgent.offeredcκ′ = false

Thus, if escrowAgent is in state where waitingForSeller is true,
and executes getSellerContract(txt), then waitingForSeller resp.
offered will become false resp. true, and a new contact will be
created, containing txt as the terms.

The above specification is a complete description of the be-
haviour of getSellerContract, but exposes its implementation’s de-
tails, some of which are only relevant to the working of other meth-
ods, e.g., setting the field text is necessary for the correct working
of getBuyerContract. The well-known approach to alleviate such
exposures is the introduction of ghost variables [6, 7]; in section
4.1.4 we will show instead specifications based on the possible se-
quences of method calls — in line with [3], we believe that this is
a more abstract style.

Note that both versions of Pol A1 could have been expressed
in a Hoare Logic variant, e.g. in [6]. They both are concerned with
sufficient conditions for the creation of contracts. The next policy,
Pol A2, will be concerned with necessary conditions. Using the
terminology we introduced in [4], the former is a rely property,
while the latter is a deny property, i.e., a new contract cannot be
created unless the method getSellerContract is called.

4.1.2 Pol A2: Contracts created only through
getSellerContract

The policy Pol A2 guarantees that any newly created contract must
have been the result of calling getSellerContract on escrowAgent.

Module M satisfies policy Pol A2
iff

∀M′. ∀ c. κ /∈ escrowAgent, contract
∧ M ∗M′, κ, code ; κ′, v

∧ c :κ′ contract ∧ c /∈ dom(κ).

=⇒
∃κ′′, v′, κ′′′.

c :κ′′′ contract ∧ c /∈ dom(κ′′)
∧ (κ′′, escrowAgent.getSellerContract()) ∈

Reach(M ∗M′, κ, code)
∧ M ∗M′, κ′′, escrowAgent.getSellerContract() ;

κ′′′, dccκ′ .

In other words, if a snapshot (κ, code) which does not exe-
cute code from escrow (expressed through κ /∈ escrowAgent)
leads to the creation of a contract c (expressed through M ∗
M′, κ, code ; κ′, v and c :κ′ contract, c /∈ dom(κ)), then
the execution of that snapshot must have gone through an inter-
mediate snapshot which executed the method getSellerContract
(expressed through requirement (κ′′, escrowAgent.getSeller... ∈
Reach(M ∗M′, κ, code)) and which indeed, created that contract
(expressed through M ∗ M′, κ′′, ... ; κ′′′, dccκ′′ and c :κ′′′

contract ∧ c /∈ dom(κ′′)).
This policy forbids any other way of creating contracts than

through escrowAgent. Thus, if class contract was public, i.e., not
encapsulated within the escrowAgent, it would still satisfy Pol A1,
but would not satisfy Pol A2.

In this policy, we quantify over all possible legal extensions of
the code, i.e. over all modules M′. If we did not, then the version
where contract was public would satisfy the policy, provided that
M did not contain any offending code. This demonstrates what
we call the open nature of policies [4]. Moreover, we restrict our
requirement to snapshots outside escrowAgent or contract (κ /∈
escrowAgent, contract); this is necessary in order to exclude calls
within those modules. Without this premise, the policy would not
be satisfiable. Finally, note that we cannot replace in the above
the use of class contract by the type Contract. Grace’s types are
primarily structural, and it takes a little more effort to rule out
something that is structurally a Contract, even through it was not
created by the class contract

4.1.3 Pol A3: Contracts may only be obtained through calls
of getSellerContract or getBuyerContract

Pol A3 guarantees that the only way to obtain contracts en-
capsulated in a module M is through the call of the functions
getSellerContract or getBuyerContract. Thus, this policy for-
bids the addition, of, say, a public method getContract accessor
that returns a contract, and which would make it possible to leak a
contract to a malicious third party.

Module M satisfies policy Pol A3
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀c :κ′ contract.
M ∗M′, κ, code ; κ′, v

∧ κ, κ′ ∈ M′ ∧ dccκ′ ∈AccAll(M ∗M′, κ′)
=⇒

dccκ′ ∈AccAll(M ∗M′, κ) ∨
[∃code′, κ′′, κ′′′.M ∗M′, κ′′, code′ ∈

Reach(M ∗M′, κ, code)
∧ κ′′, code′ ; κ′′′, dccκ′

∧ (code = escrowAgent.getSellerContract()
∨ code = escrowAgent.getBuyerContract())].

In other words, if execution of code external to M (κ∈M′)
leads to a configuration which has access to contract object c
(dcc′κ∈AccAll(M ∗M′, κ′) and c :κ′ contract), then either c was

already accessible to M′ (dccκ′ ∈ AccAll(M ∗ M′, κ)), or c was
returned through execution of escrowAgent.getSellerContract(),
or escrowAgent.getBuyerContract().

4.1.4 Pol A4: Interplay of getBuyerContract and
getSellerContract

Pol A4, vrs1 guarantees that a call of getSellerContract(txt) fol-
lowed by a call to getBuyerContract(txt) will return the same
object, provided that it is not preceded by an unmatched call of
getSellerContract(), and provided that there is no intermediate
call on the escrowAgent between the two calls.

We first define the predicate Matched() on histories, which
requires that either there are no calls on escrowAgent, or that
any getSellerContract() are followed by a corresponding call of
getBuyerContract():
Matched(h) iff (, escrowAgent.getSellerContract(txt)) /∈ h,

or there exists h1, h2, h3 such that
h = h1 · (, escrowAgent.getSellerContract(txt))·

h2 · (, escrowAgent.getBuyerContract(txt)) · h3,
andMatched(h1), and (escrowAgent.get......(),) /∈ h2,
andMatched(h3).

We now express the policy:

Module M satisfies policy Pol A4
iff

∀M′, h1, h2, h3, txt : String. ∀h ∈ Histories(M ∗M′).
h = h1 · (κ1, escrowAgent.getSellerContract(txt)) · h2 ·

(κ2, escrowAgent.getBuyerContract(txt)) · h3

∧ Matched(h1)
∧ (escrowAgent.get...Contract(),) /∈ h2

=⇒
∃κ3, κ4, v.

M ∗M′, κ1, escrowAgent.getSellerContract(txt) ; κ3, v
∧ M ∗M′, κ2, escrowAgent.getBuyerContract(txt) ;

κ4, v.

The policy from above, together with Pol A1, vrs1 will guaran-
tee that the returned value is a contract, which is new in κ1.

We now consider the deny-counterpart of that policy, which says
that calls of getSellerContract() only succeed if the previous calls
on escrowAgent are matched correctly: We omit the complemen-
tary policy for the calls of getBuyerContract().

Module M satisfies policy Pol A4, vrs2
iff

∀M′, h1, h2, κ1, κ2, v. ∀h ∈ Histories(M ∗M′).
h = h1 · (κ1, escrowAgent.getSellerContract(txt)) · h2

∧ M∗M′, κ1, escrowAgent.getSellerContract(txt) ; κ3, v
∧ v :κ3 contract

=⇒
Matched(h1)

5. Escrow Contract
Figure 4 implements our version of the actual escrow contract ob-
ject. Again, this uses a protocol where we expect the seller to
move first and populate the contract, and then the buyer to move
and accept the contract. The seller must pass two purses into the
offer method — the sellersGoods purse that contains the goods to
be sold, and sellersMoney a (presumably empty) temporary purse

class contract.new(name’ : String) {
var offered := false
var sellersGoods : Purse
var amount : Number
var price : Number
var sellersMoney : Purse

method offer(sellersGoods’ : Purse,
amount’ : Number,
price ’ : Number,
sellersMoney’ : Purse) {

sellersGoods := sellersGoods’
amount := amount’
price := price ’
sellersMoney := sellersMoney’
offered := true

}

method bid(buyersGoods : Purse,
amount’ : Number,
price ’ : Number,
buyersMoney : Purse) −> Done {

if (! offered) then { Error. raise "Not offered" }
if ((amount != amount’) || (price != price ’)) then
{ Error. raise "Bid/Offer mismatch" }

if ((amount < 0) || (price < 0)) then
{ Error. raise "Bid/Offer fraud" }

// make temporary escrow purses
def moneyEscrow : Purse = buyersMoney.makePurse
def goodsEscrow : Purse = sellersGoods.makePurse

// make extra temporary purses for check
def moneyTmp : Purse = sellersMoney.makePurse
def goodsTmp : Purse = buyersGoods.makePurse

// check purses are from the same mints
moneyTmp.deposit(0, moneyEscrow)
moneyEscrow.deposit(0, moneyTmp)
goodsTmp.deposit(0, goodsEscrow)
goodsEscrow.deposit(0, goodsTmp)

// here we go − uncaught exceptions from deposit end the bid
moneyEscrow.deposit(price, buyersMoney)

try { goodsEscrow.deposit(amount, sellersGoods) }
catch { −> buyersMoney.deposit(price, moneyEscrow);

Error. raise "TXN FAILURE" }

sellersMoney.deposit(price, moneyEscrow)
buyersGoods.deposit(amount, goodsEscrow)

}}

Figure 4. The Escrow Contract translated into Grace.

that will receive the money. Similarly the buyer supplies an empty
buyersGoods purse and a (temporary) buyersMoney purse that con-
tains the payment when they call the bid method. The transaction
succeeds if the bid method completes.

// Alice the seller
def mDst = mint.newPurse("Alice’s mDst", 0)
def gSrc = goods.newPurse("Alice’s gSrc", 7)
alicesContract. offer (gSrc, 7, 10, mDst)

// Bob the buyer
def mSrc = mint.newPurse("Bob’s mSrc", 10)
def gDst = goods.newPurse("Bob’s’s gDst", 0)
bobsContract.bid(gDst, 7, 10, mSrc)

The seller can cancel the contract at any time before settlement
by simply emptying their sellersGoods purse: this will cause the
overall transaction to fail when the buyer makes a bid. Similarly

the buyer can cancel by not calling bid. The only subtlety is the
use of the moneyEscrow and goodsEscrow purses towards the end
of the bid method — the goods and money are first moved into
these escrow purses so that an unscrupulous party cannot remove
the goods or money while the transaction is in progress. From
our capability policy perspective, this complexity is essential, not
accidental, because it captures the heart of the escrow behaviour.

5.1 Capability Policies for Contracts
5.1.1 Pol C1: Effects and conditions of exchange
The key policy for the escrow contract is that once it receives a bid
matching the offer, it performs the transfer of goods and moneys,
provided the corresponding purses come from the same mint. Here
we write the deny counterpart of this policy, which says that if,
as the result of a bid, the buyer’s goods balance changes, then the
bid must have been preceded by the creation of pairs of purses in
corresponding mints, and of an offer which matched the bid:

Module M satisfies policy Pol C1
iff

∀M′, h1, h2, c, κ, κ
′, v.∀amt, prc : N.

∀h∈Histories(M ∗M′).
c :κ contract ∧ pg :κ Purse ∧ pm :κ Purse
∧ h = h1 · (κ, c.bid(pg, amt, prc, pm)) · h4

∧ M ∗M′, κ, c.bid(pg, amt, prc, pm) ; κ′, v
∧ dpg.balancecκ′ 6= dpg.balancecκ

=⇒
(dpg.balancecκ′ = dpg.balancecκ + amt
∧ dpm.balancecκ′ = dpm.balancecκ − prc

∧ dpg.balancecκ ≥ prc
∧

[∃p′
g, p

′
m,mntm,mntg, h3, h4,

κ′′, κ1, κ
′
1, κ2, κ

′
2, κ3, κ

′
3, κ4, κ

′
4.

h1 = h3 · (κ′′, c.offer(p′
g, amt, prc, p′

m)) · h4

∧ mntm :κ2 Mint ∧ mntg :κ4 Mint
∧ (κ1,mntm.makePurse()), (κ3,mntg.makePurse())∈h1

∧ (κ2,mntm.makePurse()), (κ4,mntg.makePurse())∈h3

∧ M ∗M′, κ1,mntm.makePurse() ; pm, κ
′
1

∧ M ∗M′, κ2,mntm.makePurse() ; p′
m, κ

′
2

∧ M ∗M′, κ3,mntg.makePurse() ; pg, κ
′
3

∧ M ∗M′, κ4,mntg.makePurse() ; p′
g, κ

′
4

∧ pm :κ′
1

Purse ∧ p′
m :κ′

2
Purse

∧ pg :κ′
3

Purse ∧ p′
g :κ′

4
Purse

∧ dp′
g.balancecκ′ = dp′

g.balancecκ − amt
∧ dp′

m.balancecκ′ = dp′
m.balancecκ + prc

∧ ((, c.bid(p′′
g , amt′′, prc′′, p′′

m)) ∈ h3 → amt 6=
amt′′...)

∧ dp′
g.balancecκ ≥ amt])

In the above, pm and pg stand for the buyer’s money and goods’
purse, while p′

m and p′
g stand for the seller’s money and goods’

purse. The policy expresses that if a call of bid modified the balance
in the buyer’s goods purse, then the modification was exactly by
amt, while the buyer’e monte purse will have been debited the
price. Moreover, there exist further purses, p′

m and p′
g which were

created by the same mints as p′
m and p′

g respectively (lines 14-25).
Furthermore, p′

g is debited by amt, while p′
m is credited by prc

(lines 26-27). Also, there was no bid of sufficient money between
the offer at κ′′ and the bid at κ (lines 28-29) and there were enough
goods in the seller’s goods’ purse (line 30).

5.1.2 Pol C2: Bids do not leak references
Finally, this policy guarantees that execution of a bid does not leak
references to third parties — satisfying the requirement that the
escrow system mediate between two mutually untrusting objects.

Module M satisfies policy Pol C2
iff

∀M′, κ, c, o, o′.
(κ, c.bid(pg, amt, prc, pm)) ∈ Arising(M ∗M′).

∧ c :κ contract
∧ M ∗M′, κ, c.bid(pg, amt, prc, pm) ; κ′, v

∧ o ∈ AccAll(o′, κ′)
=⇒

o ∈ AccAll(o′, κ)

In other words, if after execution of c.bid(pg, amt, prc, pm), the
object o′ has access to the object o, then it already had access to it
before execution of the call.

6. Conclusions and Future Work
In this paper we have presented a rational reconstruction of Miller,
Cutsem, and Tulloh’s contract exchange escrow case study. We
have translated the code from JavaScript to Grace, and have re-
moved code corresponding to the crosscutting concerns of distribu-
tion, asynchrony, genericity, and symmetry, leaving the core of the
program that records, exchanges, and exercises object capabilities.

We have proposed some of the capability policies that must
be maintained to demonstrate that the escrow design meets its
specifications, and clarified them through formal specifications.

In further work, we want to complete the definition of execu-
tion observations, complete the policies, consider whether they are
minimal (can any of these be inferred from the others), and prove
that the Grace code adheres to these policies.

Acknowledgments We thank the anonymous referees for their
comments. This work is partially supported by the Royal Society of
New Zealand Marsden Fund, and by the EU FP7 project Upscale.

References
[1] Andrew P Black, Kim B Bruce, Michael Homer, and James Noble.

Grace: the absence of (inessential) difficulty. In Onward! ACM, 2012.
[2] Simon Blackburn. The Oxford Dictionary of Philosophy. 2008.
[3] F. S. de Boer, S. de Gouw, and J. Vinju. Prototyping a tool environment

for run-time assertion checking in JML with communication histories.
In FTfJP, ACM DL, 2010.

[4] Sophia Drossopoulou and James Noble. The need for capability
policies. In FTfJP, 2013.

[5] Sophia Drossopoulou and James Noble. Towards capability policy
specification and verification. available from authors’ website, May
2014. http://ecs.victoria.ac.nz/Main/TechnicalReportSeries.

[6] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok,
P. Müller, J. Kiniry, and P. Chalin. JML Reference Manual. Iowa
State Univ. www.jmlspecs.org, February 2007.

[7] B. Liskov and J. Guttag. Abstraction and Specification in Program
Development. MIT Press, 1986.

[8] Mark Samuel Miller. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD thesis, Bal-
timore, Maryland, 2006.

[9] Mark Samuel Miller, Chip Morningstar, and Bill Frantz. Capability-
based Financial Instruments: From Object to Capabilities. In Financial
Cryptography. Springer, 2000.

[10] Mark Samuel Miller, Tom Van Cutsem, and Bill Tulloh. Distributed
electronic rights in JavaScript. In ESOP, 2013.

