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Abstract

Extraction of features, such as edges for the understanding of aerial images, has been an important objective since
the early days of remote sensing. This work aims at describing a new framework which allows for the quantitative
combination of a preselected set of edge detectors based on the correspondence between their outcomes. This is
inspired from the problem that despite the enormous amount of literature on edge detection techniques, there is
no single technique that performs well in every possible image context. Two approaches are proposed for this
purpose. The first approach is the well-known receiver operating characteristics analysis which is introduced for a
sound quality evaluation of the edge maps estimated by combining different edge detectors. In the second
approach, the so-called kappa statistics are employed in a novel fashion to amalgamate the above-mentioned
selected edge maps to form an improved final edge image. This method is unique in the sense that the balance
between the false detections (false positives and false negatives) is explicitly determined in advance and
incorporated in the proposed method in a mathematical fashion. For the performance evaluation of the proposed
techniques, a sample set of the RADIUS/DARPA-IU Fort Hood aerial image database with known ground truth has
been used.

1 Introduction
Automatic detection of both geographical (natural) and
man-made structures, such as vegetation, buildings,
roads and vehicles, in aerial or satellite images has been
an active research topic the last decade [1,2]. Aerial
images, with their highly detailed contents, are an
important source of information for applications includ-
ing GIS [3], traffic surveillance [4] and military applica-
tions [5]. When processing aerial images, the extraction
of high-level features for object detection is an impor-
tant field. Features of interest can be extracted using a
variety of image-processing techniques, which analyze
the image to detect characteristics, such as edges, tex-
ture and shape.
Edge-driven approaches have been extensively used in

understanding remote sensing images and detecting
man-made objects in them. In Noronha and Nevatia [6],
extract edge points to build a system that detects and
constructs 3D models of buildings using multiple aerial
images. Tupin et al. [7] applied the ratio-of-averages
(RoA) edge detector that was first presented by Touzi

et al. [8] to identify linear structures, such as main axes
in road networks in synthetic aperture radar (SAR)
images. In [9], a framework for automatic change detec-
tion of linear features (e.g. roads and buildings) in aerial
images is built, based on the edge maps which indicate
pixels that segment areas with significantly different
brightness values. Gamba et al. [10] proposed an
approach to extract the map of urban areas exploiting
edge information in very high-resolution images (VHR).
Edge detection in aerial images is a challenging task

for many reasons. Aerial images differ in resolution, sen-
sor type, orientation, quality, dynamic range, light condi-
tions, different weather and seasons, factors that
increase the complexity of the edge detection process.
In several cases, some of the detected edges do not cor-
respond to meaningful objects, while some edges that
belong to objects are distorted, broken or missed.
Furthermore, edges of different objects or edges of dif-
ferent layers of a structure are likely to stick to each
other. Edge detection must be efficient and reliable
because it is crucial in determining how successful sub-
sequent processing stages will be. To fulfill the reliability
requirement of edge detection, a great diversity of* Correspondence: stamatia.giannarou@ic.ac.uk
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operators have been devised with differences in their
mathematical and algorithmic properties.
Some of the earliest methods, such as the Sobel [11]

and Roberts [12], are based on the so-called “Enhance-
ment and Thresholding“ approach [13]. According to
that method, the image is convolved with small kernels
which represent low-order high-pass filters and the
result is thresholded to identify the edge points. Since
then, more sophisticated operators have been developed.
Marr and Hildreth [14] were the first to introduce the
Gaussian smoothing as a pre-processing step in edge
feature extraction. Their method detects edges by locat-
ing the zero-crossings of the Laplacian (second deriva-
tive) of the output of a Gaussian filtered image. Canny
[15] developed an alternative Gaussian edge detector
based on the optimizing three criteria. He employed
Gaussian smoothing to reduce noise and the first deriva-
tive of the Gaussian to detect edges. Deriche [16]
extended Canny’s work to derive a recursively imple-
mented edge detector. Rothwell [17] designed a spatially
adaptive operator which is able to recover reliable topo-
logical information.
Further to the above, an alternative approach to edge

detection is the multiresolution one. In such a detection
framework, the image is convolved with Gaussian filters
of different sizes to produce a set of images at different
resolutions. These images are integrated to produce a
complete final edge map. Typical algorithms which fol-
low this approach have been produced by Bergholm [18],
Lacroix [19] and Schunck [20]. Another interesting cate-
gory of edge detectors is the logical/linear operators [21]
which combine aspects of linear operators’ theory and
Boolean algebra. Furthermore, the idea of mimicking the
human vision function using mathematical models gave
space to the development of feature detection algorithms
based on the human visual system. A representative
example is the edge detector developed by Peli [22].
Recent approaches have used supervised learning to

detect edges and object boundaries. In [23], a data-dri-
ven statistical edge detection approach has been pro-
posed, where the probability distributions of edge filter
responses on and off edges are learnt from pre-segmen-
ted data sets, while edges are detected using the log-
likelihood ratio test. In a similar spirit, Martin et al. [24]
combine multiple local cues to detect local boundaries.
Based on the brightness, color and texture features, a
classifier is trained using pre-segmented data to model
the true posterior probability of a boundary at every
image location and orientation. Another supervised
learning algorithm for edge detection is the boosted
edge learning (BEL) [25]. In this approach, a large num-
ber of features across different scales are combined to
learn a discriminative model using an extended version

of the probabilistic Boosting tree classification
algorithm.
Intuitively, the question that arises is which edge

detector and detector parameter settings can produce
optimal results. Despite the aforementioned volume of
existing work, an ideal scheme able to detect and loca-
lize edges with precision in many different contexts, has
not yet been produced. Depending on the application,
pre-segmented data might not be available for super-
vised training. This is getting even more difficult
because of the absence of an evident “correct” edge map
(ground truth), on which the performance of an edge
detector could be evaluated. Although an edge detector
may be robust to noise, it may fail to mark corners and
junctions properly. Another common issue with edge
detection is the incomplete contour representation. Pro-
blems, such as the above, strongly motivate the develop-
ment of a general method for combining different edge
detection schemes to take advantage of their strengths,
while overcoming their weaknesses.
Let us assume n original detectors, where a detector

refers to a mathematical method that attempts to iden-
tify the presence (or absence) of an event. In our work,
we are interested in edge detectors that investigate the
presence of edges in a digital image signal. These origi-
nal detectors are transformed to a new set of detectors,
where each new detector is a function of all of the origi-
nal detectors. This function is solely controlled by a
parameter named correspondence threshold (CT) which
will be explained in the main body of the paper. Each
one of the new detectors is associated with a specific
value of the CT parameter; this value identifies uniquely
the detector. The new detectors vary with respect to
their richness, starting from weak detectors that high-
light only the strong edges and are basically noise free,
to strong detectors that also highlight weak edges and
fine details, but exhibit significant amount of noise. In
this work, we are interested in selecting one of the new
edge detectors as the final detection result. The method
assumes that the best of the new edge maps is the one
which is most consistent with the verity of the detec-
tions produced by the set of original edge detectors. We
present two novel contributions.
The first contribution is based on the use of the so-

called receiver operating characteristic (ROC) curve.
The only related work was presented in [26]. However,
in [26] the original edge maps are generated for differ-
ent combinations of the parameter values of a single
edge detector and more specifically the Canny edge
detector. In this paper, the original edge maps are differ-
ent popular edge detectors which although follow simi-
lar mathematical techniques, they still produce different
results.

Giannarou and Stathaki EURASIP Journal on Advances in Signal Processing 2011, 2011:28
http://asp.eurasipjournals.com/content/2011/1/28

Page 2 of 19



The second contribution is based on the employment
of a normalized and corrected edge detection perfor-
mance statistical metric known as kappa statistic. The
kappa statistic has been used solely in medicine [27]. We
are seeking at optimizing the kappa statistic which, in the
specific framework, is a function of the available edge
detectors and additionally a scalar parameter which con-
trols the strength of the final detector and consequently
the balance between false alarms and misdetections.
The later is the main novelty of this paper. It is an

important research contribution to the edge detection
problem, since it allows for the blind combination of
multiple detectors and more importantly the pre-speci-
fied control of the type of preferred misclassifications.
The work presented in this paper is a significant

extension of the preliminary work presented in [28,29].
Two different contributions for optimal edge detection
are studied in detail. Exhaustive experimental results are
provided for assessing the relative strength of intrinsic
technical merit of the proposed techniques for detecting
edges in natural scenes. The proposed framework is
compared against existing methods and their respective
performance is evaluated on aerial images.
The paper is organized as follows. Section 2 concerns

the brief analysis of a set of popular edge detectors that
will be used in this work. Section 3 presents two novel
approaches for the quantitative combination of multiple
edge detectors. Section 4 contains experimental results
yielded using our implementation of the automatic edge
detection algorithms together with a comparative study
of the methods’ performance. Conclusions are given in
Section 5.

2 Operators implemented for this work
Several approaches to edge detection focus their analysis
on the identification of the best differential operator
necessary to localize sharp changes of the image inten-
sity. These approaches recognize the necessity of a preli-
minary filtering step, as a smoothing stage, since
differentiation amplifies all high-frequency components
of the signal, including those of the textured areas and
noise. The most widely used smoothing filter is the
Gaussian one which has been shown to play an impor-
tant role in detecting edges.
Canny’s approach [15] is a standard technique in edge

detection. This scheme, in substance, identifies edges in
the image as the local maxima of the convolution of the
image with an “optimal” operator. The operator’s optim-
ality is subject to three performance criteria defined by
Canny and is a very close approximation to the first
derivative of the two-dimensional Gaussian function G
(x, y). For example, the partial derivative with respect to
x is defined as:

δ

δx
G(x, y) =

δ

δx
e−

x2+y2

2σ 2

where s2 denotes the variance of the Gaussian filter
and controls the degree of smoothing. After this pro-
cess, candidate edge pixels are identified as the pixels
that survive an additional thinning process known as
nonmaximal suppression [15]. Then, the candidate edges
are thresholded to keep only the significant ones. More-
over, Canny suggests hysteresis thresholding to eliminate
streaking of edge contours.
Using an approach similar to Canny’s, Deriche [16]

derived an alternative optimal operator. Contrary to
Canny, whose operator is based on a finite antisym-
metric filter, Deriche deals with an antisymmetric filter
which has an infinite support region defined as:

f (x) = −c · e−a|x| · sinωx

where a, c and ω are positive real numbers. This filter
is sharper than the derivative of the Gaussian and is effi-
ciently implemented in a recursive fashion. The proce-
dure that follows in Deriche’s method is the same as the
one used in Canny’s edge detection; nonmaximal sup-
pression and hysteresis thresholding are applied as
described previously.
Although Canny’s detector performs well in localizing

edges and suppressing noise; yet in several cases, it fails
to provide a complete boundary in objects. Rothwell’s
[17] operator is an improvement to earlier edge detec-
tors, capable of recovering sound topological descrip-
tions. It follows a line of work similar to Canny’s. The
uniqueness of this algorithm originates in the use of a
dynamic threshold which varies across the image [17].
In general, it is very difficult to find a single scale of

smoothing which is optimal for all the edges in an
image. One smoothing scale may keep good localiza-
tion while giving detections sensitive to noise. Thus,
multiscale edge detection is introduced as an alterna-
tive. In this approach, edge detectors with different fil-
ter sizes are applied to the image to extract edge maps
at different smoothing scales. This information is then
combined to result in a more complete final edge
image.
Bergholm [18] introduced the coarse-to-fine tracking

as an approach to multiscale edge detection. The initial
steps of this method are based on Canny’s approach.
This algorithm relies on the fact that edge detection at a
coarse resolution yields significant edges, while their
accurate location is detected at a finer resolution. There-
fore, the main idea is to initially detect the edges apply-
ing a strong Gaussian smoothing and then focus on
these edges by tracking them over decreasing smoothing
scale.

Giannarou and Stathaki EURASIP Journal on Advances in Signal Processing 2011, 2011:28
http://asp.eurasipjournals.com/content/2011/1/28

Page 3 of 19



In Lacroix [19] introduces another algorithm for
multiscale detection based on Canny’s method. Con-
trary to Bergholm [18] who proposed the tracking of
edges from coarse-to-fine resolution, in Lacroix ’s
method the edge information is combined moving
from fine-to-coarse resolution aiming at avoiding the
problem of splitting edges. Schunck ’s work [20] is
another study that advocates the use of derivatives of
Gaussian filters with different variances to detect
intensity changes at different resolution scales. The
gradient magnitudes over the selected range of scales
are multiplied to amplify significant edges, while sup-
pressing the weak ones. Hence, a composite edge
image is formed.
In this work, we use the six edge detectors mentioned

in this section. The use of convolution-based methods is
justified by the fact that they are simple to implement,
while producing accurate detection results.

3 Automatic edge detection
In this paper, we intend to throw light on the uncer-
tainty associated with the parametric edge detection per-
formance. The statistical approaches described here
attempt to automatically form an optimum edge map,
by combining edge images emerged from different
detectors.
We begin with the assumption that N different edge

detectors will be combined. The first step of the algo-
rithm comprises the correspondence test of the edge
images, Ei for i = 1, ..., N. A correspondence value is
assigned to each pixel and is then stored in a separate
array, V, of the same size as the initial image. The corre-
spondence value is the frequency of identifying a pixel
as an edge by the set of detectors. Intuitively, the higher
the correspondence associated with a pixel, the greater
the possibility for that pixel to be a true edge. Hence,
the above correspondence value can be used as a reli-
able measure to distinguish between true and false
edges [26].
However, these data require specific statistical meth-

ods to assess the accuracy of the resulted edge images-
accuracy here being the extent to which detected edges
agree with true edges. Correspondence values ranging
from 0 to N produce N + 1 thresholds which corre-
spond to edge detections with different combinations
of true-positive and false-positive rates. The threshold
that corresponds to correspondence value 0 is ignored.
Hence, the main goal of the method is to estimate the
correspondence threshold CT (from the set CTi where
i = 1, ..., N) which results in an accurate edge map
that gives the finest fit to all edge images Ei. In this
section, we describe two different approaches for this
purpose.

3.1 ROC analysis
In our case, the classification task is a binary one includ-
ing the actual classes {e, ne}, which stand for the edge
and non-edge event, respectively and the predictive
classes, predicted edge and predicted non-edge, denoted
by {E, NE}. Traditionally, the possible outcomes
obtained by an edge detector are displayed graphically
in a 2 × 2 matrix, the confusion matrix.
To mathematically define the conditional probabilities

in the confusion matrix, we begin by considering an
image of size K × L. The probability of a pixel to be a
true edge will be denoted as pk,l, where k = 1, ..., K and
l = 1, ..., L. In a similar way, qk,l will represent the prob-
ability of a pixel to be detected as edge. The probability
of a true-positive outcome over all the pixels (k, l) of an
image is defined as:

TP = Mean(pk,l · qk,l)
This leads to the following equation:

TP = P · Q + ρ · σp · σq (1)

where sp and sq stand for the standard deviation of
the distribution of pk,l and qk,l, respectively. The para-
meter P represents the prevalence which refers to the
occurrence of true edge pixels in the image whereas, the
level Q of the detection corresponds to the occurrence
of pixels detected as edges [30]. The parameter r
denotes the correlation coefficient between pk,l and qk,l
and its role is explained in detail in the Appendix. In
this work, we assume that for a legitimate edge detec-
tion the correlation coefficient between true and
detected edges is positive. This is a realistic assumption
since edge detection relies on mathematical methods
that exploit the local edge intensity information. In the
case of random edge detection, where the edges are
identified purely by chance, the correlation coefficient is
equal to r = 0. All the probabilities computed for legiti-
mate and random edge detection are presented in the
Appendix. Clearly, the optimum edge detector is the
one that identifies as edges all the true edge pixels and
therefore satisfies the equality:

P = Q (2)

In this work, the concept of accuracy refers to the
quality of information provided by an edge map. Thus,
the assessment of the edge map accuracy is necessary
for the estimation of the optimum correspondence
threshold. The accuracy is characterized using the
metrics of sensitivity (SE) and specificity (SP) [31]. Both
these measures describe the edge detector’s ability to
correctly identify true edges, while it negates the false
alarms. Sensitivity (SE) corresponds to the probability of
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identifying a true edge as edge pixel. It is also referred
to as true-positive rate and is defined as follows:

SE = TPrate = TP
/
(TP + FN) (3)

The term specificity (SP) expresses the probability of
identifying an actual non-edge as non-edge pixel. The
measure 1 - SP is known as false-positive rate. These
measures are given by the equations:

SP = TN
/
(TN + FP)

or

FPrate = 1 − TN
/
(TN + FP) (4)

Relying on the value of only one of the above metrics
for edge detection accuracy estimation would be an
oversimplification and will possibly lead to misleading
inferences. Based on this idea, the ROC analysis [32,33]
can be introduced to quantify detection accuracy. In
fact, a ROC curve provides a view of all the true-posi-
tive/false-positive rate pairs emerged from varying the
correspondence over the range of the observed data. In
this work, the ROC curve is used to select the corre-
spondence threshold CT that would provide an opti-
mum trade-off between the TPrate and the FPrate rate of
edge detectors.
To calculate the points on the ROC curve, we apply

each correspondence threshold CTi on the correspon-
dence test outcome, i.e, the matrix V mentioned above.
This means the pixels are classified as edges and non-
edges according to whether their correspondence value
exceeds a CTi or not. Thus, we end up with a set of
possible best edge maps Mj, for j = 1, ..., N, correspond-
ing to each CTi. Each point on the ROC curve corre-
sponds to the average match between all the initial edge
maps and a possible best edge map. For that purpose,
every Mj is compared to the set of the initial edge
images, Ei, to calculate the true-positive, TPratej, and the
false-positive, FPratej, rates associated with each of them.
Hence, according to Equations 3 and 4, for the Mj map
these rates are defined as:

TPratej =
TPj

TPj + FNj
(5)

FPratej = 1 − TNj

FPj + TNj
(6)

where TPj + FNj represents the average number of true
edges in Mj.
Averaging in Equations 5 and 6 refers to the joint use

of multiple edge detectors as shown in the following
equations.

TPj =
1
N

N∑
i=1

(
1

K · L
K∑
k=1

L∑
l=1

MjE ∩ EiE

)
(7)

FNj =
1
N

N∑
i=1

(
1

K · L
K∑
k=1

L∑
l=1

MjNE ∩ EiE

)
(8)

where MjE and MjNE represent the pixels detected as
edges and non-edges in the edge map Mj, respectively.
The same notation is used in the case of the edge maps
Ei. The probabilities FPj and TNj are defined in a similar
way. For instance, the probability measurement in Equa-
tion 7 indicates the average number of pixels detected
as edges in Mj and match with edge pixels in all detec-
tions Ei. Each edge map Mj generates a point (FPratej,
TPratej) in the ROC plane, forming the ROC curve. The
position of these points provides qualitative information
about the detection accuracy of each edge map. As we
mentioned in Equation 2, the optimum CT should cor-
respond to a detection that gives prevalence value P
equal to its level Q. By definition of true-positive and
false-positive rate, P’ · FPrate + P · TPrate = Q. This defi-
nition in conjunction with Equation 2 leads to the fol-
lowing mathematical expression that the optimum ed ge
detection should satisfy:

P′ · FPrate + P · TPrate = P (9)

Equation 9 defines a line that connects the points (0,
1) and (P, P) in the ROC plane, known as diagnosis line.
Therefore, the optimum CT occurs at the intersection
(or close to that) of the ROC curve and the diagnosis
line. The value of the selected CT determines how
detailed the final edge image, EGT, will be. In the case
of a noisy environment, the selection of CT should give
a trade-off between the increase in information provided
by the final edge image and the decrease in noise.

3.2 Weighted kappa coefficient
In edge detection, it is prudent to consider the relative
seriousness of each possible disagreement between true
and detected edges when performing accuracy evalua-
tion. This section is confined to the examination of an
accuracy measure which is based on the acknowledge-
ment that in detecting edges, depending on the specific
application, the consequences of a false positive may be
quite different from the consequences of a false nega-
tive. For this purpose, the weighted kappa coefficient
[34,35] is introduced for the estimation of the corre-
spondence threshold that results in an optimum final
edge map.
Consider a mathematical measure A0 of agreement

between the outcomes of two algorithms that both
attempt to solve the problem of detection of the
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presence or absence of a condition. Let Ac be the value
expected on the basis of agreement by chance alone and
Aa the value expected on the basis of complete agree-
ment, i.e., Aa = max{A0}. Based on the above definitions,
the kappa coefficient defined below is introduced as a
corrected and normalized measure of agreement [35]:

k =
A0 − Ac

Aa − Ac
(10)

In edge detection, A0 may be defined as a measure of
agreement between true and detected edges. The defini-
tion of Ac and Aa is obvious.
A generalization of the above coefficient can be made

to incorporate the relative cost of false positives and
false negatives into the accuracy measure. We assume
that weights wu,v, for u = 1, 2 and v = 1, 2, are assigned
to the four possible outcomes of the edge detection pro-
cess displayed in the confusion matrix. The weights
indicate gain or cost and they lie in the interval 0 ≤ |wu,

v| ≤ 1. The observed weighted proportion of agreement
is given as

D0w =
2∑

u=1

2∑
v=1

wu,vdu,v (11)

where du,v indicates the probabilities in the confusion
matrix, calculated as shown in Table 1. Similarly, the
chance-expected weighted proportion of agreement has
the form

Dcw =
2∑

u=1

2∑
v=1

wu,vcu,v (12)

where cu,v refers to the above four probabilities, but in
the case of random edge detection, i.e. the edges are
identified purely by chance. Their analytic expression is
given in Table 1. Based on the definition of kappa coef-
ficient described previously, the weighted kappa coeffi-
cient is then given by

kw =
D0w − Dcw

max(D0w − Dcw)
(13)

Substituting Equations 11 and 12 in Equations 13
gives

kw =
w1,1 · P · (SE − Q) + w1,2 · P′ · (SP′ − Q)

max(D0w − Dcw)
+

w2,1 · P · (SE′ − Q′) + w2,2 · P′ · (SP − Q′)
max(D0w − Dcw)

so

kw =
w1,1 · P · Q′ · k(1, 0) + w1,2 · P′ · (SP′ − Q)

max(D0w − Dcw)
+

w2,1 · P · (SE′ − Q′) + w2,2 · P′ · Q · k(0, 0)
max(D0w − Dcw)

(14)

where P’, Q’ are the complements of P and Q, respec-
tively. k(1, 0) and k(0, 0) are the quality indices of sensi-
tivity and specificity, respectively, defined as

k(1, 0) =
SE − Q

Q′ and k(0, 0) =
SP − Q′

Q

The major source of confusion in statistical methods
related to the weighted kappa coefficient is the assign-
ment of weights. From Equation 14 it can be deduced
that the total cost W1 for true edges being properly
identified as edges or not, is equal to W1 = |w1,1| + |
w2,1|. Similarly, the total cost W2 for the non-edge pixels
is defined as W2 = |w1,2| + |w2,2|. We propose that true
detections should be assigned positive weights repre-
senting gain whereas, the weights for false detections
should be negative, representing loss. It can be proven
that no matter how the split of these total costs is made
between true and false outcomes, the result of the
method is not affected [30]. Hence, for the sake of con-
venience, the total costs are split evenly. As a result, we
end up with two different weights instead of four:

kw =
W1
2 · P · Q′ · k(1, 0) + (−W2

2 ) · P′ · (SP′ − Q)

max(D0w − Dcw)
+

(−W1
2 ) · P · (SE′ − Q′) + W2

2 · P′ · Q · k(0, 0)
max(D0w − Dcw)

A further simplification leads to

kw =
W1 · P · Q′ · k(1, 0) +W2 · P′ · Q · k(0, 0)

max(D0w − Dcw)
(15)

Considering the fact that the maximum value of the
quality indices k(1, 0) and k(0, 0) is equal to 1, the
denominator in Equation 15 takes the form: W1 · P · Q’
+ W2 · P’ · Q. Dividing both numerator and denomina-
tor by W1 + W2, the final expression of the weighted
kappa coefficient, in accordance with the quality indices
of sensitivity and specificity, becomes

r · P · Q′ · k(1, 0) + r′ · P′ · Q · k(0, 0)
r · P · Q′ + r′ · P′ · Q = k(r, 0) (16)

Table 1 Probabilities for legitimate and random edge
detection

Legitimate edge detection random edge detection

TP d1,1 = P · SE c1,1 = P · Q

FP d1,2 = P’ · SP’ c1,2 = P’ · Q

FN d2,1 = P · SE’ c2,1 = P · Q’

TN d2,2 = P’ · SP c2,2 = P’ · Q’
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where

r =
W1

W1 +W2
(17)

and r’ is the complement of r. The weighted kappa
coefficient k(r, 0) indicates the quality of the detection
as a function of r. It is unique in the sense that the bal-
ance between the false detections is determined in
advance and then is incorporated in the measure.
From Equation 17 it is deduced that the index r is

indicative of the relative importance between false
negatives and false positives. Its value is dictated by
which type of error carries the greatest importance for
a particular application and ranges from 0 to 1. If we
focus on the elimination of false positives in edge
detection, W2 will predominate in Equation 15 and
consequently r will be close to 0 as it can be seen
from Equation 17. On the other hand, a choice of r
close to 1 signifies our interest in avoiding false nega-
tives since W1 will predominate in Equation 15. A
value of r = 1/2 reflects the idea that both false posi-
tives and false negatives are equally unwanted. No
standard choice of r can be regarded as optimum
because the balance between the two errors shifts
according to the application.
Thus, for a selected value of r, the weighted kappa

coefficient kj(r, 0) is calculated for each edge map as in
Equation 16. The optimum CT is the one that maxi-
mizes the weighted kappa coefficient.

3.3 Geometric approach for the weighted kappa
coefficient
The estimation of the weighted kappa coefficient kj(r, 0)
can also be done geometrically. Every edge map Mj, for
j = 1 ... N, can be represented as a point (kj(0, 0), kj(1,
0)) on a two-dimensional graph with coordinates (k(0,
0), k(1, 0)). The set of points (kj(0, 0), kj(1, 0)), j = 1, ...,
N, consist the so-called quality ROC (QROC) curve. A
great deal of information is available from visual exami-
nation of such a geometric representation. Equation 16
for the jth edge map can be rewritten in the form:

kj(r, 0) − kj(1, 0)

kj(r, 0) − kj(0, 0)
= −P′ · Q · r′

P · Q′ · r (18)

Therefore, if we consider the straight line on the
QROC-plane described by the equation:

kj(r, 0) − k(1, 0) = −P′ · Q · r′
P · Q′ · r (kj(r, 0) − k(0, 0)) (19)

it is obvious from Equation 18 and 19 that the point
(kj(0, 0),kj(1, 0)) lies on this line. This is called the r-pro-
jection line and its slope is

s = −P′ · Q · r′
P · Q′ · r (20)

It is obvious that the point (kj(r, 0),kj(r, 0)) lies also on
the r-projection line and also on the main diagonal
described by equation k(0, 0) = k(1, 0).
This means that the weighted kappa coefficient kj(r, 0)

can be calculated graphically by drawing a line, for any
value r of interest, through the point (kj(0, 0), kj(1, 0))
with slope given by Equation 20. The intersection point,
(kj(r, 0), kj(r, 0)), of this line with the major diagonal in
the QROC plane is clearly indicative of the kj(r, 0) value.
Figure 1 presents an example for the calculation of the
weighted kappa coefficient for a test point for r = 0.5.
The procedure is repeated for every CTi to generate N
different intersection points. The closer the intersection
point to the upper right corner (ideal point), the higher
the value of the weighted kappa coefficient. Hence, the
optimum correspondence threshold is the one that pro-
duces an intersection point closer to the point (1, 1) in
the QROC plane.

3.4 An alternative to the selection of the r parameter
value
In the previous section, parameter r is evaluated accord-
ing to Equation 17. By assigning more weight to the
false detection, we want to eliminate the ratio in Equa-
tion 17 yields the appropriate value of r. However, a
more efficient analysis is necessary. An alternative analy-
sis that justifies the previously described selection of r is
presented in this section.
Our main concern is to examine the behavior of the

quality measure k(r, 0) as a function of the level, Q, and
the parameter r. Substituting in Equation 16 the prob-
abilities given in the Appendix, the weighted kappa coef-
ficient can be expressed as

k(r, 0) =
r · P · Q′ · k(1, 0) + r′ · P′ · Q · k(0, 0)

r · P · Q′ + r′ · P′ · Q
=
r · P · (SE − Q) + r′ · P′ · (SP − Q′)

r · P · Q′ + r′ · P′ · Q

=
r · P · (ρσpσq

/
P) + r′ · P′ · (ρσpσq

/
P′)

r · P · Q′ + r′ · P′ · Q
Thus, the quality measure, k(r, 0), takes the form

k(r, 0) =
ρ · σp · σq

r · P · Q′ + r′ · P′ · Q
The derivative of the weighted kappa coefficient with

respect to r is given by

d
dr

k(r, 0) = ρσpσq · Q − P

(r · P · Q′ + r′ · P′ · Q)2
(21)
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The measures sp, sq are positive as they express stan-
dard deviations. The correlation coefficient, r, is posi-
tive, as well. Thus, it becomes obvious that the sign of
the the derivative, d

dr k(r, 0), is determined by the value
of Q relative to P.
A level, Q, greater than the prevalence, P corresponds

to an edge detection that eliminates the misdetections
by favoring the false positives. In this case, according to
Equation 21, the derivative of the Weighted Kappa
Coefficient is positive for any value of r and the quality
measure k(r, 0) is an increasing function of r. This
means in applications where we are more interested in
the elimination of false negatives, a higher value of r in
the interval [0, 1] will result in the selection of a more
accurate edge map.
Equivalent conclusions are derived for the elimina-

tion of false positives, i.e. detections where the level is
smaller than the prevalence. According to Equation 21
the derivative, d

dr k(r, 0), will be negative and the
weighted kappa coefficient will be a decreasing func-
tion of r. Therefore, small values of r in the interval [0,
1] will yield CTs that correspond to more accurate
edge maps.

The above conclusions are also verified experimen-
tally. Figure 2 illustrates the values of the weighted
kappa coefficient as a function of r for four edge maps
at different CTs. These plots are yielded from applying
the weighted kappa coefficient method on the “School”
image (from the RADIUS/DARPA-IU Fort Hood aerial
image database [36]) to combine six edge detectors. Fig-
ure 2a,b corresponds to CTs equal to 1 and 2, respec-
tively, where the level values are greater than the
prevalence. Observing these curves, it is clear that the
weighted kappa coefficient is an increasing function of r
and high quality is achieved for values of r close to 1. In
contrast, as shown in Figure 2c,d, the quality measure is
a decreasing function of r for CT = 3 and CT = 4,
where the level is smaller than the prevalence. In this
case, values of r close to 0 give edge maps with better
quality.

4 Experimental results and discussion
Using the above framework, six edge detectors, pro-
posed by Canny [15], Deriche [16], Bergholm [18],
Lacroix [19], Schunck [20] and Rothwell [17] were
combined to produce optimum edge maps. The
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  k(0.5,0)

k(0,0)

k(
1,

0)
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Major Diagonal

Figure 1 Calculation of k(0.5, 0) using a graphical approach on the QROC plane.
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selection of the above edge detectors relies on the fact
that they basically follow the same mathematical
approach.
The performance evaluation study of the proposed

approach is carried out on a set of 10 images, selected
from the RADIUS/DARPA-IU Fort Hood aerial image
set [36]. Some of the images contain mainly vertical
views and others contain more oblique views as well. All
the images are 8-bit/pixel and their size ranges from 476
× 477 to 645 × 667 pixels. The ground truth for the aer-
ial images is provided in the data set [36], in the form of
specified image points that should be identified as edges
and specified image regions where no edges should be
detected.

The performance of the edge detectors is evaluated
with respect to two different measures; namely, the
detection error and the similarity between the ground
truth and the extracted edge maps. The detection error
is defined as the distance of the (FPrate, TPrate) point of
the detector in the ROC plane from the ideal point (0,
1) and is mathematically expressed as:

Detection error =
√
(1 − TPrate)

2 + (FPrate)
2 (22)

where the probabilities for the estimation of the true
positive rate and false positive rate of an edge map are
defined based on the ground truth edge map that corre-
sponds to the original image, in a similar way as in

Figure 2 Weighted kappa coefficient plots for edge maps that correspond to (a) CT = 1 (b) CT = 2 (c) CT = 3 (d) CT = 4.
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Equation 7 and 8. The similarity between the ground
truth edge map and the result of an edge detector is
estimated as:

Similarity =
1

NGT

NGT∑
i=1

1

1 + d2i
(23)

where NGT is the number of edge points on the
ground truth and di is the minimum distance between
the ith edge point on the ground truth and the esti-
mated edge map. Intuitively, the lower the detection
error and the higher the similarity to the ground truth,
the better is the performance of the operator.
Specifying the value of the edge detection operators’

input parameters was a crucial step. In fact, the para-
meter selection depends on the implementation and
intends to maximize the quality of the detection. In our
work, we were consistent with the parameters proposed
by the authors of the selected detectors. The Bergholm
algorithm was slightly modified by adding hysteresis
thresholding to allow a more detailed result. In Lacroix
technique, we applied non-maximal suppression by
keeping the size k × 1 of the relative window fixed at 3
×1 [19]. For simplicity, in the case of Schunck edge
detection, the non-maximal suppression method we
used is the one proposed by Canny [15] and hysteresis
thresholding was applied for a more efficient
thresholding.
For all the images on the data set, the standard devia-

tion (sigma) of the Gaussian filter in Canny’s algorithm
[15] was set to sigma = 1, whereas, the low and high
thresholds were automatically calculated by the image
histogram. In Deriche’s technique [16], the parameters’
values were set to a = 2 and w = 1.5. The Bergholm
[18] parameter set was a combination of starting sigma,
ending sigma and low and high threshold and these
where starting sigma = 3.5, ending sigma = 0.7 and the
thresholds were automatically determined as previously.
For the Primary Rater in Lacroix’s method [19], the
coarsest resolution was set to s2 = 2 and the finest one
to s0 = 0.7. The intermediate scale s1 was computed
according to the expression proposed in [19]. The gradi-
ent and homogeneity thresholds were estimated by the
histogram of the gradient and homogeneity images,
respectively. For the Schunck edge detector [20], the
number of resolution scales was arbitrarily set to three
as: s1 = 0.7, s2 = 1.2, s3 = 1.7. The difference between
two consecutive scales was selected not to be greater
than 0.5 to avoid edge pixel displacement in the resulted
edge maps. The values for the low and high thresholds
were calculated by the histogram of the gradient magni-
tude image. In the case of Rothwell method [17], the
alpha parameter was set to 0.9, the low threshold was
estimated by the image histogram again and the value of

the smoothing parameter, sigma, was equal to 1. It is
important to stress out that the selected values for all of
the above parameters fall within the ranges proposed in
the literature by the authors of the individual detectors.
When the optimum correspondence threshold is esti-

mated using the maximization of the ‘Weighted Kappa
Coefficient’ approach, the value of the r parameter needs
to be set. The cost, r, is initially determined according
to the particular quality of the detection (FP or FN) that
is chosen to be optimized. For example, as far as target
object detection in military applications is concerned,
missing existing targets in the image (misdetections) is
less desirable than falsely detecting non-existing ones
(false alarms). This is as well the scenario we assume in
this piece of work; namely, we are primarily concerned
with the elimination of FN at the expense of increasing
the number of FP. Therefore, according to the analysis
in the previous section, the cost value r should range
from 0.5 to 1.
The graphs in Figure 3 show the detection error and

the percentage of false positives for values of r greater
than 0.5, for the “Buildings” and the “Baseball” aerial
images. As it is expected, as the parameter r increases,
the detection error decreases, while the number of
points falsely detected as edges increases. From the
above graphs, it can be observed that a value of r
between 0.6 and 0.8 gives a good trade-off between the
increase in edge information and the decrease in noise
in the final edge image. In our experimental work, the
parameter r has been set equal to 0.7.
The results of applying the ‘ROC analysis’ and the

‘weighted kappa coefficient’ approach on the “Large
Building” aerial image shown in Figure 4a are presented
in Figures 4, 5, and 6. The sample space, Ei (i = 1, ..., 6),
consisted of the edge detection out-comes produced by
the six selected operators is depicted in Figure 5. The
probabilities given by Equation 5 and 6 were calculated
for the statistical correspondence test of the edge detec-
tions Ei. The ROC curve implementation is illustrated in
Figure 6a where it can be observed that the intersection
of the diagnosis line with the ROC curve occurs at a
correspondence level close to 3. Thus, the optimum
threshold for this approach is CT = 3. The graphical
estimation of the weighted kappa coefficient, kj(r, 0), for
each CT is illustrated in Figure 6b. On the graph, it is
observed that the weighted kappa coefficient takes its
maximum value at k2(r, 0) and therefore the optimum
CT is equal to 2. The final edge maps, EGT, for both
approaches are presented in Figure 4c,d.
Another set of experimental results using the “Woods”

aerial image is presented in Figure 7, 8 and 9. The origi-
nal “Woods” image is shown in Figure 7a and the six
edge maps extracted from the selected detectors are
demonstrated in Figure 8. The ROC curve
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implementation and the graphical estimation of the
weighted kappa coefficient are presented in Figure 9 giv-
ing an estimation for the optimum CT for each
approach equal to 3 and 2, respectively. The final edge
maps for the ’ROC analysis’ and the ‘weighted kappa
coefficient’ approach are presented in Figure 7c,d. The
results of applying the proposed approaches to optimal
edge detection on the “Main Building” and the “School”
images are presented in Figure 10.
The above examples emphasize the ability of the

approaches to combine high accuracy with good noise
reduction in the final edge detection result. Insignificant
information is cleared, while the one preserved allows
for easy, fast and accurate object recognition. Further-
more, it is interesting to note that objects missed by one
of the selected edge detectors are included in the final
edge image. This is particularly obvious in the “Large
Building” image set when comparing the final edge
maps in Figure 4c,d with the Bergholm detection in Fig-
ure 5c. Finally, edges due to texture are suppressed in
the final edge maps.
Comparing the edge maps produced by applying the

above two approaches it is observed that the edge maps
for the “weighted kappa coefficient” approach have bet-
ter quality than those for the “ROC analysis”. The
objects detected by the “weighted kappa coefficient”
approach are better defined regarding their shape and
contour and the number of detected edges is greater.
This is expected since the selected value of r is 0.7. The

performance of the “weighted kappa coefficient”
approach for the particular choice of r, seems to be
superior to “ROC analysis” since it is more sensitive to
minor details.
To investigate the effect of the cost r on the detection

error, the latter measurement was evaluated for both of
the above aerial images, for different values of r, greater
than 0.4. The results for the “Large Building” and the
“Woods” images are graphically presented in Figure 11.
The curves that correspond to the six edge detectors are
straight lines parallel to the horizontal axes as the detec-
tion result for these operators is not affected by the
parameter r. From the graphs, it is clear that the detec-
tion error for the ‘weighted kappa coefficient’ approach
is lower than that of the six selected detectors for any
value of r in the examined range. This observation
shows that our experimental results are not biased by
the selection of the parameter r since the ‘weighted
kappa coefficient’ approach is superior to the selected
detectors for any value of r that eliminates the FN (r
>0.5).
For a more thorough performance evaluation and

comparison of the initial set of edge operators with the
proposed approaches, the detection error and the simi-
larity to the ground truth of each approach for all the
aerial images on the database has been computed and is
presented in Tables 2 and 3, respectively. The above
results show that the performance of the ‘weighted
kappa coefficient’ approach for a value of the cost r

Figure 3 Evaluation of the r parameter (a) Detection error and (b) False Positives as a function of r for the “Buildings” and “Baseball”
aerial images.
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equal to 0.7, is always better than all the other
approaches. The performance of the ‘ROC analysis’ is
lower than that of the ‘weighted kappa coefficient’
approach but better than that of the six selected opera-
tors for the majority of the examined aerial images. The
above results verify the superiority of the proposed
approaches against the initial set of edge detectors.
Without code optimization, the MATLAB implemen-

tation of each of the proposed approaches ("ROC analy-
sis” and the “weighted kappa coefficient”) comfortably
runs at around 2.8 s on a Pentium 2.8 GHz desktop for
a 476 × 477 size image.

5 Conclusion
The selection of an edge detector operator is not a tri-
vial problem, since different edge detectors often pro-
duce essentially varying edge maps, even if they follow
similar mathematical approaches. In this paper, we pro-
pose two techniques for the automatic statistical analysis
of the correspondence of edge images that have
emerged from different operators; the ROC analysis and
the weighted kappa coefficient method. Both techniques
integrate efficiently the pre-selected set of edge detectors
in terms of both the quality of the highlighted features
and the elimination of noise and texture. However, the

Figure 4 Optimal edge detection on the “Large Building” image (a) Original aerial image (b) Ground truth image. Final edge map when
applying (c) the “ROC analysis” (d) the “Weighted Kappa Coefficient” approach (r = 0.70).
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Figure 5 Sample set of edge maps for the “Large Building” aerial image (a) Canny detection (b) Deriche detection (c) Bergholm
detection (d) Lacroix detection (e) Schunck detection (f) Rothwell detection.
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Figure 6 Graphical estimation of the optimum CT for the “Large Building” aerial image when applying (a) the “ROC analysis” (b)
“Weighted Kappa Coefficient” approach with r = 0.70.

Figure 7 Optimal edge detection on the “Woods” image (a) Original aerial image, (b) ground truth image. Final edge map when
applying (c) the “ROC analysis” (d) the “Weighted Kappa coefficient” approach (r = 0.70).
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Figure 8 Sample set of edge maps for the “Woods” aerial image (a) Canny detection, (b) Deriche detection, (c) Bergholm detection,
(d) Lacroix detection, (e) Schunck detection, (f) Rothwell detection.
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weighted kappa coefficient approach can be considered
superior in the sense that the trade off between detec-
tion of minor edges and noise reduction can be quanti-
fied in advance as part of the problem specifications.

In future work, we intent to incorporate in the identi-
fication of edges information from their surrounding
pixels. That means, the probability of a pixel being an
edge will be affected by the state (edge/non-edge) of its
neighbors. Furthermore, the possibility of using soft

Figure 9 Graphical estimation of the optimum CT for the “Woods” aerial image when applying (a) the “ROC analysis” (b) “Weighted
Kappa coefficient” approach with r = 0.70.

Figure 10 Optimal edge detection on the “Main Building” and “School” images (a) Original “Main Building” aerial image (b) Ground
truth image. Final edge map when applying (c) the “ROC Analysis” (d) the “Weighted Kappa Coefficient” approach (r = 0.70) (e) Original
“School” aerial image (f) Ground truth image. Final edge map when applying (g) the “ROC Analysis” (h) the “Weighted Kappa Coefficient”
approach (r = 0.70).
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Figure 11 Detection error with respect to the value of the r parameter for (a) the “Large Building” image (b) the “Woods” image.

Table 2 Detection error

Rothwell Bergholm Canny Schunck Lacroix Deriche ROC Weighted kappa coeff. (r = 0.7)

Buildings 0.5506 0.6047 0.5593 0.5640 0.5736 0.5500 0.5425 0.4885

Baseball 0.5710 0.5968 0.5668 0.5689 0.5865 0.5726 0.5505 0.5183

Airfield 0.4707 0.4643 0.5057 0.5147 0.5340 0.5276 0.4634 0.4126

Homes 0.5991 0.5703 0.5712 0.5743 0.4851 0.6302 0.5177 0.4402

Large building 0.5292 0.5970 0.5328 0.5459 0.5180 0.5194 0.5084 0.4440

Main building 0.5608 0.5651 0.6180 0.6130 0.5193 0.6677 0.5439 0.4561

Pool tennis 0.5273 0.5639 0.5086 0.5367 0.5396 0.4852 0.5029 0.4343

School 0.5638 0.5844 0.5571 0.5647 0.5701 0.5928 0.5444 0.5001

Series 0.4321 0.5297 0.4143 0.4276 0.4522 0.5303 0.4139 0.3619

Woods 0.5634 0.5846 0.5526 0.5695 0.5274 0.6856 0.5241 0.4602

Table 3 Edge map similarity

Rothwell Bergholm Canny Schunck Lacroix Deriche ROC Weighted kappa coeff. (r = 0.7)

Buildings 0.6886 0.5895 0.6892 0.6804 0.6570 0.6871 0.6946 0.7355

Baseball 0.6815 0.6359 0.6961 0.6848 0.6579 0.6934 0.6995 0.7249

Airfield 0.7692 0.7651 0.7593 0.7382 0.7162 0.7516 0.7760 0.8492

Homes 0.6332 0.5978 0.6851 0.6762 0.7143 0.6169 0.7064 0.7599

Large building 0.6844 0.5401 0.6976 0.6730 0.6823 0.7082 0.7014 0.7506

Main building 0.6967 0.6191 0.6612 0.6499 0.6988 0.6088 0.6998 0.8357

Pool tennis 0.6722 0.5923 0.7208 0.6596 0.6527 0.7100 0.7046 0.7639

School 0.6495 0.5846 0.6743 0.6474 0.6419 0.6458 0.6669 0.7835

Series 0.7577 0.6084 0.7682 0.7656 0.7259 0.6810 0.7767 0.8090

Woods 0.6581 0.5912 0.6849 0.6748 0.6760 0.5667 0.6922 0.7448
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values for the final edge maps instead of hard edge
extractors will be explored.

Appendix
Correlation coefficient between the probability of a pixel
being a true edge and being detected as edge
The parameter r in Equation 1 denotes the correlation
coefficient between the probability of a pixel being a
true edge and being detected as edge. A positive correla-
tion coefficient between two random variables indicates
that these variables follow the same trend. In our case,
the random variables of interest are the true edge image
and the detected edge image. Therefore, a positive cor-
relation coefficient indicates that if the probability of a
pixel f(x1, y1) being a true edge is higher as compared to
the same probability for the pixel f(x2, y2), then the
probability of the pixel f(x1, y1) detected as edge pixel is
also higher compared with the same probability for the
pixel f(x2, y2).
All the probabilities, computed for legitimate and ran-

dom edge detection, according to Equation 1 are pre-
sented in Table 4 where the ‘ symbol denotes the
complement operator.
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