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Abstract

Purpose Bronchoscopy is a standard technique for airway examination, providing a mini-
mally invasive approach for both diagnosis and treatment of pulmonary diseases. To target
lesions identified pre-operatively, it is necessary to register the location of the bronchoscope
to the CT bronchial model during the examination. Existing vision-based techniques rely
on the registration between virtually rendered endobronchial images and videos based on
image intensity or surface geometry. However, intensity-based approaches are sensitive to
illumination artefacts while gradient-based approaches are vulnerable to surface texture.

Methods In this paper, depth information is employed in a novel way to achieve continu-
ous and robust camera localisation. Surface shading has been used to recover depth from
endobronchial images. The pose of the bronchoscopic camera is estimated by maximising
the similarity between the depth recovered from a video image and that captured from a
virtual camera projection of the CT model. The normalised cross-correlation and mutual
information have both been used and compared for the similarity measure.

Results The proposed depth-based tracking approach has been validated on both phantom
and in vivo data. It outperforms the existing vision-based registration methods resulting in
smaller pose estimation error of the bronchoscopic camera. It is shown that the proposed
approach is more robust to illumination artefacts and surface texture and less sensitive to
camera pose initialisation.
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Conclusions A reliable camera localisation technique has been proposed based on depth
information for bronchoscopic navigation. Qualitative and quantitative performance evalua-
tions show the clinical value of the proposed framework.

Keywords Bronchoscopic navigation · 2D/3D registration · Shape from shading · Depth
recovery

1 Introduction

With increasing maturity of bronchoscopy, it has become a standard care of pulmonary
diseases for both diagnosis and treatment. For instance, transbronchial biopsy with image
guidance is increasingly used for lung cancer staging and endobronchial valves are placed
directly through a bronchoscope to treat emphysema. Emphysema is characterised by the
damages to the alveoli, causing hyperinflation of the lung and resulting in less efficient
gas exchange and interference with breathing mechanisms. Lung volume reduction surgery
(LVRS) has been used to treat emphysema, but the high operative risks and post-operative
complications associated with LVRS, as well as the high hospital costs, have motivated the
development of bronchoscopic techniques for lung volume reduction [22]. However, video
images acquired through a bronchoscope are of degraded resolution, distortion and small
field-of-view, making the perception and 3D navigation of the operating site more difficult
for the surgeons. Recent development of computer vision techniques gives rise to solutions
to enhance the image quality and provide effective visualisation with augmented reality.

Thus far, approaches to bronchoscopic navigation aim at the localisation of the camera
in the CT model coordinate system by applying EM tracking, image registration or a com-
bination of both. Miniature EM sensors can be mounted to the tip of the bronchoscope or
inserted into the bronchoscopic channel to provide in real-time the orientation and location
of the tip. EM sensor calibration can be achieved either by using extrinsic skin fiducial mark-
ers placed near the bony structures such as clavicles and sternum [23] or intrinsic anatomical
landmarks of the airways such as the carina and the origin of the left and right upper lobe
bronchi [1,23]. Since the EM field can be distorted by the presence of ferromagnetic mate-
rials around the EM systems, an optical tracker was incorporated in [16] to compensate for
failure of the EM tracking system. However, precise EM sensor calibration is still required
before each bronchoscopic session, and the accuracy of the EM guidance system is highly
sensitive to respiratory motion and the patient’s motion during the examination.

Vision-based tracking techniques, on the other hand, only depend on matching bron-
choscopic video images to rendered views of the segmented CT bronchial model [23]. The
similarity between virtual endobronchial images and bronchoscopic video images has been
measured using either intensity-based or geometry-based approaches.

Intensity-based methods match bronchoscopic images to rendered virtual camera pro-
jections by comparing image intensities. In the multilevel registration method proposed by
Bricault et al. [3], virtual bronchial views have been rendered using ray tracing techniques.
Photo-realistic rendering has also been proposed by Chung et al. [4] for bronchoscopy vi-
sualisation. The accuracy of intensity-based methods is sensitive to small local intensity
variations and illumination artefacts. In addition, intensity-based methods often require con-
tinuous manual lighting adjustment of the virtual camera to achieve satisfactory registration
results. To optimise registration, a selective similarity measure has been proposed in [15,
5] to register real and virtual endoscopic images based on subregions with bifurcations or
characteristic cartilage rings of bronchi.
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Geometry-based methods extract anatomical structures from video images to be matched
with 3D structures in the CT airway model. These registration approaches are less sensitive
to illumination artefacts because they do not depend on the direct comparison in terms of
image intensity or any detection and matching of visual features. A pq-space based 2D/3D
registration approach for bronchoscopic tracking was proposed by Deligianni et al. [6,7].
They also incorporated shape modelling of airway deformation for non-rigid 2D/3D regis-
tration [8]. The surface normal for each pixel of video images were extracted using the al-
gorithm derived by Rashid et al. [21]. Validation of the pq-space based registration showed
that it is more robust to illumination artefacts and tissue deformation than intensity-based
methods [6]. However, pq distributions extracted from video images are sensitive to surface
texture such as small vessels on the endobronchial surface, while these visual features can
not be detected on CT data.

Recovering geometrical structures from video images can be challenging. This is be-
cause conventional structure recovery approaches such as Shape from Shading (SFS) as-
sume orthogonal projection and the light source at infinity. However, these assumptions are
not applicable in the bronchoscopic scenario. In the multilevel registration strategy devel-
oped by Bricault et al. [3], a model-based depth recovery method has been employed at the
last level of their registration process. The accuracy of the depth recovery method relies on
relatively good pre-registration between the current virtual projection view and the video
view from previous registration levels. If the virtual view and the video view are very dif-
ferent, the CT data used for deriving the relationship between video image intensity and
surface normal can no longer hold and the surface reconstruction of the endobronchial wall
may fail. Furthermore, this registration method using depth recovery has not been validated
for continuous tracking.

Bronchoscopic navigation has also been achieved with hybrid registration methods. A
tracking system combining EM tracking and intensity-based image registration has been
developed by Luo et al. [13]. Another framework using both EM tracking and image regis-
tration based on differential surface analysis (pq-space) has also been developed by Soper
et al. for improved registration accuracy [24]. To overcome the limitations of EM tracking
techniques, an optical mouse sensor combined with the enhanced differential evolution al-
gorithm has been proposed in [14]. These hybrid methods improve registration performance
but complicate the overall sensor calibration and registration algorithm.

Since image registration can be time consuming, methods incorporating motion predic-
tion have also been investigated to achieve faster convergence of the registration process.
Higgins et al. [9,20] tracked the 3D motion of the bronchoscope by estimating optical flow
from video images and then using the tracked 3D trajectory to assist localisation in the 3D
CT virtual world. Nagao et al. [17] employed the principle of Kalman filter to predict the
motion of the bronchoscope. Since the 3D motion prediction computed from 2D video im-
age sequences may not be accurate enough, the final image registration still relies on the
matching between video and virtual endobronchial images.

In this work, we propose a depth-based registration approach for robust camera locali-
sation during bronchoscopy. The camera pose is estimated based on the similarity between
depth maps extracted from bronchoscopic images and depth information extracted from
pre-operative CT data. To reconstruct depth information from bronchoscopic images, a SFS
approach tailored for endoscopic applications is employed based on the assumption that the
light source is near the surface without restricting its position to be at the optical centre or
at infinity. Depth information from pre-operative CT data is recovered by linearisation of
depth buffering from perspective projections of the CT model. To measure the similarity
between the bronchoscopic and CT depth maps, two different measures are employed and
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Fig. 1 SFS in bronchoscopy with Lambertian surface for perspective camera and a light source close to
surface and at the optical centre.

compared in this work namely, normalised cross-correlation and normalised mutual infor-
mation. Detailed validation on phantom and in vivo data and comparison to state-of-the-art
2D/3D registration approaches have shown that the proposed framework has the advantage
of being more robust to illumination artefacts and surface texture and less dependent on the
initialisation of the camera pose. The results derived justify the potential clinical value of
the technique.

2 Methods

The proposed camera localisation method for bronchoscopic navigation comprises three
main steps: the reconstruction of a depth map from a single bronchoscopic video frame us-
ing SFS [25]; the extraction of depth maps from multiple virtual camera projections of the
CT model; and the estimation of the camera pose that maximises the similarity between
the video depth map and the corresponding virtual depth maps using normalised cross-
correlation or normalised mutual information.

2.1 SFS Depth Recovery from Video Image

To recover depth information from the bronchoscopic environment, we use SFS as it can
provide the 3D structure of a low-textured scene from a single 2D monocular image. The
majority of SFS methods proposed in literature [19,26,12] are based on the assumption that
the light source is at infinity or at the optical centre of the camera. However, this assumption
is not realistic for endoscopic applications. In this work, we employ the SFS model proposed
by Visentini-Scarzanella et al. [25]. This model has been tailored for endoscopic applications
and its advantage compared to other popular SFS methods is that it doesn’t restrict the
position of the light source to be at infinity or at the optical centre but it allows the light
source to be anywhere close to the surface.
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For a simple SFS scenario with a Lambertian surface (Fig. 1), the image irradiance Ei
can be expressed as

Ei = σ
cosθi

r2 = σ
(l ·n)

r2 (1)

where σ is a constant coefficient depending on the camera parameters, the intensity of the
light source and the surface albedo, θi is the incident angle of the light, r is the distance
between the light source and the surface point, n is the surface normal vector and l is the
incident light direction vector [19,10]. The image intensity I is often assumed to be equal to
the image irradiance Ei. For each pixel p = (x,y) in the image domain, the surface normal n
and incident light vector l for its corresponding 3D surface point P are expressed as:

n =
(

Zx,Zy,−
(x+T )Zx+(y+U)Zy+Z(p)

( f+V )

)
l = (x+T,y+U, f +V )

(2)

where Z (p) is the depth at point p and Zx and Zy are the spatial derivatives with respect to x
and y. L = [T,U,V ] is the position of the light source in the 3D space. In order to estimate
the surface structure, the depth parameter Z should be estimated at every image pixel. Using
the assumption of a Lambertian surface (Fig. 1) with a point light source at the optical centre
(T = U = V = 0), Z can be recovered by solving the Hamiltonian obtained by substituting
v = lnZ into Eq.(1):

H (p,Ov) = I (p)
1
σ

√(
v2

x + v2
y
)
+ J (p,Ov)2 ·Q(p)3/2 (3)

where: J (p,Ov) = vxx+vyy+1
f

Q(p) = x2 + y2 + f 2
(4)

The 2D Lax-Friedrichs sweeping scheme proposed in [11] was applied to solve the above
equation iteratively.

2.2 Depth Map from Virtual CT Projection

In order to recover depth information from the pre-operative data, perspective projections
of the CT surface mesh are estimated with multiple camera poses to generate a set of vir-
tual endobronchial views. The pose of the virtual camera is modelled as the set of rotation
R(α,β ,γ) and translation t (xt ,yt ,zt) parameters that transform the camera from the ori-
gin to the current viewing position and orientation within the world coordinate system by
applying the total transformation T , defined as:

T =


cosα cosβ cosα sinβ sinγ− sinα cosγ cosα sinβ cosγ + sinα sinγ xt
sinα cosβ sinα sinβ sinγ + cosα cosγ sinα sinβ cosγ− cosα sinγ yt
−sinβ cosβ sinγ cosβ cosγ zt

0 0 0 1

 (5)

Each parameter combination A(xt ,yt ,zt ,α,β ,γ) produces a unique virtual endobronchial
image.
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(a) (b)

Fig. 2 Recovery of the true depth map of a CT perspective projection from depth values in Normalised
Device Coordinates (NDC). (a). Sampled and normalised depth map from shader; (b). True depth map after
linearisation with near and far clipping planes at Z=1 and Z=100 respectively.

The perspective projections of the CT endobronchial wall are rendered using the raster-
isation technique. The intrinsic parameters of the virtual camera were set to the same values
as the parameters of the bronchoscopic camera. The generated virtual images are of the same
size as the bronchoscopic video images. Sampling from a depth buffer in a shader gives the
associated depth value ZNDC in a normalised coordinate system (Normalised Device Coor-
dinates (NDC)) for each pixel of the virtual image. The normalised depth of every pixel can
be linearised to give the actual depth Z:

Z =

−2 f n
f−n

ZNDC−
(

f+n
f−n

) =
−2 f n

ZNDC ( f −n)− ( f +n)
(6)

where ZNDC ranges from -1 to 1, f and n are the Z-coordinates of the near and far clip-
ping planes respectively. An example of normalised and converted depth values of a virtual
endobronchial image are illustrated in Fig. 2(a) and Fig. 2(b) respectively.

2.3 Camera Pose Estimation and Similarity measurement

To this end, depth information has been reconstructed from a bronchoscopic video frame
and from a set of virtual endobronchial images generated from the CT data for multiple
camera poses. The aim of the proposed camera localisation framework is to estimate the
camera pose parameters that generate the virtual image with the highest similarity to the
video image. The camera pose is determined by optimising the similarity between the depth
maps of the video and the virtual images. For this purpose, the normalised cross-correlation
and the normalised mutual information have been applied as the similarity measures.

Since the depth map extracted from the video image using SFS is not metric, it is
rescaled to the same clipping frustum used for the virtual endobronchial projections as:

ZRescaled = n+
(Z−min(Z))( f −n)

max(Z)−min(Z)
(7)

where Z is the depth value recovered from the bronchoscopic video image and f and n are
the Z-coordinates of the near and the far clipping planes respectively.
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Fig. 3 Depth maps of two pairs of matched video image and projection image of CT model, one at the carina
(Columns 1& 2) and one inside the right main bronchus (Columns 3 & 4).

The precision of the depth buffer in OpenGL varies at different depth location between
the near and far clipping planes. The clipping planes were adjusted to achieve optimised
precision of the depth buffer for good alignment between the depth maps from the video and
the virtual images.

Depth maps generated from in vivo data using the SFS depth reconstruction are illus-
trated in Fig. 3 for two different airway locations, one at the carina of the trachea and one
inside the right main bronchus. The generated virtual endobronchial images and their corre-
sponding depth maps for these two video images are also shown for qualitative comparison.

Both the normalised cross-correlation and the normalised mutual information were ap-
plied to measure the similarity S between the depth maps. Given the registered camera pose
Ai for video frame i, the camera pose for the next frame Ai+1 is estimated by minimising the
inverse of the similarity between the video depth map Zi+1 and the generated virtual depth
map Z′ (Ai+1) starting with Ai as the initial estimate.

Ai+1 = Ai +∆Ai+1|i

∆Ai+1|i = argmin∆Ai+1|i

{
S−1

(
Zi+1,Z′

(
Ai +∆Ai+1|i

))} (8)

The optimal change of the camera pose ∆Ai+1|i is estimated by searching for the rotation
and translation updates that provide the minimal dissimilarity which is here estimated as
the inverse of the similarity Si+1. In this work, the optimisation process is based on Pow-
ell’s numerical minimisation algorithm [18] which is suitable for a multi-variable function
without an underlying mathematical definition as it does not require the function to be dif-
ferentiable. The multiple variables in our framework correspond to the six parameters that
represent the camera pose A. The linear search for the optimal parameters is achieved by
applying the Brent’s method [2] where the maximum variation of the pose was set to 5mm
for the translation and 5◦ for the rotation angles for fast convergence.
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3 Results

The proposed depth-based registration framework was implemented using C++ with OpenGL
for z-buffering and endobronchial surface rendering, and FLTK for the interface. To facil-
itate performance comparison, the registration algorithm was tested on the same phantom
and in vivo data that has been used for validation in [7]. Both quantitative and qualitative
performance evaluations were carried out and the proposed camera localisation framework
was compared to the current 2D/3D registration methods.

3.1 Phantom validation

An airway phantom made of silicon rubber and coated with acrylics to mimic surface texture
of the airway was used for validation. The pre-operative data was gathered by scanning
the phantom with a Siemens Somaton Volume Zoom 4-channel multi-detector CT scanner.
Video data from the inside of the phantom was recorded with a NTSC standard CMOS
camera. An EM tracking system with 6 DOF was used to estimate the ground truth camera
pose for every video image [6]. The proposed framework was validated on 400 frames. The
camera location in the CT coordinate system was continuously estimated by registering the
video frames to the CT bronchial model. The registration accuracy was estimated in terms of
the Euclidean distance and angular error between the estimated camera pose and the ground
truth pose given by the EM data. The performance of the proposed depth-based method is
compared to the conventional intensity-based and pq-space based methods in Fig. 4. The pq
components and depth maps extracted from a pair of matched video image and CT virtual
image of the bronchi phantom are illustrated in Fig. 5.

Validation conducted on the static bronchi phantom (Fig.4(a)) shows that the proposed
depth-based method provides lower distance error compared to the intensity-based and the
pq-space based approaches for camera localisation over a continuous series of video frames.
The relatively high angular errors shown in Fig.4(b) are due to the lack of strong anatomical
features of the phantom that could provide information to solve the orientation ambiguity in
the bronchial tubular structure.

By further comparing the accuracy estimated using the normalised cross-correlation
and the normalised mutual information for the similarity measure, the normalised cross-
correlation provides more robust camera pose estimation. This is expected as the normalised
cross-correlation measures the linear or monotonic relationship between two distributions
while the mutual information measures non-monotonic relationships. Since we require ex-
act matching between the depth maps from the video and the CT model, the cross-correlation
measure gives better registration performance.

3.2 In vivo validation

A video sequence of a standard bronchoscopy examination was collected with an Olympus
prototype bronchoscope of 120◦ field of view. The pixel resolution of the video images is
454x487. Pre-operative CT data was generated in the same way as for the phantom case.
Manually registered camera poses were used as ground truth for validation. The potential
bias of the manually registered data was controlled by conducting an error assessment of
the manually registered pose by comparing to the EM tracker data using phantom measure-
ments. Both average distance and angular errors of the manual alignment were consistent
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(a)

(b)

Fig. 4 Registration accuracy of the proposed depth-based approach on the phantom data. (a). Distance error
of the estimated camera location to the ground truth location over time. (b). Angular error of the estimated
camera orientation to the ground truth orientation over time. Intensity: intensity-based registration with simi-
larity measure based on normalised cross-correlation; pq-space: pq-space registration approach with similar-
ity measure based on angle between pq vectors; Depth(MI): depth-based registration approach with similarity
measure based on normalised mutual information; Depth(CC): depth-based registration approach with simi-
larity measure based on normalised cross-correlation.

Fig. 5 Distribution map of p component (Column 2), q component (Column 3) and depth map (Column 4)
of a pair of matched video (Row 1) and CT virtual camera projection (Row 2) of the static bronchi phantom.
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(a)

(b)

Fig. 6 Registration accuracy of the proposed depth-based approach on the in vivo data. (a). Distance error
of the estimated camera location to the ground truth location over time. (b). Angular error of the estimated
camera orientation to the ground truth orientation over time.

Table 1 Accuracy of estimated camera pose in terms of Euclidean distance error δ (mm) and angular distance
error ϕ (degree) by four compared registration methods for the in vivo validation.

Registration method µ (δ ) σ (δ ) µ (ϕ) σ (ϕ)

Intensity 21.294 12.002 17.576 7.6056
pq-space 8.7117 9.6660 5.9886 7.8219

Depth(MI) 8.5195 4.7557 5.6986 5.5984
Depth(CC) 8.4800 6.2981 3.4775 5.2758

and relatively small for the phantom that has a larger scale than real human airways, suggest-
ing the error of the manual alignment of the in vivo data would be smaller and with reliable
accuracy [7]. The radial and tangential distortions of the collected bronchoscopic data were
corrected prior to processing [7]. The bronchoscopic pose was continuously estimated by
registering the video frames with the CT bronchial model over 1000 video frames. The Eu-
clidean distance and angular error for the four compared approaches are shown in Fig. 6.
Sample frames of the bronchoscopic video and the corresponding virtual images registered
with the compared methods are shown in Fig. 7. The mean and standard deviation of the
distance error δ and the angular error ϕ between the estimated camera pose and the ground
truth when applying the compared methods on the in vivo data are provided in Table 1.

Intensity-based registration has the largest distance error and angular error for the in vivo
validation as presented in Table 1. This is because variations in the lighting conditions in the
real-time bronchoscopic video lead to relatively poor and unstable tracking performance for
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Fig. 7 Sample frames of the bronchoscopic video (Column 1) and the corresponding virtual images reg-
istered with the four different approaches: Intensity-based (Column 2), pq-space based (Column 3), depth-
based(CC)(Column 4) and depth-based(MI)(Column 5).



12 Mali Shen et al.

intensity-based registration approaches (Fig. 6). This is also verified qualitatively in Fig. 7
(Column 2), where the registered virtual endobronchial images estimated by the intensity-
based approach do not match the corresponding video images.

pq-space based registration performs better than the intensity-based method, because it
relies on surface gradient instead of intensity. Distribution maps of the p component, q com-
ponent, and the flow-to-colour of the pq-space extracted from two bronchoscopic video
images, one at the carina and one inside the right main bronchus are illustrated in Fig. 8.
The distribution maps of the pq-space from the corresponding CT virtual camera projec-
tions were also computed for these two airway locations. The pq components calculated
from the video images reveal both local surface texture and the global geometric structure
of the endobronchial wall. This local texture information can not be recovered via rendering
of the virtual bronchial model. As a result, the pq components extracted from the CT virtual
projection only encode gradient information of the global endobronchial structure. Smooth-
ing and anisotropic filtering have been applied to remove texture features from the video
images for better matching with the CT endobronchial projections [6,24]. However, these
filters degrade the surface gradient information extracted from the video image, as well as
the similarity between the pq-space derived from the video and the CT model.

Depth-based registration gives similar registration accuracy compared to the pq-space based
method when the bronchoscope is approaching the carina of the trachea (Frame 0-800) in
Fig. 6. It also shows that the curves of the depth-based approach have peaks around Frame
30, 130, 550 when there were instrumental occlusions or water bubbles blocking the bron-
choscopic view. The registration accuracy plot between Frame 100-200 is shown in Fig. 9.
The depth recovery becomes inaccurate when there are image artefacts, such as bubbles and
blurring. However, when these artefacts disappeared, fast realignment between the video
data and the virtual endobronchial images can be achieved with the depth-based method,
which makes it less sensitive to registration initialisation.

Furthermore, the proposed depth-based approach provides more accurate camera pose
estimation than the pq-space based approach when the bronchoscope goes into the right
main bronchus from the carina (Frame 800-1000) (Fig. 6). Straight sections of the airways
(i.e. trachea and main bronchi) are tubular structures with limited appearance and struc-
ture characteristics. Due to the paucity of salient information in these airway sections, the
performance of the proposed method in these areas is lower than that at bronchial bifurca-
tions. However, as shown in Fig. 6(a), this performance degradation is common to all of
the compared methods after the bronchoscope enters the right main bronchus (Frame 800-
1000) from the carina of the trachea. The distance error of the proposed method even in the
straight airway is around 15mm which is still smaller than those of the compared intensity-
based (45mm) and pq-space based (27mm) method.

Similarly to the results given in the phantom validation, the depth-based method with
normalised cross-correlation gives more accurate and stable estimation of the camera pose
parameters than the compared registration approaches (Table 1). Its relatively higher stan-
dard deviation of distance error is mainly caused by the mis-registrations for a few video
frames when there were occlusions and blurring. Registered virtual endobronchial images
given by the depth-based method using normalised cross-correlation displayed in Fig. 7
(Column 3) give the best match to the corresponding video frames among the other meth-
ods. As shown in Fig. 3, the depth recovery approach is less sensitive to small localised
intensity features or local geometric structures. Therefore, the depth map generation gives
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Fig. 8 Distribution map of p component (Column 2), q component (Column 3) and flow-to-colour map
(Column 4) of pq-space of two pairs of matched bronchoscopic video and CT virtual camera projections, one
at the carina of the trachea (Row 1 & 2) and one inside the right main bronchus (Row 3 & 4).

more reliable estimation of the global surface structure of the endobronchial wall than the
pq-space measurement.

3.3 Computational complexity

The localisation approaches have been tested on a PC with 3 GHz Intel Core i7 Processor,
8 GB 1600 MHz DDR3 Memory. The computational complexity and cost of the proposed
depth-based camera localisation approach and the compared approaches are illustrated in
Table 2. The computational cost of the intensity-based approach is mainly due to the com-
putation of the normalised cross-correlation between the video image and the CT virtual
images during the optimisation process. The complexity of calculating the normalised cross-
correlation for a pair of images is considered as O(N) where N is the number of pixels in
the 2D video image. For the pq-space based camera localisation approach, the complexity
of computing the pq components of a 2D video image is O(N). In the optimisation process,
computation of the pq components of the CT virtual image given by a camera pose is re-
quired before measuring the similarity between the pq components of the CT virtual image
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Fig. 9 Registration accuracy between video Frame 100-200. Sample bronchoscopic video frames are dis-
played to indicate when the occlusions happened and disappeared.

Table 2 Computational complexity and run-time cost of the four compared registration methods in terms of
the mean processing time for registering one frame to the CT model, where N is the number of image pixels
in the video image.

Registration method Video CT Similarity Time cost (secs/frame)

Intensity - - O(N) 0.95
pq-space O(N) O(N) O(N) 60.47

Depth(MI) O(N) - O(N) 53.00
Depth(CC) O(N) - O(N) 53.30

and the video image. Both the complexity of computing the pq values of the virtual image
and that of the similarity measure are O(N). For the proposed depth-based camera locali-
sation approach, the complexity of one iteration of the depth recovery process from a video
image is O(N). It was found that in the in vivo validation, 150 iterations were sufficient for
the complete recovery of the depth map. Since the complexity of computing the normalised
mutual information is also proportional to the number of pixels N in the video images, the
complexity of calculating the similarity between a CT image and the video image during the
optimisation process is O(N). Powell’s minimisation method was used for the optimisation
procedure of all the compared methods, while the number of similarity measures required
to find the optimal pose for each video image varies for different methods.

Intensity-based approaches are less computationally expensive than geometry-based ap-
proaches but at the expense of being more vulnerable to illumination and texture variations.
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The computational burden of geometry-based approaches is mainly due to the additional
step required for the estimation of the geometrical information from the video data. As
shown in Table 2, the proposed depth-based approach is more efficient than the pq-space
based approach. The computational cost of the proposed depth-based approach is mainly
dependent on the number of iterations required to extract the depth map from the video im-
age. The longer processing time of the pq-space based approach is due to the additional cost
in estimating pq values from the depth maps of the CT data that correspond to all the virtual
camera poses that are evaluated during the optimisation process.

4 Discussion and Conclusion

In conclusion, a novel approach has been proposed for camera localisation during bron-
choscopy based on depth recovery. The proposed registration approach provides more ac-
curate and robust camera pose estimation compared to conventional intensity-based or pq-
space based registration methods. The intensity-based registration requires continuous ad-
justment of illumination conditions used in CT model rendering to maintain the camera po-
sition in the correct path. The pq-space based approach shows poor performance when there
are distinctive surface texture on the endobronchial surface. The proposed method over-
comes the limitations of the above methods and it is more robust to illumination artefacts
and less sensitive to initialisation of the camera pose.

Although it is shown in Table 2 that the computational complexity of the proposed cam-
era localisation approach is only linearly dependent on the resolution of video images, its
efficiency also relies on the implementation of the method, the number of iterations required
for depth reconstruction from a video image and the speed of convergence of the optimisa-
tion procedure. To improve its efficiency and enable its clinical use, parallel programming
and GPU implementation can be used to optimise the implementation of the depth recovery
algorithm and the optimisation method.

In our future work, tissue deformation will be considered for more accurate registration
between a dynamic pre-operative CT model and the intra-operative video images. Better
depth buffering technique will be investigated to improve the precision of the depth map
recovery from CT models. Finally, combination of the vision-based registration with motion
prediction will be used for faster convergence of the registration process.
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