
Automatic Generation of Classification
Theorems for Finite Algebras

Simon Colton1, Andreas Meier2?, Volker Sorge3??, and Roy McCasland4? ? ?

1 Department of Computing, Imperial College London, UK,
sgc@doc.ic.ac.uk, http://www.doc.ic.ac.uk/˜sgc

2 DFKI GmbH, Saarbrücken, Germany,
ameier@ags.uni-sb.de, http://www.ags.uni-sb.de/˜ameier

3 School of Computer Science, University of Birmingham, UK,
V.Sorge@cs.bham.ac.uk, http://www.cs.bham.ac.uk/˜vxs

4 School of Informatics, University of Edinburgh, UK
rmccasla@inf.ed.ac.uk, http://www.inf.ed.ac.uk/˜rmccasla

Abstract. Classifying finite algebraic structures has been a major mo-
tivation behind much research in pure mathematics. Automated tech-
niques have aided in this process, but this has largely been at a quan-
titative level. In contrast, we present a qualitative approach which pro-
duces verified theorems, which classify algebras of a particular type and
size into isomorphism classes. We describe both a semi-automated and a
fully automated bootstrapping approach to building and verifying clas-
sification theorems. In the latter case, we have implemented a procedure
which takes the axioms of the algebra and produces a decision tree em-
bedding a fully verified classification theorem. This has been achieved by
the integration (and improvement) of a number of automated reasoning
techniques: we use the Mace model generator, the HR and C4.5 machine
learning systems, the Spass theorem prover, and the Gap computer al-
gebra system to reduce the complexity of the problems given to Spass.
We demonstrate the power of this approach by classifying loops, groups,
monoids and quasigroups of various sizes.

1 Introduction

As witnessed by the classification of finite simple groups – described as one of
the major intellectual achievements of the twentieth century [4] – classifying
finite algebraic structures has been a major motivation behind much research
in pure mathematics. As discussed further in Sec. 2.2, automated techniques
have aided this process, but this has largely been at a quantitative level, e.g.,
to count the number of groups of a particular order. Classification theorems
of a more qualitative nature are often more interesting and more informative,
sometimes allowing one to use properties of relatively small structures to help
? The author’s work supported by EU IHP grant Calculemus HPRN-CT-2000-00102.

?? The author’s work was supported by a Marie-Curie Grant from the European Union.
? ? ? The author’s work was supported by EPSRC MathFIT grant GR/S31099.

classify larger structures. For example, Kronecker’s classification of finite Abelian
groups [6] states that every Abelian group, G, of size n can be expressed as a
direct product of cyclic groups, G = Cs1×· · ·×Csm

, where n = s1.s2 . . . sm such
that each si+1 divides si.

In this paper we look at automating the task of generating and fully verifying
qualitative classification theorems for algebraic structures of a given size. As a
simple example, our system is given the axioms of group theory and told to find a
classification theorem for groups of size 6. It returns the following (paraphrased)
result: “all groups of size 6 can be classified up to isomorphism as either Abelian
or non-Abelian” [an Abelian group, G, is such that ∀a, b∈G a ◦ b = b ◦ a]. The
system generates such results, then proves that they provide valid classifications
– as specified in Sec. 2.1 – by showing that each concept is a classifying property,
i.e., true for all members of exactly one isomorphism class.

In our first – semi-automated – approach to generating and verifying classi-
fication theorems, as discussed in Sec. 3, the Mace model generator [9] was used
to generate representatives of each isomorphism class for the given algebra of
given size, then the HR [1] and C4.5 [12] machine learning systems were used to
induce a set of classifying properties. To guarantee the validity of the classifica-
tion we construct appropriate verification problems, which we first simplify with
the Gap computer algebra system [3] and then prove with the Spass theorem
prover [16]. We found various limitations with this approach, and the lessons we
learned informed a second approach. As discussed in Sec. 4, we implemented a
fully automated bootstrapping procedure that builds a decision tree which can
be used to decide the isomorphism class of a given algebra. The system uses
Mace to successively construct non-isomorphic algebras and HR to find prop-
erties that discriminate between them. The correctness of the decision tree is
guaranteed in each step with Spass after using Gap to simplify the problems.

We used both approaches to generate a number of classification theorems for
groups, monoids, quasigroups and loops up to size 6, with the results from the
second approach presented in Sec 5. The power of this bootstrapping approach is
demonstrated by the generation and verification of a classification theorem which
covers the 109 loops of size 6. Not only does our approach highlight the utility
of employing multiple reasoning systems for difficult tasks such as classification,
our technique is neither restricted to the algebraic domain nor the isomorphism
equivalence relation. In Sec. 6, we discuss possible applications of our approach
to other domains of pure mathematics, along with other future directions for
this work, including distributing the bootstrapping algorithm and producing
classification theorems which are generative as well as descriptive.

2 Background

2.1 Classification Problems

We define a general classification problem as follows: let A be a finite collection of
algebraic structures and let ∼ be an equivalence relation on A. Then ∼ induces
a partition into equivalence classes [A1]∼, [A2]∼, . . . , [An]∼, where Ai ∈ A for
i = 1, . . . , n.

Let P be a property which is invariant with respect to ∼. Then P acts as a
discriminant for any two structures A and B in A, in the sense that if P (A) and
¬P (B), then A 6∼ B. If, in addition, P holds for every element of an equivalence
class [Ai]∼, but does not hold for any element in A \ [Ai]∼, then we call P
a classifying property for [Ai]∼. A full set of classifying properties – with one
property for each equivalence class – comprises a classifying theorem stating
that each element of A exhibits exactly one of the classifying properties. The
classification problem is therefore to find a full set of classifying properties.

At present we consider the isomorphism equivalence relation ∼=, and the al-
gebraic structures quasigroups, loops, groups and monoids. For these structures,
we only need the following four axioms (letting A be a set and ◦ be a closed
operation on the elements of A):

1. Associativity: A is associative with respect to ◦.
2. Divisors: For every two elements a, b ∈ A there exist two corresponding

divisors x, y ∈ A such that a ◦ x = b and y ◦ a = b holds.
3. Unit element: There exists a unit element e in A with respect to ◦.
4. Inverse: Given a unique unit element e, each element x has an inverse x−1

such that x ◦ x−1 = x−1 ◦ x = e.

We call (A, ◦) a quasigroup if only axiom 2 holds, a monoid if axioms 1 and 3
hold, a loop if axioms 2 and 3 hold and a group if axioms 1, 3 and 4 hold.
Working with relatively simple algebras keeps the necessary axiomatic overhead
down, but can lead to large numbers of structures even for small sizes, e.g., there
are 109 non-isomorphic loops of size 6.

As a concrete example, consider quasigroups of size 3. There are 12 quasi-
groups of this size, but only 5 different isomorphism classes. Presented in terms
of their Cayley tables, the following three quasigroups of order 3 are pairwise
non-isomorphic.

Q1 a b c
a b a c
b a c b
c c b a

Q2 a b c
a a c b
b c b a
c b a c

Q3 a b c
a a b c
b b c a
c c a b

Because if we observe the diagonals of the Cayley tables for Q1 and Q2, we
find that Q2 has idempotent elements (i.e., such that x ◦ x = x), but Q1 does
not. Hence the property ∃x x ◦ x = x is a discriminant for Q1 and Q2. However,
this property is not enough to distinguish Q2 from Q3 (i.e., this property is
not a classifying property for [Q2]∼=), as Q3 also contains idempotent elements.
Since all elements of Q2 are idempotent, we can strengthen the property to
∀x x ◦ x = x, which is sufficient to discriminate Q2 from both Q1 and Q3. As
we will see later, this is actually a classifying property for the equivalence class
represented by Q2.

2.2 Previous Work

When constructing classification theorems for algebraic structures, the first ques-
tion to answer is how many algebras there are for a given size. Automated tech-

niques such as constraint solving and the Davis-Putnam method have been used
extensively to determine the number of algebras of a given type and size, and
this has answered many open questions. In particular, the Finder system has
been used to solve many quasigroup existence problems [14]. Also, representa-
tives of every isotopy and isomorphism class for quasigroups and loops have been
generated up to at least order 9 [10]. In addition to classifying structures within
an algebraic axiomatisation, automated theorem proving has been used to find
new axiomatisations for algebras, thus enabling better intra-classification of al-
gebras. In particular, new axiomatic representations of algebras such as groups
have been found [5, 8].

As described in [1], integration of automated reasoning systems has always
been a major aspect of the HR project. Moreover, we have shown in previous
work that the HR system can be used to support proof planning, and that this
has some promise for classification tasks [11]. However, to our knowledge, there
have been no attempts to produce and verify full classification theorems for
particular algebras of a given size from the axioms alone. As described in Sec. 3
and Sec. 4, our approach has been to integrate various reasoning systems, as we
believe it is not possible for a single system to solve this problem. In particular,
we have employed the following systems:

Spass is a resolution-based automated theorem prover for first-order logic with
equality [16]. Spass combines a superposition calculus with specific infer-
ence/reduction rules for sorts and a splitting rule for case analysis.

MACE-4 is a model generator that searches for finite models of first-order for-
mulae [9]. For a given domain size, all instances of the formula over the
domain are constructed and a decision procedure searches for satisfiable in-
stances of the formula. The distribution package contains several auxiliary
programs, including the isofilter program, which detects and removes iso-
morphic models, returning a set of pairwise non-isomorphic models.

HR is a machine learning program which performs automated theory formation
by building new concepts from old ones [1] using a set of production rules.
It uses the examples of the concepts to empirically form conjectures relating
their definitions [2] and employs third party theorem proving and model
generation software to prove/disprove the conjectures.

C4.5 is a state of the art decision tree learning system which has been used
with much success for many predictive induction tasks [12].

Gap is a computer algebra system with special application to algebraic do-
mains [3]. We used Gap as a toolbox to implement various computer algebra
algorithms involving generators and factorisations of algebras.

3 Approach One: Semi-automated

3.1 Stage 1: Generating Non-isomorphic Algebras

The goal of this stage was to produce a covering set of pairwise non-isomorphic
algebras of the given type and size, i.e., a single representative of each isomor-
phism class. To do this, we used Mace in two parts: by constructing all structures

with the given properties and cardinality, then applying the isofilter tool to re-
move isomorphic structures. We also used lists of loops up to size 7 and lists of
quasigroups up to size 5 kindly provided by Wendy Myrvold.

3.2 Stage 2: Generating Classifying Concepts

Given a set of pairwise non-isomorphic algebras, A1, . . . , An such as those gen-
erated in stage 1, the problem in stage 2 was to find a set of boolean properties
P1, . . . , Pn such that Pi is a classifying property for [Ai]∼=, for all i. To do this,
we used only HR’s concept formation abilities. Starting with some background
concepts – in this case, those derived from the axioms of the algebras being
considered, e.g., multiplication, inverse, identity, etc., – HR builds new concepts
from old ones using a set of production rules. For this application, we used the
compose, exists, match and negate production rules. To see how these work,
consider starting in group theory with the concept of triples of elements [a, b, c]
related via the multiplication concept, i.e., a ◦ b = c. In its search for concepts,
HR might use the compose rule (which conjoins clauses in definitions) to com-
pose this concept with itself, producing the concept of triples of elements related
via commutativity: [a, b, c] such that a ◦ b = c ∧ b ◦ a = c. Later, HR might use
the negate production rule (which negates clauses in definitions) to produce this
concept: [a, b, c] such that a ◦ b = c ∧ b ◦ a 6= c. It then might use the exists pro-
duction rule (which introduces existential quantification) to produce the concept
of non-Abelianess, i.e., groups for which ∃a, b, c a ◦ b = c ∧ b ◦ a 6= c. Finally,
it might use the negate rule again to produce the concept of Abelianess: groups
for which @a, b, c a ◦ b = c∧ b ◦ a 6= c. In this way, we can see how HR can solve
the classification problem for groups of size 6, as mentioned in Sec. 1.

We started by simply using HR to exhaustively generate concepts until it had
produced boolean properties P1, . . . , Pn as required above. This scheme worked
for some simple classification problems, but it did not scale up, and various
improvements were made. Firstly, we used a heuristic search whereby the match,
exists and negate production rules were used greedily before the compose rule
was used. This encourages the generation of the kind of boolean properties we
require, and greatly increased the efficiency of HR’s search. For instance, using
a breadth first search, HR takes over an hour to solve the classification of size 3
quasigroups. However, with the greedy heuristic search, this took only 6 seconds
(on a Pentium 4 2GHz machine), producing the following theorem:

Quasigroups of size 3 have exactly one of the following properties:
(i) @a a ◦ a = a (ii) ∀a a ◦ a = a (iii) ∃a @b, c b ◦ c = a ∧ a ◦ b = c
(iv) ∃a @b, c b ◦ a = c ∧ c ◦ b = a (v) ∃a @b, c a ◦ b = c ∧ c ◦ a = b.

Using this simple scheme, HR was able to solve classification problems for
groups of size 6 and 8, loops of size 4 and 5, quasigroups of size 3, qg4-quasigroups
of size 5 and qg5-quasigroups of size 7 [note that qg4-quasigroups are quasigroups
such that ∀a, b (b ◦ a) ◦ (a ◦ b) = a and qg5-quasigroups are such that ∀a, b (((b ◦
a) ◦ b) ◦ b) = a]. As an interesting example of the kind of result produced in this
way, in a session working with the five isomorphism classes for groups of size

p3=true:

| p16=true:class3

| p16=false:class2

p3=false:

| p1=false:class0

| p1=true:

| | p10=true:class4

| | p10=false:class1

Properties: p1: ∃b b−1 6= b

p3: ∃b, c, d b ◦ c = d ∧ c ◦ b 6= d
p10: @b b−1 = b ∧ @c c ◦ c = b
p16: ∃b @c, d c ◦ b = d ∧ c ◦ d 6= b ∧ b ◦ d = c

Fig. 1. Decision tree produced by HR/C4.5 for groups of size 8

8, we gave HR the additional concept of commutators (elements which can be
expressed as a◦b◦a−1 ◦b−1 for some a and b), and HR produced four classifying
concepts, which enabled us to form this (paraphrased) classifying theorem:
Groups of order 8 can be classified by their self-inverse elements (x−1 = x): they
will either have (i) all self inverse elements (ii) an element which squares to
give a non-self inverse element (iii) no self-inverse elements which aren’t also
commutators (iv) a self inverse element which can be expressed as the product
of two non-commutative elements or (v) none of these properties.
As a second improvement, we used HR differently: we asked it to form a theory
for a given amount of time (up to an hour), then asked it to output all the
boolean properties it had produced, regardless of whether they were classifying
properties or not. The output was produced in Prolog format, and we used
Sicstus Prolog to search for conjunctions of the boolean properties which were
true of single algebras. This method helped us scale up further: we were able
to find five classifiers for groups of size 8 much more efficiently than with HR
alone. More interestingly, we solved the classification problem of quasigroups of
size 4 (for which there are 35 isomorphism classes). Using HR for 20 minutes,
followed by a Prolog search lasting 5 minutes, the classification theorem produced
had 9 classifying properties which were single boolean properties from HR, 25
classifying properties which were conjunctions of two boolean properties and 1
classifying property which was a conjunction of three boolean properties.

As an alternative to using Prolog, we experimented using C4.5: by giving it
the boolean properties generated by HR and making the isomorphism classifica-
tion the one for C4.5 to learn, we were able to produce decision trees such as the
one in Fig. 1 (for groups of size 8, presented in the format produced by C4.5). We
see that conjoining the nodes of the tree from root to leaf for each leaf provides
a set of classifying properties, hence a classification theorem can be derived from
the tree. Using C4.5 was problematic, however because (a) due to statistical
constraints, we had to multiply our data, e.g., give 10 copies of each algebra,
before the algorithm would learn a tree and (b) due to a heuristic search, C4.5
would sometimes learn a tree which was less than 100% accurate, hence could
not be used as a theorem. However, we believe that with more experimentation,
we will be able to overcome these difficulties.

Using one or other of the above schemes, we found classification theorems for
each of the algebra/sizes we tried, with one exception: the classification problem
for loops of size 6, with 109 isomorphism classes. For this problem, using the
Prolog extension, we found classifying properties for only around half the iso-
morphism classes, and using the decision tree extension, C4.5 produced a tree,
but it was not 100% accurate and didn’t cover all the classes.

3.3 Stage 3: Verifying the Classification

None of HR, Mace or C4.5 have been formally verified to work correctly. Hence, it
was necessary to use an automated theorem prover to prove that the classification
theorems were correct. HR and C4.5 provide classification results in the form of a
set of pairs (A1, P1), . . . , (An, Pn) of structures Ai and discriminant properties Pi.
We call these classification pairs since Pi characterises an isomorphism class of
algebras with axiomatic properties P and cardinality c, and Ai is a representant
for this isomorphism class. To verify a classification result, we prove the following
theorems with Spass:

Discriminant Theorems: Each property Pi is a discriminant, i.e., if Pi holds
for one algebra but does not hold for another algebra, then the two algebras are
not isomorphic. This also guarantees that Pi is an invariant under isomorphism,
since this property is logically equivalent.
Representant Theorems: For each pair (Ai, Pi), Ai satisfies Pi and P.
Non-Isomorphic Theorems: For two pairs (Ai, Pi) and (Aj , Pj) the repre-
sentants Ai and Aj are not isomorphic. This verifies the results of Mace and
guarantees against the construction of too many isomorphism classes.
Isomorphism-Class Theorems: For each pair (Ai, Pi), all algebras of cardi-
nality c that satisfy Pi and P are isomorphic.
The Covering Theorem: For each algebra of cardinality c that satisfies P,
P1 ∨ . . . ∨ Pn holds. This guarantees that all isomorphism classes are found.

Properties Pi are invariants (i.e., discriminants) for arbitrary algebras. Thus,
the discriminant theorems do not depend on the properties P and the cardinality
c. To encode the discriminant theorems for proof by Spass, we employ two sort
predicates s1 and s2 and two binary operations ◦1 and ◦2 to model two algebras,
which are closed with respect to s1 and s2, respectively. The required discrim-
inant properties are encoded with sorted quantifiers. Both kinds of theorems
require the encoding of an arbitrary isomorphism h between the two algebras.

The other theorems depend on the properties P and Pi as well as the cardi-
nality c (e.g., a property Pi (typically) specifies an isomorphism class only for a
particular P and c). For the covering and isomorphism-class theorems, we have
to model arbitrary algebras of cardinality c. In our experiments, we discovered
that Spass performed best on these problems when transforming the first-order
encoding into a propositional logic encoding without quantifiers (we also tested
an encoding with sorts and sorted quantifiers). We first encode the fact that
there are c different elements e1, . . . , ec. Then, the quantifiers of all used proper-
ties are expanded with respect to e1, . . . , ec: a universal quantification ∀x Q[x]

results in the conjunction Q[e1]∧. . .∧Q[ec], whereas an existential quantification
∃x Q[x] results in the disjunction Q[e1] ∨ . . . ∨Q[ec].

For the isomorphism-class theorems, we have to prove the existence of an
isomorphism between two arbitrary algebras satisfying Pi and P, which is gen-
erally a much harder task than constructing an isomorphism for two concrete
structures. As we deal only with finite algebras of given cardinality c, we can
enumerate the c! possible bijective functions between two algebras of cardinal-
ity c and explicitly axiomatise them as pointwise defined functions. Then, the
conclusion of an isomorphism-class theorem is that (at least) one of the bijective
functions is a homomorphism, i.e., homo(h1)∨. . .∨homo(hc!). The isomorphism-
class theorems turned out to be the most complex problems for Spass. In par-
ticular, their complexity heavily depends on the cardinality, c, since there are
c! potential bijective functions. In order to reduce the complexity of these theo-
rems, we consider sets of generators and factorisations to decrease the number of
potential isomorphism mappings. In this context, a structure (A, ◦) is generated
by a set of elements {a1, . . . , am} ⊆ A if every element of A can be expressed
as a combination – usually called a factorisation or word – of the ai under the
operation ◦. For example, quasigroup Q3 from Sec. 2.1 is generated by element
b ∈ A, as both c = b ◦ b and a = b ◦ (b ◦ b) can be expressed as factorisations in b.

Note that generators and factorisations are invariants of isomorphisms. That
is, if a structure (A, ◦) is generated by {a1, . . . , am} ⊆ A and h is an isomorphism
mapping (A, ◦) to a structure (A′, ◦′), then {h(a1), . . . , h(am)} ⊆ A′ is a gener-
ating set for (A′, ◦′). Moreover, given a factorisation, in terms of the ai’s, for an
element a ∈ A, then one obtains the factorisation for h(a) by simply replacing
each of the ai’s with h(ai), respectively.

To compute generators and factorisations we employed a computer algebra
algorithm, which we encoded in the Gap system. For a given structure, this algo-
rithm constructs a minimal set of generators together with a set of factorisations
expressing each element of the structure in terms of the generators. The set of
generators is constructed by successively combining elements with the longest
traces until all elements of the set can be generated. If necessary, the set of
generators is then reduced if any of its elements is redundant. Note that this
approach works for all types of algebraic structures, regardless of the number of
operations, and ensures that the set of generators is minimal in the sense that
none of its subsets generates the full set.

If a classification pair (Ai, Pi) characterises an isomorphism class and if our
algorithm computes generators {a1, . . . , am} ⊆ Ai and factorisations for Ai, then
all algebras with property Pi (and cardinality c and properties P) have a gen-
erating set with m elements and the factorisations of the elements of Ai. We
prove this as additional theorem which we call the Gensys-Verification Theo-
rem. Having proved this, we can express the isomorphism-class theorem for the
algebras using the generators and factorisations. This reduces the number of
functions which are candidates for isomorphisms. Instead of c!, there are only

c!
(c−m)! possible mappings, since only the m generators have to be mapped ex-

plicitly. This is because each isomorphism is uniquely determined by the images
of these generators.

We ran Spass on a Linux PC with four 2GHz Xeon processors and 4GB RAM
and proved HR’s groups6, loops4, loops5, quasigroups3 and qg4-quasigroups5
results. For the quasigroup4 classification problem, Spass failed due to internal
problems while proving the covering theorem. For the qg5-quasigroups7 and the
groups8 results, Spass was not able to prove all the gensys-verification theorems
within a two day time limit. For the discriminant theorems, Spass typically re-
quired less than a second. However, there were a few examples which needed
considerably more time (e.g., one proved theorem in the quasigroup4 classifica-
tion problem was to show that ∀x ∃y (x◦y)◦ (x◦y) = y is a discriminant; Spass
needed 1h 6m to prove this theorem). The performance of Spass on representant
and non-isomorphic theorems depended slightly on the cardinality of the exam-
ined algebras. Spass needed less than a second to prove the theorems for the
smaller algebras, but took several seconds to prove the theorems for the larger
algebras.

The complexity of covering theorems depends not only on the cardinality of
the examined algebras, but also on the number of isomorphism classes and the
classifying properties. Unfortunately, Spass failed on the covering theorem re-
sulting from the 35 quasigroups4 isomorphism classes, but it proved the groups8
covering theorem in about 4 seconds (this theorem is particularly simple since
it has the form Q∨¬Q where Q = P1 ∧P2 ∧P3 ∧P4), and it took about 4 min-
utes to prove the loops5 covering theorem. In addition, isomorphism-class and
gensys-verification theorems depend heavily on the cardinality of the examined
algebras, as we shall discuss further in Sec. 5.

4 Approach Two: Bootstrapping

After experimenting with various schemes in approach 1, we identified some lim-
itations, which enabled us to specify the following requirements for an algorithm
in our second approach:

– The process should be entirely automatic and bootstrapping, able to pro-
duce verified classification theorems starting from the axioms alone, with no
human intervention.

– The process should call HR to find classifying concepts for small numbers of
isomorphism classes, as HR struggled to solve larger classification problems.

– The process should not require the production of every algebraic structure
satisfying the axioms. This is because, when using Mace to generate all
structures and reduce them using its isomorphism filter, we found that the
intermediate files produced could often be unmanageably large (up to 4GB).

– The process should generate the classification theorem as a decision tree.
We found that decision trees often involved fewer concept definitions and
enabled easier classification of algebras.

Input: Cardinality c and basic properties P of the algebraic structures
Output: Decision tree (r,V, E)

1. Initialise V := {r}, E := ∅.
2. Let S be the set of unprocessed nodes of the tree, initially S := {r}.
3. While S 6= ∅ do

3.1. Pick v ∈ S with l(v)=Pv (i.e. the label of v specifies the properties Pv)
3.2. If there exists a model m that satisfies P ∪ Pv then:

3.2.1. If there exists m′ 6∼= m satisfying P ∪ Pv then:
3.2.1.1. Construct discriminants P1 and P2 for m and m′, respectively.
3.2.1.2. If P1=¬P2 then create two child vertices v1, v2 with edges e1, e2

such that l(e1)=P1, l(e2)=P2. S := S ∪ {v1, v2}.
3.2.1.3. Else create four child vertices v1, v2, v3, v4 and edges e1, . . . , e4

such that l(e1)=P1∧P2, l(e3)=P1∧¬P2, l(e2)=¬P1∧P2, and l(e4) =
¬P1∧¬P2. S := S ∪ {v1, v2, v3, v4}.

3.2.2. Else all structures of cardinality c with P ∪Pv are isomorphic: Mark v
as a leaf representing an isomorphism class.

3.3. Else no structures of cardinality c with P ∪Pv exist: Mark v as empty leaf.
3.4. S := S \ {v}.

4. Return (r,V, E).

Fig. 2. The bootstrapping algorithm used in approach 2.

The algorithm portrayed in Fig. 2 satisfies these criteria. This constructs a de-
cision tree by successively generating non-isomorphic algebraic structures and
associated discriminants until the maximal number of isomorphism classes is
reached. The result serves as a qualitative classification for the specified algebras
up to isomorphism for a given cardinality. The algorithm takes the cardinality
c and axiomatic properties P of the algebraic structures to be considered as
input. It returns a decision tree (r,V, E) for isomorphism classes of the algebraic
structure, where V is a set of vertices, E a set of edges, and r ∈ V is the root of
the tree. Each edge e ∈ E is labelled with an algebraic property and each vertex
v ∈ V is labelled with the conjunction of properties on the path from r to v.

In principle the algorithm is complete, i.e., for given cardinality c and ax-
iomatic properties P it provides a classification theorem after a finite number
of steps. In practice, however, the success of the algorithm depends on whether
all used systems actually provide the answers they are supposed to deliver (see
Sec. 5 for the discussion of the practical limitations of the algorithm).

To illustrate the algorithm, we use the example of the decision tree con-
structed to classify quasigroups of order 3, given in Fig. 3 (here, the vertices
of the tree are enumerated rather than assigned their actual labels, to preserve
space.)

Initially, the decision tree consists only of the root node. The single nodes of
the tree are expanded by first generating an algebraic structure satisfying the
properties specified by the node (step 3.2). For example, for the root node 1 in
Fig. 3, an arbitrary quasigroup of order 3 is constructed; for node 3, however, a

1 P1 ≡ ∃b b ◦ b = b
P2 ≡ ∀b b ◦ b = b
P3 ≡ ∃b ∀c bc 6= c
P4 ≡ ∃b ∀c cb 6= c

2 3

4 5

6 7 8 9

¬P1P1P2¬P2P3 ∧ P4P3 ∧ ¬P4

¬P3 ∧ P4

¬P3 ∧ ¬P4Fig. 3. Decision tree for the classification problem of order 3 quasigroups.

quasigroup that additionally satisfies the property ∃b b ◦ b = b is required. After
such a representant is generated by Mace, we check with Spass that it actually
satisfies the required properties. The first representant generated in our example
was quasigroup A2 given in Fig. 4. If no representant can be generated, we must
prove that there exists no algebraic system of cardinality c satisfying both the
original axioms P and the additional properties generated up to this point (step
3.3). This proof is again done by Spass. An example of this case is node 9, i.e.,
no quasigroup of size 3 can be constructed which satisfies P1 ∧¬P2 ∧¬P3 ∧¬P4.

When Mace does produce a model, we have two cases to consider: there
exists a non-isomorphic structure exhibiting the same properties considered so
far (step 3.2.1) or the property represented by the node constrains the structures
to a single isomorphism class (step 3.2.2). In the latter case, we employ Spass to
prove the appropriate isomorphism-class theorem (using Gap as in approach 1
to re-write the theorems in terms of generators and factorisations). For instance,
in node 2 we show that all quasigroups of order 3 without idempotent elements
belong to one isomorphism class. In the former case, we employ Mace to generate
a structure non-isomorphic to the original one. The two structures are then
passed to HR to compute two discriminants (step 3.2.1.1). Again, Spass does
the necessary verification of the non-isomorphic theorem and the discriminant
theorems. In the example, the quasigroup A4 given in Fig. 4 was constructed as
a non-isomorphic counterpart to A2. Given those two quasigroups, HR came up
with discriminants P1 and ¬P1 as stated in Fig. 3. Depending on the nature of
the discriminants, either two or four child nodes are constructed (steps 3.2.1.2 &
3.2.1.3). The case of two child nodes can be observed in the expansion of nodes
1 and 3 in Fig. 3, whereas the expansion of node 5 leads to four children. The

A2 a b c

a b a c
b a c b
c c b a

A4 a b c

a a c b
b c b a
c b a c

A6 a b c

a a b c
b b c a
c c a b

A7 a b c

a a b c
b c a b
c b c a

A8 a b c

a a c b
b b a c
c c b a

Fig. 4. Isomorphism class representants for quasigroups of order 3.

advantage of the former case is that when expanding the two child nodes, the
models for step 3.2 can be reused and do not have to be produced with Mace,
whereas in the second case, Mace has to be called for two of the nodes.

Once the decision tree is fully expanded, the discriminating properties of all
the isomorphism classes give the final classification theorem. In our example,
this corresponds to a disjunction of the labels of the doubly-circled leaf nodes.
Although we omit a formal proof, both the construction of the decision tree
as well as the fact that we work in classical logic (i.e. tertium non datur holds)
guarantee that the final decision tree determines all possible isomorphism classes
and a full classification for the algebraic systems specified by the input param-
eters. Importantly, the correctness of our implementation depends only on the
correctness of Spass.

The branching factor of up to four of the tree is influenced by two design
decisions for our algorithm: On the one hand, we could have kept the decision tree
binary by always branching with respect to one discriminant and its negation.
However, this would have meant losing some of the more intuitive discriminants
generated by HR, as well as discarding previously computed results and thus
increasing the number of calls to HR. Alternatively, we could have given HR
more than two non-isomorphic structures to compute discriminants for, thereby
reducing the number of calls to HR and increasing the branching factor of the
tree. We decided against this, because this increases the risk that HR would
not come up with an answer, or produce lengthier, more complex discriminants,
which are usually more difficult to verify with Spass.

Both the size of the decision tree and the number of calls to Spass and
Mace can become fairly large, even when considering a relatively small number
of structures. However, the algorithm offers some potential for parallelism and
distribution. We currently exploit this by parallelising steps 3.2.1 and 3.2.2, i.e.
generating a non-isomorphic structure with Mace and proving the isomorphism-
class theorem with Spass. This actually increases efficiency, since both computa-
tions are generally very expensive and take a long time. We gain another small
speed up by constructing the proofs for step 3.2.1.1 in parallel with Spass. We
highlight more potential for parallelism in Sec. 6.

5 Results from the Bootstrapping Approach

Given the more ad-hoc, semi-automated nature of approach 1 when compared to
approach 2, and given that approach 2 was found to be more effective, while we
have supplied some illustrative results for approach 1 in Sec. 3, we concentrate
here on the testing we undertook for approach 2. We tested the hypothesis that
the bootstrapping system can generate and verify full classification theorems for
loops, groups, quasigroups and monoids up to size 6. Hence we experimented by
using the system to generate classification theorems, and Table 1 summarises the
results of these experiments. For each algebra, the table describes the decision
tree constructed to classify it, in terms of the number of nodes, the number of
identified isomorphism classes, and the maximal depth of the tree. Moreover, it

Algebra Nodes IsoClasses Max-Depth Isoclass Proof Gensys-Verification Proof

Monoids3 13 7 5 < 1s < 1s
Quasigroups3 9 5 4 < 1s < 1s
Quasigroups4 71 35 9 17s 50s

Loops4 3 2 2 2s < 1s
Loops5 11 6 5 21s 45s
Loops6 233 109 17 3m4s 668m17s
Groups4 3 2 2 < 1s < 1s
Groups6 3 2 2 1m40s 6m10s

Table 1. Results of the experiments with the bootstrapping approach.

provides the mean times of Spass runs to prove the necessary isomorphism-class
and gensys-verification theorems, i.e., the most complex proof problems.

We see that the proof time taken by Spass significantly increases with the
cardinality of the algebra as well as with the depth of the trees (the higher
the depth, the more properties associated with the nodes). In particular, these
statistics suggest that cardinality 7 is the borderline for the discussed techniques,
since we cannot hope to prove, in particular, gensys-verification theorems beyond
cardinality 8.1 However, we believe it is a significant achievement to produce a
classification theorem for the 109 isomorphism classes of loops of size 6. More-
over, we currently employ Spass in auto-mode, and it might be possible to push
the solvability horizon with settings tailored to our problems.

The time Mace needs to construct a model for a node in a tree depends on
both the cardinality of the structures and the depth of the node in the tree.
The deeper the node in the tree, the more properties the model has to satisfy.
For instance, for the initial nodes of Loops6, Mace needed less than a second to
construct a model. For the deep nodes it needed up to 15 seconds. The time Mace
needs to construct a non-isomorphic structure is typically considerably longer
(up to 4 minutes for Loops6). This is not surprising, as the encoding of these
Mace problems comprises many additional symbols for the homomorphisms.
For nodes that correspond to isomorphism classes, no non-isomorphic structures
exist, and for these cases, Mace had to traverse the entire search space, which
could take up to an hour for Loops6.

In the experiments summarised above, the bootstrapping algorithm always
computed only two non-isomorphic structures, which it passed to HR, and HR
succeeded in finding suitable discriminants in every case. Moreover, in no cases
were Mace or HR shown to have performed incorrect calculations. We also exper-
imented for Loops6 with settings that passed 3 and 4 non-isomorphic structures
together to HR. In these experiments HR often took considerably longer and
sometimes failed to provide discriminants. Moreover, when successful, it created
discriminants that were considerably more complex as they involved more quan-

1 HR succeeded to classify groups of order 8. In approach 1, when verifying the clas-
sification of HR, Spass was able to prove all 5 isomorphism-class theorems (mean
time: around 7 hours) but succeeded to prove only one gensys-verification theorem
(in about 19 hours). We interrupted the other runs of Spass after 3 days.

tifiers and sub-formulas. These in turn made the verification problems much
more difficult for Spass.

6 Conclusions and Further Work

We have presented a novel approach to constructing classification theorems in
pure mathematics, which has produced novel and interesting results of a qualita-
tive nature. The classification theorems produced have often contained classically
interesting results such as commutativity and idempotency, and we believe, es-
pecially for the larger classification problems, that no such theorems have ever
been produced. Our bootstrapping algorithm successfully exploits the strengths
of diverse reasoning techniques including deduction, inductive learning, model
generation and symbolic manipulation, while avoiding many weaknesses we iden-
tified in earlier approaches, which we have also presented. The collaboration of
the various systems produces results that clearly cannot be achieved by any sin-
gle system, and the incorporation of external systems offers improved flexibility,
as we can profit from any advances of the individual technologies.

Thus far we have dealt only with isomorphism classes of relatively simple
algebraic structures. However, our approach is adaptable to more complicated
algebraic domains and indeed Spass, Mace and HR have all been demonstrated
to work in algebras over two operators like rings. In addition, we also want to
experiment with different types of equivalence relations, which can lead to more
insights about the structures under consideration. For instance, quasigroups and
loops can also be grouped into isotopy classes, and modules can be distinguished
with respect to their uniform dimensions. Moreover, classification is not only
interesting in algebraic domains, and our approach could also be applied to
other domains such as analysis, differential geometry or number theory.

In addition to scaling up in terms of the complexity of the domains looked
at, we also hope to produce classification theorems for larger sizes. The boot-
strapping approach provides much potential for parallelisation, some of which
we already exploit in our current implementation. In addition, the decision tree
offers potential for distribution since new threads can be spawned for already ex-
isting vertices by applying the algorithm to the original axioms extended by the
properties a vertex is labelled with. Nevertheless, the results of our experiments
suggest that cardinality 8 is the borderline of our current approach. A general
first-order theorem prover like Spass seems unable to prove isomorphism-class
and gensys-verification problems with larger cardinalities. There are two pos-
sible solutions to further push the solvability horizon. Firstly, we could try to
involve further symbolic computations to simplify the problems at hand. Sec-
ondly, special theorem proving techniques for finite algebras could be developed
and employed.

In mathematics, classifying theorems are often generative, e.g., Kronecker
showed that, by constructing certain direct products of cyclic groups, it is pos-
sible to generate every Abelian group. To produce such generative theorems,
it may be necessary to more systematically construct discriminants in order to

gain comparable properties for structures of diverse cardinality, and to work
with more complicated concepts such as maps between algebraic structures and
products of algebras, such as the direct product. We believe that as systems such
as the one we have presented here become more sophisticated, they may be of
use to pure mathematicians. For instance, currently only Abelian quasigroups
are classified [13], whereas we have classified all quasigroups, albeit only up to
a certain size. We intend to analyse the classification theorems produced by the
system in order to identify some concepts which may form a part of a general
classification theorem. In particular, we intend to work with algebras associated
with Zariski spaces [7], a relatively new domain of pure mathematics which we
hope to explore via automated means.

Acknowledgements

We would like to thank Wendy Myrvold and colleagues for providing data on
isomorphism classes for loops and quasigroups, Bill McCune for expert advice
about Mace, Thomas Hillenbrand for providing us with an improved version
of Spass and helping us to encode our proof problems, and Geoff Sutcliffe for
helping us to determine that Spass was best suited for our task.

References

1. S Colton. Automated Theory Formation in Pure Mathematics. Springer, 2002.
2. S Colton. The HR program for theorem generation. In Voronkov [15].
3. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.3,

2002. http://www.gap-system.org.
4. J Humphreys. A Course in Group Theory. Oxford University Press, 1996.
5. K Kunen. Single Axioms for Groups. J. of Autom. Reasoning, 9(3):291–308, 1992.
6. L Kronecker. Auseinandersetzung einiger Eigenschaften der Klassenanzahl idealer

komplexer Zahlen. Monatsbericht der Berliner Akademie, pages 881–889, 1870.
7. R McCasland, M Moore, and P Smith. An introduction to Zariski spaces over

Zariski topologies. Rocky Mountain Journal of Mathematics, 28:1357–1369, 1998.
8. W McCune. Single axioms for groups and Abelian groups with various operations.

J. of Autom. Reasoning, 10(1):1–13, 1993.
9. W McCune. Mace4 Reference Manual and Guide. Argonne National Laboratory,

2003. ANL/MCS-TM-264.
10. B McKay, A Meinert, and W Myrvold. Counting small latin squares. European

Women in Mathematics Int. Workshop on Groups and Graphs, pages 67–72, 2002.
11. A Meier, V Sorge, and S Colton. Employing theory formation to guide proof

planning. In Proc. of Calculemus-2002, LNAI 2385, pages 275–289. Springer, 2002.
12. R Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
13. J. Schwenk. A classification of abelian quasigroups. Rendiconti di Matematica,

Serie VII, 15:161–172, 1995.
14. J Slaney, M Fujita, and M Stickel. Automated reasoning and exhaustive search:

Quasigroup existence problems.Comp &Math with Applications, 29:115–132, 1995.
15. A Voronkov, editor. Proc. of CADE–18, LNAI 2392. Springer, 2002.
16. C Weidenbach, U Brahm, T Hillenbrand, E Keen, C Theobald, and D Topic. SPASS

version 2.0. In Voronkov [15], pages 275–279.

