
Integrative Top-Down System Metabolic Modeling in Experimental

Disease States via Data-Driven Bayesian Methods

Jung-Wook Bang,† Derek J. Crockford,† Elaine Holmes,† Florencio Pazos,‡

Michael J. E. Sternberg,‡ Stephen H. Muggleton,§ and Jeremy K. Nicholson*,†

Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology & Anaesthetics,
Sir Alexander Fleming Building, Imperial College, London SW7 2AZ, U.K., Structural Bioinformatics Group,

Division of Molecular Bioscience, Imperial College, London SW7 2AY, U.K., and Computational
Bioinformatics Group, Department of Computing, Imperial College, London SW7 2AZ, U.K.

Received June 7, 2007

Multivariate metabolic profiles from biofluids such as urine and plasma are highly indicative of the
biological fitness of complex organisms and can be captured analytically in order to derive top-down
systems biology models. The application of currently available modeling approaches to human and
animal metabolic pathway modeling is problematic because of multicompartmental cellular and tissue
exchange of metabolites operating on many time scales. Hence, novel approaches are needed to analyze
metabolic data obtained using minimally invasive sampling methods in order to reconstruct the patho-
physiological modulations of metabolic interactions that are representative of whole system dynamics.
Here, we show that spectroscopically derived metabolic data in experimental liver injury studies (induced
by hydrazine and R-napthylisothiocyanate treatment) can be used to derive insightful probabilistic
graphical models of metabolite dependencies, which we refer to as metabolic interactome maps. Using
these, system level mechanistic information on homeostasis can be inferred, and the degree of
reversibility of induced lesions can be related to variations in the metabolic network patterns. This
approach has wider application in assessment of system level dysfunction in animal or human studies
from noninvasive measurements.
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Introduction

The metabolic signature of intact biological systems, as
expressed in their secreted fluids, is influenced strongly by
genetic, environmental, and disease factors.1–3 Most current
systems biology approaches involve a bottom-up paradigm in
which the behavior of a complex system is dissected from
understanding interactions at the cellular level, e.g., in unicel-
lular organisms.3–5 Such approaches are not applicable to
problems relating to screening for human disease or molecular
epidemiological studies because it is only possible to sample
real populations from the top, that is, with readily available
biomaterials such as plasma and urine on a large scale. These
fluids give a useful end-point metabolic signature that is
representative of integrated system function or dysfunction
related to disease; however, at present there are no statistical
approaches capable of delivering network interaction informa-
tion for a complex multicompartmental system. Probabilistic
graphical models (Bayesian models) have been proposed as an
efficient means of visualizing interactions at several levels of
biomolecular organization influencing metabolic regulation

and control.6,7 Metabolic networks provide a potential frame-
work for modeling dynamic biological events at an integrated
or global systems biology level, where many different cell types
interact to influence fluxes in extracellular metabolic pools. The
metabolic information available in databases such as KEGG
(Kyoto Encyclopedia of Genes and Genomes) allows a starting
point for the study of metabolism from a network perspective.8

The modular architecture of such networks (grouping into
cohesive subnetworks) and the relationship between these
modules and classical pathways9 have been reported. Substan-
tial quantitative modeling work has been carried out on
metabolic flux analysis,10 but this is not readily applicable to
data sets determined from biofluids, which represent integrated
compartment interactions.

Most metabolic pathway analysis theories have been devel-
oped from in vitro studies on isolated cells where biological
activities can be assumed, and fluxes through pathways can
be followed using isotopic labeling. Various mathematical
techniques have been applied to model such cellular biological
systems including biochemical systems theory (BST), metabolic
control analysis (MCA), and flux balance analysis (FBA).11–14

In previous studies, gene expression data have been modeled
using Bayesian techniques assuming complete knowledge of
the structure of the network and measurement of cellular
fluxes.15,16 However, in order to understand system level
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metabolic regulation in humans (or indeed animals used in
toxicological, pharmacological, or functional genomic studies),
a radically different measurement and modeling paradigm is
required.3 Therefore, in marked contrast to earlier attempts,
we have provided a graphical representation of the perturbed
metabolic network (an interactome map) directly from empiri-
cally derived metabolic data, reflecting integrated multicellular
biochemical interactions at the whole system level.2

1H NMR spectroscopy generates complex and highly repro-
ducible metabolic signatures of biofluids that have been widely
demonstrated to carry detailed information on a variety of
pathophysiological conditions.1,2,17 It has been shown that
diverse metabolic signatures of homeostatic and pathological
processes are carried in urine,1,18 which is well suited for
human studies as collection is noninvasive. A probabilistic
graphical model permits the use of nonspatially registered
metabolic information to describe the integrated system activi-
ties of many tissue compartments. Thus, we developed a novel
interactome map approach that utilizes both probabilistic
reasoning (Bayes’ theorem) and graphical modeling (visualiza-
tion) for describing the metabolic relationships.19 These ap-
proaches are suitable for dealing with biological data since they
provide a framework for incorporating prior knowledge, dealing
with uncertainty, and combining competing models for ex-
plaining biological phenomena.20,21 We use two model hepa-

totoxins with markedly different mechanisms of action, viz.,
hydrazine, a toxic metabolite of the antitubercular drugs
isoniazid and iproniazid that produces steatotic liver pathol-
ogy,22–24 and R-napthylisothiocyanate (ANIT), which causes bile
duct necrosis, cholangitis, and bile duct proliferation, resulting
in secondary hepatic cholestasis.25 The toxins were given at
two dose levels to simulate hepatic disease states.

Metabolic Interactome Mapping. A metabolic interactome
map is a novel graphical means of representing the homeostatic
and pathological interactions of metabolites derived from
multiple cellular sources at the organism level. This type of
mapping is not constrained by or dependent on prior knowl-
edge of pathway interactions at the cellular level or the
conventional pathway formalism, but may nonetheless result
in structural similarities owing to organism-wide connections
in pathway control and regulation. The procedure for generat-
ing an interactome map is shown in Figure 1. Quantitative
metabolic data are used to calculate dependencies between
metabolites in basal and challenged biological systems. The
interactome maps are cross-validated26 to provide a measure
of their robustness. Here, we use the word dependency to refer
to a specific measure of the strength of the statistical associa-
tion between variables (metabolite concentrations), but this has
no a priori interpretation in terms of biological processes.

Figure 1. Procedure for generating a metabolic interactome map. For each toxin, a group of 30 Sprague–Dawley rats was divided
equally into control, low-, and high-dose cohorts. Urine samples were collected and analyzed by 1H NMR spectroscopy to determine
relative levels of target metabolites. We constructed an interactome map using the dependency information calculated from these
levels.
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Experimental Procedures

Samples and Spectroscopy. Rat urine samples were analyzed
by 1H NMR spectroscopy as part of the COMET project,27,28

and the resulting data were used here. Each COMET toxin study
was performed by a specific collaborating center according to
pre-agreed protocols, which included comparable experimental
conditions to be applied (e.g., housing and diet). In each one,
male Sprague–Dawley rats were randomly allocated to three
dose groups (10 per group), giving 30 rats per study. The dose
groups were control, low dose, and high dose. In one of
the studies addressed here, hydrazine hydrochloride in 0.9%
saline was administered orally at 30 mg/kg (low dose) or 90
mg/kg (high dose), and in the other, ANIT in corn oil was
administered orally at dose levels of 12.5 mg/kg (low dose) or
125 mg/kg (high dose). Dose vehicles alone were administered
to the control animals. Low dose levels were designed to invoke
a threshold response in the animals, while high dose levels were
designed to invoke a pathological response. All animal experi-
ments were conducted according to specified U.K. national
guidelines.

The time of dosing was defined as zero hours. Rats were
housed in individual metabolic cages under controlled tem-
perature, humidity, and light cycles. Urine samples were
collected for time intervals spanning –24 to –16, –16 to 0, 0–8,
8–24, 24–48, 48–72, 72–96, 96–120, 120–144, and 144–168 h, with
each sample labeled by the end time of the sampling interval.
Half of each dose group was euthanized at 48 h and the rest at
168 h, giving 225 samples per toxin study (ignoring small
discrepancies due to missing samples). The start of an experi-
ment was timed so that the –24 to –16 and 0 to 8 h intervals
occurred during daylight.

One dimensional 1H NMR spectra of phosphate-buffered
samples were measured at 600 MHz in a conventional manner
using a standard 1D presaturation pulse sequence for water
suppression.29 The spectra were recorded into 32K data points
and referenced to 3-(trimethylsilyl) propionic acid-d4 (as
sodium salt). Further details of experimental protocols and
spectral acquisition parameters have been reported.28,30

Histopathology Assessment of the Liver. This was con-
ducted by a team of COMET pathologists using preagreed
criteria and vocabulary. The results obtained are consistent with
published material.22–25 The severity scale runs from 0 to 4. At
low dose, there was a single hydrazine-treated animal that
displayed a severity 1 focus of midzonal necrosis at 48 h
postdose and two ANIT-treated animals that developed a
severity 1 focal, single-cell necrosis at 48 h. The lesions at high
dose, which was a dose level intended to induce overt tissue
damage, are summarized below.

Hydrazine. Hepatocellular cytoplasmic vacuolation was
found in varying severity from 2 to 4 in all animals euthanized
at 48 h and from 1 to 3 in 3 of the 5 remaining animals at 168 h.
The high dose of hydrazine induced midzonal necrosis at
severity 1 to 2 at 48 h postdose in all animals, but no necrosis
was observed at 168 h.

ANIT. At 48 h postdose, 4 of the 5 animals had bile duct
necrosis at severity 2 to 3. The same animals also had severity
1 oval cell hyperplasia, a regenerative response, and periportal
single-cell hepatocyte necrosis at severity 1 to 2. Periportal
inflammation at severity 2 was observed in all animals eutha-
nized at 48 h and in 4 of the 5 animals at 168 h. All rats
continuing to the end of the 168 h study period demonstrated

periportal fibrosis at severity 1 to 2, which was multifocal in 4
animals and focal in 1.

Data Analysis and Metabolic Interactome Map Con-
struction. The detailed process of generating a metabolic
interactome map consists of four steps.

Step 1: Metabolite Analysis. The frequency domain data
obtained were integrated to find the intensities of the NMR
signals due to 19 endogenous metabolites of interest. The exact
positions of these signals in the spectra were identified and
the signals integrated, using an in-house computer program
employing mathematical transformations from the reference
spectra of pure compounds.31 The intensities were normalized
by area to account for any variation in urine concentration.
The 19 metabolites were chosen because their signals could
be measured reliably using this method and because they are
all significant in their own right.

There were 10 samples (time points) available for each
animal euthanized at 168 h and 5 for each animal euthanized
at 48 h. For each sample (characterized by subject, 1–30, and
time point), the relative intensity for each metabolite was
calculated as the ratio to the zero hour intensity (in that
subject). Hence, the effects of irrelevant, interanimal response
variation were minimized, and it was reasonable to treat every
animal in a dose group equally. This step yielded a fold change
matrix, with rows labeled according to sample (i.e., subject and
time point) and columns according to metabolite. A logarithmic
fold change matrix was obtained from this by taking the
logarithm of each element. This is a standard technique when
modeling variables that may have different dynamic ranges so
that smaller ones may assume some importance in the model
and proportional increase and decrease are treated equally. For
each metabolite, the range of the logarithmic fold change was
then divided into five equal intervals, which were labeled on
an increasing scale from 1 to 5, and finally, the label of the
interval enclosing each value was assigned as the corresponding
quantized fold change value. This was done because the input
to the interactome map consists of a matrix of discrete values.

Step 2: Model Construction. Interactome maps were con-
structed using a dependency measure derived from the
Kullback-Leibler information divergence32,33

D(X, Y))∑
X,Y

[P(x, y)log
P(x, y)

P(x)P(y)]g 0 (1)

where x and y are the members of data sets X and Y, and P is
the probability of the given members occurring (jointly or
independently, according to the number of arguments). This
is a specific form of dependency measure derived from
information theory. Given that any form of functional relation-
ship exists between X and Y, this form of dependency measure
will be sensitive to it. In other words, it provides a measure of
the statistical association between two variables, whether the
association is linear or nonlinear, in contrast to the more
conventional Pearson correlation coefficient, which is only
sensitive to linear associations. It is important to realize that
no prior biological knowledge is required in this calculation
and that a strong dependency value does not necessarily imply
a relationship between any associated biological processes: this
is a matter of interpretation by biological domain experts upon
consideration of the complete, validated interactome map.

Step 3: Metabolic Interactome Mapping. After obtaining the
dependency measure for every metabolite pair in the data, the
network was constructed by connecting pairs that have strong
dependencies exceeding a predefined threshold value. For each
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toxin and dose regimen, this threshold was chosen so as to
obtain a number of dependency relations of the same order of
magnitude as the number of metabolites measured and hence
to avoid overfitting the model to the data.

Step 4: Robustness Validation. Here, we employed 10-fold
cross-validation,26 which is a widely used test of model robust-
ness. First, a data set is divided at random into 10 subsets. The
first nine are used to build a model using the technique under
test, which is used to predict the values in the tenth. The
process can then be repeated nine times: each of the first to
ninth subsets can take a turn as the one to be predicted, using
a model built with the others. Therefore, 10 scores can be
obtained, and the mean score is defined to be the result of the
robustness test.

To make a fair test, the values corresponding to each toxin
and to low or high dose samples were tested separately.
Therefore, our low dose hydrazine data, consisting of 19
metabolite values (quantized fold changes ranging from 1 to
5) for each of 75 samples, were divided by sample at random
into subgroups of approximately seven. An interactome map
was built using the values for nine of these subsets and used
to predict the values in the tenth subset, and the whole process
repeated nine times as described above. The mean robustness
score obtained for all metabolites was 67%; therefore, we can

say that if predicting the value (1 to 5) of a metabolite using
an interactome map, we would expect to get the right answer
about 7 times out of 10 (i.e., 3.5 times better than guessing).
The corresponding scores for low dose ANIT, and high dose
hydrazine and ANIT, were 70%, 49%, and 52%, respectively. In
a spirit of nonbias, data for all time points have been used in
these calculations, including the predose samples; therefore,
the scores are conservative compared to what might be
obtained for a larger study in which comparable dose regimes
and time points could both be tested separately.

Results and Discussion

Experimentally Induced Liver Injury. Prior to considering
the system perturbed by toxins, interactome maps were
calculated on the basis of spectra for 660 control animals,
aggregated from several comparable COMET studies.27 These
provided a reference dependency network (Figure 2A) reflecting
normal metabolism for Sprague–Dawley rats and highlighting
a number of expected relationships such as those involving the
tricarboxylic acid (TCA) cycle.

The networks for low and high dose hydrazine and R-napth-
ylisothiocyanate treated animals are shown in Figure 2B and
C, and represent the product of diverse metabolic interactions

Figure 2. (A) Metabolic interactome map for the control case, based on spectra for 660 control animals, aggregated from several
comparable COMET studies. Each node (O) and arc (-) represents a metabolite and the degree of dependency between the connected
pair of metabolites, respectively. The width of a colored arc represents the degree of strength in dependency. The figure provides a
reference reflecting normal metabolism, and highlights a number of expected relationships, e.g., tricarboxylic acid (TCA) cycle, and
lactate and acetate. (B and C) Metabolic interactome maps for hydrazine and R-napthylisothiocyanate (ANIT) (2B: low dose, 2C: high
dose). A black arc (-) indicates commonality of dependencies between the two toxins in the high-dose case (indicating a common
liver damage end point). The meanings of the color-coded nodes are given in A. Arrow direction (v or V) indicates the increase or
decrease of metabolite relative to the control.
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in numerous tissues (Table 1). Results pertaining to the toxin-
disrupted systems have been expressed as deviations from the
basal network. Many dependencies center on major metabo-
lites that form hubs in the network, for example, 2-oxoglutarate
(hydrazine case, Figure 2B). The characteristic increase in the
number of significant dependencies after toxin treatment is
marked as is the variation with dose and partial convergence
at high dose for both toxins (Figure 2C). It should be noted
that the administration of a toxin may cause temporary changes
in appetite in experimental animals,34 but in our studies there
was no evidence of fasting ketosis for either toxin even at high
dose.

Pronounced differences in the metabolic responses at both
doses of each compound are observed, as would be expected
from their mechanistic toxicological differences. However, at
high doses the interactome maps for each compound-disrupted
system share a core pattern of perturbed metabolite depend-
encies (Figure 2C). This convergence of network interaction is
consistent with the observation that during liver damage the
mechanism-specific metabolic features of the network are
partially replaced by features typical of a general metabolic
failure pattern indicative of overt end-point cellular damage
common to both toxins, that is, there are overriding convergent
metabolic features that are a consequence of liver injury. At
low doses, where the effects are readily reversible, the networks
are highly toxin-specific (Figure 2B), that is, relate to pharma-
cological and mechanistic changes, and share no common
pathway disruptions. Generally, the strengths of the metabolite

dependencies vary considerably according to compound type
and dose. Also, high dose hydrazine yields relationships with
dependency values approaching unity, whereas ANIT at low
dose gives weaker values (∼0.25), and this is consistent with
histopathology data suggesting that the level of observed
damage is lower with ANIT. For both toxins, the specific
metabolic networks observed at low dose collapse at high dose,
and new dependencies are formed (Figure 2B and C).

Short-Range Dependency Relationships. Many metabolite
dependencies can be described as short-range, indicating
linkage by a relatively small number of enzymatic steps in a
specific metabolic pathway (these are particularly evident at
low dose). These are amenable to biochemical interpretation
using conventional knowledge of metabolism and generally
occur within a single cellular system. For example, the robust
dependency (hydrazine case, Figure 2B) between 2-aminoadi-
pate (2-AA) and 2-oxoglutarate (2-OG) can be explained by
disruption of the lysine catabolic pathway, where both me-
tabolites are substrates of the enzyme 2-AA aminotransferase.24

This is closely associated with the secondary neurotoxic effects
of hydrazine due to pathway disruption in the hippocampus.35

Likewise, the linkage of creatine to creatinine via the creatine
phosphokinase catalyzed reaction to creatine phosphate is
consistent with the strong dependency observed in the ANIT
network (ANIT case, Figure 2B). The TCA cycle dependencies
are also short-range in terms of the number of enzymatic steps
between compounds and in the sense that the reactions are
colocated within the mitochondria (hydrazine case, Figure 2B).

Table 1. Selected Biochemical Interpretations of the Interactome Maps Obtained for Hydrazine and R-Naphthylisothiocyanate
(ANIT) Perturbations

observed dependency toxin, dosage, and suggested rationale for dependency

hydrazine low dose case
2-aminoadipate to 2-oxoglutarate disruption of lysine catabolism in liver and kidney, which relates

to hippocampal neurotoxicity24

2-oxoglutarate to citrate and succinate reduced 2-oxoglutarate availability due to transaminase
inhibition24

�-alanine to taurine • competition for the same renal transport system.36

• Taurine is a primary biomarker of liver dysfunction, and
�-alanine is a surrogate biomarker for liver damage; therefore,
they should vary in concert in response to liver injury.37

methylamine to acetate These both relate to the gut microbiotal effect on metabolism.42

Methylamines derive from microbiotal conversion of choline
and are associated with liver toxicity. Acetate is produced by
colonic fermentation of dietary fiber

hydrazine high dose case
hippurate to citrate and fumarate The benzoylation of glycine to form hippurate is colocated with

TCA cycle activity in the mitochondria; therefore, it is
reasonable that hippurate has dependencies with TCA
intermediates24,38

ANIT low dose cases
creatine to citrate, fumarate, hippurate, creatinine and

trimethylamine-N-oxide
Multiple cross-tissue interactions, e.g., citrate/fumarate/

hippurate, is due mitochondrial colocation, and creatine to
creatinine to muscle metabolism

trimethylamine-N-oxide to lactate, hippurate, formate,
trans-aconitate, N-methylnicotinamide and creatine

Trimethylamime-N-oxide is a major amine excretory product in
man, associated with gut microbiota;43 the other metabolites
have been associated with diet or energy metabolism34 and
therefore may link to trimethylamine-N-oxide through the gut
microbiotal effect

hydrazine and ANIT high dose cases
N-methylnicotinate hub; hippurate hub These have many links in common for both toxins and therefore

must say something about the high dose case in particular,
i.e., are indicative of liver damage and/or severe disruption of
the pathways between gut microbiota and host

Integrative Top-Down System Metabolic Modeling research articles

The Journal of Proteome Research • Vol. 7, No. 2, 2008 501



Long-Range Dependency Relationships. We also observed
what can be considered long-range dependencies between
pairs of metabolites, that is, those that can only be connected
via many intermediate enzymatic steps in a specific metabolic
pathway, and hence are harder to explain in pathway terms.
For example, �-alanine acts as a hub metabolite from which
long-range dependencies to several TCA cycle intermediates
derive (hydrazine case, Figure 2B); these can be connected via
glutamate decarboxylase and L-aspartate in KEGG. Similarly,
dependencies spanning multiple biochemical cycles can also
be demonstrated; the dependency of argininosuccinate to 2-OG
suggests a long-range interaction between the TCA and urea
cycles.

Wormhole Effects. Most intriguing, however, are metabolite
dependencies that involve multiple subsystems, physiological
interactions, or transport mechanisms and that cannot be
explained by conventional metabolic pathways at all, which
can be thought of as wormhole connections. For example, the
dependency between taurine and �-alanine (hydrazine case,
Figure 2B) may occur because these compounds can compete
for the same renal transport system.36 This causes a physi-
ological link at the renal tubule level so that taurine metabolism
has a remote effect on �-alanine reabsorption from the urine.
Individual modulations in the levels of urinary taurine and
�-alanine have been previously reported as biomarkers of
general hepatotoxicity, although the excretion of the latter has
been attributed to concomitant renal failure.37 The depend-
encies linking hippurate with citrate and with 2-OG (Figure 2C)
also identify a shared cellular compartment (mitochondria);
here, benzoic acid of gut microbiotal origin17 is conjugated with
glycine via a mitochondrial acetyl-Coenzyme A activation step
to form hippuric acid,38 in colocation with the topographical
center for TCA cycle activity. This illustrates the ability of in
vivo interactome maps to transcend species boundaries and
allow virtual linkage of the mammalian primary metabolome
(under host genomic control) with the cometabolome, which
is partly under symbiotic gut microbial control.17 The impor-
tance of transgenomic cometabolic interactions in the develop-
ment of many disease states is now well documented,1,2,17 and
our new modeling approach appears ideally suited to probing
such system complexity.

Conclusions

The use of metabolic interactome maps provides automated
identification of metabolite dependencies for the rat undergo-
ing toxic challenge from model drugs, enabling the visualization
of short- and long-range metabolite dependencies, confirming
known relationships between compounds, and identifying
relationships that can result from interactions beyond currently
established metabolic pathway maps. There is no need for prior
knowledge of any underlying network of enzymes or transport-
ers; therefore, the method could be used to generate hypoth-
eses on undiscovered virtual pathways.

Data used here to construct these maps encompass all
sampling times and hence do not directly capture the temporal
progression of the toxic lesions, which we have previously
modeled using other methods.30,39–41,44 Nevertheless, the method
could be extended to model the dynamics of dependency
relationships.

Unlike mathematical models derived for single cell systems
or simple organisms such as yeast, interactome maps of
biofluids can capture the metabolic cross-talk between spatially
disparate tissues and organs, providing a more holistic view of

the metabolic status of complex organisms. Thus, with further
development, a range of genetic and environmental factors
including nutritional states, level of oxidative stress, age,
hormone levels, and so forth might be visualized in terms of
metabolic network activity.

Abbreviations: NMR, nuclear magnetic resonance; KEGG,
Kyoto Encyclopedia of Genes and Genomes; BST, biochemical
systems theory; MCA, metabolic control analysis; FBA, flux
balance analysis; ANIT, R-napthylisothiocyanate; TCA, tricar-
boxylic acid; 2-AA, 2-aminoadipate; 2-OG, 2-oxoglutarate.
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