
Mach Learn
DOI 10.1007/s10994-011-5259-2

ILP turns 20
Biography and future challenges

Stephen Muggleton · Luc De Raedt · David Poole ·
Ivan Bratko · Peter Flach · Katsumi Inoue ·
Ashwin Srinivasan

Received: 8 May 2011 / Accepted: 29 June 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Inductive Logic Programming (ILP) is an area of Machine Learning which has
now reached its twentieth year. Using the analogy of a human biography this paper re-
calls the development of the subject from its infancy through childhood and teenage years.
We show how in each phase ILP has been characterised by an attempt to extend theory and
implementations in tandem with the development of novel and challenging real-world appli-
cations. Lastly, by projection we suggest directions for research which will help the subject
coming of age.

Editors: Paolo Frasconi and Francesca Lisi.

S. Muggleton (�)
Imperial College London, London, UK
e-mail: s.muggleton@imperial.ac.uk

L. De Raedt
Katholieke Universiteit Leuven, Leuven, Belgium
e-mail: Luc.DeRaedt@cs.kuleuven.be

D. Poole
University of British Columbia, Vancouver, Canada
url: http://www.cs.ubc.ca/~poole/

I. Bratko
University of Ljubljana, Ljubljana, Slovenia
e-mail: bratko@fri.uni-lj.si

P. Flach
University of Bristol, Bristol, UK
e-mail: Peter.Flach@bristol.ac.uk

K. Inoue
National Institute of Informatics, Tokyo, Japan
e-mail: ki@nii.ac.jp

A. Srinivasan
South Asian University, New Delhi, India
e-mail: ashwin.srinivasan@wolfson.oxon.org

mailto:s.muggleton@imperial.ac.uk
mailto:Luc.DeRaedt@cs.kuleuven.be
http://www.cs.ubc.ca/~poole/
mailto:bratko@fri.uni-lj.si
mailto:Peter.Flach@bristol.ac.uk
mailto:ki@nii.ac.jp
mailto:ashwin.srinivasan@wolfson.oxon.org


Mach Learn

Keywords Inductive Logic Programming · (Statistical) relational learning · Structured
data in Machine Learning

1 Introduction

The present paper was authored by members of a discussion panel at the twentieth Interna-
tional Conference on Inductive Logic Programming. The topic of the panel was a discussion
of the achievements of the field to date and possible new directions for the future. Discus-
sions by email following the panel led to the present paper, in which an attempt has been
made to reach consensus among the sometimes disparate views of the panelists.

The first workshop on Inductive Logic Programming was held twenty years ago, and
brought together a diverse group of researchers working at the intersection of Machine
Learning and Logic Programming. This paper reflects on the achievements of the subject
to date and the challenges ahead. The subject has progressed through a number of distinct
phases which we describe in terms of its infancy, childhood and teenage years. In each phase
ILP has been characterised by an attempt to extend theory and implementations in tandem
with the development of novel and challenging real-world applications. The paper suggests
directions for future research which are aimed at helping the subject coming of age into
adulthood.

This paper is organised as follows. Section 2 describes some of the motivations of the
field by situating it within the broader context of Machine Learning. This is exemplified by
various problems which benefit from a relational representation. Section 3.1 describes sev-
eral phases of the twenty year history of the field starting from the year of the first conference
and founding paper in 1991 and progressing through to the present day. Various possible fu-
ture directions for the field are then described in Sect. 4. We then conclude the paper in
Sect. 5 and provide a few pointers for further reading in Sect. 6. Lastly we summarise the
author contributions to the paper in Sect. 6.

2 Motivation of ILP

The field of Inductive Logic Programming essentially combines Machine Learning with
logical knowledge representation. To understand the needs for such a combination, consider
learning from the two datasets in Fig. 1 (from Poole and Mackworth 2010). Dataset (a) is
the sort used in traditional supervised and unsupervised learning. Standard textbook super-
vised learning algorithms can learn a decision tree, a neural network, or a support vector
machine to predict User Action. A belief network learning algorithm can be used to learn a
representation of the distribution over the features.

Dataset (b), from which we may want to predict what Joe likes, is different. Many of the
values in the table are meaningless names that cannot be used directly in supervised learning.
Instead, it is the relationship among the individuals in the world that provides the general-
izations from which to learn. Learning from such datasets is the core task of Inductive Logic
Programming (ILP) (Muggleton and De Raedt 1994; Lavrač and Džeroski 1993) mainly
because logic programs provide a good representation for the generalizations required to
make predictions. Logic programs are also more expressive than alternative representations
that are sometimes used today to cope with such data (such as network and graph-based
representations).

Lastly, a key goal of ILP is the generation of human-interpretable explanations. It is
usually stratightforward to translate logic programs into a series of easily understandable



Mach Learn

Fig. 1 Two datasets. Dataset (a) represents input to a traditional feature-based learner in which each example
can be viewed as a vector of features describing a single object. By contrast dataset (b) represents input to a
relational learner, in which each example describes the relationship between a group of named objects

sentences which can be understood by a domain expert. This is not the case in many other
approaches within Machine Learning.

3 Overview and lessons learned

3.1 An overview (1991–2010)

3.1.1 Prehistory (1969–1990) and infancy (1991–1994)—prodigious beginnings

The prehistory of ILP can be found in seminal research by Plotkin (1969, 1971a, 1971b),
Vere (1975), Shapiro (1983) and Sammut and Banerji (1986). The subject was initiated in
1991 with the publication of the founding paper (Muggleton 1991) and the launch of the
first international workshop on ILP. A reference textbook covering the various approaches
followed (Muggleton 1992). Much of the strength of the subject was related to its ability to
draw on and extend the existing literature of its parent subjects of Machine Learning and
Logic Programming.

The early phase of the subject was associated with the introduction of a number of foun-
dational theoretical concepts. These included Inverse Resolution (Muggleton and Buntine
1988) and the related concepts of Saturation (Rouveirol and Puget 1989) and Predicate In-
vention (Muggleton and Buntine 1988; Stahl 1992; Muggleton 1991; Muggleton and De
Raedt 1994). These theoretical developments were accompanied by initial results on PAC-
learnability of various relevant classes of hypotheses including ij-determinate logic pro-
grams (Džeroski et al. 1993) and k-local logic programs (Cohen 1993), as well as negative
results on PAC-learning of arbitrary logic programs (Kietz 1993).

Alongside these theoretical results a number of ILP systems were developed, in many
cases linked to the theoretical developments above. These included widely deployed systems
such as FOIL (Quinlan 1990), Golem (Muggleton and Feng 1990), CLINT (De Raedt and
Bruynooghe 1991) and LINUS (Lavrač et al. 1991).



Mach Learn

3.1.2 Childhood (1995–2001)—logical development

During this period the theoretical framework for ILP described in Muggleton and De Raedt
(1994) was radically extended in the publication of the first textbook on the theoretical foun-
dations of ILP (Nienhuys-Cheng and de Wolf 1997). This text expounded the refinement-
graph theory of search used in many existing ILP systems. In addition, further significant
results on the learnability of logic programs continued to be developed (Khardon 1998).
Towards the end of the period a book was published describing the new field of Relational
Data Mining (Džeroski and Lavrač 2001), a field in which ILP techniques were applied to
the mutliple tables in a database setting.

In this same period the widely-used ILP system Progol (Muggleton 1995) introduced a
new logically-based approach to refinement graph search of the hypothesis space based on
inverting the entailment relation. Although Muggleton (1995) indicated the way in which ab-
duction can be treated as a special case of inverting entailment, an implementation of Progol
which supported this approach to abduction was delayed until later (Progol5.0, Muggleton
and Bryant 2000). In particular, Progol5.0 avoided the assumption that the hypothesised
predicate was identical to the predicate expressing the examples. Meanwhile the ILP system
TILDE (Blockeel and De Raedt 1997) demonstrated the efficiency which could be gained by
upgrading decision-tree learning algorithms to first-order logic. The upgrading methodology
was soon extended towards other machine learning problems; cf. Sect. 3.5.1.

3.1.3 Contemporary ILP—teenage years (2002–2010)—indecision

The last ten years of ILP have been dominated by the development of methods for learning
probabilistic logic representations, along with applications related to transfer learning (Mi-
halkova and Mooney 2009; Torrey and Shavlik 2010; Davis and Domingo 2009). A large va-
riety of general probabilistic representations have emerged including Stochastic Logic Pro-
grams (SLPs) (Muggleton 1996), Bayesian Logic Programs (BLPs) (Kersting and De Raedt
2001), PRISM (Sato 2005), Independent Choice Logic (ICL) (Poole 2000), Markov Logic
Networks (Domingos et al. 2006), CLP(BN) (Costa et al. 2003) and ProbLog (De Raedt
et al. 2007).

A general framework for Probabilistic ILP (PILP) was introduced (De Raedt and Ker-
sting 2004) alongside a multi-author reference book covering the various approaches being
pursued (De Raedt et al. 2008). PILP systems tend to separate the learning of the underlying
logic program from the estimation of probabilistic parameters associated with individual
clauses. For instance, the PRISM system (Sato 2005) assumes the underlying logic pro-
gram is provided by the modeller but provides EM-based parameter estimation techniques
for learning the probabilistic labels. By contrast, in SLPs the underlying logic program is
learned using a general ILP system, followed by a second phase in which the parameters are
learned, often by a variant of the EM algorithm such as FAM (Cussens 2001). It has been
argued (Muggleton 2002) that the structure and parameters of probabilistic logic represen-
tations should be learned simultaneously though this has turned out to be hard to achieve in
practice.

3.2 Applications

Even in its infancy (see Sect. 3.1.1) ILP algorithms were successfully applied to hard real-
world problems including finite element mesh design (Dolsak and Muggleton 1992), protein
structure prediction (Muggleton et al. 1992), development of temporal rules for satellite
diagnosis (Feng 1992) and learning qualitative simulation models (Bratko et al. 1991).



Mach Learn

As part of the childhood phase (see Sect. 3.1.2) the development of new systems helped
extend the class of applications to which ILP could be effectively applied. For instance,
Progol’s ability to learn non-determinate predicates allowed it to be successfully applied to
an important biochemical discovery task involving mutagens (King et al. 1996), resulting in
the publication of novel mutagens in one of the world’s top scientific journals.

During the teenage years (see Sect. 3.1.3) ILP systems continued to be stretched by
applications to hard scientific discovery problems. Most notably in this respect Progol5.0
was extended to support active selection of experiments within the Robot Scientist project.
This project involved discovery of novel gene functions in yeast with results published in
the journal Nature (King et al. 2004) with follow-up work in Science (King et al. 2009).
PILP was also applied successfully to scientific discovery problems such as protein fold
prediction (Chen et al. 2008).

3.3 The role of logic programming

In order to understand the development of ILP as a research area, it is important to reflect
on its origins in and relationship with Logic Programming, which emerged as a declarative
programming paradigm in the 1970s and became influential in the 1980s. Although it was
customary to describe ILP as an area at the intersection of Machine Learning and Logic
Programming, it is probably fair to say that the emphasis of much work fell more on the
Logic Programming side. The idea of inductive synthesis of logic programs (Muggleton and
Feng 1992; Quinlan and Cameron-Jones 1993), and more specifically Prolog programs, was
appealing and was the driver of much initial research on predicate invention (Muggleton
and Buntine 1988; Stahl 1992), multiple predicate learning (De Raedt and Lavrač 1996),
and other forms of knowledge-intensive learning.

However, the computation embedded in a typical logic program is considerably more
complex than that of logic-based classification rules. Inductive program synthesis needs to
reconstruct that computation from examples and is therefore, in its generality, a much harder
problem requiring a strong inductive bias. Furthermore, declaratively there is no difference
between the answers computed by an efficient program—say, quicksort—and an inefficient
one—say, permutation-sort. Expressing a preference for efficient programs requires a bias
towards shorter proofs, which is easily done, but also a bias towards programs with smaller
search spaces in which those proofs are found, which is much harder. So, gradually, the
emphasis shifted to learning (typically non-recursive) first-order classification rules.

Eventually, the idea took hold that what defines and unifies much of ILP is the relational
form of the input, rather than the first-order logic form of the output. This has led to a
broadening of the field to relational learning, and an exploration of the natural connection
with relational databases. While data and models were tightly connected in the original
view of ILP, expressed as they were in the same language of first-order logic, nowadays
the connection is established through the ability to construct and use first-order features
encapsulating the relevant structure of the data. This change of perspective has helped to
establish relational learning as a key area within Machine Learning.

However, certain artefacts from the Logic Programming origins can be observed to this
day. For example, there is still a strong emphasis on a concept learning setting, in which
one learns a model for only one of two classes. This is natural if one represents one of the
classes by a predicate, and interprets the absence of a proof for that predicate as a proof
for the opposite class (negation as failure). However, if ILP had been rooted in a functional
language instead, one would have expected a multi-class setting to have been embraced
from the start. Furthermore, there is a propensity to employ existential quantification to



Mach Learn

aggregate over local variables in first-order features, just as Prolog does for variables that
occur in the body of a clause but not in the head. The realisation that other aggregators—e.g.,
counts or averages—might be preferable in certain domains, and hence should be first-class
citizens in the hypothesis language, took a long time to sink in (Krogel and Wrobel 2001;
Knobbe et al. 2002; Vens et al. 2006). Thirdly, while the proliferation of metadata as a means
to move towards semantics and away from syntax is visible all around us, there is still
a certain reluctance to employ anything more than simple mode declarations in relational
learning. If Prolog had been a strongly typed language things might have again been very
different today.

There is no doubt that Prolog, as an executable language for rich first-order knowledge,
has made an important contribution to Machine Learning. It has also been a key factor in
establishing ILP as a coherent and active research area and community. Declarative pro-
gramming has moved on considerably from the early Logic Programming days, and much
can be gained from incorporating those advances in ILP and relational learning.

3.4 ILP’s contribution to logical foundations of inductive reasoning

One of the important achievements of ILP is the development of logical foundations of in-
ductive reasoning. Many important theoretical concepts in ILP that had appeared by early
1990s were quite original, and were situated in the intersection of Machine Learning, Logic
Programming and AI. These theoretical studies were soon followed by works on imple-
mentations and applications. However, since then, research interests have gradually shifted
to extensions of previously proposed frameworks, often by putting more emphasis on the
standpoint of Machine Learning in terms of (multi)relational learning and probabilistic logic
learning.

Early important logical theories of induction have been collected in such as Muggle-
ton (1992), Nienhuys-Cheng and de Wolf (1997). Notably, the notion of generalization
has been used in AI, but properties and many variants have been investigated in ILP,
and a number of techniques for top-down and bottom-up refinement have been devel-
oped based on those generalization relations. Another salient feature of ILP is the use
of prior or background theories for learning. Covering relations are precisely defined as
logical entailment or subsumption, and their inverse relations have been devised for com-
puting hypotheses in the presence of background theories (Muggleton 1995; Inoue 2004;
Yamamoto et al. 2010).

The use of background theories enables us to extend the capability of inductive reasoning
from classical learning tasks such as concept learning and classification to theory completion
(Muggleton and Bryant 2000), the importance of which has been recently recognized in
scientific discovery. On the other hand, abduction has played essential roles in knowledge
discovery and development in AI and philosophy of science. Hence, integration of abduction
and induction (Flach and Kakas 2000) has been discussed since 2000 in such diverse aspects
as implementation of ILP systems using abductive methods (Muggleton and Bryant 2000;
Inoue 2004; Ray et al. 2003; Inoue et al. 2010; Corapi et al. 2010) and “closing the loop”
methodologies in scientific discovery (Flach and Kakas 2000; King et al. 2004; Synnaeve et
al. 2011).

Among many applications, advances in those fundamental ILP techniques are well-
suited to learning and discovering knowledge in systems biology (King et al. 2004;
Tamaddoni-Nezhad et al. 2006; Synnaeve et al. 2011). Using logic modeling of biolog-
ical systems, relations between elements can be declaratively described as constraints or
networks, and background theories contain prior biological knowledge and databases of



Mach Learn

gene/protein/metabolites and their interrelations. Then, theory completion can find missing
links in incomplete networks, and those found hypotheses enable scientists to experiment
with focused cases. Probability can be combined with logical inference, offering tools for
modeling biological processes and for ranking logical hypotheses.

3.5 Lessons learnt

ILP applications in the 90s largely focused on the discovery of new and interpretable knowl-
edge from structured data, often in the form of rules. Since then the range of tasks to which
ILP techniques has been applied has significantly broadened and now covers almost all ma-
chine learning problems. The groundwork laid in these last twenty years by ILP has provided
some valuable lessons, summarised by the following aphorisms:1

1. Downgrading ILP is possible, and interesting.
2. ILP operators and orderings can be reused in other settings.
3. Select the right learning setting.
4. Logical formulae are important in hybrid representations.
5. Use background knowledge liberally.
6. “Propositionalize” if you can.

3.5.1 From upgrading to downgrading

Most of the work so far in ILP has upgraded various propositional learning tasks, represen-
tations and systems towards the use of logical and relational representations. The upgrading
approach has been very productive and resulted in many interesting new systems and rep-
resentations, such as Quinlan’s FOIL for rule learning (Quinlan 1990), Blockeel and De
Raedt’s Tilde (1997) for decision tree induction, Dehaspe’s Warmr for relational associa-
tion rule learning (Dehaspe and Toivonen 2001), Emde and Wettschereck’s RIBL (Emde
and Wettschereck 1996) for relational instance based learning, and Getoor and Koller’s
probabilistic relational models for Bayesian networks (Getoor et al. 2001). The resulting
frameworks are very expressive and typically allow one to emulate the original setting and
system. For instance, Bayesian nets are an instance of probabilistic relational models and
Quinlan’s well-known decision tree learner C4.5 (Quinlan 1987) is a special case of TILDE.
At the same time, because of their expressiveness, they can work at different and interme-
diate levels of representation. For instance, graphs and networks can easily be represented
using relational logic, and hence, ILP systems are applicable to graph and network based
representations. Expressiveness also comes at a computational cost, which explains why the
typical ILP systems are less efficient than and do not scale so well as more specialized sys-
tems. There are, however, new roles for ILP. First, such systems can and should be used as a
base line for evaluating more specific approaches. Second, such systems can be downgraded,
that is, specialized and optimized for working with some more specific representation, and
there are many opportunities for doing so. One productive line of research that arguably
downgrades ILP is that on mining and learning in graphs.

3.5.2 Operators and generality

The theory of ILP has contributed a rich variety of frameworks for reasoning about the gen-
erality of hypotheses. When using hypotheses in the form of logical formulae, the generality

1This section is based on Chap. 11 of the textbook on Logical and Relational Learning (De Raedt 2008).



Mach Learn

relation coincides with that of logical entailment. Typically, a hypothesis G is said to be more
general than a hypothesis S if G entails S, that is, if G |� S. Applying a deductive inference
operator leads to specializations, and applying, inverted deductive ones, that is, inductive
ones, leads to generalizations. A multitude of operators for generalization and specialization
has been devised and are theoretically wellunderstood (Nienhuys-Cheng and de Wolf 1997;
De Raedt 2008). Different operators exist that depend on the form of the hypotheses (sin-
gle clause, multiple clause), the presence or absence of a background theory, the type of
(deductive or inductive) inference rule applied, and the search strategy applied (heuristic or
complete search). Many of the frameworks for generality can also be downgraded for use
with more specialized representations, such as for instance graphs. The two most important
frameworks for deciding whether one clause is more general than another one, are Plotkin’s
θ -subsumption (Plotkin 1969) and Malerba et al.’s OI-subsumption (Esposito et al. 1996).
Specialized to graphs, these definitions correspond to the well-known notions of subgraph-
isomorphism and -homeomorphism. As a consequence, it is easy (not to say straightforward)
to adapt many of the results and operators of the subsumption frameworks to those of the
graphmorphisms one. This can be used to obtain methods and algorithms for enumerating
graphs with different properties. At the same time, some variants of the subsumption frame-
work that take into account background knowledge in the form of sets of clauses or rules,
might be adapted towards the graph mining setting, potentially leading to a new class of
graph mining systems.

3.5.3 Three learning settings

The distinction between the model-theoretic and proof-theoretic perspective in logic has
been used to define three settings for ILP that are applicable to different types of data. In
the first setting, learning from interpretations (Blockeel et al. 1999), an example is a logical
interpretation I , that is, a state-description or possible, world, and an example is covered
by a hypothesis H (that is, a logical formula) if I is a model for H . In the second setting,
learning from entailment (Muggleton and De Raedt 1994), an example corresponds to an
observation about the truth or falsity of a formula F . A hypothesis H then covers the for-
mula F if F is entailed by the hypothesis, that is, H |� F . In the final setting, learning
from proofs (Passerini et al. 2006), an example is a proof (or a trace) and an example P is
covered by a hypothesis H if P is a possible proof in the hypothesis H . Interpretations are
the natural type of examples used in, for instance, Bayesian networks and item-set mining;
observations in the form of true and false formulae are typical of scientific knowledge dis-
covery problems, and proofs and traces are very natural when learning tree-bank grammars
and Markov models. The settings provide different types of clues about the underlying tar-
get theory, and can be ordered according to difficulty. Proofs carry the most information, as
they directly encode (instantiated) rules of the unknown target theory; interpretations pro-
vide full information about a specific example; whereas formulae summarize or aggregate
information about multiple states (or interpretations). Therefore, learning from proofs is eas-
ier than learning from interpretations, which in turn is easier than learning from entailment
(De Raedt 1997).

3.5.4 Unification and variables

A key difference between propositional logic and relational and first order logic lies in the
use of variables and unification. This is a very powerful tool for Machine Learning and
Data Mining in at least two respects. First, logical expressions that contain variables can



Mach Learn

be used as general templates that make abstraction of specific instances. Knowledge based
model construction applies this idea to generate graphical models. Consider, for instance,
Domingos et al.’s Markov Logic (Domingos et al. 2006), in which a set S of weighted
logical formulae of the form w : f is used to construct a Markov network. This is realized
by generating from each ground instance f of a formula w : f some local fragment of the
Markov network. On the one hand, the templates provide a general and compact description
that allows one to deal with multiple extensions, and on the other, it also allows parameter
tying which facilitates the learning. Second, variables and unification can also be used to
propagate information. This is not only useful when performing deduction in logic, but
also in the above sketched knowledge based model construction approach. For instance, in
a logical Markov model context, abstract state transitions such as p(X) → q(X), where
p(X) is an abstract state, can be instantiated to grounded states, e.g., p(c1). The abstract
state transition can then be instantiated to p(c1) → q(c1) denoting that a transition to state
q(c1) occurs (perhaps with a particular probability). The value c1 is propagated from one
state to the next and realizes a kind of memory in the Markov model. This mechanism by
itself is important as it adds a lot of expressive power as shown for instance in Logical
HMMs (Kersting et al. 2006). Even though the logical Markov model and Markov Logic
use elements of logic, they go way beyond a purely logical representation as they merge
graphical models and logic. As a consequence, logic is no longer used as a target language
but rather as a means for realizing interesting intermediate representations.

3.5.5 Background knowledge

ILP has always stressed the importance of incorporating background knowledge in the learn-
ing process. It has enabled this by exploiting the underlying representation formalism, which
typically supports the definition of intensional or view predicates or relations, which provide
additional information about the domain of discourse. These predicates can then be used as
any other predicate or relation in the learning process. This is a simple but powerful mech-
anism because (when using logic programs) basically any “programmable” form of back-
ground theory can be specified. In this way, even learning algorithms have been encoded
as background predicates (cf. Craven and Slattery’s WebKB 2001). Furthermore, because
hypotheses are encoded in the same language, already learned hypotheses can be added to
the background theory as well.

3.5.6 Propositionalization and aggregation

ILP has contributed several so-called propositionalization techniques (Kramer et al. 2001)
that transform structured Machine Learning and Data Mining problems into a simpler for-
mat, typically a feature-vector or an attribute-value representation (Kramer et al. 2001;
De Raedt 2008). The resulting problems can be directly input into (more) standard Ma-
chine Learning and Data Mining algorithms. Two types of techniques ca be distinguished:
static propositionalization, which first maps the ILP problem into the simpler format and
then invokes learners on the simpler representations, and dynamic approaches, which incre-
mentally construct a set of good features by coupling the propositionalization step with the
learning one (Landwehr et al. 2007). Aggregation often plays an important role in proposi-
tionalization, and at the same time, as aggregation results in a loss of information, so does
propositionalization (Krogel and Wrobel 2001).



Mach Learn

4 Some future directions

In Sect. 3.1 we saw how, over the last two decades, ILP has developed from a prodigious
brainchild to a relatively mature area with applications published in the world’s top scientific
journals. Here, we present a somewhat eclectic collection of future directions for ILP.

4.1 ILP and probabilistic logical models as foundations of AI?

The multidimensional design space of intelligent agents proposed by Poole and Mackworth
(2010) shows how ILP and probabilistic relational models can form part of the foundations
of AI. This is useful from a historical perspective to understand existing research and as a
vision for future research.

One dimension is that of representation scheme, which is about exploiting compactness
for computational gains. One can represent the world explicitly in terms of states, or in terms
of features. The features can be explicitly represented or be described in terms of individ-
uals and relations. Another dimension is the learning dimension that specifies whether the
agent’s knowledge is given or learned from experience. While most Machine Learning is in
terms of features, a definition of inductive Logic Programming could be learning in terms
of individuals and relations.

Other dimensions have to do with uncertainty, whether actions are deterministic or
stochastic and whether the world is fully observable or partially observable. Most proba-
bilistic models are built on features (or so-called “random variables”). Uncertainty can be
combined with individuals and relations giving languages for probabilistic relational mod-
els. Let us illustrate this idea on an example.

Statistical relational models are typically defined in terms of parametrized random vari-
ables (Poole 2003) which are often drawn in terms of plates (Buntine 1994). A parametrized
random variable corresponds to a predicate or a function symbol in logic. It can include log-
ical variables (which form the parameters). In the following examples, we will write logical
variables (which denote individuals) in upper case, and constants, function and predicate
symbols in lower case. We assume that the logical variables are typed, where the domain of
the type, the set of individuals of the type, is called the population.

Parametrized random variables are best described in terms of an example. Consider the
case of diagnosing students’ performance in adding multi-digit numbers of the form

x1 x0

+ y1 y0

z2 z1 z0

A student, given values for the x’s and the y’s, provides values for the z’s.
Whether a student gets the correct answer for zi depends on xi , yi , the value carried in

and whether she knows addition. Whether a student gets the correct carry depends on the
previous x, y and carry, and whether she knowns how to carry. This dependency can be seen
in Fig. 2.

Here x(D,P ) is a parametrized random variable. There is a random variable for each
digit D and each problem P . A ground instance, such as x(d3,problem57), is a random
variable that may represent the third digit of problem 57. Similarly, there is a z-variable
for each digit D, problem P , student S, and time T . The plate notation can be read as
duplicating the random variable for each tuple of individual the plate is parametrized by.

The basic principle used by all methods is that of parameter sharing: the instances of
the parametrized random created by substituting constants for logical variables share the



Mach Learn

Fig. 2 Belief network with
plates for multidigit addition

same probabilistic parameters. The various languages differ in how to specify the condi-
tional probabilities of the variables variable given its parents, or the other parameters of the
probabilistic model.

The first such languages (e.g., Horsch and Poole 1990), described the conditional proba-
bilities directly in term of tables, and require a combination function (such as noisy-and or
noisy-or) when there is a random variable parametrized by a logical variable that is a parent
of a random variable that is not parametrized by the logical variable. Tables with combina-
tion functions turn out to be not a very flexible representation as they cannot represent the
subtleties involved in how one random variable can depend on others.

In the above example, c(D,P,S,T ) depends, in part, on c(D − 1,P ,S,T ), that is, on
the carry from the previous digit (and there is some other case for the first digit). A more
complex example is to determine the probability that two authors are collaborators, which
depends on whether they have written papers in common, or even whether they have written
papers apart from each other.

To represent such examples, it is useful to be able to specify how the logical variables
interact, as is done in logic programs. The independent choice logic (ICL) (Poole 1997,
2008) (originally called probabilistic Horn abduction Poole 1991, 1993) allows for arbitrary
(acyclic) logic programs (including negation as failure) to be used to represent the depen-
dency. The conditional probability tables are represented as independent probabilistic inputs
to the logic program. A logic program that represents the above example is in Chap. 14 of
(Poole and Mackworth 2010). This idea also forms the foundation for PRISM (Sato and
Kameya 1997, 2008), which has concentrated on learning, and for ProbLog (De Raedt et al.
2007), a project to build an efficient and flexible language.

There is also work on undirected models, exemplified by Markov logic networks
(Richardson and Domingos 2006), which have a similar notion of parametrized random
variables, but the probabilities are derived from weights on first-order clauses. Such models
have the advantage that they can represent cyclic dependencies, but there is no local in-
terpretation of the parameters, and probabilistic inference relies on a global normalization.
Avoiding a global normalization allows directed models to prune large parts of the model
(or equivalently only consider part that are related to a query).

The work on statistical relational AI can be defined as the combination of probabilistic
models, learning, reasoning with individuals and relations. However, there are many other
dimensions that need to be incorporated to build an intelligent agent, including hierarchical
representations, utilities, ongoing processes, multiple agents and bounded rationality. While
there are many examples of the low-dimensional combinations (e.g., DTProbLog Van den
Broeck et al. 2010 incorporates utilities in fully-observable models, and the original ICL
(Poole 1997) incorporates utilities and partial observability but did not have efficient infer-
ence or learning), most of the design space is largely unexplored. It should be noted that



Mach Learn

the same points in design space can be reached from different directions. For example, rein-
forcement learning (Sutton and Barto 1998), which has evolved from reasoning with explicit
states to reasoning with features, has recently been expanded to reason with relations (van
Otterlo 2009; Džeroski et al. 2001).

There are a number of connections with AI whose time has come to be explored more
thoroughly including:

– Dealing with multiple heterogeneous data sets. We need ontologies to deal with the se-
mantic interoperability, and incorporate uncertainty. There has been surprisingly little
work on probabilistic reasoning and learning with datasets described using formal on-
tologies.

– Basing predictions on data that are not superficially relevant, but give important informa-
tion. For example, in predicting the effects of global warming, not only are data about
global temperatures relevant, but also laboratory experiments that show the effect of CO2

on radiating heat are also relevant. We do not have learning methods that can use the other
information effectively.

– Exploiting the potential efficiencies that are available from relational representations. Be-
cause relational representations generalize over individuals, there should be ways to ex-
ploit that for computational gain. There have been limited advances for lifted inference
(Milch et al. 2008), but much remains to be done.

4.2 Whatever happened to predicate invention?

Predicate invention in ILP means automatic introduction of new, hopefully useful predicates
during the process of learning from examples. Such new predicates can then be used as part
of background knowledge in finding a definition of the target predicate. In the early years of
ILP, in late 1980s and early 1990s, there was much excitement about predicate invention. It
was viewed as one of the most exciting and challenging issues of ILP research; challenging
because of its search complexity. A considerable proportion of ILP research in those years
was devoted to this problem, with some interesting results.

A good review of that work was written by Stahl (1996). Relevant works from that period
include the Duce system (Muggleton 1987), inverse resolution for first order predicate in-
vention (Muggleton and Buntine 1988), and others (Bain and Muggleton 1991; Flach 1993;
Morik et al. 1993; Wrobel 1994). Why was the motivation for research in predicate invention
so strong, and still is? Automatically introducing new useful predicates means expanding the
learner’s hypothesis language. This is important as it enables more compact formulation of
relevant hypotheses, or induction of successful hypotheses which would not otherwise be
possible at all, for example in some cases of recursive formulation.

From the application point of view, predicate invention is so attractive because it is a most
natural form of automated discovery. Predicate invention is a way of finding new theoretical
terms, or abstract new concepts that are not directly observable in the measured data. Russell
and Norvig (2010) comment: “Some of the deepest revolutions in science come from the
invention of new predicates and functions—for example, Galileo’s invention of acceleration,
or Joule’s invention of thermal energy. Once these terms are available, the discovery of new
laws becomes (relatively) easy.”

A recent European project (XPERO, www.xpero.org; for a simplified demo see www.
ailab.si/xpero) demonstrates predicate invention for discovery of abstract concepts by an au-
tonomous robot. In experiments with manipulating objects, the robot discovered the (never
directly observed in measured data) notion of a movable object (Bratko et al. 2008). In an-
other experiment which involved several robots of different strength, the notion of ‘object X

http://www.xpero.org
http://www.ailab.si/xpero
http://www.ailab.si/xpero


Mach Learn

is movable by robot R’ was invented. When the robot was planning paths, the concept of an
obstacle was invented. When planning to move boxes to their goal positions, the concept of
a tool was automatically introduced (Bratko 2010).

Unfortunately, the research in the past 15 years did not keep pace with the level of activity
of the enthusiastic period around 1990. It seems that there is a general agreement among
researchers, also expressed by Dietterich et al. (2008), that (a) predicate invention is a key
problem in ML, and (b) it is exceptionally hard due to its high combinatorial complexity,
maybe too hard. The number of alternatives in which new predicates can be introduced is
extremely explosive, and recognizing their (potential) benefits early in the search among all
these alternatives is very hard.

However, given the importance of predicate invention and the early successes, it is still
surprising that not more research is being devoted to this problem. More work on this topic
should be encouraged in the future of ILP research. If breakthroughs will be difficult to
achieve, they will be very rewarding.

4.3 Next-generation ILP applications and theory?

Within ILP demanding applications have often led to the development of new implementa-
tions and associated theory. One cutting-edge application class is found in Synthetic Biol-
ogy. This area aims at modifying micro-organisms in order to achieve new functions. For
instance, organisms can be redesigned to consume toxic waste or to transform domestic
waste into fuels. For ILP to provide support for the design tasks in areas like Synthetic
Biology would require advances on a number of fronts. A successful ILP system would re-
quire not only an ability to provide accurate biochemical models, but also an experimental
framework which would support the ability to suggest design modifications which alter the
existing network to achieve new functions. This would require conceptual advances in least
the following areas.

Higher-order and functional extensions. John Lloyd (2003) has argued the case for ILP to
use higher-order logic as an underlying representation for learning. Lloyd’s arguments
largely relates to the advantages of a functional representation. However, higher-order rep-
resentations could also provide more flexible ways of representing background knowledge
which could support, for example, general definitions of the properties of symmetric rela-
tions or tail-recursive definitions. Higher-order background knowledge also has potential
for direct reasoning about meta-logical processes such as predicate invention and proba-
bilistic reasoning.

Learning actions and strategies. The majority of ILP systems and applications still repre-
sent variants of concept learning. However, many important classes of relational real-
world problems exist which require action-based formalisms. Examples of such application
classes include planning, scheduling, design and robotics. Research has started in the ILP,
UAI and planning communities to learn about actions, plans and employ decision theory
(Moyle and Muggleton 1997; Otero 2005; Sanner and Kersting 2010; van Otterlo 2009;
Džeroski et al. 2001).

Theory of experimentation. It is clear from the Robot Scientist project that ILP has im-
portant applications in areas of experimental science. Given this, it is vital to develop a
comprehensive experimental framework for ILP which incorporates probabilities of exper-
imental outcomes and costs of experiments. One of the limitations of the Robot Scientist
approach is the assumption of a fixed and finite set of experiments. The details of the ex-
perimental protocol and instrument description lay outside of the background knowledge
used. In science, these details and choices are often critical.



Mach Learn

Agency. Reasoning about agents is important in many real-world applications. Such appli-
cations include ecological modelling, analysis of social networks and economic modelling.

4.4 Wanted: nuts, bolts & co.

4.4.1 The engineering of ILP systems: why?

Over a decade ago, C.A.R. Hoare gave a public lecture, in which he posed two questions:
“Is computing Science?” and “Is software Engineering?” Positive answers depended on the
extent to which well-understood scientific principles of abstraction, mathematical modelling
and logical deduction were employed in establishing the foundations of the field; and en-
gineering design principles of correctness, flexibility, decomposition and re-use were em-
ployed in the development of software. These questions just as easily apply to ILP. That is:
“Is ILP Science?” and “Is ILP software Engineering?” Over the past two decades, a stead-
fast committment to addressing conceptual questions using mathematics and logic has done
much to provide a positive answer to the first question. But it is to the second—whether ILP
systems are sufficiently well-engineered—that is the concern of this section.

Why is this question important? Let us consider a related question. Despite mathematical
clarity and any number of demonstrations of its applicability to complex modelling tasks,
few would disagree that ILP remains a connoisseur’s choice of modelling techniques. Why
is this so? Current ILP systems do have shortcomings that hinder their use in routine data
analysis:

Formalism. The principal concerns here are twofold: (a) the use of logic (usually Prolog)
programs as a representation language; and (b) the need to provide adequate background
knowledge. Difficulties from the former arise with the lack of familiarity of logic programs
amongst non-ILP specialists. How many data analysts, and domain experts can be expected
to understand the inputs and output of an ILP system? With background knowledge, prob-
lems arise because an ILP system’s performance is heavily dependent on the presence of
adequate background knowledge. How much and what kind of background knowledge can
be termed “adequate” for a particular problem?

Use. Again, there are two main concerns: (a) efficiency, arising from the size of the space of
possible models, testing models and the size of datasets; and (b) the lack of a set of well-
engineered tools that allow a data analyst experimentation with and testing of scientific
advances, visualisation of results, and modifications to existing functionality.

Some steady progress is being made in addressing all of these concerns—except the last.
Here, there has been little to no work done: while over 100 ILP systems have been con-
structed since 1991, less than a handful can even begin to be used meaningfully by ILP
practitioners other than the original developers. System descriptions, operating characteris-
tics, guidelines on use and sensitivity analyses are practically non-existent. The professional
ILP data analyst is thus a rarity, and the general data analyst capable of using ILP tools per-
haps non-existent. An additional unfortunate feature is that the implementation effort of the
last two decades has not been cumulative. As a result, each of the 100 or more systems have
re-implemented many parts that exist in other systems. The need for well-engineered, re-
usable tools with clearly understood specifications and properties perhaps does not greatly
matter at the early stages of a field of science, but will increasingly play an important role if
the field is to move beyond the realm of theory to one of applications. So it is with ILP.



Mach Learn

4.4.2 The engineering of ILP systems: how?

We are at a point where ILP now has some substantial scientific momentum: what is needed
is a commitment to establish a corresponding engineering momentum. This requires the es-
tablishment of a world-wide ILP development initiative—perhaps as a co-ordinated set of
graduate-level projects—that has as its goal the development of re-usable software compo-
nents that are flexible enough to build software useful for the ILP trade, and by the ILP
hobbyist for DIY ILP. We enviage something like the model-building tool-set Meccano™.
Here is the introduction to this from http://en.wikipedia.org/wiki/Meccano:

Meccano is a model construction system comprising re-usable metal strips, plates,
angle girders, wheels, axles and gears, with nuts and bolts to connect the pieces. It
enables the building of working models and mechanical devices.

Imagine what we could do with an ILP Meccano Set! At the very least, such a set will
need to contain software components that are fundamental to all, or at least most, ILP sys-
tems. These components would have to be: understandable to ILP system builders; useful,
in the sense of being reusable; and have a functionality that is clearly specified. In addition,
we would like the set of components to be reasonably complete, in order that interesting
systems could be built from them. In software terms, this means the development of com-
ponents for hypothesis construction, combinatorial search, experimentation, visualisation
etc.; with built-in mechanisms for parallelism, and connection to statistical packages, exter-
nal databases and so on. In software terms, this means the development of components for
hypothesis construction, combinatorial search, experimentation, visualisation and so on.

At this point, the reader may be concerned that nothing said here appears to be directed
at making ILP more usable by domain-experts (like biologists, for example). This is indeed
so: the ILP Meccano Set is for ILP practitioners and data analysts. But this is a start, and the
onus rests squarely on the ILP community to construct well-engineered, professional ILP
systems. To paraphrase the Rabbi Hillel: “If not us, Who? If not now, When?”

5 Conclusion: ILP’s next 20 years: back to AI and logic?

The past twenty years of ILP has not only provided firm mathematical foundations for the
future, but also many new insights into the potential of logic-based representations for ma-
chine learning. However, it is also clear that many challenging open problems still confront
the field, both in terms of basic representation, theory and efficient implementation of sys-
tems. Further developments in these areas promise increasing breadth of application for ILP
systems in the future.

An example of the ongoing integrated development of theory and application in ILP
can be found in the development of ILP systems for scientific discovery. Applications in
Systems Biology and other domains in the last few years has demanded basic theories of
learning about causality and learning in network structures. Reasoning about action has
been a classical topic in AI, but its connection to ILP has not yet been fully explored. There
are some basic studies on learning theories in situation calculus, event calculus (Moyle and
Muggleton 1997) or action theories (Otero 2005), but more development is necessary to
deal with practical applications. In particular, learning dynamics of systems is a challenging
topic, in which we need to infer the past and future status of a system and the physical laws
that govern the system with possible feedback loops from dynamically changing observa-
tions. We also need to have hybrid systems dealing with quantitative information. There are

http://en.wikipedia.org/wiki/Meccano


Mach Learn

several ways to combine symbolic and numerical approaches, based on such as qualitative
abstraction, discretization, interval-based constraints, probability and fuzzy logic, but ILP
must contribute more to a basic theory in this direction.

Taking the systems’ viewpoint, our goal should become closer to that in AI. However,
many existing ILP systems have been based on classical syntax and semantics of Logic Pro-
gramming, yet the field of Logic Programming has changed in these 20 years, shifting from
Horn logic programs computed with SLD(NF) resolution toward constraint and answer set
programming. This change reflects incompatible demands for more expressive knowledge
representation and for scalability. We can even take further steps forward on knowledge rep-
resentation. In fact, logic programs and related structural representations are not necessarily
used for symbolic methods. There has been much work on powerful or tractable languages
of description logic (Lisi and Malerba 2003), action theories and constraints. Thus, covering
relations and refinement techniques for extended classes of logic programs should be soon
explored. As for applications to systems biology and dynamic domains, negative effects like
inhibition and deletion frequently appear in causal networks, whose effects are similar to
nonmonotonic negation.

As for the scalability issue, we also need to take advantage of those techniques developed
in other fields of computer science. For example, implementation based on SAT technolo-
gies could be more explored in ILP. Related to SAT, SMT (satisfiability modulo theories) is
also suitable for more complex domains. Learning in parallel and distributed environments
(Muggleton et al. 2002; Graham et al. 2003) is also necessary to solve huge problems as
well as physically distributed problems.

Another important goal of systems biology is the revision of biological networks
(Tamaddoni-Nezhad et al. 2006, 2007). This requires not only building theories but up-
dating them. Knowledge-based updating has been formally explored in logic-based AI, but
has not been connected to logic learning in ILP. Predicate invention (Muggleton and Bun-
tine 1988) was introduced in the early days of ILP but has not been well addressed recently,
and is still one of the hard ILP tasks. Understanding predicate invention from the viewpoint
of semantics of theory update is thus important now. A method to discover unknown rela-
tions from incomplete networks has been recently introduced in Inoue et al. (2010) based
on meta-level abduction, which infer missing rules, missing facts, and unknown causes that
involve predicate invention in the form of existentially quantified hypotheses. This invention
is also a realization of hidden object invention (Dietterich et al. 2008), but lifting meta-level
abduction to higher-order is also a promising method in this direction.

6 Further reading

In order to find out more about the field of Inductive Logic Programming, we would like
to point the reader to a number of books such as Muggleton (1992), a historical collection
of early ILP papers (Lavrač and Džeroski 1993), an early text book on ILP (Nienhuys-
Cheng and de Wolf 1997), providing a theoretical perspective on ILP, and Džeroski and
Lavrač (2001), a collection of papers on ILP giving a data mining perspective. More recent
collections of papers on the probabilistic perspective in ILP are contained in De Raedt et al.
(2008), Getoor and Taskar (2007). De Raedt (2008) is an up-to-date textbook on logical and
relational learning; shorter introductory background on many of the topics discussed can be
found in the Encyclopedia of Machine Learning (Sammut and Webb 2010).



Mach Learn

Author contributions

SHM wrote Sects. 1, 3.1, 3.2 and 4.3. PF wrote Sect. 3.3; LDR wrote Sect. 3.5 based on
Chap. 11 of the book (De Raedt 2008) and Sect. 6; KI wrote Sects. 3.4 and 5; DP wrote
Sects. 2, 4.1; IB wrote Sect. 4.2; and AS wrote Sect. 4.4.

Acknowledgements SHM would like to thank the Royal Academy of Engineering and Microsoft Research
for their support of his research chair. SM also acknowledges the support of Syngenta Ltd in the University
Innovation Centre at Imperial College and the BBSRC for their funding of the Centre for Integrative Systems
Biology at Imperial College. AS is a Ramanujan Fellow of the Government of India; and for some period of
this work was at the School of Computational and Integrative Sciences, Jawaharlal Nehru University, New
Delhi. AS is also a Visiting Professor at the Computing Laboratory, University of Oxford; and an Adjunct
Professor at the School of CSE, University of New South Wales, Sydney.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Bain, M., & Muggleton, S. H. (1991). Non-monotonic learning. In D. Michie (Ed.), Machine intelligence
(Vol. 12, pp. 105–120). London: Oxford University Press.

Blockeel, H., & De Raedt, L. (1997). Lookahead and discretisation in ILP. In N. Lavrač & S. Džeroski (Eds.),
LNAI: Vol. 1297. Proceedings of the seventh international workshop on inductive logic programming
(pp. 77–84). Berlin: Springer.

Blockeel, H., De Raedt, L., Jacobs, N., & Demoen, B. (1999). Scaling up inductive logic programming by
learning from interpretations. Data Mining and Knowledge Discovery, 3(1), 59–93.

Bratko, I. (2010). Discovery of abstract concepts by a robot. In LNAI: Vol. 6332. Proceedings of discovery
science 2010 (pp. 372–379). Berlin: Springer.

Bratko, I., Muggleton, S. H., & Varsek, A. (1991). Learning qualitative models of dynamic systems. In Pro-
ceedings of the eighth international machine learning workshop, San Mateo, CA. San Mateo: Morgan-
Kaufmann.

Bratko, I., Leban, G., & Žabkar, J. (2008). An experiment in robot discovery with ilp. In Proceedings of the
18th international conference on inductive logic programming (ILP 2008). Berlin: Springer.

Buntine, W. L. (1994). Operations for learning with graphical models. Journal of Artificial Intelligence Re-
search, 2, 159–225.

Chen, J., Muggleton, S. H., & Santos, J. (2008). Learning probabilistic logic models from probabilistic ex-
amples. Machine Learning, 73(1), 55–85. doi:10.1007/s10994-008-5076-4.

Cohen, W. (1993). PAC-learning a restricted class of logic programs. In S. Muggleton (Ed.), Proceedings of
the 3rd international workshop on inductive logic programming (pp. 41–72).

Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In Technical
communications of ICLP’10 (pp. 54–63).

Craven, M., & Slattery, S. (2001). Relational learning with statistical predicate invention: Better models for
hypertext. Machine Learning, 43(1/2), 97–119.

Cussens, J. (2001). Parameter estimation in stochastic logic programs. Machine Learning, 44(3), 245–271.
Davis, J., & Domingo, P. (2009). Deep transfer via second-order markov logic. In Proceedings of the twenty-

sixth international workshop on machine learning (pp. 217–224). San Mateo: Morgan Kaufmann.
De Raedt, L. (1997). Logical settings for concept-learning. Artificial Intelligence, 95(1), 197–201.
De Raedt, L. (2008). Logical and relational learning. Berlin: Springer.
De Raedt, L., & Bruynooghe, M. (1991). Clint: a multistrategy interactive concept-learner and theory revision

system. In Proceedings of the 1st international workshop on multistrategy learning (pp. 175–191). San
Mateo: Morgan Kaufmann.

De Raedt, L., & Kersting, K. (2004). Probabilistic inductive logic programming. In S. Ben-David, J. Case, &
A. Maruoka (Eds.), Lecture notes in computer science: Vol. 3244. Proceedings of the 15th international
conference on algorithmic learning theory. Berlin: Springer.

De Raedt, L., & Lavrač, N. (1996). Multiple predicate learning in two inductive logic programming settings.
Journal on Pure and Applied Logic, 4(2), 227–254.

http://dx.doi.org/10.1007/s10994-008-5076-4


Mach Learn

De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: a probabilistic Prolog and its application in link
discovery. In R. Lopez de Mantaras & M.M. Veloso (Eds.), Proceedings of the 20th international joint
conference on artificial intelligence (IJCAI-2007) (pp. 2462–2467).

De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. H. (Eds.) (2008). LNAI: Vol. 4911. Probabilistic
inductive logic programming. Berlin: Springer.

Dehaspe, L., & Toivonen, H. (2001). Discovery of relational association rules. In Džeroski, S., & Lavrač, N.
(Eds.), Relational data mining (pp. 189–212). Berlin: Springer.

Dietterich, T., Domingos, P., Getoor, L., Muggleton, S. H., & Tadepalli, P. (2008). Structured machine learn-
ing: the next ten years. Machine Learning, 73(1), 3–23. doi:10.1007/s10994-008-5079-1.

Dolsak, B., & Muggleton, S. H. (1992). The application of Inductive Logic Programming to finite element
mesh design. In S. H. Muggleton (Ed.), Inductive logic programming (pp. 453–472). London: Academic
Press.

Domingos, P. S., Kok, S., Poon, H., Richardson, M., & Singla, P. (2006). Unifying logical and statistical ai. In
Proceedings of the twenty-first national conference on artificial intelligence, AAAI06 (pp. 2–7). Menlo
Park/Cambridge: AAAI Press/MIT Press.

Džeroski, S., & Lavrač, N. (Eds.) (2001). Relational data mining. Berlin: Springer.
Džeroski, S., Muggleton, S. H., & Russell, S. (1993). Learnability of constrained logic programs. In Proceed-

ings of the European conference on machine learning (pp. 342–347). London: Springer.
Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning,

43(1/2), 5–52.
Emde, W., & Wettschereck, D. (1996). Relational instance-based learning. In Proceedings of the 13th inter-

national machine learning conference (pp. 122–130).
Esposito, F., Laterza, A., Malerba, D., & Semeraro, G. (1996). Refinement of Datalog programs. In Proceed-

ings of the MLnet familiarization workshop on data mining with inductive logic programming (pp. 73–
94).

Feng, C. (1992). Inducing temporal fault diagnostic rules from a qualitative model. In S. H. Muggleton (Ed.),
Inductive logic programming. London: Academic Press.

Flach, P. (1993). Predicate invention in inductive data engineering. In P. B. Brazdil (Ed.), Lecture notes in
artificial intelligence: Vol. 667. Machine learning: ECML-93 (pp. 83–94). Berlin: Springer.

Flach, P. A., & Kakas, A. C. (Eds.) (2000). Abduction and induction: essays on their relation and integration.
Dordrecht: Kluwer Academic.

Getoor, L., & Taskar, B. (Eds.) (2007). An introduction to statistical relational learning. Cambridge: MIT
Press.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001). Learning probabilistic relational models. In
Džeroski, S., & Lavrač, N. (Eds.), Relational data mining (pp. 307–335). Berlin: Springer.

Graham, J. H., Page, C. D., & Kamal, A. H. (2003). Accelerating the drug design process through parallel
inductive logic programming data mining. In Proceedings of the IEEE computer society bioinformatics
conference—CSB (pp. 400–402). New York: IEEE Press.

Horsch, M., & Poole, D. L. (1990). A dynamic approach to probabilistic inference using Bayesian networks.
In Proc. sixth conference on uncertainty in AI, Boston, July 1990 (pp. 155–161).

Inoue, K. (2004). Induction as consequence finding. Machine Learning, 55, 109–135.
Inoue, K., Furukawa, K., Kobayashiand, I., & Nabeshima, H. (2010). Discovering rules by meta-level abduc-

tion. In L. De Raedt (Ed.), LNAI: Vol. 5989. Proceedings of the nineteenth international conference on
inductive logic programming (ILP09) (pp. 49–64). Berlin: Springer.

Kersting, K., & De Raedt, L. (2001). Towards combining inductive logic programming with bayesian net-
works. In LNAI: Vol. 2157. Proceedings of the eleventh international conference on inductive logic
programming (pp. 118–131). Berlin: Springer.

Kersting, K., De Raedt, L., & Raiko, T. (2006). Logical Hidden Markov Models, 25, 425–456.
Khardon, R. (1998). Learning first order universal Horn expressions. In Proceedings of the eleventh annual

ACM conference on computational learning theory (pp. 154–165). New York: ACM.
Kietz, J. U. (1993). Some lower bounds on the computational complexity of inductive logic programming.

In P. Brazdil (Ed.), Lecture notes in artificial intelligence: Vol. 667. Proceedings of the 6th European
conference on machine learning (pp. 115–123). Berlin: Springer.

King, R. D., Muggleton, S. H., Srinivasan, A., & Sternberg, M. J. E. (1996). Structure-activity relationships
derived by machine learning: the use of atoms and their bond connectives to predict mutagenicity by
inductive logic programming. Proceedings of the National Academy of Sciences, 93, 438–442.

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. K. G., Bryant, C. H., Muggleton, S. H., Kell, D. B., &
Oliver, S. G. (2004). Functional genomic hypothesis generation and experimentation by a robot scientist.
Nature, 427, 247–252.

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P.,
Soldatova, L. N., Aparkes, A., Whelan, K. E., & Clare, A. (2009). The automation of science. Science,
324(5923), 85–89.

http://dx.doi.org/10.1007/s10994-008-5079-1


Mach Learn

Knobbe, A. J., Siebes, A., & Marseille, B. (2002). Involving aggregate functions in multi-relational search.
In Proceedings of the 6th European conference on data mining principles and practice of knowledge
discovery in databases (p. 1).

Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In
S. Džeroski & N. Lavrač (Eds.), Relational data mining (pp. 262–291). Berlin: Springer.

Krogel, M.-A., & Wrobel, S. (2001). Transformation-based learning using multirelational aggregation. In
LNCS: Vol. 2157. Inductive logic programming (pp. 142–155).

Landwehr, N., Kersting, K., & De Raedt, L. (2007). Integrating naive Bayes and Foil. Journal of Machine
Learning Research, 8, 481–507.

Lavrač, N., & Džeroski, S. (1993). Inductive logic programming: techniques and applications. Chichester:
Ellis Horwood.

Lavrač, N., Džeroski, S., & Grobelnik, M. (1991). Learning non-recursive definitions of relations with LI-
NUS. In Y. Kodratoff (Ed.), Lecture notes in artificial intelligence: Vol. 482. Proceedings of the 5th
European working session on learning. Berlin: Springer.

Lisi, F. A., & Malerba, D. (2003). Bridging the gap between horn clausal logic and description logics in in-
ductive learning. In LNCS: Vol. 2829. AI*IA 2003: Advances in artificial intelligence. Berlin: Springer.

Lloyd, J. W. (2003). Logic for learning. Berlin: Springer.
Mihalkova, L., & Mooney, R. J. (2009). Transfer learning from minimal target data by mapping across re-

lational domains. In IJCAI-09: Proceedings of the twentieth international joint conference on artificial
intelligence (pp. 1163–1168). San Mateo: Morgan-Kaufmann.

Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., & Kaelbling, L. P. (2008). Lifted probabilistic in-
ference with counting formulas. In Proceedings of the twenty third conference on artificial intelligence
(AAAI).

Morik, K., Wrobel, S., Kietz, J., & Emde, W. (1993). Knowledge acquisition and machine learning: theory,
methods and applications. London: Academic Press.

Moyle, S., & Muggleton, S. H. (1997). Learning programs in the event calculus. In N. Lavrač & S. Džeroski
(Eds.), LNAI: Vol. 1297. Proceedings of the seventh inductive logic programming workshop (ILP97)
(pp. 205–212). Berlin: Springer.

Muggleton, S. H. (1987). Duce, an oracle based approach to constructive induction. In IJCAI-87 (pp. 287–
292). Los Altos: Kaufmann.

Muggleton, S. H. (1991). Inductive logic programming. New Generation Computing, 8(4), 295–318.
Muggleton, S. H. (Ed.) (1992). Inductive logic programming. San Diego: Academic Press.
Muggleton, S. H. (1995). Inverse entailment and Progol. New Generation Computing, 13, 245–286.
Muggleton, S. H. (1996). Stochastic logic programs. In L. de Raedt (Ed.), Advances in inductive logic pro-

gramming (pp. 254–264). Amsterdam: IOS Press.
Muggleton, S. H. (2002). Learning structure and parameters of stochastic logic programs. In Proceedings of

the 12th international conference on inductive logic programming (pp. 198–206). Berlin: Springer.
Muggleton, S. H., & Bryant, C. H. (2000). Theory completion using inverse entailment. In Proc. of the 10th

international workshop on inductive logic programming (ILP-00) (pp. 130–146). Berlin: Springer.
Muggleton, S. H., & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolu-

tion. In Proceedings of the 5th international conference on machine learning (pp. 339–352). Los Altos:
Kaufmann.

Muggleton, S. H., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of
Logic Programming, 19–20, 629–679.

Muggleton, S. H., & Feng, C. (1990). Efficient induction of logic programs. In Proceedings of the first con-
ference on algorithmic learning theory (pp. 368–381). Tokyo: Ohmsha.

Muggleton, S. H., & Feng, C. (1992). Efficient induction of logic programs. In S. H. Muggleton (Ed.), Induc-
tive logic programming (pp. 281–298). London: Academic Press.

Muggleton, S. H., King, R. D., & Sternberg, M. J. E. (1992). Protein secondary structure prediction using
logic-based machine learning. Protein Engineering, 5(7), 647–657.

Muggleton, S. H., Fidjeland, A., & Luk, W. (2002). Scalable acceleration of inductive logic programs. In IEEE
international conference on field-programmable technology (pp. 252–259). New York: IEEE Press.

Nienhuys-Cheng, S.-H., & de Wolf, R. (1997). LNAI: Vol. 1228. Foundations of inductive logic programming.
Berlin: Springer.

Otero, R. (2005). Induction of the indirect effects of actions by monotonic methods. In Proceedings of the
fifteenth international conference on inductive logic programming (ILP05) (Vol. 3625, pp. 279–294).
Berlin: Springer.

Passerini, A., Frasconi, P., & De Raedt, L. (2006). Kernels on Prolog proof trees: statistical learning in the
ILP setting. Journal of Machine Learning Research, 7, 307–342.

Plotkin, G. D. (1969). A note on inductive generalisation. In B. Meltzer & D. Michie (Eds.), Machine intelli-
gence (Vol. 5, pp. 153–163). Edinburgh: Edinburgh University Press.



Mach Learn

Plotkin, G. D. (1971a). Automatic methods of inductive inference. Ph.D. thesis, Edinburgh University, August
1971.

Plotkin, G. D. (1971b). A further note on inductive generalization. In Machine intelligence (Vol. 6). Edin-
burgh: Edinburgh University Press.

Poole, D. L. (1991). Representing diagnostic knowledge for probabilistic Horn abduction (pp. 1129–1135).
Sydney.

Poole, D. L. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64(1),
81–129.

Poole, D. L. (1997). The independent choice logic for modelling multiple agents under uncertainty. Artificial
Intelligence, 94, 7–56. Special issue on economic principles of multi-agent systems.

Poole, D. L. (2000). Abducing through negation as failure: stable models within the independent choice logic.
Journal of Logic Programming, 44(1–3), 5–35.

Poole, D. L. (2003). First-order probabilistic inference. In Proc. eighteenth international joint conference on
artificial intelligence (IJCAI-03), Acapulco, Mexico (pp. 985–991).

Poole, D. L. (2008). The independent choice logic and beyond. In L. De Raedt, P. Frasconi, K. Kersting, &
S. Muggleton (Eds.), LNCS: Vol. 4911. Probabilistic inductive logic programming: theory and applica-
tion. Berlin: Springer.

Poole, D. L., & Mackworth, A. K. (2010). Artificial intelligence: foundations of computational agents. New
York: Cambridge University Press.

Quinlan, J. R. (1987). Generating production rules from decision trees. In Proceedings of the tenth interna-
tional conference on artificial intelligence (pp. 304–307). Los Altos: Kaufmann.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Quinlan, J. R., & Cameron-Jones, R.M. (1993). FOIL: a midterm report. In P. Brazdil (Ed.), Lecture notes in

artificial intelligence: Vol. 667. Proceedings of the 6th European conference on machine learning (pp.
3–20). Berlin: Springer.

Ray, O., Broda, K., & Russo, A. (2003). Hybrid abductive inductive learning: a generalisation of Progol. In
Lecture notes in artificial intelligence: Vol. 2835. Proceedings of the 13th international conference on
inductive logic programming (ILP’03) (pp. 311–328). Berlin: Springer.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107–136.
Rouveirol, C., & Puget, J.-F. (1989). A simple and general solution for inverting resolution. In EWSL-89 (pp.

201–210). London: Pitman.
Russell, S. J., & Norvig, P. (2010). Artificial intelligence: a modern approach (3rd ed.). New Jersey: Pearson.
Sammut, C., & Banerji, R.B. (1986). Learning concepts by asking questions. In R. Michalski, J. Carbonnel,

& T. Mitchell (Eds.), Machine learning: an artificial intelligence approach (Vol. 2, pp. 167–192). Los
Altos: Kaufmann.

Sammut, C., & Webb, G. (Eds.) (2010). Encyclopedia of machine learning. Berlin: Springer.
Sanner, S., & Kersting, K. (2010). Symbolic dynamic programming. In C. Sammut & G. Webb (Eds.), Ency-

clopedia of machine learning. Berlin: Springer.
Santos Costa, V., Page, D., Qazi, M., & Cussens, J. (2003). CLP(BN): Constraint logic programming for

probabilistic knowledge. In Proceedings of the 19th conference on uncertainty in artificial intelligence
(pp. 517–524).

Sato, T. (2005). Generative modeling with failure in prism. In International joint conference on artificial
intelligence (pp. 847–852). San Mateo: Morgan Kaufmann.

Sato, T., & Kameya, Y. (1997). PRISM: a symbolic-statistical modeling language. In Proceedings of the 15th
international joint conference on artificial intelligence (IJCAI-97) (pp. 1330–1335).

Sato, T., & Kameya, Y. (2008). New advances in logic-based probabilistic modeling by PRISM. In L. De
Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), LNCS: Vol. 4911. Probabilistic inductive logic
programming (pp. 118–155). Berlin: Springer.

Shapiro, E. Y. (1983). Algorithmic program debugging. Cambridge: MIT Press.
Stahl, I. (1992). Constructive induction in inductive logic programming: an overview (Technical report).

Fakultat Informatik, Universitat Stuttgart.
Stahl, I. (1996). Predicate invention in inductive logic programming. In L. De Raedt (Ed.), Advances in

inductive logic programming (pp. 34–47). Amsterdam: IOS Press.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge: MIT Press.
Synnaeve, G., Inoue, K., Doncescu, A., Kameya, Y., Sato, T., Ishihata, M., & Nabeshima, H. (2011). Kinetic

models and qualitative abstraction for relational learning in systems biology. In Proceedings of the
international conference on bioinformatics models, methods and algorithms.

Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., & Muggleton, S. H. (2006). Application of abductive
ILP to learning metabolic network inhibition from temporal data. Machine Learning, 64, 209–230.
doi:10.1007/s10994-006-8988-x.

http://dx.doi.org/10.1007/s10994-006-8988-x


Mach Learn

Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Sternberg, M. J. E., Nicholson, J., & Muggleton, S. H. (2007).
Modeling the effects of toxins in metabolic networks. IEEE Engineering in Medicine and Biology, 26,
37–46. doi:10.1109/MEMB.2007.335590.

Torrey, L., & Shavlik, J. W. (2010). Policy transfer via Markov logic networks. In L. De Raedt (Ed.), LNAI:
Vol. 5989. Proceedings of the nineteenth international conference on inductive logic programming
(ILP09) (pp. 234–248). Berlin: Springer.

Van den Broeck, G., Thon, I., van Otterlo, M., & De Raedt, L. (2010). DTProbLog: A decision-theoretic
probabilistic prolog. In Proceedings of the AAAI conference on artificial intelligence (AAAI 2010).

van Otterlo, M. (2009). The logic of adaptive behavior—knowledge representation and algorithms for adap-
tive sequential decision making under uncertainty in first-order and relational domains. Amsterdam:
IOS Press.

Vens, C., Ramon, J., & Blockeel, H. (2006). Refining aggregate conditions in relational learning. In
J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), Lecture notes in computer science: Vol. 4213.
Proceedings of the 10th European conference on principles and practice of knowledge discovery in
databases (pp. 383–394). Berlin: Springer.

Vere, S. A. (1975). Induction of concepts in the predicate calculus. In Proceedings of the 4th international
joint conference on artificial intelligence (pp. 282–287). San Mateo: Morgan Kaufmann.

Wrobel, S. (1994). Concept formation during iterative theory revision. Machine Learning, 14, 169–191.
Yamamoto, Y., Inoue, K., & Iwanuma, K. (2010). From inverese entailment to inverese subsumption. In Pro-

ceedings of the 20th international conference on inductive logic programming (ILP’10).

http://dx.doi.org/10.1109/MEMB.2007.335590

	ILP turns 20
	Abstract
	Introduction
	Motivation of ILP
	Overview and lessons learned
	An overview (1991-2010)
	Prehistory (1969-1990) and infancy (1991-1994)-prodigious beginnings
	Childhood (1995-2001)-logical development
	Contemporary ILP-teenage years (2002-2010)-indecision

	Applications
	The role of logic programming
	ILP's contribution to logical foundations of inductive reasoning
	Lessons learnt
	From upgrading to downgrading
	Operators and generality
	Three learning settings
	Unification and variables
	Background knowledge
	Propositionalization and aggregation


	Some future directions
	ILP and probabilistic logical models as foundations of AI?
	Whatever happened to predicate invention?
	Next-generation ILP applications and theory?
	Wanted: nuts, bolts & co.
	The engineering of ILP systems: why?
	The engineering of ILP systems: how?


	Conclusion: ILP's next 20 years: back to AI and logic?
	Further reading
	Author contributions
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


