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In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity
is called scaffold hopping. Scaffold hopping is important since it can be used to obtain alternative structures
when the compound under development has unexpected side-effects. Pharmaceutical companies use scaffold
hopping when they wish to circumvent prior patents for targets of interest. We propose a new method for
scaffold hopping using inductive logic programming (ILP). ILP uses the observed spatial relationships between
pharmacophore types in pretested active and inactive compounds and learns human-readable rules describing
the diverse structures of active compounds. The ILP-based scaffold hopping method is compared to two
previous algorithms (chemically advanced template search, CATS, and CATS3D) on 10 data sets with diverse
scaffolds. The comparison shows that the ILP-based method is significantly better than random selection
while the other two algorithms are not. In addition, the ILP-based method retrieves new active scaffolds
which were not found by CATS and CATS3D. The results show that the ILP-based method is at least as
good as the other methods in this study. ILP produces human-readable rules, which makes it possible to
identify the three-dimensional features that lead to scaffold hopping. A minor variant of a rule learnt by ILP
for scaffold hopping was subsequently found to cover an inhibitor identified by an independent study. This
provides a successful result in a blind trial of the effectiveness of ILP to generate rules for scaffold hopping.
We conclude that ILP provides a valuable new approach for scaffold hopping.

INTRODUCTION

Similarity search of compounds is often applied in drug
discovery with the aim of finding molecules which have
similar properties to an initial compound of interest. An
important application of similarity search is scaffold hopping
which aims to find compounds that are structurally diverse,
while sharing a biological activity.1 Several methods of
scaffold hopping have been proposed so far.2 Here, we
propose a new scaffold hopping method based on inductive
logic programming (ILP)3 which learns from examples
encoded as logical relationships and identifies human-
readable rules describing structural features.

Pharmaceutical companies hold several million compounds
in order to find leads for new drugs. They normally start
their research with high-throughput screening (HTS) against
a biological target which is considered to be associated with
a certain disease. Within the academic community, there has
been a recent increase of applications of HTS due to the
emergence of the National Institutes of Health’s Molecular
Libraries Roadmap for identifying chemical probes to study
the functions of genes, cells, and biochemical pathways.4 In
general, HTS includes several stages:5,6 a large library of

compounds is normally tested in the primary screening assay
and successful “hit” compounds are evaluated in the second-
ary screenings for checking their sensitivity, specificity,
pharmacology, and other properties. In drug discovery, the
selected compound is called a “lead” for optimization by
medicinal chemistry.

Although testing all available compounds with HTS tends
to be thought of as a comprehensive search in chemical
space, it has been pointed out that HTS has several limitations
including the diversity of synthetically feasible compounds,
quality, cost, time, and waste of valuable resources of
materials.7,8 In order to address these problems, virtual
screening has been used to complement experimental screen-
ing.9 In particular, integrating these two techniques in one
workflow has been proposed as a smarter screening approach,
which is often referred to as sequential screening.8,10 In this
approach, a subset of compounds is either randomly or
rationally selected for the target and is tested initially. Any
active compounds, together with the inactive compounds,
provide an informative guide for selecting compounds in the
next round of testing. Repeats of systematic selection of
compounds are considered to be more efficient, especially
in terms of cost. The selection method often involves
techniques of similarity search.

In the search, the similarity of compounds is determined
for finding neighbors of compounds of interest in chemical
space.11,12 If structurally diverse compounds are identified,
this would help in finding new classes of compounds against
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the target protein. This approach is called “scaffold hop-
ping,”1 which has recently been described by Renner and
Schneider as “finding isofunctional but structurally dissimilar
molecular entities”.13 Scaffold hopping is useful for phar-
maceutical companies where it can be used to obtain
alternative compound structures when the initial compound
under development has unexpected side-effects or when the
initial compound is patented by competitors. Importantly, it
has been reported that the sequential process which com-
bines scaffold hopping methods with experimental screen-
ing is an efficient procedure for finding novel classes of
compounds.14,15

Here we propose a new scaffold hopping method based
on inductive logic programming (ILP).3 ILP algorithms are
designed specifically to learn human-readable rules from
observed relationships in positive and negative examples
(e.g., relationships between atoms in active and inactive
compounds). ILP has been applied to various areas including
bioinformatics and chemoinformatics.16–21 The inter-relation-

ships of the component atoms in the molecules are used by
the learning algorithm as part of the background knowledge.
ILP algorithms search for logically encoded hypotheses in
the form of rules which cover as many of the positive
examples as possible and the fewest negative examples.
During learning, an ILP algorithm produces many hypoth-
esized rules. The predictions of these rules can be represented
as a binary string which encodes the classification of the set
of covered compounds. Such binary strings can be used as
inputs to other algorithms. One strategy, which has recently
been developed, is to feed the binary strings generated by
ILP into a support vector machine.19 This is known as
support vector inductive logic programming (SVILP) and
has been demonstrated to produce improved predictive
accuracy both in toxicology and screening.20,21 In this paper,
we follow a different, but related, approach in which we use
the binary strings as inputs to a similarity search algorithm
to perform scaffold hopping.

Table 1. HTS Datasets Used in This Study

AID assay name sourcea
number of

tested compounds
number of

active compounds
threshold used to define

active compounds

348 glucocerebrosidase-p2 NCGC (ncgca-
glucocerebrosidase-p2)

4979 54 e10 µM AC50

362 formylpeptide
receptor-ligand
binding assay

NMMLSC
(UNM-FPR-01)

4282 61 g65% inhibitionb

373 SIP3 agonist
primary HTS and
Confirmation
Assays

The Scripps
Research Institute
Molecular
Screening Center
(S1P3 AG BLA
1536%ACT)

59805 62 g4% activation at 4.5 µM

408 voltage-dependent
potassium
channel beta
subunit (KvBeta)
inhibitor screen

Vanderbilt
University
Molecular
Libraries
Screening Center
(VUMLSC)
(VMLSCN00000003)

12369 112 slope values of the response curvec

409 voltage-dependent
potassium
channel beta
subunit (KvBeta)
substrate screen

Vanderbilt
University
Molecular
Libraries
Screening Center
(VUMLSC)
(VMLSCN00000002)

12369 20 slope values of the response curvec

412 discovery of novel
allosteric agonists
of the M4
muscarinic
receptor

Vanderbilt
University
Molecular
Libraries
Screening Center
(VUMLSC)
(VMLSCN00000004)

12369 72 slope values of the response curvec

422 HTS for 14-3-3
protein
interaction
modulators

Emory University
Molecular
Libraries
Screening Center
(Emory 14-3-3
Screening May
19, 2006)

15157 24 g30% inhibition at 40 µM

425 MKP-3 in vitro
HTS assay

San Diego Center
for Chemical
Genomics
(SDCCG-A002-MKP3)

64393 29 g50% inhibition at 20 µM

428 measurement of
GPCR-mediated
thallium flux
through GIRK
channels

Vanderbilt
University
Molecular
Libraries
Screening Center
(VUMLSC)
(VMLSCN00000005)

8536 49 slope values of the response curvec

429 HTS for tumor
Hsp90 inhibitors

Emory University
Molecular
Libraries
Screening Center

15157 44 g50% inhibition at 30 µM

a The information of assays and the tested compounds was downloaded on June 2006. b Compound concentration is not available. c The
slope values of the response curve differ from the mean sample distribution at a 99.7% confidence level. Compounds were tested at 10 µM.
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MATERIALS AND METHODS

Data Preparation. Ten data sets of results from HTS and
the associated structure-data files of tested compounds were
taken from the PubChem database22 (accessed June 2006;
see Table 1). The target proteins for these HTS results include
enzymes, channels and G-protein-coupled receptors, which
are frequently subjects of HTS in pharmaceutical companies.

Next, we prepared sets of diverse active and inactive
compounds from each of the HTS results. The structure-
data files of tested compounds were converted to binary
fingerprints by Open Babel software based on the occurrence
of linear fragment up to seven atoms in length.23 Active and
inactive compounds in each HTS result were respectively
clustered by their chemical similarities based on modified
Tanimoto coefficient.24,25 This coefficient measures the
similarity between two compounds based on the presence
of common molecular fragments. The modified Tanimoto
coefficient ranges from 0 to 1, with identical molecules
having a score of 1.0. The criterion for excluding similar
molecules was that they had a modified Tanimoto coefficient
of greater than 0.7. The compound closest to the centroid of
each cluster was selected as the representative of the scaffold
structure of the cluster. For simplicity and in keeping with
the terminology of Renner and Schneider,13 in the context
of our study, these centroids will be referred to as scaffolds.
We note, however, that the term “scaffold” can also be used
to refer to the molecular backbone and this use is not identical
to our use in this paper. These active and inactive scaffolds
provided a chemically diverse data set and the average values
of modified Tanimoto coefficients within active and inactive
scaffolds each were about 0.4 as shown in Table 2. The aim
of the study is to identify different scaffolds without
removing similar compounds from the results. The evaluation
and the comparative assessment of the results including
similar compounds identified by different methods would be
more complex.

For each HTS assay, 10% of active scaffolds were
randomly set aside as part of the test data set. The remaining
90% of active scaffolds were used as positive examples in
the training data set. These ratios were chosen in order to
achieve a reliable estimate of performance in unseen data
given the number of positive examples in the data. Concept
learning algorithms, such as those used in ILP, gain from a
process of selecting roughly equal numbers of positive and
negative examples. This can be achieved in various ways.

One obvious approach includes random selection of an equal
number of positive and negative examples. A contrasting
approach involves selection of “near misses”, i.e. pairings
of similar positive and negative examples. This focuses the
learning on boundary discrimination. For each active scaf-
fold, we construct a near miss by finding the closest inactive
scaffold. The distance between scaffolds is measured ac-
cording to the modified Tanimoto coefficient. All the
remaining inactive scaffolds were incorporated into the
previously selected 10% of active scaffolds and were used
as a test data set. The numbers of scaffolds in the training
data set and the test data set are summarized in Table 3.

ILP-Based Method. Our method is illustrated in Figure
1a. We used the ILP system CProgol26,27 version 5.

CProgol requires examples and background knowledge for
the learning process. An example might be as follows. In

the above, “1000” is a scaffold name. Background knowledge
described the chemistry of the scaffolds. We assigned
pharmacophore types to each atom of every scaffold in the
training data set to develop the background knowledge. Five
pharmacophore types, defined in the literature,14 were used:
positively charged, negatively charged, hydrogen-bond donor,
hydrogen-bond acceptor, and lipophilic. The coordinate
information of atoms was included along with pharmacoph-
ore types. The coordinate information was prepared from a
conformer which was selected as that having lowest energy
according to the CONCORD28 program. The definition for
calculating spatial distances between two atoms, and a
tolerance value of 0.5 Å, were also added to the background
knowledge. A typical piece of background knowledge could
be as follows: where “a10” is a unique label for an atom in
scaffold 1000.

When learning, CProgol searches for rules describing
combinations of spatial relationships between pharmacophore
types. An example of such a rule might be as follows. The
part of the rule which follows “if” is called the body of the
rule. We limited the search space to rules which consist of

Table 2. Numbers of Active and Inactive Scaffolds Selected by Cluster Analysisa

modified Tanimoto coefficients modified Tanimoto coefficients

AID

total number of
selected compounds

as scaffolds
number of active

scaffolds average SDb
number of inactive

scaffolds average SDb

348 1074 28 0.40 0.06 1046 0.40 0.05
362 449 25 0.43 0.06 424 0.42 0.05
373 7294 38 0.43 0.05 7256 0.41 0.04
408 3396 74 0.44 0.05 3322 0.42 0.05
409 3353 20 0.42 0.05 3333 0.42 0.05
412 3364 64 0.42 0.04 3300 0.42 0.05
422 3144 23 0.42 0.05 3121 0.42 0.05
425 7611 23 0.41 0.05 7588 0.41 0.04
428 2739 45 0.42 0.04 2694 0.42 0.05
429 3172 39 0.41 0.04 3133 0.42 0.05

a The average values and standard deviations of modified Tanimoto coefficients within active and inactive scaffolds each are also shown.
These scaffolds were used for the benchmarking of scaffold hopping. b SD ) standard deviation.
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relationships between two atoms (say, atom A and atom B),
concatenated pairs of relationships (atom A and B, then atom
B and C), and triangle relationships (atom A and B, atom B
and C, atom A and C). Owing to time considerations, we
also excluded relationships among only lipophilic atoms from
the calculations. Each rule is evaluated in CProgol with a
measure known as compression ( f ):

f )P(p- (n+ c))/P

Where, P is the total number of positive examples, p is
the number of positive examples explained by the rule, n
is the number of negative examples incorrectly explained
by the rule, and c is the number of relationships in the body
of the rule. Only rules with positive compression were
extracted and used for in the next step.

The number of extracted rules differs depending on the
HTS data set as shown in Table 3. On average, 1760 rules
were obtained. These rules were used for producing the
binary string for each scaffold (Figure 1a). Each bit in a
binary string corresponds to an individual rule and has the

value 1 when the rule covers the scaffold and has the value
0 when the rule does not. The active scaffolds in the training
data set were converted to binary strings. The scaffolds in
the test data set were also converted to binary strings based
on the same rules. The Jaccard coefficient was used for
calculating the similarity between binary strings of an active
scaffold in the training data set and a scaffold in the test
data set. The Jaccard coefficient is computed as the ratio of
the number of rules covering both scaffolds to the number
of rules covering only one scaffold.

Comparison of Methods. We compared our ILP-based
method with two algorithms: (a) CATS (chemically advanced
template search),1 the first published scaffold hopping
method, and (b) CATS3D,28–32 an extended method con-
sidering the three-dimensional shape of the molecules. These
algorithms have the advantage of being able to perform

Figure 1. Process of scaffold hopping by three algorithms. (a) ILP-based method. (b) CATS and CATS3D.

Table 3. Numbers of Active and Inactive Scaffolds in the Training
Data and the Test Dataset

AID

number of
active scaffolds

in training
data set

number of
scaffolds in
test data set

number of
active scaffolds

in test data
set

number of
rules used in

ILP-based
method

348 25 1024 3 2592
362 22 405 3 2572
373 34 7226 4 1018
408 66 3264 8 823
409 18 3317 2 568
412 57 3250 7 3395
422 20 3104 3 119
425 20 7571 3 253
428 40 2659 5 2725
429 35 3102 4 3531
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scaffold hopping from one positive example and do not
require negative examples.

Figure 1b shows the implementation of CATS and
CATS3D used in this study. CATS uses the two-dimensional
topology of a molecule. CATS assigns five predefined
pharmacophore types (hydrogen-bond donor, hydrogen-bond
acceptor, positively charged, negatively charged, and lipo-
philic) to relevant atoms. The algorithm is based on calculat-
ing vectors that describe frequencies of shortest paths along
bonds between pharmacophore types. The shortest paths from
1 to 10 bonds are considered. Each vector is scaled by the
total number of non-hydrogen atoms in a molecule. Obtained
vectors are compared using the Euclid distance. CATS3D
uses spatial distances instead of paths along bonds to generate
the vectors. The vectors are produced by using twenty bins
(from 0 to 20 Å) of distances and are also scaled in the same
manner as CATS. The Manhattan distance (a sum of absolute
values of differences between values in bins) is used as the
similarity metric between vectors. CATS3D adds a new
feature, polar, to the definitions of pharmacophore types if
the atom is a hydrogen-bond donor and also a hydrogen-
bond acceptor atom.

The definitions of the pharmacophore types differ between
CATS and CATS3D. CATS uses its own definitions of the
pharmacophore types, but CATS3D uses the ph4_aType
function of the commercially available software, MOE.29,33

The choice of these definitions will influence the accuracies
of methods and should be validated, but in this study, we
used the same definitions of the pharmacophore types as in
the ILP-based method. These definitions were originally used
in the report of the analogous CATS methodology.14 We
consider that using the same definitions of the pharmacophore
types provides an unbiased comparison between these
algorithms.

Benchmark of Scaffold Hopping. In order to compare
the results of the ILP-based method, CATS, and CATS3D,
we conducted virtual screening and calculated their retrieval
rates. Following the division into a training and test data
set, the active scaffolds in the training data set were used to
search active scaffolds in the test data set. In the ILP-based
method, each active scaffold in the training data set and all
scaffolds in the test data set were converted to binary strings
using the ILP rules. Each scaffold in the test data set was
then considered in turn. The Jaccard coefficients between it
and all the active scaffolds in the training data set were

evaluated and the maximum coefficient was used as the score
for the scaffold in the test data set. The scaffolds in the test
data set were ranked based on these scores. CATS and
CATS3D vectors were also calculated. For ranking scaffolds
in the test data set, an analogous procedure to the ILP-based
method was used with the exception that the minimum Euclid
or Manhattan distance was used.

For the ten HTS data sets, we compared the success rate
of scaffold hopping between the three algorithms. We
counted the number of active scaffolds which were included
in the top x% of the ranked test data set and compared the
numbers between the three algorithms.

RESULTS

Numbers of Retrieved Active Scaffolds. Figure 2 shows
the total numbers of retrieved scaffolds for the ten HTS data
sets. For all the values of x considered in the top x% of the
ranked test data set, more active scaffolds are retrieved by
the ILP-based method compared to CATS and CATS3D.
Table 4 reports the numbers of retrieved scaffolds for the
top 5, 10, 20, and 30% of the ranked test data set. In the top
5% of the ranked test data set, the ILP-based method
retrieved four scaffolds while CATS and CATS3D each
retrieved three (the difference is not statistically significant).
However, comparisons in other cases of the top x% of ranked
test data set showed larger differences in the performance.
For example, in the top 10% of the ranked test data set, the
ILP-based method retrieved nine active scaffolds, whereas
CATS and CATS3D retrieved six and five active scaffolds,
respectively. The retrieved scaffold structures are shown in
Figure 3. In three HTS data sets, active scaffolds were
retrieved only by the ILP-based method but not by CATS
or CATS3D. In only one HTS data set (AID 422), both
CATS and CATS3D found an active scaffold while the ILP-
based method did not. Only in AID 428, CATS found more
active scaffolds than the ILP-based method.

Comparison to Random Selection. To assess the sig-
nificance of these results, we first examined whether each
of the three methods performed better than chance selection.
The ILP-based method found nine scaffolds which is
significantly better than random selection (cumulative bino-
mial probability P ) 0.0211, where the probability of random
success was 1/10). Neither CATS (which found six scaffolds)
nor CATS3D (which found five) were significantly better
than random selection (P ) 0.2396 and 0.4121 for CATS
and CATS3D, respectively). The ILP-based method also
showed significantly better performance than random selec-
tion for the top 20 and 30% (P < 0.01). The other methods
did not (P > 0.096).

Comparison of Three Methods. Next, we examined
whether the ILP-based method can be shown to be statisti-
cally better than CATS and CATS3D. In the top 10% of the
ranked test data set, we used the CATS result of finding 6
scaffolds out of 42 to estimate the probability of success
and then evaluated the cumulative binomial probability of
obtaining 9 scaffolds (i.e., the result from the ILP-based
method) as 0.136. Similarly, the cumulative binomial prob-
ability of obtaining 9 scaffolds with the CATS3D result (5
hits) was 0.056. Thus the ILP-based method is not signifi-
cantly better than these two approaches for the top 10%. In
the case of the top 20%, the number of scaffolds obtained

Figure 2. Graph of the total number of retrieved active scaffolds
in the top x% of the ranked test data set.
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by the ILP-based method also was not significantly better
compared with CATS (P ) 0.061), but was significantly
better than CATS3D (P ) 0.003). For the top 30%, the ILP-

based method showed significantly better performance than
both methods (P < 0.05). We conclude that the ILP-based
method is significantly better than random selection while

Table 4. Numbers of Retrieved Active Scaffolds in the Top 5, 10, 20, and 30% of the Test Dataset Ranked by Three Algorithms

number of retrieved active scaffolds

ILP-based method CATS CATS3D

AID

number of
scaffolds in test

data set

number of
active scaffolds
in test data set top 5% 10% 20% 30% top 5% 10% 20% 30% top 5% 10% 20% 30%

348 1024 3 0 1 1 1 0 0 0 1 1 1 1 1
362 405 3 0 0 2 2 0 0 1 1 0 0 0 0
373 7226 4 1 1 2 3 0 0 0 0 0 0 0 1
408 3264 8 0 1 2 2 0 1 1 2 0 0 0 0
409 3317 2 0 0 1 1 0 0 0 1 0 0 0 0
412 3250 7 1 1 3 3 1 1 2 3 0 0 0 0
422 3104 3 0 0 0 2 0 1 2 2 0 1 1 1
425 7571 3 1 2 2 3 0 0 2 2 1 1 1 1
428 2659 5 1 1 1 3 2 2 2 3 1 1 2 2
429 3102 4 0 2 2 3 0 1 1 2 0 1 3 3
total 34922 42 4 9 16 23 3 6 11 17 3 5 8 9

Figure 3. Active scaffolds retrieved by three algorithms in the top 10% of ranked test data set. The retrieved active scaffolds have an
pointing to them arrow from the most similar active scaffolds in the training data set: a1-a3 in AID 348; b1 and b2 in AID 373; c1-c4
in AID 408; d1-d4 in AID 412; e1-e4 in AID 422; f1-f4 in AID 425; g1-g6 in AID 428; h1-h5 in AID429. The dominant rules are
also shown. Corresponding atoms in the rule are marked with red circles. In ref 14, pharmacophore types as defined by the Sybyl line
notation (SLN) language are the following: Acceptor N[not ) NH]|O[not ) OH], Donor Het[is ) HetH], Negative O[is ) O(H)Hev )
Het], Positive N[(is ) N(Any)(Any)Any and not ) N-Hev ) O)], and Lipophilic C[not ) CN, CO, CSdO,CPdO]|S[not ) SH, SO].
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the other two methods are not. In addition, the ILP method
is at least as good as the other algorithms and therefore has
a valuable role in computer-based methods for scaffold
hopping.

Insights into the Reason for Scaffold Hopping. In ad-
dition to just finding active scaffolds, it is helpful to identify
the three-dimensional features that lead to different scaffolds
having the required biological activity. In general most
machine learning algorithms, including support vector ma-
chine and artificial neural networks, are exceptionally limited
in the insight they can provide. However, a general feature
of ILP is its ability to generate human-comprehensible rules.
In this application, the ILP-based method used bit strings
and each bit corresponds to a human-readable rule. We are
therefore able to examine the reason for scaffold hopping.
We note that CATS and CATS3D can provide which
relationship between pharmacophore types is efficient for
obtained similarity score because the values in CATS and
CATS3D vectors reflect the frequency of the relationship
between pharmacophore types. The rules obtained by ILP,
however, more directly link to the substructure of molecules.

Identification of Dominant Rules. For each active
scaffold in the test data set, we identified the most similar

scaffold in the training data set as determined by the ILP-
based method. We then identified the rules which predict
the pairing of the active scaffold in the training data set with
the retrieved active scaffold in the test data set. From these
rules, we identified the rule which covered the most active
scaffolds but the fewest inactive scaffolds in the training data
set. We refer to this as the dominant rule for the pair of
scaffolds. Figure 4 shows an example of the dominant rule
associated with an alignment for a pair of scaffolds (the
corresponding 2D structures are f1 and f2 in Figure 3). These
scaffolds were retrieved in the top 10% of the ranked test
data set of AID 425. The dominant rule for scaffold hopp-
ing is: the distance between atom A and B is 8.8 ( 0.5 Å,
the distance between atom B and C is 4.8 ( 0.5 Å, the
distance between atom A and C is 12.9 ( 0.5 Å, A and C
are lipophilic atoms, and B is an acceptor atom. This rule
described the triangle relationships between a double-bonded
oxygen atom in the keto group and two carbon atoms in the
two ring systems. Figure 4 indicates which spatial relation-
ships are common between the different scaffolds. We note
that despite these spatial relationships, there remains the
possibility that the two active scaffolds actually bind to
different sites of the same protein.

After we completed this study, we identified another study
which considered the target protein, mitogen-activated protein
kinase phosphatase-3 (MKP-3) in AID 425.34 They reported
three inhibitors for MKP-3 in vitro. Of these, the most active
compound, NSC 357756, had in vivo antitumor activity in
mouse models. With an increase of the distance tolerance
from 0.5 to 0.6 Å, the dominant rule shown in Figure 4 now
covers NSC357756. Figure 5 shows the alignments of
NSC357756 with the two compounds shown in Figure 4
together with the associated dominant rule. This independent
confirmation suggests that the dominant rule has a general
applicability for scaffold hopping.

DISCUSSION

Comparison of Predicted Scaffolds between Algori-
thms. To gain further insight into the differences and
similarities between the three algorithms, we examined the
overlapping sets of identified active scaffolds found by three
approaches in the top 10, 20, and 30% of the ranked test
database (Figure 6). It has been pointed out that CATS and
CATS3D performed differently.13,29 We also observed only
a limited overlap between the active scaffolds retrieved by
CATS and CATS3D. Interestingly, no active scaffold was
found in common by the three algorithms in the top 10%.
For the top 20 and 30%, one and four scaffolds were retrieved
in common, respectively. Thus, the overlap still remains
small. In general, there was little overlap of retrieved
scaffolds between any pair of the three methods suggesting
that each operates quite differently. What are the features in
these algorithms that lead them to finding different scaffolds?

CATS uses topological information whereas CAT3D and
ILP use the same three-dimensional information of com-
pounds and this probably explains some of the differences
in the results. However since CATS3D and ILP both employ
three-dimensional information, we need to identify differ-
ences between these two approaches. First, the predicted
three-dimensional structures of molecules generally contains
errors in atom coordinates and the tolerance of such errors

Figure 4. Three-dimensional depiction of a dominant rule for
scaffold hopping. The alignment contains the retrieved active
scaffold (blue) and the most similar compound (yellow) in the
training data set (the corresponding 2D structures are f2 and f1 in
Figure 3). The red lines represent the dominant rule. Gray and red
balls indicate lipophilic and acceptor atoms, respectively.

Figure 5. Alignments of NSC357756 with two molecules in Figure
4 based on the dominant rule. (a) Structure of NSC357756. (b)
Alignments of the molecules. The figure depicts NSC357756
(violet), molecule f1 (yellow), and molecule f2 (blue). The red lines
represent the dominant rule shown in Figure 4.
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in these two algorithms might differ and thus explain the
small number of scaffolds found in common. However, there
are other major differences between the three algorithms.
ILP finds the features that describe structures of active
molecules and hence can discover new features of scaffold
hopping which were not able to be found by the other two
methods. In addition, ILP employs information about the
inactive examples and this can help in the derivation of rules
which would not be identified by CATS and CATS3D.

This study was specifically aimed at assessing scaffold
hopping and so we needed to establish an appropriate test
set that met our criterion of a new scaffold. To do this we
employed the Open Babel fingerprints which are based on
atom pair distances. This inevitably introduces a bias in the
data set. CATS employs topological atom pairs to find
scaffolds and this approach is related to the Open Babel
fingerprints and thus CATS may therefore perform less well
on our test data set than ILP. However CATS3D does not
use topological atom pairs and so this bias unlikely to affect
the CATS3D approach compared to ILP.

Quality of Data Sets. Our data sets contain the results
for the primary and the confirmation HTS assays. Of the
ten HTS data sets used, seven data sets come from a single
experiment, two include AC50 values and one data set comes
from a confirmed assay. The comments associated with these
data sets note that these HTS results contain artifacts due to
measurement errors. In general, HTS results are noisy due
to many factors including degradation of compounds on
screen plates, measurement errors, or using one concentration
in a single assay.8 It is envisaged that our approach often
would be applied to more focused and higher quality data
sets but these were not available to us. Accordingly we used
these publicly available data sets to benchmark our method.
Indeed, the fact that the ILP-based method performed
significantly better than random selection suggests that the
method has a sufficient degree of robustness to noise. In
addition, we note that this study has considered HTS data.
Further work could investigate the applicability of our
approach to iterative virtual screening compared to a standard
HTS approach. In such a study, one should consider the
tradeoff of cost, time and yield in terms of hits.

The results of the evaluation in this study are affected by
the data sets studied and different data sets might have
yielded different results, particularly as the differences
between the three methods involve small numbers. We expect
that more data sets will be publicly available in future to
assess our method with various target protein and assay types.
We emphasis at this stage at the top 5% of the ranked data
set (which is the useful level for real-world application), we
can only conclude that ILP, CATS and CATS3D offer

complementary approaches for scaffold hopping and cannot
claim that any approach is superior.

Conformational Flexibility of Compounds. We used one
conformer for a molecule in CATS3D and in the ILP-based
method. A recent study with 150 crystal structures of
protein-ligand complexes showed that over 60% of the
ligands do not bind in a local minimum conformation.35

Therefore, it is inappropriate to select one conformation for
each molecule and several potential conformations should
be used in the calculation. Interestingly, it was shown that
the benefit of using multiple conformations is not as high as
one might expect for CATS3D and the authors recommend
the use of single conformation for large databases.30 ILP can
incorporate multiple conformations in the calculation, which
produces rules describing structural features for each con-
former. However, if ILP were to be used to learn rules from
data containing large numbers of multiple conformations,
calculation time and memory consumption would become a
serious problem. Further work is required to extend our
method efficiently to manage multiple conformations.

Further Developments in the ILP-Based Scaffold
Hopping. Other improvements for our method would include
using new atom types or different similarity measures,
learning more diverse rules, and, combining learnt rules with
other algorithms. The major advantage of ILP is its flexibility
to describe objects (molecules) and to declare rules for
learning. ILP can incorporate other atom types such as base
or acid, fragments of molecules, and even values of LogP
(octanol-water partition coefficient) or LUMO (lowest
unoccupied molecular orbital) for molecules. It is also able
to learn various rules involving four, or more, point phar-
macophore types. The obtained rules produce the binary
vector for a molecule as described and other algorithms can
use in accordance with the purpose. SVILP is one of such
efforts. These improvements should be involved in the future
study.

CONCLUSIONS

We propose a new scaffold hopping method using ILP.
ILP uses the observed spatial relationships between phar-
macophore types in pretested active and inactive compounds
and learns rules identifying the structures of active com-
pounds. Our ILP-based method was compared to two
previously published algorithms (CATS and CATS3D) with
sets of diverse scaffolds in ten HTS data sets. The ILP-based
method is significantly better than random selection while
the other two methods are not. In addition, the ILP-based
method found new active scaffolds which were not retrieved
by the other methods. The results indicate that the ILP-based
method performs at least as well as previous algorithms.

Figure 6. Venn diagrams representing retrieved active scaffolds by three algorithms in the top (a) 10%, (b) 20%, and (c) 30% of the ranked
test data sets.
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Importantly, ILP produces human-readable rules which
provide insight into scaffold hopping. We consider that
elucidation of scaffold hopping knowledge by ILP will
provide guidance to identify new active compounds in
medicinal chemistry.
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