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Abstract 

Expert systems divide neatly into two categories: those in which ( 1) the expert decisions result in 

changes to some external environment (control systems), and (2) the expert decisions merely seek 

to describe the environment (classification systems). Both the explanation of computer-based 

reasoning and the "bottleneck" (Feigenbaum, 1979) of knowledge acquisition are major issues in 

expert systems research. We have contributed to these areas of research in two ways. Firstly, we 

have implemented an expert system shell, the Mugol environment, which facilitates knowledge 

acquisition by inductive inference and provides automatic explanation of run-time reasoning on 

demand. RuleMaster, a commercial version of this environment, has been used to advantage 

industrially in the construction and testing of two large classification systems. Secondly, we have 

investigated a new technique called sequence induction which can be used in the construction of 

control systems. Sequence induction is based on theoretical work in grammatical learning. We 

have improved existing grammatical learning algorithms as well as suggesting and theoretically 

characterising new ones. These algorithms have been successfully applied to the acquisition of 

knowledge for a diverse set of control systems, including inductive construction of robot plans and 

chess end-game strategies. 
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1 

Overview 

Abstract With reference to Michie's definition of "expert systems" (Michie, 1985) we discuss and emphasise 

the necessity for machine-executable knowledge to be comprehensible to human experts. Expert systems are 

shown to divide neatly into two categories: those in which (1) the expert decisions result in changes to some 

external environment (control systems), and (2) the expert decisions merely seek to describe the environment 

(classification systems). Both the explanation of computer-based reasoning and the "bottleneck'' (Feigenbaum. 

1979) of knowledge acquisition are major issues in expert systems research. We have contributed to these areas 

of research in two ways. Firstly, we have implemented an expert system shell, the Mugol environment, which 

facilitates knowledge acquisition by inductive inference and provides automatic explanation of run-time 

reasoning on demand. RuleMaster, a commercial version of this environment, has been used to advantage 

industrially in the construction and testing of several large classification systems. two of which we describe in 

appendices. Secondly, we have augmented grammatical learning techniques and successfully applied these to 

the acquisition of knowledge for a diverse set of control systems, including inductive construction of robot 

plans and chess end-game strategies. 

1.1. What are expert systems? 

In recent years expert systems have been exciting a great deal of interest in the computational 

and cognitive sciences. What, however, do we mean by an "expert system"? An often-repeated but 

naive definition says that an expert system is a program that solves problems which would 

otherwise require a highly skilled human for their solution. Powerful, but essentially "black box" 

problem solvers, such as autopilots in the aircraft industry or the MACSYMA system (Moses, 

1975) for symbolic manipulations, would qualify under such a definition. The definition is generally 

extended to include the property of self-explanation. Thus Feigenbaurn (1979) required that the 
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system "be able to explain its activity; else the question arises of who is in control ... " and sees the 

issue as crucial to user acceptance. However it would be naive to go to the other extreme and say 

that an expert system is a computer program which has all the behavioural characteristics of a 

human expert. Clearly the latter definition is not restrictive enough as we would not expect a 

computer program to go out for lunch at midday. For the purposes of this thesis, we will adopt 

Michie's (1985) definition of an expert system. 

An expert system embodies in a computer the knowledge-based component of an expert skill in 
such a form that the system can generate intelligent actions and advice and can also on demand jus
tify to the user its line of reasoning. 

With reference to this definition we should stress two important aspects; firstly an expert 

system's task performance should be demonstrably at least as good as that of a human expert in the 

given domain, and secondly the system must be capable of explaining its line of reasoning on 

demand. We should note that this definition does not exclude problem domains too complex for 

human specialists to have acquired mastery. If, by some means, a program were constructed which 

gave an account of its faultless play of the chess end-game of King and two Bishops against King 

and Knight in terms which end-game specialists could understand and apply, then the program 

would qualify as an expert (superexpert?) system. Expert systems are the knowledge-based sub-

category of a larger class of computer programs which display good task performance based upon 

large amounts of information (for a definition of the technical meaning of the term knowledge used 

here, see (Michie, 1982)). This larger category we will call domain-specific problem solvers. The 

information for the latter class may be held implicitly, as in search-driven game-playing programs, 

or explicitly as look-up. For the above mentioned expert-inscrutable Bishop-Bishop-Knight ending a 

tabulation by K. Thompson (Roycroft, 1983; Thompson, 1985) of the complete space of several 

hundred million legal positions can be made to yield optimal play. Note that this does not 

constitute an expert system but does exemplify the larger class. 

Both domain-specific problem solvers and expert systems can be partitioned into the 

following two distinct classes. 
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a) Classification systems. In a classification system like MYCIN (Shortliffe and Buchanan, 

1975), it is assumed that the state of the world being classified does not change during the 

operation of the system. Thus, if some statement could be made about the situation being 

classified at the beginning of the process of classification, the same statement would hold 

throughout 

b) Control systems. In a control system such as VM (Fagan et al, 1979), no such steady-state 

assumption holds, and indeed it is generally part of the function of the system to carry out 

operations which change the state of the world. 

1.2. How expertise is acquired: the debug cycle 

Many of the problems of building and using an expert system involve the human interface. 

The reasons for this, over and above the usual problems of providing user interfaces for normal 

programs, lie in the fact that an expert system, like an expert's knowledge, is never complete. Once 

the system has been shown to perfonn well in some domain, its owner typically seeks either to 

improve on this proficiency or expand the scope of expertise. Thus expert systems are often 

continually being debugged. Moreover, this debugging cycle does not only involve a programmer 

or knowledge engineer but also a human expert Experts, though knowledgeable in their own field 

cannot be expected to be acquainted with programmer-oriented tools. Thus in the study of expert 

systems we need to be able to answer at least the following questions. 

1) How does the expert assess the system's present knowledge? The answer seems to lie in 

allowing the expert to use example test-cases. The expert checks a natural language 

representation of the system's reasoning in particular example cases and uses this to infer the 

reasoning process. This was first shown to be effective in the MYCIN project (Shortliffe and 

Buchanan, 1975). 

2) How does the expert alter the systems knowledge? By symmetric analogy to the first 

answer, we would expect that experts should be allowed to express, by example, their 

reasoning to the system in a natural fonnat The system could then infer how its own 
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reasoning process must adapt to fit that of the expert. This methodology was first tested by 

Michalski and Chilausky (Michalski and Chilausky, 1980) who found it gave excellent 

results. 

Algorithms, like that used by Michalski et al., which infer generalised descriptions from 

example material are collectively termed inductive inference algorithms. If the outputs of such 

algorithms are in user-intelligible and mentally checkable form. then it is customary to speak of 

inductive learning algorithms. The study of such algorithms and their application in expert system 

technology forms the main thrust of this work. 

1.3. Induction 

In the following sections we give a brief overview of the uses of inductive algorithms. A 

fuller review of the subject of inductive inference is given in chapter 2. 

1.3.1. Static induction 

Logical induction is the process of generating concept descriptions which are either 

equivalent to or more general than some set of examples describing that concept Typically 

descriptions generated by inductive algorithms are more compact than the original example set As 

these descriptions can generally be executed, induction can also be viewed as an automatic 

programming technique. Work originating at Illinois (Michalski and Chilausky, 1980) and 

extended at Edinburgh (Shapiro, 1983) has shown the potential for constructing expert knowledge 

bases in the relaxed framework of concepts generalised from examples. Commercially available 

packages (McLaren, 1984; A-Razzak, Hassan and Pettipher, 1984; Michie, Muggleton, Riese and 

Zubrick, 1984) have already, during their short existence, proved the power of this approach, with 

development-time savings in building large expert systems of at least an order of magnitude over 

the traditional "deductivist" rule extraction technique. By the traditional method (e.g. MYCIN), 

rules are extracted during a long series of interviews between the knowledge engineer and the 

expert. However, it cannot be said that the "inductivists" have yet completely met their targets. 
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The ultimate learning/knowledge environment might be a "laboratory" in which the scientist 

(expert), unaided by knowledge engineers, uses machines to carry out experimentation and theory 

formation by mechanisms which learn from mistakes. Some form of inductive engine must surely 

lie at the core of any such environment. 

Under the present inductive regime, examples represent static descriptions of world situations 

to which labels are attached indicating a classification or action to be taken. The world described 

often has a finite number of distinguishable states or situations. Rules may be developed 

inductively in various different formalisms ranging from decision trees (Quinlan, 1979), to 

propositional and predicate calculi (Michalski, 1983). The most serious problem to emerge from 

the development of this approach is that although inductive generators, when presented with 

sufficient example sets can generate efficient and correct rules, these rules can be so large and 

complex that they are incomprehensible to human experts (Quinlan, 1982b). Ease of 

comprehension is a crucial factor in the debug cycle of inductively generated knowledge. Two 

complementary approaches to this apparent impasse have so far been suggested 

a) Structured induction. Shapiro (Shapiro, 1983) has shown that large expert domains can be 

effectively dealt with by employing the techniques of structured programming in an inductive 

environment. Thus, the expert is expected to structure his knowledge in a top-down fashion 

manually, and then present examples for each part of the hierarchy. These examples are then 

used to construct the individual rules (or decision trees) automatically. Facilities to aid this 

structuring process have been built into the Mugol environment which is described fully in 

chapter 3. 

b) Human subset languages. Michie (Michie, 1984) has suggested that by constraining every 

constituent rule to take one or other of two alternative forms (either linear thresholded sum or 

linear decision tree) and by also constraining the form of the "calling diagram" relating 

linearised procedures to each other, rulebases can be constructed that are easily understood 

and force builders to structure their problem. Arbab (Arbab and Michie, 1985) has 
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implemented a new version of a rule-induction algorithm due to Bratko (Bratko, 1983) which 

constructs a linear rule where one exists and otherwise presents the most nearly linear tree 

which can be constructed from the data. 

Manually structured induction is not the final solution. In any expert system building task, 

the structuring of the problem now becomes the new knowledge acquisition bottleneck. Attempts 

have been made (Michalski and Stepp, 1982; Paterson, 1983) to automatically structure domains 

from example material. These have used statistical clustering in an attempt to extract structural 

information from the example set The results however, have not been very promising, with the 

machine's suggested hierarchies not necessarily having any significance to experts in the domain 

(Paterson, 1983). The primary reason for failure seems to lie in the fact that although the example 

set is a rich enough knowledge source for rule construction, additional information is necessary to 

indicate humanly comprehensible higher level structure. We suggest a new approach that offers a 

partial solution to this problem for control domains (see section 1.1, "Control systems"). The full 

theoretical basis for this approach is developed in chapters 5 and 7, with experimental results being 

given in chapters 6 and 8. 

1.3.2. Sequence induction 

The new approach relies on the presentation of example sequences to an inductive algorithm. 

Each element of the sequence is a situation/action pair similar in form to the static descriptions 

such as those described in section 1.3.1. These sequences can be taken to represent a series of 

world descriptions which are altered by actions operating on that world. The output of the 

inductive process is a finite state control structure in which each state contains a small number of 

the static description examples describing the actions and state transitions which should be carried 

out in various situations. These static description examples can be used by a static induction 

algorithm to produce rules or a decision tree for each state. Although we do not produce a 

hierarchical structure, we achieve some of the aims of structured induction (i.e. a set of small 

understandable rules) by making use of the additional structural information which lies within each 
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example. Whereas structured static induction seems to be of most use in classification systems, 

sequence induction lends itself more readily to the construction of control systems (see section 1.1). 

In tenns of automatic programming, sequence induction is used to design the overall branching and 

looping structure of routines in a program, while static induction is used at a lower level to decide 

the internal ordering of nested if-then-else statements. 

The basis for sequence induction techniques lies in the study of grammatical inference, that is 

the inference of grammatical structures from example sentences of a language (see chapter 5). 

Under the generative paradigm of computational linguistics, the grammar produced can be viewed 

as the control structure of a program which generated the example sentences. Some of the earliest 

work in the area of grammatical induction was done by Biermann and Feldman (Biermann and 

Feldman, 1972), who devised an algorithm to induce a finite state automaton representing a 

particular language from example strings contained in that language. Although their algorithm was 

capable of identifying any regular language given a sufficient example set, the algorithm requires 

an arbitrary complexity parameter and also has rather low example efficiency (ie. a large number of 

examples are needed to infer anything). Angluin (Angluin, 1982b) has described an algorithm 

which infers only a limited subset of the regular languages. This subset she calls the k-reversible 

languages. By limiting the target result set, Angluin's algorithm achieves example efficiency higher 

than that of Biermann and Feldman's algorithm. 

The author (see chapter 7) has taken Angluin' s algorithm and redesigned it to run in linear 

time complexity rather than Angluin's original 0(n3) time. Furthermore, we have discovered an 

even smaller, but useful subset of the k-reversible languages, which we call the k-contextual 

languages. The algorithm for inferring members of the k-contextual languages is again more 

example efficient than even Angluin's, to the extent that inference is possible from samples 

containing only a single example (all other methods in the literature presuppose more than a single 

example). We have also discovered a method that circumvents the need for supplying the algorithm 

with an arbitrary complexity measure, something which is required by all other methods in the 
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literature (Angluin, 1982b; Biermann and Feldrnan, 1972; Levine, 1982; Micle~ 1980). We achieve 

this by making use of the semantic content of static examples in the construction of finite state 

schemas. 

1.4. An environment for inductively acquiring expert knowledge 

In order to test the hypothesis that expert control knowledge can be acquired conveniently by 

inductive inference, it is necessary to have an environment which is capable of being used for the 

routine inductive construction and execution of knowledge-bases. It is desirable that this 

environment have the following properties 

a) An induction engine. Inductive apparatus both for static and for sequence induction. 

b) A rule language. This is used to express the output of a) in a natural and comprehensible 

fashion. Such a language should provide support for problem structuring and the manipulation 

of whatever data is needed for the task at hand. 

c) An explanation facility. According to the definition of section 1.1 this is necessary for the 

construction of any expert system. 

In chapter 3 we discuss the Mugol environment which has been constructed to meet these 

requirements. The only above requirement not yet fully met is the integration of the sequence 

induction algorithm with other tools in the Mugol environment. 

1.5. Applications 

1.5.1. Applications or static induction The Mugol environment has been tested in the 

construction of two major expert classification systems. The techniques used for the construction of 

both of these were based on the structured static induction methodology first advocated and tested 

by Shapiro and Niblett (Shapiro and Niblett, 1982). The systems were 

a) WILLARD. WILLARD (Zubrick, 1984) is an expert system for predicting the likelihood of 

severe thunderstorms occurring in the central USA. The system was written by Steve Zubrick, 
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a meteorologist at Radian Corporation. Extensive testing of the system (Zubrick, 1986) has 

shown that it is capable of producing predictions which usefully complement those of the US 

National Weather Service. A fuller description of WILLARD can be found in Appendix A. 

b) EARL. EARL (Riese, 1984) is a system for diagnosing imminent break-down in large oil

cooled electrical transformers. The system was constructed by Charles Riese who is a 

software engineer working for the Hartford Steam Boiler Company. When EARL was tested 

against 859 test-cases, it managed a diagnostic success rate in excess of 99%. EARL is now 

in routine industrial use. A fuller description of EARL can be found in Appendix B. 

The author gave help and advice in the structuring and example acquisition of both the above 

systems. Details of a smaller control system called ARCH are given in chapter 4. 

1.5.2. Applications of sequence induction 

The author has shown (see chapter 6) that sequence induction can be applied successfully to 

a diverse set of problems, including automatic VLSI circuit synthesis, user modelling in a 

mathematical educational environment and generalisation of robot plans. 

More recently, using sequence induction, we have successfully built an expert system for 

playing a fragment of the chess endgame domain of King and two Bishops against King and Knight 

(see chapter 8). This endgame is so complex that even the chess endgame specialist, John 

Roycroft, has failed after months of continuous study, aided by unlimited access to machine

generated facts and variations, to acquire more than a partial and patchy understanding of it. 

However, when presented with the expert system built from his example move sequences, he easily 

recognised and agreed with the various states of the generalised structure which had been built The 

most complex states (in terms of the number of static examples placed), were precisely those which 

Roycroft had spent most time describing in the sequence acquisition stage. The expert system 

although very compact, is also very easily comprehended. 



Overview 10 

1.6. Conclusion 

In this chapter we introduce the topic of expert system research, following Michie's definition 

of an expert system. Expert system development involves continuous debugging of knowledge 

structures. We argue that the two most important tools in this debugging process are a) an 

explanation facility and b) an inductive knowledge acquisition mechanism. The major topic of 

interest within this thesis is that of inductive inference. 

We describe two different forms of induction. Static induction algorithms take examples 

which represent descriptions of world situations to which labels are attached. These labels indicate 

a classification or an action to be taken. On the other hand, sequence induction relies on the 

presentation of example sequences to an inductive algorithm. Each element of the sequence is a 

situation/action pair similar in form to the static descriptions. 

We have constructed an expert system construction environment called the Mugol 

environment. This comprises an induction engine, a rule language and an explanation facility. 

Although the Mugol environment in its present form only has facilities for static induction, it would 

be a simple matter to introduce a sequence induction package based on the techniques developed in 

this thesis. 

Generally whereas static induction techniques have been found to be effective knowledge

acquisition methodologies in classification domains such as chess classification (Quinlan, 1982b; 

Shapiro and Niblett, 1982; Shapiro, 1983), weather forecasting and transformer diagnosis (see 

chapter 4), we believe sequence induction to be similarly promising as a strategy-acquisition 

methodology in control domains such as robot planning (see chapter 6) and chess endgame play 

(see chapter 8). 



2 

Inductive inference 

Abstract. The notion of inductive inference is discussed with reference to its inverse, deductive inference. We 

point out that inductive algorithms do not necessarily carry out generalisation. Inductive algorithms take 

example world descriptions and produce executable rules. Properties of example material and inductive 

algorithms are described and discussed. By way of a simple example we show the strengths and weaknesses of 

various rule formalisms. The basis for the Mugol language is given, with emphasis being placed on 

transparency of expression and the ability to inductively generate the finite state control structure of Mugol 

modules. 

2.1. Generalisation 

Deduction is the process of deriving specific statements from more general ones. For 

instance, let a list be an ordered set Thus 

["John", "Mary", "Harry"] 

is a list of people's names. A legitimate corresponding general statement concerning the members 

of a list might be the following 

X is a member of the list L if X is the first element of L or if X is a member of the 
list formed by removing the first element of L. (1) 

Many statements are deductively derivable from the statement of list membership. For instance 

"John" is a member of the list L, where L =["John", "Mary", "Harry"] since "John" 
is the first element of L. (2) 
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Note that by using deductive inference we could. in principle, replace all general statements s 

such as statement (1} by a {potentially unlimited) set S of particular statements such as statement 

(2). 

The inductive algorithms described in this thesis take a set of descriptive statements E, called 

the example set, and propose a new set of descriptive statements R, called the rule set, where each 

example e E E can be deductively derived from some rule r E R. In addition, there may or may 

not exist a descriptive statement e' e E which can be deductively derived from a rule in R. Such a 

descriptive statement e' which is derivable from R but not originally given in E is a "guess". These 

guesses are usually introduced in order to compact R as much as computational trade-offs permit 

(see also later discussion of Popper's philosophical comment on inductive generalisation). It can· 

therefore be said that these inductive algorithms generate a rule set R which is more general or 

equivalent to the given example set E, i.e. if E' is the set of all deductions from R then E' ;2 E. 

The phrase "inductive inference" for such a process is in some ways unfortunate since it may to 

some readers imply the necessary involvement of generalisation. 

The advantage of employing an inductive algorithm in developing expert systems seems to 

lie not necessarily in the inductive algorithm's ability to "guess" the classifications of previously 

unseen examples, but rather in a particular psychological fact: whereas experts can easily suggest 

particular situations to which they can apply their knowledge, it is much more difficult for them to 

formulate general rules. 

2.2. Examples and rules 

Expert systems carry out tasks relating to a particular though not necessarily explicit world. 

For instance, in medical expert systems the world is the set of possible states of a patient's body 

together with relevant anatomical and physiological laws, while in game-playing domains the world 

might be the set of legal arrangements of pieces on a board together with the laws of chess. Often 

the program will contain a model of the world. which is some simplified and abstracted 

representation of the world in question, containing enough detail for the program to work on. 
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For any particular model of the world. there exists a set of situations or arrangements of the 

model, e.g. in the chess domain, a "ground model" might have as its set of situations the complete 

set of different arrangements of pieces on the board. These situations can be abstracted by defining 

a set of attributes (relationships between parts of the world) in terms of which a particular situation 

can be described. In the chess world one possible attribute might be the black king is in check. 

In a classification problem. such as deciding whether a chess endgame is a win-for-white 

(Shapiro, 1983) an example consists of a particular situation described in terms of the values of all 

relevant attributes together with the classification given. For instance, we might have 

Example: win-for-white if A and 8 and C and D and E 

where A. B, C, D, and E are a set of attributes, observable from the world model, which are used 

to decide whether white can force a win. A general rule derived from this example might be 

Example: win-for-white if 8 

Note that the rule does not necessarily use all the attributes necessary to describe a particular world 

situation: an ideal rule uses as few attributes as possible. In the case of Shapiro' s wo~ one such 

simple rule for the KPa7KR domain was that white wins if it can safely capture the black rook. 

In general we call the input to an inductive algorithm the example set and the output the rule 

set. Examples and rules may take a very different form from those shown above, for instance in 

sequence induction (chapters 5,6, 7,8). 

2.2.1. Ordering 

Ideally we would want the order in which examples are presented to an inductive algorithm 

not to affect the results given. In fact this is true for all inductive techniques dealt with in this 

thesis. Not only is the order of examples essentially irrelevant to these techniques but also the order 

of attributes given has no effect on the result. In contrast, in sequence induction the internal 

ordering within particular examples does, justifiably, affect results of induction (see chapters 

5,6,7,8), remembering that in this context an "example" includes the specification of a particular 
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ordering. 

2.2.2. Types of exam pie material 

Examples presented to an inductive algorithm are said to be either positive or negative in the 

sense that they respectively exemplify or counter-exemplify the concept being conveyed. Moreover, 

the nature of example material differs according to the method in which it is employed. In this 

thesis a source of examples is referred to as an oracle when it can be interrogated interactively by 

an inductive algorithm. Alternatively, when examples are given according to some fixed 

presentation scheme, the source of examples is said to be text. Inductive algorithms in this thesis 

use textual example material. 

2.3. Criteria for inductively generated results 

It is important to be able to make sound statements about 

a) Algorithmic effectiveness. What results do we expect the algorithm to be able or unable to 

produce, or not produce. 

b) Validity of induced results. Since any inductive process potentially involves the assertion of 

facts which are not originally given as being true, the question arises as to how confident one 

can be in the application of the resultant information. 

We investigate these problems in the following sections. 

2.3.1. Effectiveness 

Suppose an inductive algorithm A conjectures a series of rule sets 

in response to an enumeration of instances of a given rule set R. Each Rt.1 is proposed as soon as 

the rule set R; is found to be inconsistent with the instance source (oracle or text). The algorithm A 

is said to identify in the limit the rule set R if and only after a finite amount of time A proposes the 
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rule set R;, which is equivalent to R, and does not subsequently change this proposal. We discuss 

the notion of "identification in the limit" further in chapters 5 and 7 in the context of sequence 

induction. 

Clearly, the ability to prove that an algorithm will identify in the limit some rule set from a 

class of rule sets effectively imbues the user with confidence in that algorithm. However, from the 

outsider's viewpoint, if the specification of the target total set is not available, it will never be clear 

that any particular guess made by such an algorithm will not be subsequently changed. Hence one 

cannot necessarily ever have complete confidence in any particular result generated by such an 

algorithm if it is known only that a correct rule-set will eventually be generated. It is therefore 

also necessary to have some independent means of verifying inductive results. 

2.3.2. Verification or inductive results 

Induction is believed by some to be logically and philosophically unsound since it is not 

possible in general to positively prove a generalisation of some facts, only disprove it {Popper, 

1972). Thus we might, on the basis of experience of a number of example cases, have 

hypothesised the descriptive law that the sun will rise every morning. This hypothesis could not be 

positively proved, only disproved. Although these objections are perfectly valid, it is widely agreed 

that all human and animal knowledge is acquired on the basis of experiencet. Thus it is not the 

usefulness of inductive inference which is in question but rather the way in which confidence can 

be gained in its results. 

Let us separate the class of computable functions into the sub-classes F (finite) and I 

(infinite). Functions within F have a finite domain while functions within I have an infinite 

domain. Clearly hypothesised functions within F have a finite number of instances. Thus these 

could, in principle, be completely verified by enumerating all expressible problems and checking 

the solution's results against an oracle. However, functions hypothesised within I cannot be 

t It might be argued that many behavioural responses, especially instinctual ones, are inherited genetically which can 
be interpreted as indicating that these responses are "learned" by evolution. 
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exhaustively proved like this since a potentially infinite number of instances exist for any function 

within /. Instead we might turn to the method of mathematical induction• for a proof here. By 

this technique we attempt to find an incremental operator which if applied repetitively can 

deductively derive all possible instances from a set of base statements. If the base statements are 

found to be valid according to the oracle, and an arbitrary application of the operator to non-base 

statements also produces statements consistent with the oracle, then we can infer the entire set of 

statements to be correct As this method of proof is often used to prove human-generated programs 

it seems reasonable to use the same technique for machine-generated programs. This latter 

technique has not been applied to inductively-generated programs in this thesis, but is believed to 

be a pressing topic for further research. 

2.4. Languages involved in inductive inference 

If inductive inference is to be used as an automatic programming tool, as is the case with the 

Mugol environment (see chapter 3), it should be recognised that there are three languages involved. 

1) Implementation language. In terms of logic, this is a meta-language which is used to 

inductively transform examples into rules. In the Mugol environment the implementation 

language for the inductive rule generator is the programming language C. 

2) Example language. This language comprises a simplified symbolic representation of 

decision-making in the world being modelled. In this thesis, as explained in chapter 1, we 

deal with two distinct forms of example material: 

a) static examples, represented by <Situation/classification> pairs. 

b) dynamic or sequence examples, consisting of sequences of <situation/action> pairs 

which represent a changing situation controlled by actions effected on the world. 

3) Rule language. The rule language expresses descriptive or prescriptive statements about the 

world. In an inductive programming environment, such rules are fragments of some 

• Note that this is not related in any simple way to "induction" as used generally in this thesis. 
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executable program or knowledge·base. In the Mugol environment, classification rules are 

expressed as multi·branching decision trees. Control infonnation is expressed in the format 

of recursive transition networks, i.e. a set of finite state automata (see section 2.6) which call 

each other. A desirable feature of a rule language in expert systems work is that its 

expressions should correspond well with the expert's own conceptual representations. 

2.5. Classification learning 

Simple concepts can be stated in logic as propositions in the propositional calculus. For 

instance we might define the concept of bird as follows 

fred·is-bird if fred-has--wings and not(fred-is·aeroplane) (3) 

Note that this could either be viewed as an example of a bird or as a general rule for 

recognising birds. The example language of Quinlan's ID3 inductive algorithm (Quinlan, 1979) 

recognises only tabulated disjunctions of conjunctions where each conjunction (or example) could 

be directly translated into a statement such as (3). 

ID3' s rules are generated as binary decision trees in a language having the equivalent of the 

context-free grammar 

rule~ TRUE 

rule~ FALSE 

rule ~ IF attribute THEN rule ELSE rule 

where attribute is simply the name of a test Although simple, a generalised form of ID3 has been 

found in this thesis to be useful in the construction of large expert systems (see chapter 3 and 4 and 

Appendices A and B). However, a small artificial example developed in the following sections 

shows the limitations imposed by the expressibility of the output of such inductive inference. 
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2.5.1. Parity problem (unstructured) 

Imagine that we want to inductively develop a rule for deciding whether a set of four truth 

values contains an even number of trues. This is nonnally called the problem of even-parity. We 

give ID3 a full tabulation of all examples as shown in figure 2.1. CLASS is the value of Even-

parity for the particular situation. ID3' s result is shown in figure 2.2. 

Far from compacting the data in this case (as ID3 generally does), the decision tree has as 

many leaves as examples, and is very difficult to understand due to its bulk. This is admittedly a 

worst-case problem for ID3, however it should be asked how problems of this type can be solved, 

as similarly difficult problems may turn up in real world situations. Shapiro and Niblett (1982) have 

suggested the use of structuring to simplify the solution of such problems. Can structuring help in 

solving the parity problem? 

Attribute-! Attribute-2 Attribute-3 Attribute-4 CLASS 

false false false false TRUE 
false false false true FALSE 
false false true false FALSE 
false false true true TRUE 
false true false false FALSE 
false true false true TRUE 
false true true false TRUE 
false true true true FALSE 
true false false false FALSE 
true false false true TRUE 
true false true false TRUE 
true false true true FALSE 
true true false false TRUE 
true true false true FALSE 
true true true false FALSE 
true true true true TRUE 

Figure 2.1 Examples of Even-parity 
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IF Attribute-! THEN 

ELSE 

IF Attribute-2 THEN 
IF Attribute-3 THEN 

IF Attribute-4 THEN 
ELSE 

ELSE IF Attribute-4 THEN 
ELSE 

ELSE IF Attribute-3 THEN 
IF Attribute-4 THEN 
ELSE 

ELSE IF Attribute-4 THEN 
ELSE 

IF Attribute-2 THEN 
IF Attribute-3 THEN 

IF Attribute-4 THEN 
ELSE 

ELSE IF Attribute-4 THEN 
ELSE 

ELSE IF Attribute-3 THEN 
IF Attribute-4 THEN 
ELSE 

ELSE IF Attribute-4 THEN 
ELSE 

TRUE 
FALSE 
FALSE 
TRUE 

FALSE 
TRUE 
TRUE 
FALSE 

FALSE 
TRUE 
TRUE 
FALSE 

TRUE 
FALSE 
FALSE 
TRUE 

Figure 2.2 103 decision tree for Even-parity 

2.5.2. Parity problem (structured) 

19 

One structuring method is the following. Let the top-level decision, "Even-parity" be based 

on two sub-attributes 

1) First-half-even. This checks whether the attributes Attribute-] and Attribute-2 have between 

them an even number of trues. 

2) Second-half-even. This checks whether the attributes Attribute-3 and Attribute-4 have 

between them an even number of trues. 

Figures 2.3, 2.4 and 2.5 show the examples for the new "Even-parity", "First-half-even" and 

"Second-half-even" sub-problems respectively. 
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First-half-even Second-half -even O...ASS 

false false TRUE 
false true FALSE 
true false FALSE 
true true TRUE 

Figure 2.3 Even-parity 

Attribute-! Attribute-2 CLASS 

false false TRUE 
false true FALSE 
true false FALSE 
true true TRUE 

Figure 2.4 Examples of First-half-even 

Attribute-3 Attribute4 CLASS 

false false TRUE 
false true FALSE 
true false FALSE 
true true TRUE 

Figure 2.5 Examples of Second-half-even 
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IF First-half-evenTHEN 
IF Second-half-even THEN 
ELSE 

ELSE IF Second-half-even THEN 
ELSE 

TRUE 
FALSE 
FALSE 
TRUE 

Figure 2.6 New 103 decision tree for Even-parity 
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Note that although the examples are still tabulated fully, only 12 examples are needed rather 

than the original 16 for figure 2.3. Note also, coincidentally, that since all three example sets are 

identical in terms of the examples present, we only show the new decision tree for "Even-parity" in 

figure 2.6, the other two decision trees having the same outline. ID3 can do no compaction in 

generating these trees, though this time, since the tree is small, it is easier to understand. 

2.5.3. Example and description complexities 

It is of interest to note the number of examples, size of description and description execution 

time for unstructured and structured solutions of the parity problem. Let N be the number of 

primitive attributes+ used (i.e. the original number of truth-values being dealt with). No decision 

can be made about even-parity without considering all primitive attribute values. ·-

Let us consider first the unstructured solution. In this solution it is necessary to present ID3 

with all possible examples in order to obtain a correct decision tree (see figure 2.1), i.e. 2N 

examples are required (in figure 2.1 24 = 16). Again, since all primitive attribute values must be 

considered in making any decision on even-parity, all leaves of the unstructured decision tree will 

need to be at maximum possible depth in the tree, i.e. depth N. There must be 2N leaves in such a 

decision tree (one for each example), and by simple summation of nodes at different levels there 

must be (2N+1-1) nodes of them (in figure 2.2, 24+1-1 ~ 31). When executing the tree the number 

of decisions made in gaining any particular result is always N, the maximum depth of the tree. 

+ By primitive attributes we mean those that are not described hierarchically in terms of any sub-attributes. 
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Thus we say that the unstructured solution requires 0(2N) examples, 0(7!') description space and 

O(N) time to execute the description. 

Let us now consider the structured solution. We can extend the solution shown in figures 

2.3-2.5 to deal with any number of primitive attributes N, by using sub-attributes which repeatedly 

break the attribute set in half. For instance, given 8 attributes, "First-half-even" would have the 

sub-problems of "First-first-half-even" and "Second-first-half-even" instead of Attribute-! and 

Attribute-2 (see figure 2.4). It works out that the number of examples needed for N primitive 

attributes is 4(N-l) (in the solution of figure 2.3-2.5, 4 x 3 - 12 examples). The descriptive size 

of the solution, i.e. the total number of nodes in all trees in the solution, is 7 (N-1) (21 in the 

solution of the example set of figures 2.3-2.5). In order to decide on even-parity using the 

structured set of trees it is necessary to execute all internal nodes of all trees in the solution, which 

in general amounts to 3(N-1) nodes (9 nodes in the solution of figures 2.4-2.5). Therefore the 

unstructured solution requires O(N) examples, O(N) description space and O(N) time to execute the 

description. The complexity results for various representational methods of describing the parity 

problem are summarised later in figure 2.8. 

The author is not aware of any such quantitative analysis of worst case for structured and 

unstructured induction presented elsewhere. However, these results are in line with Shapiro' s 

observation (1983) that in his chess end-game solution for the domain of KPa7KR, while the 

execution time for structured solutions is not noticeably different from that of unstructured 

solutions, considerably fewer examples are needed and the total size of description produced is 

smaller. 

Thus structuring can be an effective technique both for compaction and for understandability. 

However, let us change the parity problem slightly and try to build a decision tree for checking 

even-parity of an arbitrarily long stream of truth-values. 

Let us imagine that an inductive algorithm has a training phase in which examples of even

parity are presented and a rule set is produced. With either the unstructured or structured ID3 
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solution, an example set can only define a window into a finite portion of the stream of truth

values. Remembering that no decision can be made about even-parity without checking all 

primitive attribute values, the generated decision tree will work only for segments of the truth-value 

stream which are less than or equal to the length (number of attributes) described by the example 

set. In order to deal with sequences of arbitrary, unbounded or even infinite length, using a finite 

amount of training, we must turn to finite state machine theory. 

2.6. Finite state automata and strategy learning 

A finite state automaton is a mathematical model of a controller having a discrete set of 

inputs and outputs. This controller has a predefined fixed set of internal states through which it 

passes in carrying out its function. The output response of the controller to any set of inputs 

presented to it is determined not only by the input values, but also by the value of its internal state. 

2.6.1. Finite state acceptors 

A finite state acceptor is a limited form of finite state automaton which has an output 

repertoire of {accept, reject} when applied to any particular series of symbols. 

2.6.2. Parity example revisited 

Let us reconsider the "parity problem" of section 2.5, and pose this as a problem for a finite 

state acceptor. The allowable symbols for any element of a sequence presented to a parity checking 

automaton are chosen from the set {true, false}. The acceptor has two states, "Even-so-far" and 

"Odd-so-far". When in state "Even-so-far" the acceptor will report with the action "accept", and 

will give the answer "reject" when in the state "Odd-so-far". If the string of symbols terminates 

leaving the acceptor in the state "Even-so-far" we will know that there were an even number of 

trues, otherwise there were an odd number. Figure 2.7 illustrates such an automaton. In figure 2.7 

circles represent states. A state is denoted by a double circle when it is associated with an accept 

output and by a single circle for the output being reject. Labelled arrowed arcs joining circles 

represent transitions that are taken between states on recognition of particular symbols in the input 
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false false 

true 

Figure 2. 7 The Even-parity finite state acceptor 

sequence. The unlabelled arc leading into the state "Even-so-far" from the left indicates that this is 

the state in which the automaton starts when presented with the first symbol in the sequence. 

Finite state acceptors have especial importance in the theory of formal languages. It can be 

shown (Hopcroft and Ullman, 1979) that the class of languages acceptable by finite state automata 

is exactly that of the regular languages. In these terms strings of true/false values accepted by our 

even-parity acceptor would be sentences in the language of even-parity. 

2.6.3. Formal definition of finite state acceptors 

We formally denote a finite state acceptor by a 5-tuple (Q, 1:, o, I, F) where Q is a finite set 

of states ({Even-so-far, Odd-so-far} in example), 1: is a finite input alphabet ({true, false} in 

example), I ~ Q is the set of initial states ({Even-so-far} in example), F ~ Q is the set of final or 

accepting states ({Even-so-far} in example) and o is the transition function mapping Q x 1: to Q 

(the labelled arcs of figure 2.7). That is, o(q,a) is a state in Q for each state q and input symbol a. 
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2.6.4. Complexity measure for finite state parity solution 

In terms of the complexity measures of section 2.5.3, it can be seen that two decision nodes 

are needed in the finite state solution of figure 2. 7 irrespective of the number of truth-values 

inspected. Thus the descriptive complexity is constant, which we denote 0(0). In terms of 

execution steps, as always we need to look at all N of the values in any particular string of values 

to decide on even-parity. Thus the time complexity is still O(N). In chapter 5 we will show that 

parity acceptors can be built by the 0-reversible induction algorithm using a fixed number of 

examples. The example complexity using this algorithm is thus constant, or 0(0). 

Figure 2.8 sums up the various complexity results for different representations of the even-

parity problem solution. 

2.6.5. Mealy and Moore machines 

Although finite state acceptors are a powerful model for representing predicates which decide 

whether or not a string of symbols belongs to a particular set of such strings, a general purpose 

controller needs to be able to produce more than the two outputs {accept, reject}. There are two 

different formalisms used to generalise the notion of finite state acceptors to automata capable of 

producing a selection of more than two outputs. 

Unstructured tree Structured trees Finite state machine 

Example 0(2N) O(N) 0(0) 
complexity 

Description 0(2N) O(N) 0(0) 
complexity 

Execution O(N) O(N) O(N) 
time 

Figure 2.8 Complexity results. N • number of binary variables dealt with 
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a) Moore machines. The output values are paired with particular states. Figure 2.9 shows the 

Moore machine version of an "Even-parity" finite state automaton. Note that if the machine 

in figure 2.9 had more than two outputs it would need more than two states. 

b) Mealy machines. The output value is paired with particular inputs. Figure 2.10 shows the 

Mealy machine version of an "Even-parity" finite state automaton. 

A specific form of Mealy machine, namely deterministic uniquely terminated Mealy machines 

(DUTMlvis) are described in chapter 7. DUTMMs are the basis of the control within modules of 

Mugol programs (see chapter 3). These machines have a unique goal state, entry into which causes 

termination of the module's execution. The input and output symbol pairs which label the arcs of a 

Mealy machine equate to particular situations which cause actions to be fired, with a simultaneous 

state transition. In turn, the situation vectors represent sets of callable Mugol modules, each of 

which returns a value. The action is a callable Mugol module which does not return a value. In the 

false false 

true 

Figure 2.9 The Even-parity Moore machine 
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false/accept false/reject 

true/reject 

true/accept 

Figure 2.10 The Even-parity Mealy machine 

next section we investigate the expressive power of Mugol modules. 

2.6.6. Expressive power of D UTMMs 

In order to show that DUTMMs have more expressive power than decision trees, it is 

necessary to show that they can describe all decision tree solutions to problems and that at least 

one other problem solution can be described using a finite state automaton but not using any 

structured or unstructured set of decision trees. The first condition, that DUTMMs can describe all 

decision tree solutions to problems, is shown to be true by figure 2.11. In this figure each 

situation/classification pair s/ci (1 ~ i ~ n) derivable from some decision tree is used to label the 

arcs leading from the start state of the DUTMM to the goal state, the particular decision ci being 

returned on recognition of situation s;. Clearly an automaton such as that in figure 2.11 can be 

constructed to be behaviourly equivalent to any given decision tree. 
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start 
s le 

goal 
n n 

Figure 2.11 DUTMM equivalent of decision trees 

The second condition is apparent from the fact that a one-way infinite lengthed string parity 

problem is insoluble by use of decision trees (see end of section 2.5.3), as any decision tree must 

be finite, though simply soluble as a Mealy machine (figure 2.10) which reports parity-so-far for 

any prefix of the one-way infinite string. 

2.6.7. Limits on expressive power of finite state machines 

Finite state automata, in turn have limits to their expressiveness, and form only one rung in 

the ladder of arithmetic expressiveness. Figure 2.12 describes a simple version of this hierarchy, 

Universal Turing Machines being the most expressive computational formalism. 

In fact the only difference between a finite state machine and a Universal Turing machine is 

the latter's ability not only read to from a tape of symbols which can be moved backwards and 

forwards, but also to write symbols onto that tape. In our example the tape of symbols was the 

string of truth values which the finite state machine was allowed to read from. The extra ability to 
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i Expressive 
power 

Universal Turing machines 
I 

Finite state automata 
I 

Decision trees 

Figure 2.12 Hierarchy of arithmetic expressiveoesa 
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write to the tape equates to the use of variables and program stack in computer programs. As 

shown in the next section, the Mugol language (chapter 3) has these abilities, and therefore has the 

expressivity of a Universal Turing machine. 

2.6.8. Recursion and variables 

The Mugol language caters for recursively defined functions and procedures by allowing 

situational conditions and actions to be evaluated by the mechanism of procedure call. To complete 

the requisites of full computational expressiveness any high-level language must allow for the 

creation and manipulation of variables. Mugol permits the use of variables by the standard 

methods of variable declaration, value assignment and module parameterisation. The use of 

variables and recursion are illustrated in chapters 3 and 4. 

2.7. Induction or finite state automata 

Although in the last section we emphasised the expressivity of finite state representations 

over simpler classification formalisms, this aspect is secondary to human comprehensibility of these 

description formats. The transition mechanism of finite state automata has a direct parallel with the 

goto statement of many programming languages. As unconstrained use of gotos in programs is 

known to lead to highly opaque code which is difficult to create and maintain, it might be felt that 

we are trying to re-open a ''Pandora's box" which has previously been almost successfully closed. 

In practice, knowledge engineers using the Mugol environment without any way of inducing finite 
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state control from sequence information have largely preferred to avoid the use of multiple state 

modules, and limited themselves to building classification systems by structuring a hierarchy of 

single state modules in the manner proposed and tested by Shapiro (1983). 

However, human beings seem to find it easy and natural to generate "control plans" 

consisting of sequences of <situation/action> pairs. If such "plans" could be used by an inductive 

algorithm to produce finite state automata the problem of origination and maintenance would be 

eased considerably. Algorithms which do so are presented, together with examples of their use in 

chapters 5-8. 

This still leaves the problem of opacity of automatically generated finite state automata. This 

might be approached in a similar fashion to that suggested for decision trees (Michie, 1984). Thus 

inductive algorithms would be limited, by some constraint, so that only humanly comprehensible 

finite state automata were produced. For instance the two state automaton of figure 2.10 seems 

quite comprehensible, though a twenty state automaton with arbitrary transitions would be very 

difficult to understand. One approach that suggests itself immediately is to place an upper limit 

upon the product of the number of states and transitions which is acceptable in an automatically 

generated finite state automaton. However, in this thesis we have not dealt with these aspects of 

comprehensibility. 

2.8. Conclusion 

In this chapter we characterise the nature of inductive algorithms. Inductive algorithms use 

various typeS of example material to generate hypotheses in various rule formats. By definition, 

inductive algorithms make "guesses" concerning unknown facts. These guesses must be shown to 

be sound according to some demonstrable criteria. 

In sections 2.5 and 2.6 we use the "parity" problem to illustrate properties of various rule 

representations. In figure 2.8 we give a table of complexity results for the three chosen 

representations. This table shows that, for this problem at least, it is preferable to use a finite state 

machine representation rather than a decision-tree based one. We go on to show that finite state 
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machine representations have more expressive power than those of propositional calculus and 

decision trees. However, there exist formalisms, such as Turing machines, which have even more 

expressive power than finite state machines. One might ask whether formal power is the ultimate 

criterion for deciding between representations. We state that for expert system applications expert 

comprehensibility is more pertinent to the choice of an appropriate representation than formal 

power. 
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The Mugol environmentt 

Abstract. The Mugol environment implements a hierarchically ordered system of inductive learning for the 

acquisition of expert knowledge. The inductive component is a derivative of ID3, an algorithm which performs 

static induction. The environment allows the development of both classification and control oriented expert 

systems. A powerful facility is provided for interfacing rules to other knowledge sources. 

3.1. Some issues in knowledge engineering 

Expert systems differ from other computer programs in the following aspects. 

1) Explanation. Expert systems are capable of inspecting their own reasoning in order to 

explain why certain factors are being investigated and how particular conclusions are reached. 

2) Problem type. Expert systems are more suitable than an algorithmic approach for problems 

which involve a large amount of branching. 

3) Partial certainty. Expert systems are usually able to deal with a set of values between true 

and false which represent the partial certainty of a proposition. The Mugol environment 

described in this chapter does not provide facilities to deal with partial certainty. 

It has been stated (Feigenbaum, 1979) that the most difficult part of expert system building 

lies in the acquisition of knowledge from experts. A key issue here is the difference between 

dialogue acquisition of rules and the use of inductive learning. The latter approach relieves experts 

of much of the burden of authoring rules directly, allowing them to present merely instances of 

t The original authors of the paper "RuleMaster: a second-generation knowledgo-eogineering facility" (Michie, Mug
gleton, Riese and Zubrick, 1984) have kindly consented to the inclusion in this chapter of material relevant to the thesis 
author's contribution. 
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correct decision-making, while the machine produces generalisations of these decisions. 

One of the goals of AI programming language design (as pursued. though not yet fully 

attained. by the logic programming school) is that users should be able to tell the machine relevant 

facts, theories, advice etc. in any order that occurs to them rather than in some fixed sequence as 

demanded by traditional programming languages. A degree of order-independence which has so far 

eluded every Prolog interpreter can be supplied by a new style of programming based on inductive 

rather than deductive mechanisms. Strictly speaking, inductive programming involves the user in 

creating operational specifications which can be transformed by the inductive mechanism into well 

sequenced. efficient programs. 

Large knowledge bases can become unwieldy and difficult to understand. Experts tend to 

organise their knowledge as a set of interrelated factors. By making a hierarchy of attributes 

explicit (Shapiro, 1983) it is possible to make the interrelationship of problem attributes easier to 

understand and maintain. Furthermore, Shapiro showed that structuring even paid off in terms of 

strict store-cost and processor cost (see also section 2.5.3). Even though this approach involves the 

human overhead of structure formation, its advantages outweigh this disadvantage. 

As explained in section 1.1, expert systems can be broadly divided into two main categories: 

classification, eg. MYCIN (Shortliffe and Buchanan, 1975) and control, eg. VM (Pagan et al, 1979). 

Often expert systems require a combination of these abilities. In many systems the form of 

knowledge representation supports one of these approaches while impeding the other. 

Practical expert systems require information sources other than the rules which the expert 

uses for decision making. For instance, a medical diagnostic system might read biomedical 

sensors, access patient records and do mathematical modelling of bodily processes. Facilities for 

linking to external routines may therefore be considered as an essential component of modem 

expert system software. 



The Mugol environment 

3.2. The Mugol environment 

3.2.1. Overview 

The Mugol environment is a general purpose expert system building tool. It consists of 

two major components: Mugol and Mugmaker. Mugmaker is an inductive generator of exe

cutable expressions in a rule language called Mugol. Mugmaker allows users to describe their 

knowledge in a declarative form, while Mugol executes the more procedurally oriented form 

generated by Mugmaker. Mugmaker is discussed in the knowledge acquisition section below, 

while some of the special features of Mugol are described in further sections. 
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It is a well recognised fact that over 50% of the time taken creating an expert system is spent 

on building support facilities for carrying out calculations, reading instrumentation or accessing 

databases. As a high-level language Mugol combines both an ability to represent conditionals rules 

and to carry out calculations· and communicate with procedures written in other languages (see 

section 3.10). While other high-languages might have provided similar facilities in this respect, 

Mugol is unique in its ability to provide explanation of reasoning as an integral part of the program 

specification. 

The development of the Mugol environment was motivated by a desire to solve the 

knowledge engineering issues involved in building large expert systems, (described in the section 

3.1). The original basis for the inductive techniques used in Mugmaker are those of Quinlan's 

(Quinlan, 1979) ID3 algorithm. This method was later refined and improved by Shapiro and Niblett 

(Shapiro and Niblett, 1982) and Paterson and Niblett (Paterson and Niblett, 1982). A basis for 

structuring inductively generated rule sets was developed and tested by Shapiro and Niblett 

(Shapiro and Niblett, 1982). The explanation facility used by the Mugol interpreter is derived from 

a proposal by Shapiro and Michie (Shapiro and Michie, 1986). The Mugol environment is the 

academic counterpart of the commercial product RuleMaster (Michie, Muggleton, Riese and 
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Zubrick, 1984). 

The Mugol environment is written as a set of interrelated C programs written under the 

UNIX* operating system. There are current working versions running on the following machines: 

DEC V~ SUN Microsystems, IBM PC/XT and PC/AT, and AT&T UNIX machine. 

3.3. Knowledge acquisition 

The approach taken in the Mugol environment differs considerably from that of hand-crafting 

rules. It is well known that experts explain complex concepts to human apprentices implicitly by 

way of examples rather than explicitly by stating principles. The apprentice intuitively generalises 

these sample decisions to form more widely applicable rules. A computer can learn in the same 

way as the human apprentice if it is able to produce general rules from specific instances. 

The Mugol environment allows the expert system builder to use rules authored either 

explicitly by an expert or by the machine from examples. The machine builds rules by a process 

called rule induction. In induction of classification rules, rules are induced by generalisation over 

examples of expert decision-making. An example is expressed as a vector of values pertaining to 

attributes of the decision, together with the expert's classification. For instance, in a very simple 

case, if we are trying to build a rule to classify animals, the attributes of the decision might be 

colour and size. A possible classification is ELEPHANT. Given the example: 

Colozu 

grey 

Size 

big => 

Class 

ELEPHANT 

The induction algorithm would generalise this example to the rule: 

irrespective of the animal's colour or size, it is an ELEPHANT 

• UNIX is a trademark of Bell Laboratories. 
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In order to get a more accurate generalisation, more examples would need to be added, 

and a more complex rule would be induced. For instance, with the following example set: 

Colour 

grey 

yellow 

grey 

Size 

big 

big 

small 

=> 

=> 

Class 

ELEPHANT 

GIRAFFE 

TORTOISE 

the following decision tree is generated: 

If the animal's colour is 

a) yellow, then it is a GIRAFFE 

b) grey, then if the animal's size is 

i) big, then it is an ELEPHANT 

ii) small. then it is a TORTOISE 
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In the Mugol environment, a class is composed of an action and a next-state. The action 

specifies what to do in the example situation, and the next-state says which context must be entered 

after the action has been carried out. The induction subsystem which supports this is known as 

Mug maker. The syntax and semantics of Mugmaker are described in section 3.7. 

An illustration of the power of inductive inference to weed out irrelevance is shown in the 

following example taken from the WILLARD expert system (see Appendix A). Contained within a 

widely used meteorological manual (NTIS, 1969) is a table (Figure 3.1) of three attributes used to 

determine the expected change of lapse rate. 
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Vertical Vertical Vertical Change in 
Divergence Motion Thickness Lapse Rate 

divergent descending shrinking ::a> more stable 
divergent ascending shrinking ::a> more stable 
divergent ascending stretching => less stable 
convergent descending shrinking => more stable 
convergent descending stretching => less stable 
convergent ascending stretching => less stable 
divergent none shrinking => more stable 
convergent none stretching => less stable 
divergent ascending no change :a> no change 
convergent descending no change ::a> no change 
none ascending stretching =-> less stable 
none descending shrinking => more stable 

Figure 3.1 Table found in (NTIS, 1969) of examples used in lapse rate detennination 

The rule generated from these examples used only one of the three given attributes. This 

rule was as follows: 

if the thickness (distance between the two constant pressure surfaces) 

a) shrinks then the lapse rate becomes more stable 

b) stretches then the lapse rate becomes less stable 

c) does not change then the lapse does not change 

This simple relation was never spotted by meteorologists although the table had appeared for 

years in standard texts. The rule was found to be correct and consistent with a physical model of 

the atmosphere (based on the hypsometric equations). 

Entering rules by examples has several distinct advantages over writing production rules. 

When the example set has insufficient information to cover the entire problem space, Mugmaker 

will generalise these examples in order to produce a decision tree which covers all the possible 
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situations. If the knowledge is entered directly as rules no generalisation is carried out. When too 

many attributes are present (as in the case shown in figure 3.1), redundant information is ignored 

by Mugmaker. Again, production systems do not have this ability to compact knowledge. 

The knowledge is given as examples in a more implicit declarative form than production 

systems, and this is automatically transformed into a more explicit procedural fonn than that of 

production systems. Thus experts can enter and revise knowledge without regard to order, while 

reviewing and executing an economical procedural fonn constructed for them by the system. In 

logic programming the equivalent of Mugmaker's example set would be an arbitrarily ordered set 

of Horn clauses in a propositional subset of first order logic. 

3.4. Types of expert systems supported 

A wide range of approaches may be taken in the construction of expert systems. These 

approaches employ varying knowledge representations, including production systems (eg. Shortliffe 

and Buchanan, 1975), first-order predicate logic (eg. Niblett, 1985), frames (Minsky, 1975), 

inference networks (eg. Duda et al., 1979), causal models (eg. Mozetic, Bratko and Lavrac, 1984), 

object-oriented models (eg. Bobrow and Stefik, 1983) or hybrid approaches (eg. Intellicorp, 1984). 

The best understood of these are classificatory in nature. However, expert system packages made 

by removing the knowledge component from an expert classification system, as was done with 

EMYCIN (Van Melle, 1980), often have difficulty handling procedural actions. The Mugol 

environment was designed from the start to allow a wide range of control strategies, so that the 

system could be applied to a broad set of problem types. 

An expert system application built with the Mugol environment consists of a set of Mugol 

modules. Each module consists of a transition network of states, each of which contains a single 

decision tree. When invoked, each decision tree carries out a sequence of tests until a decision is 

reached to perform an action. After execution of this action, control is passed to a new state within 

the calling module. Control only moves from one module to another via the mechanism of 

procedure call. The ability to do conditional branching together with that of calling modules 
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recursively allows the building of arbitrarily complex control structures (see sections 2.6.6 and 2.6.7 

for a discussion of the expressivity of the Mugol language). More details concerning the Mugol 

language are given in section 3.5. 

The two large expert systems which have been built with the Mugol environment are 

primarily classificatory and only use a subset of the Mugol language (see Appendices A and B). 

However, small but effective control expert systems have been built. For example, an expert 

system which builds an arch out of a set of blocks from an arbitrary starting position to a given 

goal position was inductively constructed from sample arch-building action-decisions (see chapter 

4). Although this was only a demonstration of the Mugol environment's capabilities, the domain 

contains several of the features of non-classificatory applications (e.g. simple design and 

scheduling). 

3.5. The Mugol language 

Mugol is a language for the run-time orchestration of an incremental library of C-coded 

procedures. It accordingly leaves all actual computations to these, including I/0. One can say 

that all that a Mugol program ever does is to execute rules/control statements and assign strings to 

variables. 

3.5.1. Finite automata 

The language has its formal basis in finite automata theory (see section 2.6). The subclass of 

finite state automata which are of interest here, DUTMMs (see section 2.6 and 7.3), consists of 

machines whose output signal is entirely dependent on the combination of their input signals and 

their internal machine state. 
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More formally, the behaviour of the machine is described by the 6-tuple {Q, :E, ~. o, q0, q1} in 

which 

(1) Q = {q01 q1, ••• } is a set of machine states. 

(2) :E is a set of legal inputs. 

(3) ~ is a set of legal outpws. 

(4) o is the next state function which gives the next state based on the current state and the 

current situation (in the case of a machine measuring the situation on the basis of two 

binary values we have o : Q x {0, 1} x {0, 1} ~ Q) 

(5) q0 is the start state of the automaton. 

(6) q1 is the unique goal state of the automaton. 
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o can be described by a tabulation of inputs and outputs related to particular states. This is 

usually called the state transition table. However, a finite state function is often more clearly 

represented in terms of a state transition diagram. Figure 3.2 depicts a finite state diagram of an 

automaton capable of taking two streams of binary input digits and producing one stream 

representing their sum using the states q0 and q1 to represent the "carry." The initial state is 

indicated by a start arrow, and the state transition arcs are labelled with the two input digits read

in, together with the one output digit produced. At any moment in time, the machine's situation is 

the pair of values being read in, eg. <0,1>. The action chosen will either be to output "0" or to 

output "1". 

By analogy with the above, we could imagine a sequential procedure being represented in the 

style of figure 3.3, with conditional tests replacing the input symbols, and procedure calls replacing 
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01,10/1 01,10/0 

Figure 3.2 A binary adder as a finite state machine transition diagram. 

the output symbols. The figure is a diagrammatic representation of a possible Mugol program 

module. The module while in state "in bed" decides to do the action "sleep" and stay in state "in 

bed" if conditions "tired" and "not-hungry" are true. Alternatively, if tired is untrue or hungry is 

true, then action "get up" is carried out, and the module enters state "up." It is left to the reader to 

follow the remaining transitions. 

An approximate correspondence between this formalism and the production-rule formalisms 

more familiar to knowledge engineers is shown in the table of figure 3.4. We shall follow the 

EMYCIN use of the term "context" to denote a self-contained bundle of rules which can be entered 

from another context as a result of firing an action which contains a "goto". 

In terms of algorithmic programming (an inductively generated application can be viewed as 

an efficient block-structured program) we have the correspondence of figure 3.5. 
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-. 

tired,not-hungry/sleep 

not-hungxy ,not-tired/wait 

Figure 3.3 A simple daily routine. ' , ' means 'or' 

Finite state automata Production rule systems 

state context 
situation antecedent 
action consequent 
transition arc goto <context> 

Figure 3.4 Relationship between Finite state automata and Production rules 
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Mugol Algorithmic 

module routine (may or may not return value) 
state labelled if-then-else block 
situation set of callable value-returning routines 
action non-value-returning routine 
transition arc goto <label> 

Figure 3.5 Relationship between Mugol and Algorithmic languages 

3.5.2. Mugol syntax 

Figure 3.6 shows the syntax of Mugol as a syntax diagram. The following sections use 

illustrative examples to describe the structure of Mugol programs. 

3.5.3. Mugol program structure 

A Mugol program consists of a collection of inter-related modules. An individual module 

can represent either an executable procedure or a piece of data. In order to aid the imposition of a 

structure on these modules, they are arranged in a tree. The scope of referencing a module from 

any other is limited by a recursive scope rule called visibility. Visibility is defined (figure 3.7) as 

follows: 

module m2 is visible to module ml iff 
m2 is a child of ml or 
m2 is visible to the parent of ml 

Figure 3.7 represents a hypothetical program tree with modules named by the letters of the 

alphabet. Note that the highest module in the tree, root, by the definition of visibility cannot be 

referenced by any module in the tree. The circular modules are those visible to module "m". 

Rather than using block bracketing to indicate the tree structure of a Mugol program, each module 

is identified using its unique path from the root in the program tree, e.g. module m's complete 

name is "b.g.rn." 
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Figure 3.6 The syntax of Mugol 
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root 

Figure 3.7 The visibility of module m 

3.5.4. Form of individual states 

Each Mugol module consists of a declaration section together with a number of named states. 

Each state in a module has a single decision tree associated with it which decides, on the basis of a 

number of tests, what action should be taken, and which state within the present module to enter 

subsequently. The decision trees have tests at internal nodes and action/next state pairs at the 

leaves. 

The state shown in figure 3.8 is from a module to decide whether to use an umbrella. 
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STATE: decide 
IF (weather) IS 

"wet" : IF (inside) IS 
"yes" : ("DONTIJSE" ~ result, goal) 
ELSE IF (soaked) IS 

"yes": ("DONTIJSE" ~ result, goal) 
ELSE ("USE" ~ result, goal) 

"sunny" : ("DONTUSE" ~ result, goal) 
ELSE ("DONTUSE" ~ result, goal) 

Figure 3.8 Decision tree within stale which decides whether to use an umbrella 

The decision tree is expressed as nested "case statements" each of form 

IF <test> IS 

<Vall> <tree 1> 

<Va12> <tree 2> 

ELSE <tree N> 

where each <tree X> is either of the same form or of the form 

(<action>, <next-state>) 
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In figure 3.8: 

(1) weather, inside and soaked are tests producing the quoted string values shown (e.g., 

weather can be "wet," "sunny" or some other value). 

(2) '"USE" ~ result' and '"DONTUSE" ~ result' are actions indicating the assignment of 

the string literals "USE" and "DONTUSE" to the variable 'result'. 

(3) goal is the name of a special state which is found in every Mugol module. When en

tered, it merely returns control to the calling module. 

3.6. Individual Mugol modules 

A Mugol module can be labelled with certains combination of: 

(1) PRIMITIVE. 

(2) GENERIC. 

(3) STORAGE. 
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Figure 3.9 tabulates the meaning of the 8 different combinations of these three labels. These 

various module types are explained in the following sections. 

3.6.1. Type 0 modules· normal Mugol modules 

There are two basic classes of type 0 module: modules which return a value to the calling 

module and modules which do not When used in expert system wo~ this distinction is between 

modules which carry out some diagnostic value-returning test that does not affect the state of the 

world and modules which carry out a non-value-returning control action which is intended to affect 
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Type Module labelling Meaning 

0 MODULE A normal callable procedure 
1 PRIMITIVE MODULE Callable C-coded procedure 
2 GENERIC MODULE A module which can be instantiated 

for operation on different types 
3 PRIMITIVE GENERIC MODULE Unused combination 
4 STORAGE MODULE Unused combination 
5 PRIMITIVE STORAGE MODULE Unused combination 
6 GENERIC STORAGE MODULE User-defined abstract data type 
7 PRIMITIVE GENERIC STORAGE MODULE System-defined abstract data type 

Figure 3.9 The interpretation of the 8 different types of Mugol module 

the world (see section 1.1 for distinction between classification and control). Figure 3.10 shows an 

example of the former type of module (value-returning) while figure 3.11 shows an example of the 

latter (non-value-returning). Figure 3.10 is the complete Mugol module from which the state shown 

in figure 3.8 was excerpted. The module rain exists in the program tree as a child of main (hence 

MODULE main.rain IS 
INTENT: "decide whether to use an umbrella" 
CHll.D: weather, inside, soaked 
OUT: string result 
STATE: decide 
IF (weather) IS 

"wet" : IF (inside) IS 
"yes" : ("DONTIJSE" ~ result, GOAL) 
ELSE IF (soaked) IS 

"yes": ("DONTUSE" ~ result, GOAL) 
ELSE ("USE" ~ result, GOAL) 

"sunny" : ("DONTUSE" ~ result, GOAL) 
ELSE ("OONTUSE" ~ result, GOAL) 

GOAL OF rain 

Figure 3.10 A value-returning Mugol module 
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MODULE oax IS 
INTENT: "play noughts and crosses" 
STATE: decide 
IF (ask "is board full" "yes,no") IS 

"yes" : (advise "Board full - end of game", GOAL) 
ELSE IF (ask "can 0 win immediately" "yes,no") IS 

"yes" : (advise "complete line to win", GOAL) 
ELSE IF (ask "can X win immediately" "yes,no") IS 

"yes" : (advise "block X", decide) 
ELSE IF (ask "is middle free" "yes,no") IS 

"yes" : (advise "take centre", decide) 

GOALOFoax 

ELSE IF (ask "Is there a corner free" "yes,no" ) IS 
"yes" : (advise "take the corner with most WEIGHT", decide) 
ELSE (advise "take any free space", decide) 

Figure 3.11 A oon-value-rewming Mugol module which plays noughts-and-crosses 
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the path name is main.rain). The system will use the string following the keyword INTENT when 

referring in explanation to the execution of this module. rain is a single-state module the state 

being called 'decide'. Examples of modules containing multiple states are given in section 3.9. 

Module rain has five sub-modules, weather, inside, soake~ incar and result. result is an 

instantiation of the primitive generic storage module string and is used as the output variable of 

rain. 

The module oax of figure 3.11 plays the noughts' side of the game noughts-and-crosses by 

asking a number of questions about the board state, such as "is board full". On the basis of these 

questions it advises an action, such as "take any free space". Paired with this action is the next state 

which can either be the present state, decide, which causes looping, or the special module exit 

state, GOAL, which causes termination of play. Note that the major difference between the module 

shown in figures 3.10 and 3.11 is the respective presence and absence of the OUT declarations in 

these modules. 
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3.6.2. Type 1 modules - C-coded procedures 

Mugol programs can call programs written in other languages (presently C and FORTR._AN) 

by the mechanism of PRIMITIVE MODULES. Figure 3.12 shows the interface to the primitive 

module ask which is called by the noughts-and-crosses playing module of figure 3.11. Note that 

the explanation string for ask is labelled with the keyword SILENT here rather than INTENT since 

we do not want any of the workings of ask to be shown in any explanation of execution (see 

section 3.8). The input prompt string (IN: string prompt) is substituted for the $1 in the 

explanation string. Any occurrence of a '$' followed by some number N causes the runtime 

substitution of the Nth input argument into the explanation string when an explanation of execution 

is given. 

The Mugol interpreter executes PRIMITIVE modules either by mapping each call via a 

look-up table to a unique C-function compiled into the interpreter, or failing this, by requesting 

"remote" execution of the procedure in a "slave" process which runs as a concurrent process 

connected by a UNIX pipe to the Mugol interpreter. 

3.6.3. Type 2 modules - generic modules 

Generic modules are code segments which can be multiply instantiated to act on different 

data types. For instance the module square of figure 3.13 can be multiply instantiated as in modules 

sqri and sqrf. to operate on either integers or floating point numbers. The interpreter automatically 

PRIMITIVE MODULE ask IS 
SILENT: "the answer to '$1 '" 
IN: string prompt 
OUT: string answer 

GOAL OF ask 

Figure 3.12 The primitive module 'ask' 
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infers the appropriate meaning for "*" in the instantiated modules from the types of its operands. 

3.6.4. Type 6 - user-defined abstract data types 

When an expert describes his proble~ he would prefer to state it using terminology pertinent 

to his own subject. Thus a thrust force of 5000 N is to a turbo engineer more than the integer 

value "5000". Abstract data types allow the expert to invent his own data types together with 

operators for manipulating them. Users can define their own abstract data types within a Mugol 

program by the declaration of GENERIC STORAGE MODULEs. The direct children of a generic 

storage module are taken as being operators which act only on data of the corresponding type. 

Thus figure 3.14 describes a new type of object called a "coordinate~ which consists of three 

values, x, y and z. The operations which can be carried out on a coordinate are "read" (which 

reads a coordinate value from the user), "print" (which prints a coordinate value onto the screen) 

and "offset" (which adds a 2D offset to a coordinate position). Note that since this is a storage 

module, it has no executable bcxly. 

GENERIC MODULE square (type) IS 
IN: type val_in 
OUT: type val out 
STATE: calculate 

(val in * val in -> val out, GOAL) 
GOAL OF square - -

MODULE m IS 
LOCAL: square (integer) sqri, square (float) sqrf 
STATE: show 

(print sqri 5 ; print sqrf 5.0, GOAL) 
GOAL OF m 

Figure 3.13 Generic modules and instantiations 
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GENERIC STORAGE MODULE coordinate IS 
LOCAL: float { x,y ,z} 
CHILD: read, print 

GOAL OF coordinate 

MODULE m IS 
LOCAL: coordinate {top, bottom} 
STATE: gets how 

(read "Bottom? " -> bottom; read "Top? " -> top; print bottom, GOAL) 
GOAL OF m 

Figure 3.14 The abstract data type 'coordinate' 

3.6.5. Type 7 - system-defined abstract data types 

The Mugol language has no inherent data types built into its syntax, all variables being 

stored internally as strings for the convenience of inter-process communication. However, cer-

tain data types are supplied to the interpreter along with any application. Such base types are 

declared as PRIMITIVE GENERIC STORAGE MODULEs. In all other ways primitive gener-

ic storage modules are identical to the GENERIC STORAGE MODULEs of section 3.6.4. The 

Mugol interpreter at present supports the following data types 

string 

integer 

float 

list 

52 



The Mugol environment 53 

3. 7. Operator definitions 

In several languages, including Prolog, programmers are provided with the ability to declare 

procedures (or predicates in Prolog's case) in such a way that they can be called using infix, prefix 

or postfix notation within expressions. Such a facility is also provided in the Mugol language by 

allowing the declaration of "operator properties" together with the definition of modules. Figure 

3.15 illustrates the use of such operator properties in the definition of the integer data type 

operators. In the definition + {20,1 ,1} of figure 3.15, the three numbers stand respectively for 

precedence, left arity and right arity. The first of these, precedence, indicates +'s binding strength 

within an expression. Imagine an expression depicted in the standard form as a tree, hanging 

downwards from the root. The lower the precedence, the lower the operator will be in the tree. 

Left and right arity indicate the number of arguments expected on the left and right side of the 

operator. Clearly the sum of the left and right arities should be equal to the number of input 

PRIMITIVE GENERIC STORAGE MODULE integer IS 
child: + {20,1,1}, 

- {20,1,1}, 
• {30,1,1}, 
•• {50,1,1}, 
I {30,1,1}, 
< {15,1,1}, 
<= {15,1,1}, 
> {15,1,1}, 
>= {15,1,1}, 
== {10,1,1}, 
!= {10,1,1}, 
i_to_s, 
s_to_i, 
real, 
read, 
print {8,0, 1} 

GOAL OF integer 

Figure 3.15 Integer dala-type operators 
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arguments expected by the corresponding procedure. Note that in figure 3.15 the operators i_to_s, 

s _to _i, real and read have no declared operator properties. In such a case the interpreter assigns a 

default precedence of 100, a left arity of 0 and a right arity equal to the number of input 

arguments. Operators have a maximum precedence of 511. 

3.8. Explanation 

The Mugol interpreter has the ability to explain its line of reasoning at any time during a 

session. When an expert system is consulted, the reasoning behind a piece of advice may influence 

its acceptance. For example, if the explanation indicates that a critical factor has been ignored, the 

user may decide to reject the advice. Requests for explanation during hypothetical test cases can 

also be used to instruct novices. Explanation has additional value at development time. In 

explanation-driven development the expert checks that correct decisions are reached, and that they 

are reached for the right reasons. This increases the likelihood that situations outside the training 

set will be dealt with correctly. A point in case occurred during the validation of the EARL expert 

system (see Appendix B), in which it was discovered that in 4 cases out of 859 tested EARL 

reached the correct conclusion for the wrong reasons. Without the ability to validate both the result 

and the explanation against the expert, this would never have been realised. 

Our implementation of explanation follows that described in Shapiro and Michie (Shapiro and 

Michie, 1986), though we have not incorporated the irrelevance-suppression option which Shapiro 

and Michie regarded as important; instead we present the explanation in rule-sized chunks so as not 

to overburden the user. 

Each Mugol module requires a text segment containing optional slots for run-time 

substitution of the input arguments of that module (such as the INTENT statement of figure 3.10 

and the SILENT statement of figure 3.12). These pieces of text are combined in a standard set of 

masks to produce English phrases. An algorithm orders the individual phrases to form a proof 

which justifies the reasoning by building from axiomatic facts towards the final conclusion. The 

explanation is given piecemeal, the most relevant portion being presented first, with further 
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elaboration on demand. Actions and tests are dealt with differently by the presentation algorithm. 

Users can request explanation at any time that they are asked a question or given advice. In 

addition the users can interrupt the system at any time to find out what is happening. Furthermore, 

a full report of the line of reasoning leading to some final conclusion can be produced at the end of 

a session. Although the ordering is revised, this form of explanation is similar to that given by 

MYCIN. 

An example of automatically generated explanation is given in figure 3.16 (this figure is 

identical to figure A.2 in Appendix A and has been reprinted for the reader's convenience). 

It should be noted that the bracketed numbers in figure 3.16 are not produced by the present 

version of the Mugol environment, but are included in the diagram for ease of reading. This would 

be a simple and desirable addition to the system's capabilities. 

The following example illustrates the mechanism by which explanation is ordered. The 

Mugol interpreter saves a full trace of a program's execution as a proof tree. When an explanation 

is demanded, the proof tree is presented in postfix order with keywords (such as Since) being 

inserted. Thus if in figure 3.17 the tree represents the execution proof tree, with A being proved by 

the conjunction of B and C being true etc., the explanation would be presented bottom-up, as 

shown in the same diagram. This explanation shows how axioms are presented before lemmas, 

which are in turn presented before the final theorem being proved. This ordering seems very close 

to that used by human beings in explaining logical proofs. 

3.9. The Mugmaker code generator 

Experts using the Mugol environment have the freedom to build their expert system without 

ever having to write actual Mugol code, generating it instead from example decisions. For this 

purpose Mugmaker uses the ACLS algorithm (Paterson and Niblett, 1982) to generate a single rule 

for each state of the module. Mugmaker distinguishes between "test" and "action" modules, in 

that whereas the former returns a value, the latter does not. 
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FUlL EXPLANATION OF TIIE FORECAST: 

Since upper level cold air advection causing increased 
upwards vertical velocities is present 

it follows that the upper-level destabilisation 
potential is sufficient ( 1) 

Since the K Index is strong 
when the Lifted Index is strong 
it follows that the stability indices condition 

~~~~ m 
Since daytime heating acting as a possible trigger mechanism 

for potential instability release is strong 
when (2) the stability indices condition is favourable 
it follows that low-level destabilisation potential 

is favourable (3) 
Since an approaching 500 millibar short wave trough is present 

it follows that the vertical velocity field 
~~~~ ~ 

Since a high 850 mb dew point is present 
when surface dew point classification is moderate 
it follows that the low-level moisture field 

is marginal ( 5) 
Since (1) the upper-level destabilisation potential is sufficient 

when (3) low-level destabilisation potential is favourable 
and (4) the vertical velocity field is favourable 
and (5) the low-level moisture field is marginal 
it was necessary to advise: 

"There's a MODERATE CHANCE that thunderstorms occurring 
12 hours from now will be severe at this location." 

in order to actually forecast the chance of severe thunderstorms 

Figure 3.16 Sample WILLARD forecast explanation 
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!l\ 
D E F 

gives: 

A 

Since D 
whenE 
andF 

!l\ 
G H I 

it follows that B 
Since G 

whenH 
and! 
it follows that C 

Since B 
whenC 
it follows that A 

Figure 3.17 Method of ordering explanation. 
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I bead ootiou~• 

~ rL. __ E __ ~_i::_state_sta_tc_tf __ ..... 

literal §!3tc ~ state heading ~[=tc~xt]b~loc~lcL}----•• 
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actsecuon 

L:iAcriONS~ 

~LJtc~x~t~bl~oc~Jc~r-r------------~• 

text block Htypc descnptioDJ 

loperatio~ 

For dcfiuitions of alpha name, opcratcr name, lcttl:r aDd 
digit see Mugol syntax diagram (figun: 3.6) 

Keywords: AcnON 
AcnONS 
BOOL 
CONDmONS 

DECLARATIONS 
EXAMPLFS 
INT 
TEST 

Figure 3.18 The syntax of Mugmaker 
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TEST: main.rain { USE DONTUSE } 

DECLARATIONS: 

[ CHTI..D: weather, inside, soak~ incar 
OUT: string result 

STATE: decide 

ACTIONS: 
DONTUSE 
USE 

CONDmONS: 

weather 
inside 

soaked 

EXAMPLES: 

sunny 
blustery-
wet yes 
wet no yes 
wet no no 
wet no no 

in car 

no 
yes 
no 

["DONTUSE" -> result] 
["USE" -> result] 

[weather] 
[inside] 
[soaked] 
[incar] 

{wet sunny blustery} 
{yes no} 
{yes no} 
{yes no} 

=> (DONTUSE, goal) 
=> (DONTUSE, goal) 
=> (DONTUSE, goal) 
=> (DONTUSE, goal) 
=> (DONTUSE, goal) 
=> (USE, goal) 

Figure 3.19 Mugmaker induction file for Mugol module of figure 3.10 

3.9.1. Mugmaker syntax 
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For every Mugol module there exists a Mugmaker file which was used to generate that 

module. Figure 3.18 shows the syntax of Mugmaker files. In the following sections we use 

illustrative examples to describe the structure of these files. 

3.9.2. Single-state module 

The Mugol module of figure 3.10 was generated automatically from the induction file of 

figure 3.19. The module has only one state where the action is to return a string giving the 
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decision. Below we give an infonnal description of the keywords and major sections of this 

Mugmaker file. 

(a) TEST: is followed by the path of the Mugol module to be induced, "main.rain". Following 

this are return value options. In this case the return value is a string with two possible 

values: "USE" and "DONTUSE". 

(b) DECLARATIONS: introduces a piece of text (between square brackets) to be placed at the 

top of the module produced. The declarations indicate the modules associated with "rain". 

(c) STATE: is followed by the name of a state in the object module. The actions, conditions, 

and examples define the rule for that state. 

(d) ACTIONS: indicates a set of action-names found in the implication of example clauses. 

Each action name is followed by a piece of Mugol code in brackets, which is substituted for 

the action name in the object program. In the umbrella example the actions are simple 

assignments of strings to the output argument "result" 

(e) CONDITIONS: are a set of value producing expressions. Like actions, each condition name 

is followed by a piece of Mugol substitution code in square brackets. Following this in curly 

brackets is the set of values that can be produced by this conditional expression. The 

conditions have a one-to-one correspondence with the example value vectors. For this 

reason, the condition descriptions are stepped in order to line up with the columns of the 

example set 

(t) EXAMPLES: are vectors of values, one value from each condition expression, each followed 

by an (=> ) and an (action, next state) pair. These are used to induce the decision tree for 

this state. A "-" in an attribute column is called a don't care value. Don't care values are 

interpreted as representing all possible values which the corresponding attribute could take. 
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Thus an example containing one don't care value for an attribute with N possible values, 

actually represents N distinct examples. An examples with more than one don't care value 

represents a number of examples equal to the product of all the numbers of attribute values 

for which the don't care values are present. 

3.9.3. Multiple-state module 

The next example file (Figure 3.20) defines a routine with two states. The rules instruct an 

individual on the "Heimlich method" actions to be taken in case of an adult choking victim who is 

standing up. The conditions to be checked are the victim's airway, consciousness, pulse, and 

whether the patient is breathing. 

One new feature seen here is compound Mugol statements, joined by ";", as the action 

implicated by examples. The statements may be expressions or assignments. Mugol modules 

named in expressions will often be primitives written in C. For example, "prints" and "reads" are 

C utility routines for printing and reading strings. Each application will typically add its own set of 

domain-dependent utility routines. 
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MODULE: main.choko 

freed 

no 
no 
yes 
yes 
no 
yes 

DECLARATIONS: 

l CHILD: ar I 
ACI10NS: t• global acti0111 •t 

hit [prints "hit victim's back 4 timea\n"] 
sweep [prints "sweep victim's mouth with tingertn"] 
olc [prints "comfort the victim\n"] 

STATE: primary 

ACI10NS: 
squeeze 
brace 
amb 

CONDmONS: 

freed 

falling 

EXAMPLES: 

yea 
no 
no 

yea 
no 
yea 

[prints "squeeze victim's chest 4 times\n"] 
[prints '"brace victim to prevent falling\n"] 
[prints "call an ambulance\n"] 

(reads "Is tho obltnu:tiOD clear?"] 
{yea no} 

[read "Is the victim falling? "] 
{yea no} 

colllcioua [reads "Is the victim coDICioua? "] 
{yea no} 

•> (brace; olc. GOAL) 
•> (hit; squeeze; sweep. primary) 
•> (brace; hit; squeeze; sweep. primary) 
•> (amb, unconsc:ioua) 

yea 

STATE: unCODICioua 

no 

yea 
yea 
yea 
no 
yea •> (olc. GOAL) 

breathing 

yea 
no 
no 
no 
no 
yea 

ACI10NS: 
thrust [prints "apply 4 chest tluusts\n"] 
ar (ar] t• Artificial respiratioa •t 
cpr [prints "apply cpr. lS compressi0111, 2 brealbl\n"] 
cmt [prints ,et EMT staff take ovet\n"] 
olc [prints "You just helped save a life\n"] 

CONDmONS: 

pulse 

(reads "Is the obstsuctiOD clear?"] 
{yes no} 

[read "Is the victim breathing? "] 
{yes no} 

[reads "Is there a pulle? "] 
{yes no} 

conscious [reads "Is the victim conscioua? "] 
{yes no} 

amb [reads "Has the ambu1aDce arrived?"] 
{yea no} 

EXAMPLES: 

yea no no -> (hit; thrust; sweep, unconscioua) 
yes no no -> (ar, unconscious) 
yes no no •> (ar, unconscious) 
no no no •> (cpr, unconscious) 
no no no •> (hit; thrust; sweep; cpr, unconscious) 
yes yes no •> (olc, primary) 

yes •> (emt. GOAL) 

Figure 3.20 Induction file for the choke problem 
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MODULE main.choke IS 
CHILD: ar 
STATE: primary 

IF (reads "Is the victim conscious? ") IS 
"yes" : IF (reads "Is the obstruction clear? ") IS 

"yes" : IF (reads "Is the victim falling? ") IS 
"yes" : (prints "brace victim to prevent falling\n"; 

prints "comfort the victim\n", GOAL) 
ELSE (prints "comfort the victim\n", GOAL) 

ELSE IF (reads "Is the victim falling? ") IS 
"yes" : (prints "brace victim to prevent falling\n"; 

prints "hit victim's back 4 times\n"; 
prints "squeeze victim's chest 4 times\n"; 
prints "sweep victim's mouth with finger\n", primary) 

ELSE (prints "hit victim's back 4 times\n"; 
prints "squeeze victim's chest 4 times\n"; 
prints "sweep victim's mouth with finger\n", primary) 

ELSE (prints "call an ambulance\n", unconscious) 

STATE: unconscious 
IF (reads "Has ambulance arrived? ") IS 
"yes" : (prints "let EMT staff take over\n", GOAL) 
ELSE IF (reads "Is the obstruction clear? ") IS 

"yes" : IF (reads "Is there a pulse? ") IS 
"yes" : IF (reads "Is the victim breathing? ") IS 

"yes" : (prints "You just helped save a life!\n", primary) 
ELSE (ar, unconscious) 

ELSE (prints "apply cpr: 15 compressions, 2 breaths\n", unconscious) 
ELSE IF (reads "Is the victim breathing? ") IS 

"yes" : (prints "hit victim's back 4 times\n"; 
prints "apply 4 chest thrusts\n"; 
prints "sweep victim's mouth with finger\n", unconscious) 

ELSE IF (reads "Is there a pulse? ") IS 
"yes" : ( ar, unconscious) 
ELSE (prints "hit victim's back 4 times\n"; 

prints "apply 4 chest thrusts\n"; 
prints "sweep victim's mouth with finger\n", unconscious) 

GOAL OF choke 

Figure 3.21 Mugol module produced from the Mugmaker file of figure 3.19 

Each of the two induced states passes control sometimes to the other induced state, and 

sometimes to the goal state. Thus looping control algorithms can be induced from a set of 
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example files. In figure 3.11: 

(a) Under DECLARATIONS, "ar" (artificial respiration) is a child of choke, and is called as· 

one of the AcriONs of choke in the STATE called "unconscious". 

(b) There are three ACTIONS sections. The first describes actions which are global to both 

the STATEs "conscious" and "unconscious." Each STATE also has local ACfiONS to 

be used only for the rule in that STATE. All AcriONS apart from "ar" call the C

coded primitive "prints" to print a message to the user. 

(c). No global CONDmONS are represented in the induction file. However, both states 

have local CONDmONS. These all involve calling "reads" to prompt the user for an 

answer. However, a more complex example might call a sub TEST module to test the 

condition. 

The induction file presented in figure 320 is transformed by Mugmaker into the Mugol 

module of figure 3.21. 

3.9.4. Induction or a hierarchy or rules 
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Much of the power of the Mugol environment to solve industrial-scale problems derives from 

the ability to induce a hierarchy of rules from a set of example files. A list of actions, conditions, 

and examples is supplied for each rule in the system, and the automatic induction process generates 

both the individual rules for each state, as well as the connections between states in a module, and 

between modules. 

The choke example above uses a sub-module called "ar" (artificial respiration) as a sub action 

module. The example file of figure 3.22 defines the ar routine. The induction file was transformed 

by Mugmaker into the Mugol program shown in figure 323. 
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AcriON: main.choke.ar /* artificial respiration */ 

STATE: arproc 
AcriONS: 

CONDmONS: 

airway [prints "tilt head - open airway\n"] 
breath [prints "give 1 breath/5 sec\n"] 
ok [prints "reassure victim\n"] 
stop [prints "stop applying ar\n"] 
monitor [prints "monitor victim\n"] 
cpr [prints "apply cpr -15/2\n"] 

pulse [reads "Is there a pulse?"] 
{yes no} 

breath [read "Is victim breathing?"] 

EXAMPLES: 

yes 
yes 
yes 
no 

no 
yes 
yes 
no 

{yes no} 
breath [read "Is victim conscious?"] 

{yes no} 

no 
no 
yes 
no 

=> (airway;breath, arproc) 
=> (stop;monitor, arproc) 
=> (ok, GOAL) 
=> {cpr, arproc) 

Figure 3.22 Induction file for artificial respiration 
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MODULE main.choke.ar IS 

STATE: arproc 
IF (reads "Is victim breathing?") IS 

"yes" : IF (reads "Is victim conscious?") IS 
"yes" : (prints "reassure victim\n", GOAL) 
ELSE (prints "stop applying ar\n"; 

prints "monitor victim\n", arproc") 
ELSE IF (reads "Is there a pulse?") IS 

"yes" : (prints "tilt head- open airway\n"; 
prints "give 1 breath /5 sec\n", arproc) 

ELSE (prints "apply cpr- 15/2\n", arproc) 

GOAL OF ar 

Figure 3.23 Mugol module produced from the Mugmaker file of figure 3.22 

3.10. External information sources 
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Virtually all large expert system applications will require access to external information 

sources, such as sensors, files, data bases, and specially written or existing programs. External 

resources can also be used to incorporate alternate reasoning approaches into a system. External 

output to conttol devices to update data bases may also be desired. 

To deal with these demands, the Mugol environment allows the developer to set up separate 

processes under the operating system. Communication with these other processes is defined by a 

simple interface which allows external programs to be called in the same manner as Mugol 

modules (see section 3.6.2). At execution time instructions and data are passed across a UNIX pipe 

between the Mugol environment and the external programs. These programs can be written in any 

language supported by UNIX (eg. FORTRAN, C, LISP, Prolog). 

3.1L Conclusion 

The Mugol environment is an expert system building package intended to solve many of the 

problems involved in the construction of large knowledge based programs. An inductive learning 
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system (Mugmaker) allows rapid and effective acquisition of expert knowledge. The Mugol 

language allows structured organisation of large quantities of knowledge acquired in such a manner. 

Mugol also provides a facility for presenting ordered explanation of reasoning to the level of 

elaboration required. However, the Mugol environment does not explicitly support any form of 

reasoning based on partial certainty. 

In comparison to other expert system approaches we believe that although our knowledge 

representation, in the form of decision trees, is no better than that of production systems, the fact 

that knowledge can be presented in the form of examples from which rules can be refined means 

that the process of knowledge acquisition is greatly eased. It has been noted often during the 

construction of Mugol-based applications that whereas designers using dialogue acquisition 

methodologies talk of constructing prototype systems in tenns of years, Mugol-based applications 

have been consistently prototyped in around six person months. 

Typical expert system applications contain aspects of both classification and conttol tasks. 

The Mugol environment provides a consistent knowledge representation for these disparate problem 

elements. Furthermore, an interface to external sources and sinks of information is provided. 

A method of inducing the state transition structure of Mugol modules from trace information 

would be desirable. The theoretical basis for such a mechanism is given in chapters 5 and 7. 
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ARCH 

Abstract. A small robot planning system, ARCH, was built by the author and an augmented Mugol version 

has subsequently been successfully tested by Barry Shepherd using a Rhino robot (see Appendix H). Barry 

Shepherd's system builds a specified arch out of children's blocks. 

4.1. Introduction 

In this chapter we describe how a planner for blocks world problems can be inductively 

generated using the Mugol environment The problem chosen is identical to that attempted by 

Dechter and Michie (Dechter and Michie, 1984). Whereas Dechter and Michie used "Expert-Ease" 

(McLaren, 1984), the choice of Mugol for our re-implementation overcame several of the problems 

which they encountered. 

The domain of planning deals with finding a sequence of tests and conditional operations 

which transforms some initial situation into a goal situation. The problem domain is described by a 

situation-space, containing a set of legal situations together with a set of actions. Each action is 

usually described in terms of a precondition that should be satisfied by a situation before the action 

can be applied, and a postcondition which should hold following the action's application. When 

using the inductive algorithm we formulate the set of situations as the set of objects. The set of 

attributes is the set of features by which the situations are described. The set of actions are the set 

of classes. 

For every goal, there is a set of plans, each corresponding to an initial situation, for achieving 

this goal. Given such a goal, a situation is classified to the first action in the plan for achieving this 
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goal from this situation. Accordingly, for every goa4 a set of examples which partially describe the 

above relationships between situations and actions can be created. For this set of examples, a 

conditional rule is induced. Thus given an initial situation, the induced rules can be used to select 

the appropriate action. 

4.2. The problem: building a five block arch 

The problem involves generating a plan for the simple activity of building an arch out of five 

blocks named A, B, C, D and beam. Five platforms are used to hold the blocks. These platforms 

are called pilel, pile2, beam store, right arch and left arch. In the initial world situation, the 

blocks ~ B, C, D are stacked on pile 1 and pile2. The beam is placed on the beam store. Figure 4.1 

illustrates a typical initial situation. The goal is to build an arch on the right arch and left arch 

platforms in the configuration shown in figure 4.2. 

The problem was divided into a hierarchy of sub-problems for the Mugol environment This 

hierarchy is shown in figure 4.3. Dechter and Michie (1984) showed that without such problem 

decomposition, inductively generated decision tree solutions require an unmanageable number of 

beam 

pile 1 pile 2 

Figure 4.1 An initial situation 
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beam 

c D 

r-- ._ 

A B 

left right 

Figure 4.2 The goal situation 

examples. However, whereas the package used by Dechter and Michie did not allow the creation 

and iterative execution of a hierarchy of decision trees, the Mugol environment does (see section 

3.9.4). The action main merely calls the top level action arch. 

4.3. The action arch 

The top level action, arch, defines the order in which five different goals must be reached, ie. 

A, B, C and D must be moved to their respective positions and the beam must be placed across the 

top. In figure 4.4 we give the Mugmaker file which describes this top level goal. Note that at this 

level no examples are needed as the task can be described by this simple sequence of goals. 

main.arch is the path leading from the root of the problem hierarchy to this action node. arch 

has three children in the problem hierarchy. These are onto, from and to. onto produces a plan 

which will move a particular block onto its goal position. from and to are actions which, given that 

a block is clear of other blocks, respectively pick up a block from a given position and place it on 

some other given position. The action names are used as infix operators (see section 3.7) in 

expressions like 

"A" onto "the left arch" 
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Figure 4.3 Hierarchical breakdown of the problem 
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ACTION: main. arch 

and 

DECLARATIONS; 
[CHILD: onto {100,1,1}, from {110,1,1}, to {100,1,1}] 

STATE: only 
[("A" onto "the left arch"; 

"B" onto "the right arch"; 
"C" onto "A (left arch)"; 
"D" onto "B (right arch)"; 
"BEAM" from "beam store" to "C and D", 
GOAL)] 

Figure 4.4 Mugmaker file describing the top level goal 

"BEAM" from "beam store" to "C and D" 

Thus the declaration 

CHILD: onto {100,1,1}, ... 

72 

says that onto has a precedence of 100 and takes 1 argument on the left, and one on the right. This 

allows a more English-like statement of the required activity than that produced by Dechter and 

Michie (1984). 

4.4. The action onto 

The action onto is described by the Mugmaker file of figure 4.5. onto has two INput 

parameters called block and place, as described in the previous section. It also has one child in the 

problem hierarchy. onto, like all the modules within ARCH is a single state module. The examples 

use a number of ACTIONS which are described between square brackets as small pieces of Mugol 

code. eg. 

block from "pilei" to place 
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ACTION: main.arch.onto 

DECLARATIONS: 
[IN: string {block, place} 

CHILD: clear] 

STATE: decide 

ACTIONS: 

xitoplace [block from "pilei" to place] 
x2toplace [block from "pile2" to place] 
clearxi [clear block "pilei"] 
clearx2 [clear block "pile2"] 
null [null] 

CONDmONS: 

xon 

clearx 

pilex 

EXAMPLES: 

yes 
no yes pilei 
no yes pile2 
no no pilei 
no no pile2 

[reads "is " #block#" on " # 
place # "? (yes/no) "] 

{yes no} 

[reads "is " # block # 
" clear of blocks? (yes/no) "] 

{yes no} 

[reads "which pile is " # 
block# 
" on? (pilellpile2) "] 

{pilei pile2} 

::s> (null, GOAL) 
=> (xI top lace, GOAL) 
=> (x2toplace, GOAL) 
=> (clearxi; xltoplace, GOAL) 
=> (clearx2; x2toplace, GOAL) 

Figure 4.5 The Mugmaker file describing the action 'onto' 
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says that the block given to onto as a first parameter must be picked up from pile 1 and put onto the 

place given as onto's second parameter. The possible siruations are described using the 

CONDmONS xon, clearx and pilex. These merely invoke questions which are directed at the user. 
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In terms of these three CONDITIONS, a set of EXAMPLES are given which specify what to do 

under different circumstances. The action done for each circumstance is paired with the next state 

to enter, which for each of these is GOAL. Entering the GOAL state returns control from the 

action being carried out. 

Note the use of parameterisation (i.e. block and place) in this module. This was found by 

Dechter and Michie (1984) to be particularly awkward to simulate using Expert-Ease (McLaren, 

1984). 

4.5. The action clear 

The action clear is described by the Mugmaker file of figure 4.6. In the examples for clear, 

if there is nothing on the block being cleared, then the goal has been reached. If one of the blocks 

A-D is on the block being cleared, then clear is recursively called for the upper block. Once the 

upper block has been cleared, it is moved to the other pile. 

The use of recursion in an inductively generated solution for clearing blocks was suggested 

by Dechter and Michie (1984). However, again because of the limitations of Expert-Ease, a 

separate decision tree needed to be developed for clearing "A", clearing "B", clearing "C" and 

clearing "D". As shown, this can be avoided when using the Mugol environment by careful use of 

parameterisation. 

However, figure 4.6 illustrates a weakness of the Mugol environment which was noted by 

Dechter and Michie with reference to Expert-Ease i.e. actions and condition values cannot be 

parameterised. With the solution shown in figure 4.6 it would have been useful to be able to write 

examples of the form 
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ACTION: main.arch.onto.clear 

DECLARATIONS: 

STATE: decide 

[IN: string {block, place} 
CHILD: other {120,0,1}] 

ACTIONS: 
A other 
Bother 
Cother 
Dother 
clear A 
clearB 
clearC 
clearD 
null 

["A" from place to other place ] 
["B" from place to other place] 
["C" from place to other place] 
["D" from place to other place ] 
[clear "A" place] 
[clear "B" place] 
[clear "C" place] 
[clear "D" place] 
[null] 

CONDffiONS: 
onx 

[reads "which block is on" #block 
# "? (NB/CID/nothing) "] 

{nothing AB CD} 

EXAMPLES: 
nothing => (null, GOAL) 
A => (clearA; Aother, GOAL) 
B => (clearS; Bother, GOAL) 
C =-> ( clearC; Cother, GOAL) 
D => (clearD; Dother, GOAL) 

Figure 4.6 Mugmaker file describing the action 'clear' 

CONDffiONS: 

onX 

EXAMPLES: 

nothing => (null, GOAL) 

y => (clear(Y); to_other(Y), GOAL) 

75 
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4.6. A session 

Given the initial situation presented in figure 4.1, the Mugol program produced from the 

Mugmaker files for this problem produces the interaction shown in figure 4.7. User answers are 

shown in italics and primitive operations in the plan are shown in bold print. 

Oearly, although rather a lot of questions are asked, a plan is produced which satisfies the 

goal. 

4. 7. Conclusion 

Arch building is a classic Artificial Intelligence problem in which search-based planners are 

often employed. The Mugol environment facilitates the development of an· elegant inductive 

solution to the ARCH problem by supporting hierarchical problem decomposition, the use of 

variables, parameterisation and user definable expression syntax. Whereas a classical search-based 

planning solution to this problem might be able to deal with four or five brick problems before 

computational overheads became too high, Barry Shepherd has shown that the solution presented 

here can be extended to thirty or forty brick problems without such overwhelming overheads (see 

Appendix H). The advantage of search-based planning over merely programming a solution lies in 

the fact that the specification is simple, declarative and compact. However, inductive specifications 

also have these advantages. 

Further work needs to be done to allow the use of variable condition values in examples. 
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is A on the left arch? (yes/no) no 
is A clear of blocks? (yes/no) no 
which pile is A on? (pilellpile2) pilei 
which block is on A? (A/B/C/0/nothing) C 
which block is on C? (A/B/C/0/nothing) nothing 

!! pick up C from pilel 
! ! put C onto pilel 
!! pick up A from pilel 
!! put A onto the left arch 

is B on the right arch? (yes/no) no 
is B clear of blocks? (yes/no) no 
which pile is B on? (pilel/pile2) pile2 
which block is on B? (A/B/C/0/nothing) D 
which block is on 0? (A/B/C/0/nothing) C 
which block is on C? (A/B/C/0/nothing) nothing 

!! pick up C from pilel 
!! put C onto pilel 
!! pick up D from pilel 
!! put D onto pilel 
! ! pick up B from pilel 
!! put B onto the right arch 

is Con A (left arch)? (yes/no) no 
is C clear of blocks? (yes/no) no 
which pile is C on? (pilellpile2) pilei 
which block is on C? (A/B/C/0/nothing) D 
which block is on 0? (A/B/C/0/nothing) nothing 

!! pick up D from pilel 
!! put D onto pilel 
!! pick up C from pilel 
!! put C onto A (left arch) 

is 0 on B (right arch)? (yes/no) no 
is 0 clear of blocks? (yes/no) yes 
which pile is 0 on? (pilellpile2) pile2 

!! pick up D from pilel 
!! put D onto B (right arch) 

!! pick up BEAM from beam store 
!! put BEAM onto C and D 

Figure 4. 7 User interaction for blocks problem 
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Overview of grammatical induction theory 

Abstract. The Mugol environment in its present form demands that the control structure of Mugol finite state 

machines be hand-<:oded. In this chapter and chapter 7 we investigate techniques for automatically 

constructing finite state structures from trace information. The techniques are based on "grammatical 

induction", i.e. discovery of grammar from example sentences. First we present a survey of algorithms which 

infer a regular language from a given subset of that language. We introduce a general algorithm for this task, 

which has a low order polynomial time complexity. Several previously devised algorithms are demonstrated 

by way of adaptations to this general algorithm. 

S.l. Introduction 

This chapter deals with grammatical induction techniques, that is, methods of hypothesising 

the grammar rules of a language from example "sentences". For the reader's convenience we will 

repeat some of the details concerning finite state machines found in chapter 2. 

We have limited the scope of investigation to the inference of regular languages (for a 

general survey of inductive inference methods see (Angluin and Smith, 1982)). As an example of 

the kind of problem which we intend to solve, let us suppose that we present the inductive 

inference program with the following sample of strings 

aaabbb 

ab 

abb 

b 

a 
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We might expect it to return with the rule 

This represents the regular language 

one or more a's followed by one or more b' s 

Alternatively we can describe a machine which accepts strings of this kind diagrammatically as a 

finite state acceptor. Indeed it has been shown (Hopcroft and Ullrnan, 1979) that any regular 

language can be recognised by some finite state acceptor. As the converse is also true, i.e. any 

finite state acceptor can be expressed as a regular expression, these representations are equivalent. · 

The aim of this investigation is to develop an algorithm for inducing Mugol modules (see 

chapters 2 and 3) from traces of their intended execution (i.e. sequences of calls to predefined tests 

and actions). Finite state acceptors differ from the type of finite state automata which represent 

Mugol modules, in that the arcs of finite state automata are labelled with pairs of tokens rather than 

singlets. Although the methods of induction presented here are for finite state acceptors, adaptations 

a b 

Figure 5.1 The finite state acceptor representing the language a•b• 
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of these algorithms to produce finite state automata are presented in chapter 7. These adapted 

algorithms build automata in Mealy machine form from trace information. We call this adapted 

form of grammatical induction sequence induction. 

Most papers on this subject suggest particular solutions to the problem. The algorithms 

presented are tailored to be as efficient as possible for the heuristic being used; for the sense in 

which heuristic is here used, see section 5.4.5 and following. We attempt to show that by devising 

a general algorithm ("llvtl", section 5.4.3 below) which can be specialised to any one of a number 

of existing grammatical inference schemes eases comparison of the properties of the latter. In 

section 52 and 5.3 we present a brief resume of the background of this research. In section 5.4 we 

give the theoretical results of grammatical induction from positive samples. In section 5.5 the 

issues of section 5.4 are discussed in an informal fashion by use of examples which illustrate the 

behaviour of various algorithms. 

5.2. Language Identification 

Gold's theoretical study of language learnability (Gold, 1967) introduced an abstract setting 

for the problem of grammatical induction. The grammatical induction problem is that of deciding 

which language L from a class of languages C is characterised by a set of examples E. An 

example from the set E can be positive or negative in the sense that it is stated whether it is inside 

or outside L. Thus supposing C is the set of regular languages over the symbol set 1: ::z {0,1}, then 

E = { <OO,in>, <l,out>, <ll,in>, <000ll,in>, <01000,out:>, .. } 

might exemplify the regular language L = (0, 10*1)* containing only binary strings of even parity 

(this is the same problem as that of section 2.6.2 with 0 and 1 replacing false and true 

respectively). In Gold's work, inference is carried out on an infinite list of examples containing 

one or more occurrences of every possible string along with an indication of whether it is in the 

target language. Gold defined an inference algorithm I as identifying a language in the limit if and 

only if after a certain number of examples are provide~ I chooses the correct explanation and does 

not subsequently change this explanation as more examples are presented. 
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Next Gold introduced the general inference technique of identiftcmion by enumeration in 

which a generator exhaustively postulates in some fixed order L1, L,., ~. ... all languages L; from 

the set C and rewms the first which is consistent with the examples so far. 

Gold went on to show that for any class of languages C containing all finite languages (those 

with a finite number of legal sentences) and at least one infinite language, it is impossible for an 

inference algorithm to identify an arbitrary element of C using only positive examples. This can 

easily be seen by taking C to be the set of regular languages over the symbol set ~ and showing 

that for any positive example set E there are at least two languages which can be postulated; 

namely the universal language ~· and the finite language containing only the members of E. 

Gold distinguishes between two types of presentation of mixed positive/negative examples. A 

presentation can be text, in which case the inference algorithm I is presented with a passive list of 

facts. Alternatively, I can be supplied with an informant or oracle, an agent which answers 

membership questions about the unknown language. 

5.3. Mixed Positive/Negative Presentations 

Although regular sets can be identified from positive and negative text, Angluin (Angluin, 

1978) has shown that the problem of finding a minimal regular expression from such samples is 

NP-hard. Furthermore, Gold (Gold, 1978) showed that the corresponding problem of finding a 

minimal finite acceptor from positive and negative samples is also NP-hard. 

Given an oracle, Moore (Moore, 1956) has shown that it is possible to identify a language 

only if we are also given additional information about L. Moore's algorithm has an NP complexity 

bound, and requires, as additional information, an upper bound on the number of states in the 

canonical (state-minimal) acceptor of L. Pao and Carr (Pao and Carr, 1978) and later Angluin 

(Angluin, 1982a) suggest the use of a representative sample of L, that is, a finite subset of L that 

exercises every transition in the canonical acceptor of L. Whereas Pao and Carr's enumerative 

algorithm is NP in the number of queries made of the oracle, Angluin' s algorithm requires only a 

polynomial number of queries for the same problem. 
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5.4. Theoretical results of grammatical induction from positive samples 

In section 5.2 we stated Gold's theorem which says that particular classes of languages 

cannot be identified in the limit from positive examples only. This does not imply necessarily that 

negative examples are an imperative, only that some form of additional constraint must be used in 

order to guarantee identification in the limit. In this section we investigate algorithms which use 

parameterised constraint predicates which allow identification of languages in the limit from 

positive example sets. As might be expected, all these algorithms have the property that the 

proposed language L does at least contain the sample setS. 

As far as the author is aware, there are only four algorithms in the literature for inducing 

finite state automata from positive examples. A general algorithm is given in § 5.4.3 which, with 

suitable alteration of the driving heuristic produces the same results as all of the existing algorithms 

except Angluin's (Angluin, 1982b). 

5.4.1. Definitions 

Below we present some basic definitions from set theory and formal language theory which 

will be used both in this chapter and chapter 7. The notation used roughly follows that of Angluin 

in (Angluin, 1982b). 

!SI - the cardinality of the setS. 

2s - the power set of S, 2s = { S' : S' !:: S }. 12sl = 2ISI. 

- a finite alphabet with cardinality 11:1 ~ 2. 
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:E* - the infinite set of strings made up of zero or more letters from :E. 

- the empty string. 

uv - the concatenation of the strings u and v. 

lul - the length of string u. 

- the reverse of the string w. 

L - a language L is any subset of l:*. 

Lr -the reverse of L, Lr = {w: wE L}. 

Pr(L) - the prefixes of elements of L, Pr(L) = {u: for some v,uv E L}. 

TL(u) - the left-quotient of u in L, TL(u) = {v: uv E L}. 
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Tf(u) - the k-tails of u in L, 7!(u) =- {v: v e TL(u), lvl S k}. 

- a positive sample s+- of L is any finite subset of L. 

1ts - a partition of some set S, 1ts, is a set of pairwise disjoint nonempty subsets of S 

B(s,1ts) 

refines 

such that the union of all sets in 1ts is equal to S. 

- the unique block (element) of 7ts containing s, where s e S. 

- given two partitions, 1t and 7t', 1t refmes 1t' if and only if every block of 7t' is a 

union of blocks of 1t. 

- the characteristic predicate function of a partition over S is defined as 

ftrue if s,s' e S, B(s,1ts) - B(s',1ts) 

Xlts(s,s') = ltalse otherwise 

X can easily be shown to be an equivalence relation. A relation R is an Jts 

equivalence relation if and only if it has the properties of being reflexive (for all s 

e s+-. Xlts(s,s) is true), transitive (X1Cs(s,s') and Xlts(s',s") implies X"s(s,s")) and sym-

metric (Ms(s,s') implies xJts<s',s)). 

84 
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A • an acceptor is a tuple A =- (Q, 1:, o, I, F), where Q is the non-empty finite state 

set, 1: is the input alphabet, o: 2Q x 1:--+ 2a, is the transition function. The transi

tion function for strings O*: 2Q X 1:* --+ 2Q, is defined using the recursive 

definition 

o*<Q',A.> .. Q' 
o*(Q',bu) .. o*(o(Q',b),u) 

where q e Q, b e 1: and u e 1:*, I ~ Q is the set of initial states, and F ~ Q is 

the set of final states. A deterministic acceptor is defined similarly, the difference 

being that /, 0 and o* represent single element sets. When dealing with determinis-

tic acceptors, we will write q0 for the initial state set I = {q0}, o(q,b) = q' for 

O({q},b) = {q'} and o*(q,u) = q' for o*({q},u) = {q'}. 

L(A) - the regular language L(A) recognised by A consists of strings u which are accept-

ed by A, that is o*(/,u) e F. 

or - the reverse transition function or is defined as 

or(Q',a) = {q': q e O(q',a)} for all a e 1:, q e Q. 
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A' - the reverse of the acceptor A is A' = (Q. L. 5'. I. F). Diagrammatically, A' is A 

with the initial and final states swapped and all transition arcs reversed in direc

tion. It can easily be shown that L(A') = (L(A))'. 

In the following, let A = (Q. :E. 5. I. F) and A' = (Q'. :E'. 5'. I'. F') be two acceptors. 

a-successor- for some q, q' e Q. a e t, q is an a-successor of q' if and only if q e 5(q',a). 

k-follower - a string u is said to be a k-follower of a state q e Q if and only if lul = k and 

5(q,u) * 0. Every state has exactly one 0-follower, namely A.. 

k-leader - a string u is a k-leader of a state q e Q if and only if 5'(q,u') * 0. Every state 

also has exactly one 0-leader, A.. 

isomorphic - we say that A is isomorphic to A' if and only if there exists a bijective mapping 

h: Q -+ Q' such that h(l) = !', h(F) = F', and for every q e Q and b E :E, 

h(5(q,b)) = 5'(h(q),b). In other words, two acceptors are isomorphic if a renaming 

of their states makes them identical. 
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subacceptor- A' is a subacceptor of A if and only if Q' ~ Q, I'~/, F' ~ F and for every q' e 

Q' and b e ~ o'(q',b) ~ o(q',b). Alternatively, A' is a subacceptor of A if and only 

if L(A') ~ L(A). Diagrammatically a subacceptor is formed from an acceptor by 

removing some nodes and arcs from the transition diagram of the original accep

tor. 

live - if q E Q, then q is called live if and only if for some U,V, q E o*(/,u) and O(q,v) 

r1 F -:1: 0. A state is called dead if it is not live. A' is called a stripped subaccep

tor of A if and only if Q' ... {q': q' e Q and q' is live}. 

Al1ta - let 7ta be some partition of Q, the state set of A. A' ... Al1tQ, the quotient of A 

and 7ta is defined as follows. Q' is the set of blocks of 1ta· I' is the set of blocks of 

7ta that contain at least one element of I. Similarly, F' is the set of blocks of 1ta 

that contain at least one element of F. Block B2 is a member of o'(Btta) if and 

only if there exists q1 e B1 and q1 e B1 such that q1 e O(q1,a). 

87 



Overview of grammatical induction theory 

A(L) - the canonical or minimal acceptor for a language L, A(L) :s (Q, :E, o, I. F) is 

defined as follows 

PT(s+) 

Q = {TL(u): u E Pr(L)}, 

I= {TL(A.)} if L -:~: 0, otherwise I :s 0, 

F = {TL(u): u e L}, 

if u,ua e Pr(L). 

Note that the canonical acceptor A(L) has the minimum number of states possible 

for an acceptor of L. None of these states is dead, thus A(L) is stripped. Any ac

ceptor A' which is isomorphic to A(L) is called canonical. 

- if s+- is a positive sample of L, we define the prefix tree acceptor of s+-, PT(s+) = 

(Q, 1:, o, I, F), as 

Q = Pr(s+), 

I :s {A.} ifs+-:~: 0, otherwise I - 0, 

F = s+-, 

O(u,a) ,.. ua whenever u,ua e Pr{s+). 

representative sample 

- s+- is a representative sample of L if and only if for every transition {q,b) in A(L) 

there is a string u e s+ which exercises {q,b). 
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acceptor for s+. Let 7tP7{s+) be the partition 1tc. restricted to Pr(s+). Then A(/1tP1{s+) is isomorphic to 

a subacceptor of A(L). Thus L(Ac/1tP1{s+)) ~ L. 

Corollary 5.2. L(AJ1tP1{s+)) is contained in L. 

The following Lemma is due toFu and Booth (Fu and Booth, 1975) 

Lemma 5.3. Every acceptor Al1tP1{s+) derived from the prefix sets+ is a valid solution. 

5.4.3. Algorithm IMl 

We now present a simple, though general, algorithm for carrying out inference by merging 

the states of PT(s+). Many of the algorithms in the literature are special cases of this algorithm. 

Describing these algorithms in terms of our algorithm, IMl, facilitates their presentation and 

comparison. To the author's knowledge no algorithm similar to IMl has appeared in any 

publication previously. 
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Jl\.11 applies the characteristic predicate Xx (~v) (hereafter called X(~v)) to every pair 
Pr{s+) 

u,vePr(s+). If X returns true, IMl merges the blocks containing u and v. The resultant acceptor 

Aof1tt is non-deterministic. Hopcroft and Ullman (Hopcroft and Ullman, 1979) give an algo-

rithm which can be used to convert this to the equivalent minimal deterministic acceptor. 

Algorithm IMl 

Input: a nonempty positive sample s+' 

Output: the acceptor Ao/1t Pr(s+) 

• Initialisation Let Ao .. (Q0, l:, So. I O• F o) be PT(s+). Let 1to bo the trivial partition of Qo- Let i • 0. 

• Merging For all pairs (~V) in Qo do begin 

lfX(~v) then begin 

Let Bt • B(~1t;). B2 • B(v,1t;). 

Let 1ti+t be 1t; with Bt and B2 merged. 

Increase i by 1. end end 

•Termination 

Let/= i and output the acceptor Ao/1tf 

5.4.4. Time complexity of IMl 

As every pairwise test of elements of Q0 is made, X is applied n(n-1 )/2 times, where n = IQ01. 

Thus the time complexity of the algorithm is 0(n2
). 

5.4.5. Heuristics used in the literature 

Although the heuristics described in (Angluin, 1982b; Biermann and Feldman, 1972; Levine 

1982; Miclet 1980) were not originally described in terms of the function X of Jl\.11, predicates 
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giving equivalent results can easily be described and compared in this manner. 

5.4.5.1. Biermann and Feldman 's k-tail predicate 

Biermann and Feldman's heuristic (Biermann and Feldman, 1972) is functionally equivalent 

to the predicate 

frrue if 7*s+-(u) = 7*s+-(v) 

x<u,v> = ltatse otherwise 

where k is some positive integer supplied by the user. The resultant acceptor A is more compact the 

smaller k is. Biermann and Feldman proved that given the correct value of k for the target 

language, their algorithm will identify in the limit an acceptor A which when minimised is 

isomorphic to A(L). However, the correct value of k cannot be determined without first knowing 

what A(L) is. Biermann and Feldman show that by using a hashing function to merge states it is 

possible to carry out induction using this predicate in O(n) time. 

5.4.5.2. Levine's heuristic 

Although Levine (Levine, 1982) applied his heuristic algorithm primarily to inference of tree 

systems, he shows that it is also possible to use it for inference of finite acceptors. Levine defines a 

strength function which measures the maximum overlap between pairs of tail sets . 

The heuristic predicate he uses is 

frrue if Stren(u,v) ~ Strn 
x(u,v) = 1false otherwise 

• i ~ 0 

where Strn is a user defined parameter in the range 0 to 1. As with Biermann and Feldman's k 

parameter, the acceptor has a compactness which is roughly proportional to the value of Strn. The 

calculation of Stren itself has an upper bound time complexity of O(n), thus giving the complete 

algorithm a time complexity of 0(n3
) when using IMl. 
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5.4.5.3. Miclet's algorithm 

Miclet (Miclet, 1980) designed a heuristic algorithm based on statistical clustering techniques. 

The algorithm uses a distance function to do successive clustering and merging of states. Although 

this is a fairly general methodology, in his examples he uses a heuristic which approximates in its 

results . to one described fully by Angluin (Angluin, 1982b ). The heuristic identifies in the limit the 

maximally sized zero-reversible language containing the input sample. The heuristic is the simplest 

of all those presented here. The zero-reversible heuristic described by Angluin is equivalent to 

ftrue if T s+(u) t1 T s+(v) -:1: 0 

X(u, v) = lralse otherwise 

Angluin in (Angluin, 1982b) presents a method of computing A using this heuristic in 

approximately O(n) time. 

5.4.5.4. Angluin's heuristic algorithm for k-reversible languages 

Angluin (Angluin, 1982b) has shown that there are a class of languages, that she calls k-

reversible, which can be identified in the limit The acceptor A is defined to be "deterministic with 

lookahead k" if and only if for any pair of distinct states q1 and q21 if q1, q2 e I or q1, q2 e S(q3,a) 

for some q3 e Q and a e L, then there is no string that is a k-follower of both q1 and q2• This 

guarantees that any noncleterministic choice in the operation of A can be resolved by looking ahead 

k symbols past the current one. 

An acceptor A is defined to be k-reversible if and only if A is deterministic and Ar is 

deterministic with lookahead k. A language L is defined to be k-reversible if and only if there exists 

a k-reversible acceptor A such that L = L(A). 

Angluin presents an algorithm which, starting with the prefix tree acceptor, successively 

refines acceptors by merging any two states q1 and q2 which violate the condition of k-reversibility. 

The algorithm continues this process until no such pair of states q1 and q2 exist As no more than n 

mergers can be made (the prefix tree acceptor contains only n nodes}, and 0(n2
) comparisons must 

be made for each merger, the time complexity of the algorithm is 0(n3
). Angluin shows that her 
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heuristic will identify in the limit any particular language in any of the classes of k-reversible 

languages. However, she also shows that not all regular languages are members of a k-reversible 

language class. 

5.4.6. Limitations of existing heuristics 

It may be seen from inspection that a common factor of all the heuristics listed above is that 

T s+-(u) fi T s+-(v) * 0 must at least hold for X(u,v) to be true. The following theorem shows the 

limitation of such a requirement. 

Theorem 5.4. For any X(u,v) which implies T s+-(u) fi T s+-(v) = 0, the induced partition 1tPrl.s+) is 

the trivial partition 7rQ whenever ls+l = 1. 

Proof. Let s+ = {w}. Let two distinct prefixes of w be Ut and u,. Let T s+-(u1) = {v1} and 

T st"(ui) = {v2}. As Ut and u2 are distinct prefixes of w, lutl * lu21 and lwl = lutl + lvtl = lu2l + lv21· 

Thus v1 * v2, T s+-(u1) * T s+-(u2) and X(u1,u2) will always be false. As no mergers would ever be 

made, 1tP1(s+) = 1to· QED. 

Human beings are capable of making inferential "guesses" about regular languages from 

single pieces of evidence. For instance, given the string 

aaabbb 

one might suspect L to be 

a*b* 

The author's k-contextual algorithm presented in chapter 7 avoids this limitation. 

S.S. Informal presentation of results 

Having been presented with a sample of a particular regular language, the first step in our 

general method of finding an appropriate candidate acceptor is to fonn the unique prefix tree 

acceptor corresponding to the sample. This prefix tree acceptor is itself a finite acceptor. It is 
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formed by taking each string in the sample and using it to extend a path from the tree root to one 

of the leaves. The individual segments of the string are used as the labels of the arcs along this 

path. Moreover, any state at which a string terminates is marked in a special manner with a double 

ci.rcl~ and called an accepting state. Note that. whereas all leaves are accepting states, accepting 

states. can also be found at some internal nodes of the tree. Figure 5.2 illustrates the relationship 

between the sample and the prefix tree. Clearly this finite acceptor will accept no more and no less 

than the strings presented in the sample. As with any tree, we can name each node uniquely by 

describing the path from the root to that node. In the case of the prefix tree acceptor shown above, 

we can represent the states as the set of all prefixes of strings in the sample, 

Pr(s+) = {A.,a,b,aa,ab,bb,aab,abb} 

where A. is the empty string representing the root node, or start state. 

Sample, s+": { ab,bb,aab,abb} 

Prefix tree acceptor, PT(s+"): 

Figure 5.2 A positive sample and its corresponding prefix tree acceptor 
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By merging some of the nodes of the acceptor of figure 5.2 it is possible to form a smaller 

acceptor which will still accept only the strings represented in the sample. This new acceptor is 

shown in figure 5.3. The acceptor of figure 5.3 is in fact the smalles4 or canonical acceptor which 

will accept only the sample (this has been confirmed algorithmically). By further merger of the 

states of the acceptor of figure 5.3 we produce acceptors which accept successively more and more 

strings. In this way it is possible to infer languages which are generalisations of the original 

sample, and of which the sample is a proper subset To illustrate this figure 5.4 shows an acceptor 

formed by the merger of three of the states of the acceptor of figure 5.3. This process of merger, if 

carried on in an arbitrary manner will in the limit produce an acceptor containing a single state and 

single arc. Such an acceptor, called a universal acceptor, accepts any string consisting of symbols 

present in the original sample. This is shown in figure 5.5. This result is almost certainly an over

generalisation of the target grammar. Thus it is necessary to introduce a restraining factor into the 

inference process. This is done by using a predicate to qualify the merger of candidate states. This 

Language accepted, s+": { ab,aab.abb,bb} 

Canonical acceptor, A(s+): 

Figure 5.3 The canonical acceptor of the sample 
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Acceptor of L: 

Figure 5.4 A new acceptor derived from that of figure 5.3 

Acceptor of L: 

a,b 

Figure 5.5 The universal acceptor for the symbol set {a.b} 

predicate is called the characteristic predicate and is often merely a heuristic. During the process 

of inference every possible pair of nodes in the original prefix tree acceptor is tested using the 

heuristic to decide whether they should be merged in the resultant acceptor. 
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5.5.1. Various heuristics 

All heuristics developed so far for this problem have depended on matching some local 

properties of pairs of candidate nodes. If the heuristic does find a match then the nodes are merged. 

Below we sketch informally how four of these matching heuristics work. 

5.5.1.1. Biermann and Feldman's k-tail heuristic 

Biermann and Feldman (Biermann and Feldman, 1972) describe a heuristic which merges 

states having identical "k-tail" sets. A k-tail of a node is a string of length k or less formed by 

taking a directed path from that node to an accepting state in the prefix tree acceptor of the sample. 

We will refer to the states of the prefix tree acceptor in figure 5.2 by way of the unique prefix of 

each node (these are given immediately below figure 5.2). Below we denote the k-tail set of a 

particular node by T!+(prefix). k is some integer value chosen by the user. Thus for the prefix tree 

acceptor of figure 5.2, with k=l, 

T~(A.) =0 

T~(a) = {b} 

T~(b) = {b} 

T~(aa) = {b} 

T~(ab) = {A.,b} 

T~(bb) ={A.} 

T~(aab) ... {A.} 

T~(abb) ={A.} 

We can now partition the original prefix set into subsets of prefixes with matching tail sets 

{ {A},{a,b,aa},{ab},{bb,aab,abb}} 

The effect of having merged these nodes is shown in figure 5.6. The reader may notice that two 
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Language accepted, L: (a,b)a*(b,bb) 

Prefix tree acceptor, PT(s+): 

a 

Figure 5.6 Effect of k-tail inference, k-2, on prefix tree acceptor of figure 5.2 

arcs labelled with a "b" emanate from the state labelled "2" in the diagram above. This implies that 

a non-deterministic decision must be made at this point when exercising the acceptor. Such an 

acceptor is called a non-deterministic acceptor and can transformed to an equivalent deterministic 

acceptor using a procedure described in (Hopcroft and Ullman, 1979). 

5.5.1.2. Levine's heuristic 

Le vine's (Le vine, 1982) heuristic is based on maximising and thresholding a function on each 

pair of states in the prefix tree acceptor. For each pair of states (u, v) in the prefix tree acceptor we 

compute the function 

[ 21T~(u) f1 T~(v)l] 
Stren(u,v) = max 0 0 

i IT~(u)I+IT~(v)l 
, i '?:. 0 

In order to demonstrate the algorithm, we present below the tail sets of all states in the prefix 

tree acceptor of figure 5.2. These tail sets are equivalent to k-tail sets with k set to infinity. In 
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figure 5.7 we show the 2-dimensional matrix representing the computation of Stren for all pairs of 

states. 

T s+-(A.) = {ab,bb,aab,abb} 

T s+"(a) = {b,ab,bb} 

T s+-(b) = {b} 

T s+-(aa) = {b} 

T s+-(ab) = {A.,b} 

T s+-(bb) = {A.} 

T s+-(aab) ={A.} 

T s+-(abb) ={A.} 

For purposes of thresholding, the user provides a value Strn between 0 and 1. If Stren(u,v)?:Strn 

for any pair (u,v) then this pair is merged. Thus if we choose Strn to be 213 we get the partition 

representing the universal acceptor (figure 5.5). By setting Strn to 4/5 rather, we produce the 

following partition 

{ {A.,a,b,aa }, { ab,bb,aab,abb}} 

A. a b a a ab bb aab abb 
A. 1 415 0 0 0 0 0 0 
a 415 1 1 1 2/3 0 0 0 
b 0 1 1 1 2/3 0 0 0 
aa 0 1 1 1 2/3 0 0 0 
ab 0 2/3 2/3 2/3 1 1 1 1 
bb 0 0 0 0 1 1 1 1 
aab 0 0 0 0 1 1 1 1 
abb 0 0 0 0 1 1 1 1 

Figure 5.7 Matrix of Stren for all pairs of states 
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Figure 5.8 shows the acceptor representing this partition. 

5.5.1.3. Miclet's heuristic algorithm 

Miclet (Miclet, 1980) gives an algorithm which is general in the sense that it can be used 

with a variety of heuristics. However, he uses it with a heuristic which is equivalent to applying 

Levine's heuristic with Strn always set to be the lowest non-zero value represented in the matrix. 

As shown above, this leads to production of the universal language with our particular example. 

5.5.1.4. Angluin's heuristic algorithm for k-reversible languages 

Angluin's algorithm (Angluin, 1982b), like others describ~ uses a parameter k provided by 

the user. The algorithm operates by successively merging any two states q1 and q2 for which one of 

the conditions represented in figure 5.9 holds. In words these conditions are 

Language accepted. L: (a,b)*b+ 

Acceptor of L: 

a,b b 

Figure 5.8 Acceptor produced from sample using Levine's algorithm. Strn-415 



Overview of grammatical induction theory 101 

Either 1) 

b a L 

Or 2) a) b) 

u u 

Figure 5.9 Graphical represeDlation of conditioos for merger of ql and q2 

1) There exist two arcs labelled with a common symbol leading out from state q3 to q1 and q2• 

2) Two paths labelled with a common string of length k lead to q1 and qz, where q1 and q2 are 

either a) both accepting states or b) both have paths· labelled with a common string of length 

1 leading to some state q3• 

Figure 5.10 shows the result of applying Angluin's heuristic with k=1 to the prefix tree acceptor of 

figure 5.2. When minimised, this acceptor represents the language a*b+. Of all the results from 

heuristic predicates presented so far, this seems to be the most intuitively correct guess for the 

sample s+. However, as Angluin's algorithm has a time complexity of 0(n3
) this algorithm is not 

practical for large samples. 
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Language accepted. L: 

Acceptor of L: 

a 

b 

Figure 5.10 The result of applying Angluin's algorithm. k•1 

5.6. Conclusion 

We have presented a general efficient algorithm for computing and enabling comparison of a 

very large class of heuristic algorithms. It is evident that an increasing number of heuristic 

approaches exist for inferring regular languages. One of the goals of this chapter is to show that by 

use of a general framework for testing and comparing existing approaches re-implementation of 

large numbers of algorithms can be avoided. 



6 

Sequence induction applications 

Abstract. In this chapter we describe six small but varied applications of the KR and SKR induction 

algorithms of chapter 7. 

6.1. Introduction 

Inductive algorithms, such as ID3 (Quinlan, 1979), take sample descriptions of a static world 

and produce generalisations of these descriptions. For many real world problems it is more 

appropriate for descriptions of activities to be given as sequences of static descriptions changing 

over time. 

In this chapter we describe the application of sequence induction (see chapters 5 and 7) in a 

varied set of domains. Our intention is to investigate the applicability of sequence induction 

techniques within the Mugol environment In chapter 5 we described a number of algorithms for 

carrying out grammatical induction. In that chapter we showed that one of these algorithms, that of 

Angluin (section 5.4.5.4), gave better results than any of the others (section 5.5.1.4). However, we 

noted that Angluin's k-reversible algorithm runs in time 0(n3) and is thus not practical for large 

samples. Nevertheless, in the following chapter (section 7 .2) we give an algorithm (KR) which is 

input/output equivalent to Angluin's k-reversible algorithm, but runs in time O(n). In this chapter 

we use both KR (used in section 6.2) and a sequence induction version of KR called SKR 

(described in 7.4.5 and used in sections 6.3 - 6.7). 
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6.2. A simple grammar 

This experiment was to see if the KR algorithm could induce the grammar a*b*, (zero or 

more a's followed by zero or more b's). The algorithm requires a small integer value, k, to be 

given to it to tell it how much generalisation is necessary. Generally the smaller k is, the more 

compact its guess. In this experiment k =- 1 since k =- 0 leads to an over-generalisation, the 

automaton having only a single state. 

Given the set of sentences 

s+ =- { ab,bb,aab,abb} 

the KR algorithm infers the automaton which is shown as a state transition table in figure 6.1. 

't is merely a termination symbol. Thus state 2 is shown to be an acceptor state by the fact 

that a termination symbol can be accepted. State 0 is the start state of the automaton. As in 

Mugol (see chapter 3}, the unique goal state has no outgoing arcs. In descriptions of automata 

given in later sections of this chapter the symbols are situation/action pairs, and in any system 

Present State Input symbol Next State 

0 a 1 
0 b 2 

1 a 1 
1 b 2 

2 b 2 
2 't GOAL 

Figure 6.1 Induced state transition table for sentences {ab,bb,aab,abb} 



Sequence induction applications 105 

producing state example information for Mugmaker, 't would be given by the user as the 

situation/action pair used when control is returned from the Mugol module. 

The automaton shown above, is not the target language a*b* (0 or more a's followed by 0 or 

more b's). In order to get the algorithm to find a*b* it is necessary to give it the strings a and A. 

(empty sentence) in addition to the sentences provided. Thus the sample sentences given to the 

algorithm would be 

s+ :z {A.,a,ab,bb,aab,abb} 

The resultant automaton is shown as a state transition table in figure 6.2 and as a state 

transition diagram in figure 6.3. 

This represents the desired automaton, although it is not minimal. Minimisation of automata 

is a well understood process, and a standard algorithm could be used for this purpose. 

Present State Input symbol Next State 

0 a 1 
0 b 2 
0 't GOAL 

1 a 1 
1 b 2 
1 t GOAL 

2 b 2 
2 t GOAL 

Figure 6.2 Induced state transition table for sentences {A.,a,ab,bb,aab,abb} 
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a b 

b 

Figure 6.3 Diagrammatic representatioo of figure 6.2 

6.3. 1 bit binary adder 

In the next experiment we try to infer a 1 bit binary adder. Such a piece of circuitry can be 

produced automatically as a VLSI layout once the underlying finite state machine has been 

designed. The algorithm was used with the parameter setting of k - 1. 

Figure 6.4 shows the sequences given, together with their binary sums. 

Sequences are separated in the table by double lines. Instead of the input symbols used in 

the previous experiment, we have used situation/action tuples. The two binary numbers to be added 

are given in 1 bit situation pairs, the lower order bits being presented first. The result after each 

input pair is given as the action. 

In figure 6.5 we give the algorithm's solution as a transition table. 
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Situation Action Comment 
(lnput1,Input2) Output 

A null sequence is legal 

(0,0) 0 0 + 0 = 0 

(0,1) 1 0 + 1 = 1 

(1,0) 1 1 + 0 = 1 

{1,1) 0 1 + 1 = 10 
{0,0) 1 

{1,1) 0 11 + 11 = 110 
(1,1) 1 
(0,0) 1 

{1,1) 0 1 + 11 = 100 
{0,1) 0 
{0,0) 1 

{1,1) 0 11 + 1 = 100 
{1,0) 0 
{0,0) 1 

Figure 6.4 Example silUation/action sequences describing 1 bit binary adder 
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Present State Situation Action Next State 
(Inputl,Input2) Output 

0 't NULL GOAL 
0 (0,0) 0 0 
0 {0,1) 1 0 
0 {1,0} 1 0 
0 {1,1} 0 1 

1 (0,0) 1 0 
1 {0,1) 0 1 
1 {1,0) 0 1 
1 {1,1) 1 1 

Figure 6.5 Inductively generated state transition table for a 1 bit binary adder 

This solution is complete and correct The two states correspond to the carry and non-carry 

states. Thus from 7 example sums, the algorithm found a solution to an indefinite precision adder. 

6.4. Traffic light controller 

This example came from the book "Introduction to VLSI systems" by Mead and Conway. 

The book is a standard reference book for VLSI technology and contains an example of a finite 

state circuit for controlling traffic. Here is some of the description of the problem taken directly 

from the book. 
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The following simple example will help to illustrate the basic concepts of finite-state machines aDd their implementa-

tioos in n.MOS circuitry. A busy highway is intersected by a little-used fannroad. Detectors are installed that cause the 

signal C to go high in tho presence of a car or cars on the fannroad. .• We wish to control traffic lights at the intersec-

tion, so that in the absence of any cars waiting to cross or wrn left on the highway from the fannroad. the highway 

lights will remain green. If any cars are detected ..• , we wish the highway lights to cyclo through caution to red and the 

farmroad lights then to turn green. The farmroad lights are to remain green only while the detectors signal the presence 

of a car or cars, but never longer than some fraction of a minute. The farmroad lights are then to cycle through caution 

to red and the highway lights then to turn green. The highway lights are not to be interruptible again by the farmroad 

traffic until some fraction of a minute has passed. 

Figure 6.6 shows the meanings of actions used in figures 6.7 and 6.8. Figure 6.7 shows 

sequences given to the algorithm for this problem. It is assumed that the problem starts with the 

highway traffic lights being green. 

The symbols y and n stand for yes and no respectively. The '-' symbol indicates that any 

non-clashing value of the attribute can be taken at this point 

Abbreviation Meaning 

wait Null action 

ST+HY Start the timer and turn the highway lights yellow 

ST +HR+ FG Start the timer, turn the highway lights red and 
turn the farmroad lights green 

ST+FY Start the timer and turn the farmroad lights yellow 

ST + FR + HG Start the timer, turn the farmroad lights red and 
turn the highway lights green 

Figure 6.6 Meanings of action abbreviations used in figures 6.7 and 6.8 
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Situation Action Comment 
(Farmroad cars, 
Long time-out, 
Short time-out) 

Null sequence 
acceptable 

(n, -, -) wait Waiting for farmroad 
cars 

(y, y, -) ST+HY A complete cycle of 
(-, -, y) ST +HR +FG changing the lights 
(-, -, y) ST+FY with no waiting 
(-, -, y) ST + FR + HG 

(y, y, -) ST+HY A complete cycle of 
( -, -, n) wait changing the lights 
(-, -, y) ST +HR+ FG with one wait 
( -, -, y) ST+FY 
(-, -, y) ST + FR + HG 

(y, y, -) ST+HY A complete cycle of 
(-, -, n) wait changing the lights 
(-, -, y) ST +HR+ FG with two waits 
(y, n, n) wait 
(-, -, y) ST+FY 
(-, -, y) ST + FR + HG 

(y, y, -) ST+HY A complete cycle of 
( -, -, n) wait changing the lights 
(-, -, y) ST +HR+ FG with three waits 
(y, n, n) wait 
(-, -, y) ST+FY 
( -, -, n) wait 
(-, -, y) ST + FR + HG 

Figure 6. 7 Situation/action sequences descnoing a traffic light controller 



Sequence induction applications 111 

Figure 6.8 shows the transition table of the automaton produced with parameter setting k= 1. . 

Again the automaton is complete and correct according to the book. The states correspond to 

0) Highway lights are green. Traffic is travelling along the main highway. 

1) Highway lights have changed to yellow. The timer has been started and the automaton is 

waiting for the short timeout 

2) Highway lights have turned yellow. The farmroad lights are green. the timer has been 

restarted. The automaton is waiting for either the long timeout or for cars to stop flowing 

along the farmroad. 

3) The farmroad lights have turned yellow. The timer has been restarted again and the 

automaton is waiting for the shon timeout 

It is interesting to note that the authors of the book from which this example was taken, in 

order to show how the automaton works, describe it in terms of example sequences of events. 

Present State Situation Action Next State 
(Farmroad cars, 
Long time-out, 

Stime-out) 

0 t NULL GOAL 
0 {n, -, -) wait 0 
0 {y, y, -) ST+HY 1 

1 {-, -, y) ST +HR+ FG 2 
1 {-, -, n) wait 1 

2 {-, -, y) ST+FY 3 
2 (y, n, n) wait 2 

3 {-, -, y) ST + FR + HG 0 
3 {-, -, n) wait 3 

Figure 6.8 Induced state transition table for traffic light controller 
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6.5. Reverse motor problem 

This problem is conceptually very simple. A large electric motor is controlled by three 

buttons. The buttons are marked "left", "right" and "stop". When the motor is not moving, pressing 

the left button will cause the motor to start turning to the lef4 the right button to the right The 

only complication is that if the motor is turning in a particular directio~ any attempt to force it to 

turn in the opposite direction will cause the motor to stop, rather than immediately changing 

polarity on the motor. This is necessary due to the momentum of the motor. Obviously the stop 

button is used to stop the motor if it is turning in either direction. It is assumed that the motor 

starts not turning in either direction. Figure 6.9 shows the sequences given to the algorithm. Figure 

6.10 shows the transition table of the automaton produced with parameter setting k=l. 

As with the grammar example, using a k setting of 1, the automaton, although correct, is not 

minimal. The reader may notice that state(O) and state( 1) are identical and should have been 

merged. It is generally true that the automata produced are only minimal if the k setting is 0. States 

0 and 1 correspond to the motor being stopped, states 2 and 3 correspond to the motor turning left 

and right respectively. 

6.6. Algebra problem 

For this experiment various different solutions of simple linear equations were presented as 

sequences of situation/action tuples. The same problem was tackled previously by Andrew Paterson 

using the static induction package ACLS (Paterson, 1984) (ACLS is based on ID3 (Quinlan, 1979)). 

The sequences are presented along with the automaton produced. Whereas Paterson used 7 

attributes, it was found that only 4 attributes were needed when using the grammatical induction 

algorithm. Figure 6.11 shows the meanings of situational attributes used in figures 6.13 and 6.14, 

the table of sequences. Figure 6.12 gives the meanings of the actions used in figures 6.13 and 6.14. 

Figure 6.14 shows the transition table of the automaton produced with parameter setting k = 1. 
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Situation Action Comment 
Button pushed 

Null sequence acceptable 

- motor stop Pushing the stop button 
leaves the motor at rest 

- motor stop It does not matter how 
- motor stop many times it is pushed 

left motor left Any button other 
- motor stop than left stops the motor 

when it is turning left 

left motor left Pushing left when it is 
left motor left turning left keeps it 
- motor stop turning left 

- motor stop Similar 
left motor left 
- motor stop 

right motor right Any button other than 

- motor stop right stops the motor 
when it is turning right 

right motor right Pushing right when it is 
right motor right turning right keeps it 

- motor stop turning right 

- motor stop Similar 
right motor right 

- motor stop 

Figure 6.9 Situation/action sequences describing a motor controller 
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Present State Situation Action Next State 
Button pushed 

0 t NULL GOAL 
0 - motor stop 1 
0 left motor left 2 
0 right motor right 3 

1 t NULL GOAL 
1 - motor stop 1 
1 left motor left 2 
1 right motor right 3 

2 - motor stop 1 
2 left motor left 2 

3 - motor stop 1 
3 right motor right 3 

Figure 6.10 Induced state transition table for motor controller 

Attribute Meaning 

Brackets The equation contains at least one 
bracketed term 

X on the right There is a term in x on the right-hand 
side of the equation 

Const on left There is a constant term on the left-hand 
side of the equation 

Similar terms Either side of the equation contains 
two or more constants or terms in x 

Ok There is a single term in x on the left 

Figure 6.11 Meanings of siluational auributes used in figures 6.13 and 6.14 
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Action Meaning 

Divide both Divide through both sides of the 
equation by the coefficient of x 

Add similar Add together any similar terms 
(see 'Similar terms' in figure 6.11) 

Multiply brackets Multiply out any bracketed 
term by its coefficient 

X to left Move a term in x from the right to 
the left of the equation 

Const to right Move a constant term from the left to 
the right of the equation 

Figure 6.12 Meanings of actions used in figures 6.13 and 6.14 
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Situation Action Equation 
(Brackets,X on the right, 

Const on left,Similar tenns,Ok) 

3x = 6 
(n,n,n,n,y) Divide both X=2 

3x + 4x = 6 
(n,n,n,y,-) Add similar 7x = 6 
(n,n,n,n,y) Divide both X= 6/7 

3x + 4x + 5x = 6 
(n,n,n,y,-) Add similar 7x + 5x"'" 6 
(n,n,n,y,-) Add similar 12x =-6 
(n,n,n,n,y) Divide both X= 1/2 

5(3x) = 7 
(y,-,-,-,-) Multiply brackets 15x = 7 

(n,n,n,n,y) Divide both X = 7/15 

5(3x + 4x) = 7 
(y ,-,-,-,-) Multiply brackets 15x + 20x = 7 
(n,n,n,y,-) Add similar 35x = 7 
(n,n,n,n,y) Divide both X= 1/5 

5(3x) + 6(4x) = 7 
(y ,-,-,-,-) Multiply brackets 15x + 6(4x) = 7 
(y,-,-,-,-) Multiply brackets 15x + 24x = 7 

(n,n,n,y,-) Add similar 39x = 7 
(n,n,n,n,y) Divide both X= 7/39 

5(3x) = 2x + 7 
(y,-,-,-,-) Multiply brackets 15x = 2x + 7 
(n,y,-,-,-) X to left 15x- 2x = 7 
(n,n,n,y,-) Add similar 13x = 7 
(n,n,n,n,y) Divide both X = 7/13 

Figure 6.13 continued over page 
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Figure 6.13 (contd) 

Situation Action Equation 
(Brackets,X on the righ4 

Const on left,Similar terms,Ok) 

5(3x) + 7 = 2 
(y,-,-,-,-) Multiply brackets 15x + 7 = 2 
{n,n,y,-,-) c to right 15x = 2- 7 
{n,n,n,y,-) Add similar 15x = -5 
{n,n,n,n,y) Divide both X= -1/3 

5x = 7 + 2x 
(n,y,-,-,-) X to left 5x- 2x = 7 
(n,n,n,y,-) Add similar 3x = 7 
{n,n,n,n,y) Divide both x .. 3n 

5x = 7 + 4x + 3x 
(n,y,-,-,-) X to left 5x- 4x = 7 + 3x 
{n,y,-,-,-) X to left 5x- 4x- 3x = 7 
{n,n,n,y,-) Add similar x- 3x = 7 
{n,n,n,y,-) Add similar -2x = 7 
{n,n,n,n,y) Divide both X = -'2J7 

5x + 7 = 3x + 5 
{n,y,-,-,-) X to left 5x- 3x + 7 = 5 
{n,n,y,-,-) c to right 5x- 3x =5-7 
{n,n,n,y,-) Add similar 8x =5-7 
{n,n,n,y,-) Add similar 8x = -2 
(n,n,n,n,y) Divide both X= -1/4 

5x + 2 = 7 
(n,n,y,-,-) c to right 5x = 7- 2 
{n,n,n,y,-) Add similar 5x = 5 
(n,n,n,n,y) Divide both X= 1 

5x + 2 + 3 = 7 
{n,n,y,-,-) c to right 5x + 3 = 7- 2 
{n,n,y,-,-) c to right 5x = 7- 2- 3 
{n,n,n,y,-) Add similar 5x =5-3 
{n,n,n,y,-) Add similar 5x = 2 
{n,n,n,n,y) Divide both X= 2/5 

Figure 6.13 Situation/action sequences describing algebraic equation solver 
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Present State Situation Action Next State 
(Brackets,X on the right, 

Const on left,Similar terms,Ok) 

0 (n,n,n,n,y) Divide both 3 
0 (n,n,n,y,-) Add similar 4 
0 (y,-,-,-,-) Multiply brackets 1 
0 (n,y,-,-,-) X to left 5 
0 (n,n,y,-,-) C to right 2 

1 (n,n,n,n,y) Divide both 3 
1 (n,n,n,y,-) Add similar 4 
1 (y ,-,-,-,-) Multiply brackets 1 
1 (n,y,-,-,-) X to left 5 
1 (n,n,y,-,-) C to right 2 

2 (n,n,n,y,-) Add similar 4 
2 (n,n,y,·,·) c to right 2 

3 t NULL GOAL 

4 (n,n,n,n,y) Divide both 3 
4 (n,n,n,y,·) Add similar 4 

5 (n,n,n,y,.) Add similar 4 
5 (n,y,·,·,·) X to left 5 
5 (n,n,y,·,·) _c to right 2 

Figure 6.14 Inductively generated state transition table for the equation solver 

Again state 0 and 1 should be the same state. States 0 and 1 deal with repetitively 

multiplying out the brackets. State 5 then repetitively moves all "x" terms to the left hand side. 

State 2 repetitively moves all "constant" tenns from the right hand side of the equation to the left 

State 4 repetitively adds up similar terms and divides both sides through by the divisor of "x". It 

should be obvious that by dividing the task up into these smaller tasks, the user will not need to be 

asked as many questions when executing the automaton (given that it is being done interactively), 

as in each context it can be assumed that the jobs of the preceding contexts have been carried out 

satisfactorily. In order for this saving however, much more example information needed to be given 

than in Paterson's solution, which only required 9 ACLS examples. 
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6.7. Hanging pictures in a room 

This last example is more typical of the usual situation/action problems posed for robot-like 

worlds. The problem is as follows. A robot is in a room which contains a door and some pictures 

placed on the floor against walls on which they should be hung. The robot can start off facing in 

any direction and must hang all the pictures on the appropriate walls. The robot is able to see 

objects and knows its position (either at a wall or 'other'). The robot uses the ability to see the 

door to make sure it has hung all the pictures before stopping. It is able to 'turn', which involves 

rotating in a clockwise direction until its situation vector changes in some way. It can also move 

forward, again until the situation vector changes. Sub-problems such as actually hanging the 

picture on the chosen wall could have been developed as individual, simple automata. Figure 6.15 

gives the meanings of the actions used in figures 6.16 and 6.17. Figure 6.16 shows sequences 

given to the algorithm. Figure 6.17 shows the transition table of the automaton produced with 

parameter setting k = 0. 

Action Meaning 

Forward Keep moving forward until the 
situational vector changes 

Turn Keep turning clockwise until the 
situational vector changes 

Hang picture Hang the picture which is on the 
floor on the wall 

Lie down Lie down on the ground 

Figure 6.15 Meanings of actions used in figures 6.16 and 6.17 
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Situation Action Comment 
(See, At) 

(door, -) Turn All pictures hung, 
(other, -) Turn start at the door 
(door, -) Lie down 

(other, -) Turn All pictures hung,-
(door, -) Turn start elsewhere 
(other, -) Turn 
(door, -) Lie down 

(door, -) Turn 1 picture to hang 
(other, -) Turn start at door 

(picture on the tloor, -) Forward 
(picture on the tloor, wall) Hang picture 

(other, wall) Turn 
(other, -) Turn 
(door,-) Lie down 

(other, -) Turn Start elsewhere 
(picture on the tloor, -) Forward 

(picture on the tloor, wall) Hang picture 
(other, wall) Turn 

(door,-) Turn 
(other, -) Turn 
(door, -) Lie down 

Figure 6.16 Situation/action sequences describing the robots actions 
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Present State Situation Action Next State 
(See, At) 

0 (door, -) Turn 1 
0 (other, -) Turn 0 
0 (picture on the floor, -) Forward 6 

1 (other, -) Turn 2 

2 (door, -) Lie down 3 
2 {picture on the floor, -) Forward 4 

3 t NULL GOAL 

4 {picture on the floor, wall) Hang picture 5 

5 (other, wall) Turn 1 

6 (picture on the floor, wall) Hang picture 7 

7 (other, wall) Turn 0 

Figure 6.17 Inductively generated state transition table for the robot controller 

The states have an interpretation as follows 

0) The robot starts in this state and must decide what line of action is appropriate. 

a) If the robot sees the door, it will turn, and go to state 1 from which 

it will do a single pass around the room looking for pictures 

until it sees the door again. 

b) If it sees something other than the door or a picture on the floor, 

it turns in order to find one of these two. 

c) If it sees a picture on the floor it will move forward to the picture, 

go to state 6 and proceed by hanging the picture and returning 

to state 0. 

1) Having entered state 1, the robot must have seen the door at least once. Thus it is only 
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necessary to mop up all remaining pictures and keep turning until it sees the door. This 

will be done in either repeating the sequence state 1 - state 2 - state 4 - state 5 - state 1, 

or by seeing the door in state 1 and stopping. 

2) This state is part of the loop described for state 1, and contains the terminating condition 

that the door can be seen. 

3) This state merely terminates the module unconditionally. 

4) This state is part of the loop starting in state 1. 

5) This state is part of the loop starting in state 1. 

6) This state is part of the loop starting in state 0. 

7) This state is part of the loop starting in state 0. 
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Dufay and Latombe (1984) describe a similar method of automatically programming robots. 

They use an inductive algorithm which is essentially the same as that of Miclet (1980) (see section 

5.4.5.3). In their system, low-level robot sequences are generated by a planner and fed into an 

inductive algorithm. The resultant generalised finite state automaton is represented in a robot 

programming language for execution. The robot program contains not only manipulator directives 

but also tests to be carried out on the world state. 

6.8. Conclusion 

The problems described in sections 6.3 - 6.5 are conceptually different from those in sections 

6.6 - 6.7. The difference lies in the fact that whereas in the first three, a particular world situation 

is assumed for the start state ( eg. the highway lights start off being green in the traffic light 

example) the latter problems make no such assumptions (eg. the robot can start anywhere in the 

room, facing in any direction). Although the first examples could be developed with this "any 

situation starts" approach, it seems not typical as a whole of problems occurring in engineering. It 

is also interesting to note that whereas each problem is fairly difficult, it was automatically broken 
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into a number of smaller and simpler problems. 

Angluin's k-reversible algorithm (section 5.4.5.4) seems to be very powerful, and capable of 

dealing with building complex automata from a skimpy presentation of sample sequences. 

Moreover our efficient version of this algorithm (section 7 .2) runs at quite acceptable speeds, 

typically around 10 - 20 seconds for the automata presented in this chapter. 

As stated in section 6. 7, the method of constructing robot plans from example sequences has 

also been investigated by Dufay and Latombe (1984). However, they used a simpler inductive 

algorithm, essentially the same as that described by Miclet (5.4.5.3). Angluin (1982b) has shown 

Miclet's algorithm to be merely a special case of k-reversible induction. We therefore conclude that 

our method has a wider scope than that of Dufay and Latombe. 
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New sequence induction theory 

Abstract. A new algorithm implements Angluin's k-reversible induction in time O(n) rather than Angluin's 

time O(n3). The new algorithm is shown to identify k-reversible languages in the limit and can be modified to 

use negative data rather than a k value. We also propose and demonstrate a new method of grammatical 

induction called k-(;ontextual induction. This has the advantage over all other methods in the literature of being 

capable of generating natural solutions from samples as small as a single example. Next we show how these 

algorithms can be used to generate control structures for Mugol modules in the form of Mealy machines. 

7 .1. Introduction 

In this chapter we describe a new approach to the automatic construction of control strategies 

from example material. Our intention is to build control or strategic expert systems from example 

sequences. Each element of the sequence is a static example of the ID3 (Quinlan, 1979) variety. 

The output of the inductive process is a finite state structure in which each state contains a small 

number of the static examples. These can in turn be used by ID3-like induction schemes to produce 

rules or decision trees for each state. Thus although we do not produce a hierarchical structure, 

we achieve some of the aims of structured induction (i.e. a set of small understandable rules) by 

using example material which contains additional structural information within each example. 

The basis for these techniques lies in the study of grammatical induction, that is the inference 

of grammatical structures from example sentences of a language (see chapter 5). The grammar 

produced can be viewed as the control structure of a program which generated the example 

sentences. As explained in chapter 5, some of the earliest work in this area was done by Biermann 



New sequence induction theory 125 

and Feldman (Biennann and Feldman, 1972) who devised an algorithm to induce finite state 

automata from strings of a language. Although their algorithm was capable of finding any regular 

language given a sufficient example set, the algorithm requires an arbitrary complexity parameter. 

Angluin (Angluin, 1982b) has described an algorithm which infers only a limited subset of the 

regular languages. This subset she calls the k-reversible languages. By limiting the target language 

class, Angluin's algorithm is capable of finding the correct language using fewer examples than 

Biennann and Feldman's algorithm. 

The author has taken Angluin' s algorithm and redesigned it to run with linear time 

complexity rather than Angluin's original 0(n3) time (see section 7.2). Furthermore, we have 

discovered an even smaller, but useful subset of the k-reversible languages, which we call the k

contextual languages (section 7.3). The algorithm for inferring members of the k-contextual 

languages requires even fewer examples to infer any particular k-contextual language than 

Angluin's, to the extent that sensible inference is possible from samples containing only a single 

example. All other methods in the literature (Angluin, 1982b; Biennann and Feldman, 1972; 

Levine, 1982; Miclet, 1980) presuppose more than a single example. 

7.2. An efficient algorithm for induction of k-reversible languages 

In section 5.4.6.1 we introduced Angluin's k-reversible algorithm. This algorithm has time 

complexity 0(n3). In this section we describe a new algorithm, KR, which carries out Angluin's k

reversible induction in time O(n). The definitions given in section 5.4.1 are assumed as precursors 

to the following discussion. 

7.2.1. Uniquely terminated acceptors 

Let the finite state acceptor (FSA) A be described by the n-tuple A = (Q, :E, o, /, F). We say 

that A is a 't-terminated acceptor (ITA), (where 't e :E is a unique termination symbol) if and only 

if for any state q e Q, O(q, 't) = q' implies q' e F. Otherwise O(q, 't) = 0. i.e. we call a finite 

state acceptor a ITA if it has the property that any transition arc is labelled with the termination 
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symbol 't if and only if it leads into an acceptor state. It should be clear that any string w accepted 

by a ITA will have the form w = utv if and only if v is the empty string, A.. i.e. the symbol 't can 

only be found as the last symbol of w. 

The acceptor A is a goal state acceptor (GSA) if and only if it has a single accepting state qg 

(called the goal state) and the set of states reached- by a single transition from qg, is empty. In other 

words, a GSA has a unique goal state which has no outgoing arcs. 

We call any acceptor that is both a IT A and a GSA, uniquely terminated. 

Theorem 7.1 There exists a bijection ~ such that for any acceptor A = {Q, 1:, o, /, F} in which 't 

rl. 1:, ~A) is a uniquely terminaJed acceptor that accepts the language L(A).{'t}. 

Proof. The mapping function ~ is as follows. Let A = (Q, L. o, I, F). Now we construct the 

uniquely terminated acceptor Au = MA) = (Qu, :Eu. Ow lu, Fu) with Q" = Q u {qg} (where q1 is the 

goal state), Lu = L u 't, Ou(qf. 't) = {q,} for all qf E F, Ou(q, b) = o(q,b) for all q E Q, b E Land 

014(q1, b') - 0, b' e :E.., lu = I, F = {q1}. Clearly Au is a ITA since all arcs leading to q1 are 

labelled with 't. It is also a GSA since q1 is unique and Ou(qg, b') .., 0, b' e :Eu. 

In order to show that ~ is a bijection, we need to prove the existence of the inverse function 

li.;1• Let Au be a uniquely terminated acceptor Au- (Qu, :Ew Ou, lu, Fu) where Fu- {q1}. Now we 

construct the finite state acceptor A = li;1(AJ = (Q. 1:, o, I, F) with Q = Q" - {q1}, :E = :Eu - 't, 

o(q, 't) = 0 for all q E Q, o(q. b) = Ou(q,b) for all q E Q - F, o(qp b) = Ou(qf,b) for all qf E F 

where b E L. I = lw F = {q: q e Q", 014(q,'t) = {q1} }. Given that Au is uniquely terminated, 

clearly A is by definition a finite state acceptor since it is fully specified and does not accept any 

symbols other than those of :E. QED. 
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We say that an acceptor A is ku-reversible if and only if 

1) A is uniquely terminated and 

2) !i;1(A) is k-reversible (see definition of k-reversibility in section 5.4.5.4). 

7 .2.2. The KR algorithm 

The following algorithm constructs a ku-reversible acceptor by augmenting the sample set s+

to S'".{'t} and using a process similar to that of Angluin's ZR algorithm. The final result is 

normalised to being a k-reversible acceptor using H;1• 
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Algorithm KR 

Input: a nonempty positive samples+ and a parameter k. 

Output: a k-reversible acceptor A. 

* Initialisation 
Let~ be s+.{'t} 
Let Ao =- (Qo. T.o. Oo. Io. Fo) be PT(Si;). 
Let 7to be the trivial partition of Q0• 

For each b E ~and q E Qo lets( {q},b) = Oo(q,b) and p( {q},b) = O()(q,b). 
Choose some q' e F O· 

Let LIST contain all pairs (q',q) such that q E Fo - {q1. 
Let i = 0. 

*Merging 
While LIST ~ 0 do 
begin 

Remove some element (q1,q2) from LIST. 
Let Bt =- B(qtt1t;),B2 - B(q2,1t;). 
If B 1 ~ B2 then 
begin 

Let B3 be B1 and B2 merged. 
Let 1ti+t be 7t; with B3 replacing B 1 and 82. 
For each b E Lo, s-UPDATE(B1.B2.B3,b) and pk-UPDATE(Bt.B2,B3,b,k). 
Increase i by 1. 

end 
end 

*Termination 
Let/ =t i 
Output 11;1 (Arfrc1). 

Although s-UPDA TE remains the same as that described by Angluin (Angluin, 1982b ), we in-

elude it here for the sake of completeness. 

Algorithm s-UPDATE 

Input: blocks B 1.B2 and 8 3, and a symbol b E ~. 

If s(B1,b) and (B2,b) are noncmpty then 
begin 

Place s((B~tb),(B2,b)) on UST. 
end 

If s(B t.b) is nonempty 
then letp(B3,b) = p(B~tb) 
else let p(B3,b) = p(B2,b). 

128 
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Angluin's p-UPDATE is replaced by pk-UPDATE which is described below. 

Algorithm pt.UPDATE 

Input: blocks B 1J3z and 83, a symbol b e 1:o and a k parameter. 

For each q1 e p(Bbb) and q2 e p(B2,b) 
begin 

If ql and q2 have a common k-leader in Ar/rti then 
begin 

Place (qttqv on LIST. 
end 

end 

If p(B ~tb) is nonempty 
then letp(B3,b) = p(B~tb) 
else let p(B3,b) =- p(B2,b). 

(1) 
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Lemma 7 .2. Let s+ be a non-empty positive sample, k a non-negative integer, and 7t; the partition 

formed by KR on input s+ and k after i steps. If some u1 v1 and u2v2 are in the same non-goal 

Proof. From inspection of KR, two strings u1v1 and u2v2 are in the same block B of 7tj only if at 

some step j, previous to i, B(u1 Y~t7tj) was merged with B(u2vz,1tj). Let the pair (qttq2) be the pair of 

states representing B(u1Ytt7ti') and B(u2v217t1), placed on LIST during some step j', previous to j. 

(q~tq2) can have been placed on LIST only either 

a) during initialisation, in which case v1 and v2 are terminated by a 't symbol (i.e. v1 = w1't, v2 = 

w2't and are within a goal block B 
8 

of 7tj). However, Lemma 7.2 only applies to non-goal 

blocks or 

b) by pk-UPDATE. pk-UPDATE would only merge q1 and q2 if they had a common k-leader in 

Ao, i.e. v = v1 = v2 and lvl = k or 
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c) by s-UPDATE. As Ao is PT(Si;), which is by definition deterministic, s-UPDATE would only 

merge ql and q2 if they were both b-successors (b e ~- {'t}) of some state q 3• Also, as A0 

is deterministic, q3 must have been formed by a similar chain of 0 or more merges by s

UPDA TE preceded by a pk-UPDA TE. Thus all strings leading into q1 and q2 must have a 

common tail of at least length k. QED. 

The condition that q1 and q2 have a common k-leader in Ao/7t; from statement (1) of the 

algorithm pk-UPDA TE can be computed efficiently and simply as follows. Let q1 and q2 

correspond to B(utYtt7t;) and B(u2v2,7t;), where u1vtt u2v2 e s+. To check whether q1 and q2 have a 

common k-leader in Ar/7ti, we need merely check that lv11 = k - lv21 and v1 - v2• It can be seen 

from Lemma 7.2 that it does not matter which u1v1 and ~v2 are taken as representatives of the two 

blocks. 

Lemma 7 .3. Let s+ be a non-empty positive sample and k a non-negative integer. The output of 

algorithm KR on input s+ and k is isomorphic to the prefix tree acceptor PT(s+) whenever k is 

greater than the length of the longest string within s+. 

Proof. Let 7tt be the partition formed by KR on input s+ and k, and let u1v1w1 and u2v2w2 be two 

members of s+. During initialisation Ao is set to be PT(Si;) where S: is s+.{'t}. By Lemma 7.2 u1v 

and u2v are only within the same non-goal block B of 1t1 when lv11 = k = lv21 and v1 = v2. 

However, since k is greater than the longest string within s+, there can exist no such substrings v1 

and v2 of length k. Thus no non-goal state of A0 will be merged. However, all and only goal states 

are placed on UST during initialisation, thus all such goal states are merged into a single goal 

state. Therefore the output of KR, n;1(ArJ7t1) must be isomorphic to PT(s+) by the definition of h;1 

(proof of 7.1). QED. 

7 .2.3. The correctness of KR 

Angluin (Angluin, 1982b) describes an algorithm, k-RI, for inducing k-reversible languages 

which repetitively merges any two blocks B(q1,1t;) and B(q2,7t;) from successive partitions 7t; of the 
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original prefix tree PT(s+) if and only if they violate the conditions of k-reversibility. We now 

define the conditions of ku-reversibility in a similar manner to those of Angluin's. 

1) No two arcs labelled with a common symbol b (b e :I:o) leading out from any state q3 lead to 

any other two states q1 and q2• i.e. a ku-reversible acceptor is deterministic. 

2) Given that there exists two paths labelled with a common string u of length k leading to two 

states q1 and q2, there must not also be two arcs labelled with a common symbol b (b e :I:o) 

leading from q1 and q2 to some other state q3• 

If either of these two conditions is present, then the states q1 and q2 mentioned should be merged. 

Diagrammatically we can represent the conditions as those shown in figure 7.1. 

Lemma 7 .4. Let s+ be a non-empty positive sample, k a non-negative integer, A0 the prefix tree 

acceptor of S:, and 1tf the final partition found by K.R on input s+. Then re1 is the finest partition of 

the states of A0 such that Aflre1 is ku-reversible. 
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Either 1) 

be Lu 

Or 2) 

lul = k, be Lu 

Figure 7.1 Graphical representation of conditions for merger of ql and q2 

Proof. If the pair (qltqi) is ever placed on LIST, then q1 and q2 must be in the same block of 

the final partition, that is, B(qtt1tf) = B(q2,1t1). Thus in order to prove that KR always produces 

a ku-reversible acceptor, it suffices to show that two states q1 and q2 are always placed on 

LIST if and only if they violate the conditions of ku-reversibility. From inspection of KR, it 

can be seen that (q1,qi) can have been placed on UST only either 

a) during initialisation. 

i) This corresponds to all those occurrences of condition 2) (figure 7 .1) in which b 

= 't. 

ii) Owing to the initialisation of LIST all occurrences of condition 2) (figure 7.1) in 

132 
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which b ='twill be found and merged. 

b) by pk-UPDATE. 

i) This corresponds to all those occurrences of condition 2) (figure 7.1) in which b 

:;f: 't. 

ii) As A0 has the graphical form of a tree (each state has a maximum of one arc 

leading into it), and condition 2) depicts a graph containing a state (q3) with two 

arcs leading into i4 q3 must have been formed as the product of a merger. Fol-

lowing this merger, q1 and q2 would have been placed on LIST. Thus such con-

ditions will always be found. 

c) by s-UPDA TE. 

i) This corresponds to all those occurrences of condition 1) (figure 7.1). 

ii) Since A0 is deterministic, the state q3 depicted in condition 1) of figure 7.1 must 

have been formed as the product of a merger. Following this merger, q1 and q2 

would have been placed on LIST by s-UPDA TE. Agai~ such conditions will al-

ways be found. 

We have shown that the states (qttq2) will be merged in cases a-c i) only if the conditions of 

ku-reversibility are violated. Also we have shown in all cases a-c ii) that (qttq2) are always placed 

on LIST if the conditions of ku-reversibility are violated. Thus Au = AcJrt1 is ku-reversible. 

It remains to show that if 1t is any partition of Q0 such that Ao/rt is ku-reversible then rt1 

refines rt. We prove by induction that rt; refines 1t for i = O,l,.f. Clearly 1to refines rt. Suppose n:o. 

rt1, •• rt; all refine 1t and '1ti+t is obtained from rt; in the course of processing (q~tq2) for LIST. Since 

1t; refines 1t, B(q1,rtJ is a subset of B(q1,1t) and B(q2trt;) is a subset of B(q2,1t), so to show that rti+1 

refines rt, it suffices to show that B(q1,1t) = B(q2,1t). 

( 
•• 
. ; 
: ; 

G 

' . 
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Either (qhqi) was first placed on LIST during the initialisation stage or not. If so, then q1 and 

q2 are both accepting states, and since Aoltt is ku-reversible and thus by definition is a GSA, it has 

only one accepting state, so B(qittt) ~ B(qlttt). Otherwise, (qttqi) was first placed on LIST in 

consequence of some previous merge, let us say the merge to produce 1ti from 1t;-~t where 0 < j ~ i. 

merged in fanning 1ti and b is some symbol. Then q1 and q2 are b-successors (resp. b-predecessors) 

of two states in some block B of tti. Since 1ti refines 1t by the induction hypothesis, q1 and q2 are 

b-successors (resp. b-successors) of some block B' in 1t, and since Ao/1t is ku-reversible, B(qtt7t) -

B(q2t1t). Thus in either case 1ti+t refines tt, and by induction we conclude that tt1 refines 1t. QED. 

Lemma 7 .5. Let s+ be a non-empty positive sample, k a non-negative integer, A0 the prefix tree 

acceptor of~ tt1 the final partition found by KR on inputs+ and k, and A - li;,1(ArJtt1) the output 

automata. Then A is isomorphic to the automata A' ~ PT(s+}ltt, where 1t is the finest partition of 

the states of PT(s+) such that A' is k-reversible. 

Proof. From the definitions of k-reversibility and the mapping n;,1• since ArJ7tt is ku-reversibility. it 

follows that n;,1 (ArJtt1) is k-reversible. 

made under condition (figure 7.1) 

1) are the same 

2) be ~- {t} merges are fork-reversible reasons. b = t, q1 and q2 would be accepting states. 

Thus merges are made in the same way as those for conditions of Angluin's k-reversibility 

for all states other than goal states. All and only necessary states are merged (proof of 7.4). Thus 

A is isomorphic to the automata A' = PT(s+)ltt, where 1t is the finest partition of the states of 

PT(s+) such that A' is k-reversible. QED. 

We have thus shown that the KR algorithm is input/output equivalent to Angluin's algorithm 

(Angluin, 1982b). 

~ 
c 

't . 
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Theorem 7.6. Lets+' be a nonempty positive sample, k a natural number and let Aw =- ~1 (Ad7tt) be 

the acceptor output by KR on input s+" and k. Then L(A) is the smallest k-reversible language 

containing s+-. 

Proof. As KR is input/output equivalent to Angluin's algorithm, k-RI (Angluin, 1982b), and 

Angluin proves this to be true for k-RI, it clearly holds for KR. 

Theorem 7.7. Let L be a nonempty k-reversible language and w1, w2, w3, ••• any positive 

presentation of L. On this input, the output At. A2, A3, ••• of KR converges to A(L) (i.e. KR identifies 

L in the limit). 

Proof. As KR is input/output equivalent to Angluin's algorithm, k-RI (Angluin, 1982b), and 

Angluin also proves this to be true for k-RI, it clearly holds for KR. 

7 .2.4. Time complexity of KR 

Theorem 7 .8. Let s+- be a non-empty positive sample, k a non-negative integer. The algorithm KR 

WE~ 

may be implemented to run in time O(n) where n is ( ~ lul) + ls+l + 1. 

uteS: west" 
Proof. During initialisation, S: is composed as s+'.{'t}. Let n = ( ~ IU'tl) + 1 = ( ~ lul) + ls+l 

+ 1. The prefix tree acceptor A0 = PT(~, which has exactly n states can be constructed in time 

O(n). Similarly the time taken to output the final acceptor n;1(ArJ7t1) is O(n). As A0 is a tree, it 

contains n- 1 transition arcs and thus there are exactly n- 1 sand p relations. Blocks are merged 

if they are distinct, which can happen at most n- 1 times. Similarly s-UPDATE and pk-UPDATE 

can effectively merge a total maximum of n - 2 pairs of s and p relations respectively. Thus 

assuming block mergers and s and p mergers take constant time the time complexity of KR is O(n). 

QED. 

( 
't 
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( 

. ~ 

' t 
I 



New sequence induction theory 136 

7.2.5. Updating a k-reversible guess 

Angluin (Angluin, 1982b) shows how her ZR algorithm can be modified to have good 

incremental behaviour. We now demonstrate how the KR algorithm described here can be modified 

for the same ends. Given the ku-reversible automaton A" :s Ar/1tf computed by KR on input s+, and 

given a new string w, we may easily update A14 to be the ku-reversible acceptor computed by KR on 

inputs+' = s+ u {w}. The method for doing this is to start at the initial state of Au and follow the 

transitions A1 makes on the input string wt. If no undefined transitions are encountered and the last 

state reached is the goal state, then A" already accepts wt and nothing need be done. Otherwise, 

add new states and transitions for each symbol of w starting with the first undefined transition (if 

any). Mark the last state reached by wt as accepting, and place the pair consisting of this state and 

the goal state of Au on LIST. Continue the merging portion of the algorithm KR until UST is 

empty, and output the k-reversible acceptor ~1 (AJ7t'), where 7t' is the final partition of the states of 

A". The correctness of this procedure is verified in the same way as that of the original algorithm 

KR, since the order of detecting and performing required merges is immaterial. 

Example 7.9 If we run KR with a setting of k = 0 on the input {0,00,11,1100}, we obtain the 

acceptor shown in figure 7.2. If we then add the string 101 to the sample and perform the updating 

procedure just described, we first obtain the acceptor shown in figure 7.2b. This is then "folded up" 

as shown in Figure 7 .2c and d to obtain as a final result an acceptor for strings with an even 

number of 1 's. 

7.2.6. Using negative data 

Negative data can be used in the same way as that described by Angluin (Angluin, 1982b). 

That is, we are given a positive and negative example set (s+ Sl, such that s+ and s- are disjoint 

finite sets of strings. We compute the k-reversible languages for k = 0,1,2, ... using the positive 

examples, s+, until we find some k for which the inferred language does not contain any of the 

strings from the negative set s-. 

. ~ 

~ 
t 

1 c . 
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(a) (b) 

0 

(d) 

(c) 

Figure 7.2 Updating a guess 

7 .3. k-contextual languages 

According to theorem 5.4, all three of the algorithms reviewed in chapter 5 (Biennann and 

Feldman, 1972; Levine, 1982; Miclet, 1980) have the common property that they require at least 

two examples in order to carry out any generalisation. It can also be easily shown that Angluin's 

k-reversible method has exactly the same limitation. However, human beings have little difficulty in 

hypothesising grammars from sufficiently long single strings. 

The k-contextual language class described in this section has the property that the smallest k-

contextual language which is consistent with a single example may contain more than one string 

(see Example 7 .17), i.e. algorithms which hypothesise k-contextual languages can carry out 

generalisation using only one example. 

I 
I 

'i 
I 
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7.3.1. k-contextuality 

First we give a language characterisation of k-contextual sets. 

Definition 7 .10. Let L be a regular language. Then L is k-contextual if and only if whenever u1 vw1 

and u2vw2 are in L and lvl = k, TL(u1v) = TL(u2v). 

We extend the notion of k-contextuality to cover not only languages but their corresponding 

acceptors. 

Definition 7.11. An acceptor A is k-contextual if and only if L(A) is k-contexrual. 

Remark 7.12. If a language L is k-contextual and contains two not necessarily distinct strings 

u1vw1 and ~vw21 where lvl = ~ then L also contains u1vw2 and ~vw1 • This is merely a 

particularisation of Definition 7.1 a. 

Remark 7.13. Any a-contextual language L containing two not necessarily distinct strings u1w1 

and u2w2 also contains u1w2 and u2w1• This is a particularisation of Remark 7.12. 

Lemma 7.14. Any a-contextual non-empty language L is equal to l:* the universal language 

where b e l: if and only if there is some ubv e L. 

Proof. Let L be a non-empty a-contextual language. We prove by induction that L = l:* where b 

e :E if and only if there is some ubv e L. Let w be an element of L. Since w = A..w = w.A. it 

follows from Remark 7.13 that A. is an element of L. By the inductive hypothesis we suppose that L 

contains all members of l:* of length less than or equal to n. Now suppose that lubvl = n + 1. The 

strings u, v and b are all members of L since they are all of length less then n. Since u.A., A..b e L, 

by Remark 7.13 ub e L. Similarly since ub, A..v e L, by Remark 7.13 ubv e L, which completes 

the inductive step and the proof. QED. 

As shown in section 5.5 inductive algorithms which use positive data to identify a language 

must avoid overgeneralisation, that is choosing a language which is a superset of the target 
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language. For this purpose Angluin (Angluin, 1982b) has shown the need to define a characteristic 

sample for any class of languages. A characteristic sample of a k-contextual language L is a sample 

s+- of L with the property that L is the smallest k-contextual language that contains s+-. If a 

characteristic sample for L is found in the sampl~ then proposing L is not an overgeneralisation. 

Remark 7.15. A = (Q, 1:, o, {q0}. F) is k-contextual if and only if for all strings u1vw1 and ~vw2 

accepted by A, where lvl = k, there is a unique state q such that o(qOtu1v) = q = O(q0,~v). 

As k-contextual languages have a lot in common with k-reversible languages (we show later 

in Theorem 7.20 that every k-contextual language is k-reversible ), the following proof follows a 

similar proof of Angluin's (Angluin, 1982b) closely. 

Theorem 7 .16. For any k-contextual language L there exists a characteristic sample s+- of L. 

Proof. If L = 0 then s+- = 0 is a characteristic sample of L so suppose L:;: 0. Let A = (Q, 1:, o. 

{q0}, F) be the canonical acceptor of L. For each q e Q let Lq denote the set of k-leaders of q in 

A. For each pair q e Q and x e Lq let u(q,.x) be some string u such that o(qOtux) = q. The sample 

s+ is defined as containing all strings u of length less than k which are in L, some string u(q,.x)xbv 

e L for each q e Q, x e Lqo be l:, and some string u(qpX)x e L for each q1 e F, x e Lq1 No other 

strings are ins+. Lemma 7.14 establishes that in the case k = 0, L = 1:* where b e 1: if and only if 

there is some ubv e L. Thus s+ is a characteristic sample of L for k = 0 if for every b e 1: there is 

some string of the form ubv e s+, which is so by the definition of s+-. Suppose S ~ 1. 

Let L' be any k-contextual language containing s+-. We must show that L is contained in L'. 

Clearly any element of L of length less than k is in s+ and therefore in L'. We show by induction 

that for every w e Pr(L) of length at least k, TL{w) = TL·(u(q,.x),.x), where x is the suffix of w of 

length k and q = o(qo,w). If w has length exactly k, then w = X and u(q,x) = A., so this condition is 

satisfied. Using the inductive hypothesis we suppose that for every n ~ k this condition is satisfied 

for all strings w e Pr(L) of length at most n. Suppose w is any element of Pr(L) of length n + 1. 

Let w = w'axb, where lxl = k - 1 and a,b e 1:. By the inductive hypothesis TL{w'ax) = 
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TL{u(q,ax)ax), where q = o(qo,w'ax). Thus TL·(w) ,. TL{u(q,ax)axb). Let q' =- O(q,b) = O(qo,w). 

Then s+ contains the strings u(q,ax)axbv1 and u(q' ,xb)xbv2, so L contains these strings. By Remark 

7.15, this implies that TL{u(q,ax)axb) =- TL·(u(q' ,xb)xb), so TL'(w) = TL{u(q' ,xb)xb), completing the 

induction step. 

Now let w be any element of L of length at least k, and let x be the suffix of w of length k. 

Then TL·(w) = TL{u(qp.x)x), where q1 e F. The string u(qp.x)x is contained in s+ by construction and 

therefore is in L'. Hence w is in L', which completes the proof that L is contained in L'. Thus L is 

the smallest k-contextuallanguage containing s+, and s+ is a characteristic sample of L. QED. 

Example 7.17. Consider the language o+t+ whose canonical acceptor is shown in figure 7.3. Using 

the construction method of the above proof to construct a characteristic sample s+ for this !

contextual language, we obtain LA = {0}, L8 = {1} and s+ = {0011}. Note that this is only one 

0 

Figure 7.3 The canonical acceptor of the language o+t+ 
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possible solution for s+". Among other characteristic samples are s+" .,. {001. 011} and s+" = 

{0000111}. 

Oearly a characteristic sample of a k-contextual language can consist of a single string. This 

is not true of any other similar language group in the literature (Angluin, 1982b; Biermann and 

Feldman, 1972; Levine, 1982; Miclet, 1980). 

Lemma 7.18. If A is a k-contextual acceptor and A' is any subacceptor of A, then A' is a k

contextual acceptor. 

Proof. Let k be a natural number, A = (Q, :E, o, I, F) be some k-contextual acceptor, and A'.,. (Q', 

r.', o', I', F') be a subacceptor of A. A' is a subacceptor of A only if o'(q',b) ~ o(q',b) for all q' E 

Q' and b E r.. Let us assume that A' is not k-contextual. Thus by Remark 7.15 o'(qo. UtV) *' o'(qo. 

u2v) for some u1vw1, u1vw1 E L(A'). We can show trivially by mathematical induction that since 

by the definition of subacceptors (see section 5.4.1) O'(q',b) ~ O(q',b) for all q' E Q', b E :E', it 

follows that o'(q',w) ~ O(q',w) for all w E :E'*. Remark 7.15 shows that O(qo. UtY) = O(qo. u2v) = 

{q}. Thus since o'(q',w) ~ O(q',w) for all w E :E'*, it follows that both o'(qo. UtY) ~ {q} and o'(qo. 

~v) ~ {q}. However o'(qo. UtY) *' 0 and o'(qo. u2v) *' 0 since UtVWt, ~vw2 E L(A'). Thus o'(qo. 

u1v) = o'(q0, u2v) = {q}. This contradicts our assumption that A' is not k-contextual. Therefore A' 

is k-contextual. QED. 

7 .3.2. Relationship between k-reversibility and k-contextuality 

The following definition of k-reversible languages is given by Angluin (Angluin, 1982b). 

Definition 7.19. Let L be a regular language. Then L is k-reversible if and only if whenever u1vw 

and u2vw are in L and lvl = k, TL(u1 v) = TL(u2v). 

Comparing this definition with that of k-contextuality (Definition 7 .10), gives us the following 

theorem. 



New sequence induction theory 142 

Theorem 7 .20. Any k-contextual language L is k-reversible. 

The proof of theorem 7.20 follows trivially from the fact that the definition for k-contextuality 

subsumes that of k-reversibility. 

7.3.3. The KC algorithm 

value. 

The following algorithm constructs a k-contextual acceptor given a positive sample and a k 

Algorithm KC 

Input: a nonempty positive samples+ and a k parameter. 

Output: a k-contextual acceptor A. 

• Initialisation 
Let A0 = (Q0, r.o. Bo. l 0• F 0) be PT(s+). 
Let 1to be { {u}: u e Qo. lul < k}. 
Let Q0' be Q0 - U1to· 

• Merging 
For each state u1 v e Q0' where I vi = k do 
begin 

If there exists some block B1 such that B1 = B(u2v,1t;) then 
Let B2 be B1 u {u1v}. 

else 
Let B2 be {Ut V}. 

Let 1tt+t be 1ti with B 2 replacing B 1• 

Increase i by 1. 
end 

*Termination 
Let/= i 
Output Arf1tt-

Note that only 1t1 is a complete partition of Q0• 

7.3.4. The correctness of KC 

The following Lemma describes the effect of KC. 
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Lemma 7 .21. Let s+ be a nonempty positive sample~ k a natural number and let Ac/1tt be the 

acceptor output by KC on input s+ and k. Then 1t1 is the finest partition of the states of A0 such that 

Ac/1tt is k-contextual. 

Proof. Let Ao = (Qo. Lo· oo. Io. Fo). By inspection we note that the initialisation and merging 

sections of KC guarantee that every state of Q0 will be placed into exactly one block of 1tr Thus 1t1 

is a partition of Q~ and Ar/1t1 is a legal acceptor. Furthermore a trivial inductive argument can be 

employed to show that every block B of 1t1 contains either a single state u e Q0 for which lul < k, 

or all states uv e Q0 for which uv has a particular suffix v of length k. 

Let u1vw1 and ~vw2 be two strings in a language L, where lvl = k. By Definition 7.10, L is 

k-contextual if and only if TL(u1v) ,.. TL(~v)~ i.e. u1v and ~v lead to the same state in A(L). Since 

all states uv e Q0 for which uv has a particular suffix v of length k are contained within the same 

block of 1t1 it follows that u1v and u2v lead to the same state in Ac/1t1 for any u1vw1, ~vw2 e s+. 

Thus Ao/1t1 is k-contextual. 

It remains to show that if 1t is any partition of Q0 such that Ar/1t is k-contextual~ then 1t1 

refines 1t. Let us assume the opposite, i.e. there exists some 1t which refines 1t1 where 1t is not equal 

to 1t1 and L = L(Ac/1t) is k-contextual. Thus at least one block of 1t1 is the union of more than one 

block of 1t. But as all blocks of 1t1 contain either singletons or contain all states uv e Q0 for which 

uv has a particular suffix v of length k there must exist at least two blocks of 1t containing states 

with the same k-leader. Let these two blocks 8 1 and 8 2 contain u1v and u2v respectively, where v is 

the common k-leader. This implies that TL(u1v) ;e TL{u2v) and therefore L is not k-contextual; 

which contradicts the original assumption and shows that 7tt refines all partitions 1t for which Ac/1t 

is k-contextual. This completes the proof. QED. 

The following theorem is analogous to a theorem proved by Angluin (1982b) for her k-RI 

algorithm. 

Theorem 7 .22. Let s+ be a nonempty positive sample~ and let A1 be the acceptor output by 
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algorithm KC on inputs+". Then L(A1) is the smallest k-contextuallanguage containing s+-. 

Proof. Lemma 7.21 shows that L(A1) is a k-contextual language containing s+-. Let L be any k

contextual language containing s+, and let 1t be the restriction of the partition 1tL to the elements of 

Pr(s+). If A0 denotes the prefix tree acceptor fors+, then Lemma 5.1 shows that Ao/1t is isomorphic 

to a subacceptor of A(L), and Corollary 5.2 shows that L(Ao/1t) is contained in L. From Lemma 

7.18, L(Ao/1t) is k-contextual. Thus by lemma 7 21 re, refines 1t, so L(Ar/1t1) is contained in L(Ar/1t). 

Consequently, L(A1) is contained in L, and L(A1) is the smallest k-contextuallanguage containing s+. 

QED. 

7 .3.5. The running time of KC 

Theorem 7.23. The algorithm KC may be implemented to run in time O(n) where n is one more 

than the sum of the lengths of the input strings. 

Proof. Let s+- be the set of input strings and n be one more than the sum of the lengths of strings 

in s+. The prefix tree acceptor PT(s+) can be constructed in time O(n) and contains no more than n 

states. Both 7to and Q0' can be created in a single pass over all strings ins+, and thus also take time 

O(n). Since Q0' contains at most n strings and each pass through the iteration can be completed in 

constant time given a hashing mechanism for finding the appropriate block B 1, merging also takes 

O(n) time. The output automaton Ao/1tt can also be created in time O(n). Since no operation takes 

more than time O(n) it follows that the algorithm KC completes within time O(n). QED. 

7.3.6. Identification in the limit of k-contextual languages 

In this section we show that KC is able to identify in the limit any language L (see section 

5.2). We define an operator KC_ which given an infinite sequence of strings w1, w2 , w3 , ... and a 

parameter k produces an infinite sequence of acceptors A1• A2, A3, ... in which 
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An infinite sequence is called a positive presemation of a language L if and only if the range 

of the sequence is exactly L, that is, every element of the sequence is an element of L and vice 

versa. The following theorem shows that KC .. identifies k-contextuallanguages in the limit 

Theorem 7.24. Let L be a nonempty k-contextual language for some natural number k. Let w1, 

w2, w3, ••• be a positive presentation of L, and A1, A2, A3, ••• be the output of KC_ on this input 

Then L(A1), L(A2), L(A3), ••• converges to L after a finite number of steps. 

Proof. By Theorem 7.16, L contains a characteristic sample. Let N be sufficiently large that w1, 

w2, ••• , wN contains a characteristic sample for L. For n ~ N, L(A,.) is the smallest k-contextual 

language containing w1, w2, ••• , wN, by definition of KC .. and Theorem 1.12. Thus L(A,.) - L, by the 

definition of a characteristic sample (section 7.3.1). QED. 

7.3.7. Incremental nature of KC 

As stated in section 1.2 expert systems are generally built in an incremental fashion. For this 

reason it is desirable that any inductive tool used in the construction of expert systems produces a 

gradually changing output given progressive augmentation of the example set Without this 

guarantee, the knowledge engineer (or expert) presenting the example material has no ability to 

predict the effect that any particular new example is likely to have on the system's knowledge 

structure. We therefore propose the following definition of incremental modification for 

grammatical induction algorithms. 

Definition 7 .25. Let A be the acceptor output by some grammatical induction algorithm I given the 

positive sample s+ and let the acceptor A' be the output of I on input s+ u {w}. We say that I is 

incremental if and only A is a subacceptor of A'. 

Theorem 7 .26. Given a fixed natural number k, the algorithm KC is incremental on input k and 

any positive presentation of some k-contextual language L. 

Proof. Let k be a natural number, s+ be a positive sample, w be some string, A = PT(s+)l1t = (Q, 
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:E. o, I. F) be the output of KC on input k and s+, and A' = PT(s+ u w)lpi' =- (Q', 'L', o', I'. F') be 

the output of KC on input k and s+ u {w}. We need to show that A is a subacceptor of A'. 

By definition A is a subacceptor of A' if and only if Q ~ Q', I~ I'. F ~ F' and O(q, b) ~ 

o'(q, b) for all q e Q and b e :E. Following a similar argument to that of Lemma 7.21, we get that 

1t = { {u}: uv e s+". lul < k} u {By: xyz e s+,!yl=k, uv e By} and 7t' = { {u}: uv e s+ u {w}, lul < 

k} u {By: xyz e s+" u {w},IYI=k. uv e By}. Thus for every block B = {u} in 1t for which uv e 

s+,lul < k there exists one and only one corresponding block B' = {u} in 1t'. Similarly, for every 

block Bv in 1t there is a corresponding block B/ in 1t'. It follows from the definition of quotient that 

Q ~ Q', I ~ !', F ~ F' and o(q, b) ~ o'(q, b) for all q e Q and b e 'L. Thus A is a subacceptor of 

A'. QED. 

7 .3.8. Using negative data 

Negative data can be used in the same way as that described in section 7 .2.6. That is, we are 

given a positive and negative example set (s+,S), such that s+ and s- are disjoint finite sets of 

strings. We compute the k-contextual languages for k ... 0,1,2, ... using the positive examples, s+, 

until we find some k for which the inferred language does not contain any of the strings from the 

negative set s-. 

7 .4. Use or semantic information 

Gold has shown (Gold, 1967) that no algorithm can identify the entire set of regular 

languages from positive example sentences alone. Thus various approaches have been used which 

present a language identification algorithm with positive examples together with additional 

information. Generally, this additional information is sufficient to allow identification in the limit. 

Up until now the additional information has taken the following forms. 

1) Negative examples. Angluin (Angluin, 1982a) shows how a combination of positive and 

negative examples can be used to infer any finite automata in polynomial time. 
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2) A limit on the total number of states. Moore (Moor~ 1956) suggested this. 

3) ;A value related to the compactness of the output automata. (Angluint 1982b; Biermann and 

Fel~ 1972; Levin~ 1982) have all suggested variants on this theme. 

In this section we explain a new approach to example presentation. which requires neither an 

ad hoc numerical measuret nor the need for negative data. Instead we present semantic information 

in the positive examplest by way of situation action pairs. The output of the new technique is a 

finite state automaton (rather than a finite state acceptor), which is expressed in a similar manner to 

Mealy machines. It is described how variants of existing algorithms for inducing finite state 

acceptors can be used in this new framework. 

7.4.1. Uniquely terminated Mealy machines 

Let the automaton M be (Q, X, Y, o, I, F). Q is the set of states contained in M. I is the set of 

initial states of M (I ~ Q). F is the set of final states of M (F ~ Q). X is the situalion symbol set 

of M. Y is the action symbol set of M. o is the transition function of Mt which maps 

state/situation pairs of the form (q,x) to sets of action/next-state pairs of the form (y,q') where q and 

q' are members of Q, x is a member of the situation symbol set X, and y is a member of the action 

symbol set Y. We call M a terminated Mealy machine, in that it is similar to a form of finite state 

machine called a Mealy machine (see section 2.6.5). This similarity holds in all respects except 

that Mealy machines do not have accepting states. We call a terminated Mealy machine M - (Q, 

X, Y, o, I, F) deterministic if and only if 

a) I contains exactly one member, qi and 

b) if O(q,x) - (y,q') (for some q,q' e Q, x e X and y e Y) there exists no other y' e Y, q" e Q 

such that O(q,x) - (y',q"). 

Let the terminated Mealy machine M be described by the n-tuple M = (Q, X, Y, 5, I, F). 

We extend the definition of 't-termination of finite state acceptors to terminated Mealy machines as 

follows. M is a 't-terminated Mealy machine (ITM) if and only if for any state q e Q, O(q~) = 



New sequence induction theory 148 

(y'ttq') implies q' E F (where .:Gt E X, Y-e e Y). 

We also extend the definition of goal state acceptor to that of a goal state Mealy machine 

(GSM) as follows. The automaton M is a GSM if and only if it has a single accepting state qg and 

the set of states reached by a single transition from qg, {q: x e X, ye Y, F = {qg}, o(qg,x) = (y,q)} 

is empty. In other words, a GSM has a unique goal state which has no outgoing arcs. 

We call any terminated Mealy machine that is both a ITM and a GSM, uniquely terminated. 

In the following sections we will discuss mainly the properties of deterministic uniquely terminated 

Mealy machines (DUTMM). As mentioned in 2.6.5, DUTMMs are the basis of control within 

modules of the Mugollanguage (chapter 3), and thus have special significance within this thesis. 

Example 7.27. Figure 7.4 is a diagrammatic representation of the DUTMM M= (Q, X, Y, o, I, F) 

Figure 7.4 Example of a DUIMM 
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for which Q = {qhq2,q3}, I = {qt}, F ,. {q3}, X = {xt,x2~}, Y = {yttJ2tY-t}, o(qt,xt) :::11 {(yttq2)}, 

o(q2,xv = {(y2tq1)}, o(q2~) = {(y'tlq3)} otherwise O(q,x) = 0 for all other q E Q, x E X, y E Y. 

7.4.2. Operational meaning of DUTMM's 

Let M = (Q, X, Y, o, {q;}. {q8}) be a DUTMM. M can be viewed as having semantic 

properties which are akin to those of a subroutine of a programming language. M becomes live 

when called (the term live is used here to indicate that M is presently executing). M's executing 

state is initialised to the start state q;. When executing some state q, M's present situation x is 

compu~ and using the transition function the next state and next action o(q,x) = (y,q'), can be 

found. The next action y is executed, and on its termination, the presently executing state of M is 

changed to q. If at any point M's present executing state is the goal state q1 then M returns to 

being unlive (the term unlive is used to indicate that M is no longer executing). 

7.4.3. Situation/action sequences 

Let X be the universe of situation symbols and Y be the universe of action symbols. Lsa = 

(XxY), we call the universe of situation/action pairs. We call u a situation/action sequence if and 

on! y if u e :t:a, 

A terminaled Mealy machine M = (Q, X, Y. o, /, F) is said to generate the situation/action 

sequence u = (xhy1)(~,Jv ... (x"'y,J if and only if there exists a sequence of not necessarily distinct 

states, qo, ql, q2• ... q" such that (yi+ltqi+l) E o(q;,Xi+l) for 0 S i S (n-1), qo E I and q,. E F. 

Clearly the concept of "generation of sequences by terminated Mealy machines" is analogous to 

that of "acceptance of strings by finite state acceptors". 

We call a set of situation/action sequences Lsa a situation/action language. The set of all 

situation/action sequences generated by some terminated Mealy machine M, LSQ(M) is called the 

situation/action language of M. S:a is a positive sample of a situation/action language LSQ if and 

only if s.!"a is a subset of Lsa-
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7 .4.4. Mappings 

Lemma 7.28. Given a bijection hb which maps elements of ~a to the universal alphabet :E, there 

exists a bijection ha which maps terminated Mealy machines to FSA's. 

Proof. First we prove the existence of ha by construction. Let M = (Q"', X, Y, o"', !"', F ,J be a 

terminated Mealy machine. ha constructs an FSA Aa = <aa. l:, Oa, la, F J. For every state q e Q"' 

there is exactly one state q' E Q41 • For every initial state qi E /"' there is exactly one state q/ E la. 

For every final state q1 E F"' there is exactly one state qf E Fa- Oa(q"'b) ~ qa' if and only if 

o"'(q,.,x) = (y,q"' '), the pairs of states (q""qa) and (q"'',qa') correspond in M and Aa, and hb((x,y)) = 

b. 

In order to show that ha is a bijection, we need to prove the existence of the inverse mapping 

hi/. This is also done by construction. Let Aa = (Q41 , l:, Oa, I a• F J be a FSA. ha constructs a 

terminated Mealy machine M = (Q"', X, Y, o"'. I"'' F ,.). For every state q E Qa there is exactly one 

state q' E Q"'. For every initial state qi e la there is exactly one state q/ e /"'.For every final state 

qf E Fa there is exactly one state qf E F"'" o"'(q,.,x) = (y,q"'') if and only if oa(q"'u) .,. q41', the pairs 

of states (q""qa) and (q"'',q41') correspond in M and Aa, and hi/(b) = (x,y). QED. 

Lemma 7 .29. Given a bijection hb which maps elements of l:m to :E, there exists a bijection hu 

which maps situation/action sequences to strings. 

Proof. hu is very simply proved by construction. Let the situation action sequence Usa be 

(xhy1)(x2,y:z) ... (x"'y,.). hu constructs the string u = b1b2 ... b" such that hb((xi,Yi)) = ui, 1 ~ i ~. 

The existence of the inverse mapping, h;1 can be shown trivially and is thus omitted. 

Lemma 7 .30. Given the bijection hu which maps situation/action sequences to strings, there exists 

a bijection hs+" which maps sets of situation/action sequences into sets of strings. 

Proof. 
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The existence of the this mapping and its inverse mapping, hi- can be shown trivially and is 

thus omitted. 

7.4.5. The SKR algorithm 

Let M be a terminated Mealy machine. We extend the usage of the term k-reversible to 

Mealy machines by saying that if A = ha(M) and A is k-reversible then M is also called k-

reversible. 

The following algorithm uses only a positive situation/action sequence sample in order to find 

the k-reversible Mealy machine with minimal value of k which produces the sequence. 

Algorithm SKR 

Input: a nonempty positive situation/action sample S!z. 

Output: the minimal-k reversible terminated Mealy machine M1 and 
k's final value f. 

• Initialisation 
Letk = 0. 
Let s+ be hs(s:a). 

While k ~ (the maximum length of a sequence in s+.rcz) + 1 do 
until M 1c is deterministic 
begin 

Let A1c be KR(s+,k). 
Let M1c be hm(Aic). 
If M 1c is not deterministic 

then increase k by 1. 
end 

*Termination 
If M 1c is not deterministic 

then 
fail. 

else 
begin 

Let/= k 
Output (M1J). 

end 

Note that SKR can end in failure if the sample s:a inherently leads to a non-deterministic 

Mealy machine Mk. for all settings of k. 
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7 .4.6. Correctness of SKR 

Theorem 7.30. Let S:a be a positive sample. of situation/action sequences. Given S!z as input, the 

algorithm SKR will output, when it can, the pair (M1J) where f is the smallest value of k such that 

Mk is both k-reversible and deterministic. Otherwise, if no such pair exists, SKR will fail. 

Proof. By inspection SKR will output the required pair (M~) for the lowest value of k between 0 

and the maximum length of sequence within S:a, given that Mk is k-reversible and deterministic. 

According to Lemma 7.3 output of algorithm KR on any input s+- and k is isomorphic to the prefix 

tree acceptor PT(s+) whenever k is greater than the length of the longest string within s+-. Thus if 

Mk is not deterministic when k is one greater than the maximum length of any string within s+-, 

then Mi is non-deterministic for all i greater than k, since all such Mi are isomorphic to the prefix 

tree acceptor of s+-. QED. 

7.4.7. k-contextual sequence induction 

The algorithm SKC which creates k-contextual Mealy machines given situation/action 

sequences is a trivial adaptation of SKR with a call to KC replacing that to KR. In fact, Biermann 

and Feldrnan's k-tail algorithm (1972) can be similarly adapted to work within a situation/action 

sequence environment with the accompanying advantage of eliminating the need for an arbitrary k 

parameter. 

7 .S. Conclusion 

In this chapter we describe a new algorithm KR which is input/output equivalent to Angluin's 

k-RI algorithm (Lemma 7.6). However, whereas Angluin's algorithm runs in time 0(n3
), KR has 

been designed to run in time O(n) (Theorem 7 .9). 

All algorithms described in chapter 5 have the common feature that no effective inductive 

inference is feasible with single example strings, no matter how long the given example. In section 

7.3 we investigate the k-contextual language class for which effective induction is possible from 
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singleton example sets. We also show that the k-contextual languages are a restricted subset of the 

k-reversible languages (Theorem 7.20). In section 7.3.3 we give a simple algorithm, KC, which 

induces k-contextual languages. This is shown to run in time O(n) (Theorem 7.23). Like the 

algorithm KR, KC has the property of being capable of identifying k-contextual languages in the 

limit (Theorem 7.24). 

In section 7.4 we describe a method of automatically choosing the appropriate value of k for 

inductive construction of k-reversible and k-contextual Mealy machines. This is made possible by 

use of the semantic content of situation/action sequence examples. This method of inductive 

inference based on situation/action sequences is called sequence induction to distinguish it from 

grammatical induction. Sequence induction is demonstrated by application in chapters 6 and 8. 

:·) 
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Inductive acquisition of chess strategies 

Abstract. A variation of an algorithm for inducing "k-contextual" regular language grammars from sample 

sentences is applied to the construction of expert chess strategies. In a pilot study a small expert system for 

playing part of the King and two Bishops against King and Knight endgame (KBBKN) has been automatically 

constructed using this technique. The generated knowledge-base is directly executable in a Mugol environment 

(see chapter 3 and Appendices F and G). 

8.1. Introduction 

8.1.1. Computer chess research 

In the study of expert system development, Michie (Michie, 1982a) has noted that use of 

chess expertise as a testbed domain is ideal in many respects. The domain is non-trivial though 

finitely bounded. It has a wealth of recorded expertise going back many centuries which has 

certainly not yet been fully exercised. Whereas chess specialists have developed a depth of 

understanding which is at least comparable with the expertise of more lucrative disciplines, expert

level chess players are generally more readily available for consultation. 

Early work in programming computers to play chess was concentrated around efficiently 

implementing Shannon's chess playing strategy (Shannon, 1950). This employs extensive 

lookahead in order to compute approximations to the best next move. As this failed to produce 

results comparable with human expert play, recent research has focussed on more knowledge-rich 

approaches. Bratko and Michie (Bratko and Michie, 1980) described such a knowledge-based 

'l 
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system, ALl, based partly on earlier work by Huberman (Huberman, 1968). ALl's advice module 

generated a list of preference ordered pieces of advice. A separate search module used the board

state and advice list to produce a "forcing ttee" which was applied as a strategy for play. As with 

all solutions in which knowledge must be hand-coded, the knowledge acquisition process becomes 

a developmental bottleneck. 

Quinlan (Quinlan, 1979) suggested a method of bypassing this bottleneck by using inductive 

inference. Quinlan's algorithm, ID3, based on Hunt's CLS algorithm (Hunt, Marin and Stone, 

1966), was used to build decision trees which classified end-game positions as won, drawn or lost 

A vector of attribute values is used to describe any particular position. This vector together with a 

class value comprises an example classification. Although the solutions were exhaustively proved 

correct and ran five times faster than hand-crafted algorithms, they were also completely 

incomprehensible to chess experts. 

In order to circumvent this understandability barrier Shapiro and Niblett (Shapiro and Niblett, 

1982) introduced the notion of structured induction, in which a chess expert is required to 

hierarchically decompose the endgame classification rules; each sub-problem can then be solved 

inductively. While this approach avoids the problem of incomprehensibility, it unfortunately 

introduces a new bottleneck of problem structuring. 

Paterson (Paterson, 1983) has described an attempt to automatically structure the KPK chess 

endgame domain from example material, using the statistical clustering algorithm CLUSTER 

(Michalski and Stepp, 1982). The results however have not been very promising, with the 

machine's suggested hierarchy not having any significance to experts. The primary reason for 

failure seems to lie in the fact that although the example set is a rich enough source of knowledge 

to be used for rule construction, additional information is necessary to indicate any higher level 

structure. 
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8.1.2. Sequence induction 

In chapter 7 we described an efficient implementation of two sequence induction techniques, 

k-reversible induction and k-contextual induction. The k-contextual algorithm used for the 

experiments described here requires only positive examples. The necessary constraint on solutions 

is that the finite state acceptor produced be equivalent to the minimum sized k-contextual language 

containing the positive examples (see chapter 7). As described in section 7 .4, when dealing with 

sequences of ID3-like examples, we can use the semantic content provided by the situational vector 

as an additional constraint mechanism, and thus circumvent the need for supplying the algorithm 

with the arbitrary measure required by all similar algorithms in the literature (Angluin, 1982b; 

Biermann and Feldman, 1972; Levine, 1982; Miclet, 1980). For this we employ the SKC algorithm 

described in section 7 .4.7. 

Situations in which sequence induction can be employed are many and varied (see chapter 6). 

If we understand well what the properties of the algorithm being used are, often we can take 

advantage of various presentation and solution constraints for different scenarios. Elsewhere (see 

chapter 7) several such properties are described and proved. For our purposes, the most important 

property of the k-contextual algorithm is that successive solutions are incremental (see section 

7 .3.7). Accordingly, as more examples were added the automaton output by the algorithm 

developed in a controlled and predictable fashion. 

8.2. The problem - KBBKN 

Programming strategies for chess endgames is a notoriously difficult task. Zuidema (Zuidema, 

1974) commenting on two Algol 60 programs written for the King and Rook against King (KRK) 

endgame illustrates the difficulties by noting that "A small improvement entails a great deal of 

expense in programming effort and program length. The new rules will have their exceptions too." 

In a project being carried out at the Turing Institute, the extremely complex chess endgame 

KBBKN is being studied with the aid of the world-class chess endgame specialist John Roycroft 

Even this chess authority admits to being out of his depth. In the only definitive study of KBBKN, 
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written in 1851, Horwitz and Kling (Horwitz and Kling, 1851) claimed that with White-to-move 

(WTM), the game is drawn in all but trivial cases. For over a century this claim remained 

uncontested, until in 1983 Thompson revealed by exhaustive computation that almost all positions 

are forced wins for White, with a maximum length win of 66 moves being obtainable from 32 

different positions (Roycroft, 1983; Thompson 1985). This surprising result adds to the pressure on 

the international chess community to revise the 50-move rule. According to this rule, if 50 full 

moves are made without a capture, castling or pawn move then a draw can be declared. However, 

clearly it may take up to 66 moves to force a win for a particular side. Thompson' s computations 

have brought to light the existence of even longer minimax optimal paths in some other end-games. 

The Turing Institute study involves two phases. In the first, Roycroft has studied the domain 

intensely with the aim of developing a sufficient set of primitive attributes. It is in this first phase 

that the author has carried out the evaluation of sequence induction as a knowledge acquisition tool. 

In the second phase it is intended that Roycroft's descriptions be matched against Thompson's 

exhaustive database for KBBKN. 

Roycroft's first task was to select a sub-strategy within the KBBKN domain of an appropriate 

size and complexity for the application of sequence induction. The choice fell on the first section of 

one of the exceptional 66-move forced wins for White. 

8.2.1. Initial position 

Play commences from the position shown in figure 8.1. 

Taking symmetry and slightly altered starting positions into account, this position is 

equivalent, in terms of the number of moves to a forced win, to several other similar positions. As 

this equivalence can be taken into account by the careful choice of terms when devising the expert 

syste~ we will ignore this extra dimension to the problem. 
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Figure 8.1 The initial position, WTM 

8.2.2. Goal position 

The aim of White in this sub-strategy is to liberate the dark-squares-White-bishop (wB(dark)) 

from the corner in no more than 12 moves. In order to achieve this it is necessary that 

A) light-squares-White-bishop (wB(light)) prevents Black's king (bK) from attacking and 

capturing White's-bishop-on-square-h1 (wBh1). This is illustrated in figures 8.2, 8.3 and 8.4. 

B) White's king (wK) moves to support the attack of wBhl on Black's-knight-on-square-g2 

(bNg2) (see figure 8.5). 

Play achieving A) is trivially described and encoded. However, attaining B) is complicated 

considerably by White's choice of delaying tactics, employed to impede wK approaching h3. It 

was for this second goal that we used sequence induction to capture Roycroft's description. 
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Figure 8.2 wB(light) prepares to prevent wK from moving to h2, WTM 
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Figure 8.3 bK retreats after being checked by wB(ligbt), W1M 
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Figure 8.4 wB(light) takes up fortified position, WTM 



Inductive acquisition of chess strategies 162 

Figure 8.5 The goal of liberating wB(dark). bN forced to retreat, BTM 

8.2.3. Attributes and actions 

Roycroft was asked to give an exposition of play which included a set of sequences of moves 

together with a running commentary displaying points of interest. From this the author extracted 

four positional attributes (based on Roycroft's use of adjectival phrases), four action schemas taken 

by White (corresponding to verb phrases) and six sequences of play. The attributes were as follows 

B 1) Is White free to take bN? {y/n} 

B2) Is wK on the same diagonal as the release position (h3)? {y/n} 

B3) Can wBhl(dark) move? {y/n} 

B4) Is the direct diagonal position closest to the release position covered? {y/n} 

The actions were 

Ba) wK approaches release position (h3) by moving along rank or file. 
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Bb) wK moves to non-check position closest to release position on direct diagonal. 

Be) wB(light) moves out of corner along its diagonal. 

Bd) White takes bN. 
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Note that each action at this level represents a single move. However, the entire automaton to 

be derived represents a unit action involving several moves. Thus we might, if necessary, have a 

hierarchy of such actions and attributes, similar to that described by Shapiro and Niblett (Shapiro 

and Niblett, 1982) for classification (see conclusion). 

8.2.4. The solution 

The sequences used are reproduced in Appendix C. These sequences were added by 

stepwise-refi.nement, the result being tested after the addition of each sequence. Very early in this 

process, the k-value for the solution rose from 0 to 1, at which level it remained during the rest of 

development. Also, the number of states in the solution grew rapidly at first to reach a steady 

value of 5, at which it too stayed fixed. Altogether this process displayed a good incremental 

nature. 

The first six sequences represent White's response to various well executed tactics played by 

Black. These were derived directly from Roycroft' s description. Having by this stage generated a 

playing strategy that dealt adequately with more than Roycroft's described positions (the k

contextual algorithm successfully generalised solutions to a larger number of positions than those 

originally described) the automaton was presented and explained to Roycroft Roycroft noted that 

the set of positions at which the White king can be delayed by Black was the most complex to 

describe. Significantly, the stale which described just these positions contained the most ID3-

examples. The structure automaJically imposed on the solution had a clear significance to the 

expert. 

As yet, with only six sequences, the solution was not able to cope with non-optimal play by 

Black. An additional seven sequences were added to deal with such play. The resulting k-contextual 
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automaton is given in Appendix D in a form which can be directly translated into a Mugmaker 

induction file. Appendix E demonstrates the transformation carried out by ID3-like induction to 

produce a runnable Mugol expert system. Note that all decision trees in the solution have the form 

of HSL (Michie, 1984) decision trees. Appendix F gives the Mugmaker file corresponding to the 

automaton solution of Appendix D. Using this Mugmaker file, the Mugol code of Appendix G was 

inductively generated. 

8.3. Conclusion 

We have demonstrated the feasibility of using sequence induction to construct expert-level 

chess strategies for endgame play. A great deal of further work is necessary to expand the work 

described here to completely cover the highly complex domain of KBBKN. However, the 

methodology used was found by the expert to be natural in terms of the example presentation 

requirements, as chess players are quite at home with describing play in terms of example move 

sequences. Furthermore, the bottleneck of structuring was eased, though not completely removed 

by the use of sequence induction. Whereas other attempts at automatic structuring have led to 

solutions which are not acceptable to experts, results produced by sequence induction were found to 

be intuitively correct by the endgame specialist John Roycroft. 

In section 8.3.3 we noted that as the induced strategy represents a broadly defined action, it 

might be found necessary to form a hierarchy of successively more detailed action descriptions in 

order to create an extensive strategy. Therefore, it might be argued that our automatic structuring 

aid has gained us no ground, as it may still be necessary to do further manual structuring. We do 

not claim to have a complete answer to the structuring problem. However, Shapiro (Shapiro, 1983) 

when constructing his structured solution of KPa7KR found that the use of more than 7 examples 

within any particular context lead to unreadable machine induced solutions. We have used 13 

example sequences each containing an average of 4 ID3-like sequences to produce a semi

structured solution in which each state's rule is derived from an average of only 3 examples. Thus 

despite the fact that the quantity of example material used to structure this level of problem is an 
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order of magnitude larger than that used by Shapiro, the generated solution contains a small 

number of easily understandable decision trees. 

The k-contextual induction algorithm used has good incremental behaviour (see section 

7 .3.7). This algorithm has also been proved to identify the co"ect solution in the limit. 

The use of two levels of induction, sequence induction and static induction, gives rise to very 

powerful generalisation, with solutions being output directly as runnable expert systems. 

On the negative side, we have not developed a form of explanation which deals satisfactorily 

with sequence execution. It is hoped that by continued research, chess experts may be able to lead 

us to the most natural form of explanation required by chess players to describe sequences of play. 

Also, the k-contextual algorithm used for this research is written in Prolog. A more efficient 

implementation, with a better interface to the Mugol environment is needed. 
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Discussion 

Abstract Explanation of computer-based reasoning and the "bottleneck" (Feigenbaum. 1979) of knowledge 

acquisition are major issues in expert systems research. We have contributed to these areas in two ways. 

Firstly, we have implemented an expert system shell. the Mugol environment, which facilitates knowledge 

acquisition by inductive inference and provides automatic explanation of run-time reasoning on demand. 

RuleMaster, a commercial version of this environment, has been used in industry for the construction and 

testing of two large classification systems. Secondly, we have investigated a new technique called sequence 

induction which can be used in the construction of control systems. Sequence induction is based on theoretical 

work in grammatical learning. We have improved existing grammatical learning algorithms as well as 

suggesting and theoretically characterising new ones. These algorithms have been successfully applied to the 

acquisition of knowledge for a diverse set of control systems, including inductive construction of robot plans 

and chess end-game strategies. However, to date sequence induction has not been incorporated into the Mugol 

environment We regard the automatic structuring of problem domains as the most important topic for further 

inductive inference research. Lastly we describe the author's present research project, Duce. Duce is a system 

for automatically structuring propositional calculus rules. 

9.1. Summary 

In chapter 1 we introduce the topic of expert system researc~ following Michie's definition. 

Expert system development involves continuous debugging of knowledge structures. We argue that 

the two most important tools in this debugging process are a) an explanation facility and b) an 

inductive knowledge acquisition mechanism. The major topic of interest within this thesis is that of 

inductive inference. 
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We describe two different forms of induction. Static induction algorithms take examples 

which represent descriptions of world situations to which labels are attached. These labels indicate 

a classification or an action to be taken. On the other han~ sequence induction relies on the 

presentation of example sequences to an inductive algorithm. Each element of the sequence is a 

situation/action pair similar in form to the static descriptions. 

In chapter 2 we discuss the nature of inductive algorithms. Inductive algorithms use various 

types of example material to generate hypotheses in various rule formats. In their nature, inductive 

algorithms make conjectures concerning unknown facts. These conjectures must be shown to be 

sound according to some demonstrable criteria. 

In sections 2.5 and 2.6 we use a parity problem to illustrate properties of various rule 

representations. In figure 2.8 we give a table of complexity results for the three chosen 

representations. This table shows that, for this problem at least, it is preferable to use a finite state 

machine representation rather than a decision-tree based one. We go on to show that finite state 

machine representations have more expressive power than those of prepositional calculus and 

decision trees. However, there exist formalisms, such as Turing machines, which have even more 

expressive power than finite state machines. One might ask whether formal power is the ultimate 

criterion for deciding between representations. We argue that for expert system applications expert 

comprehensibility seems to be more pertinent to the choice of an appropriate representation than 

formal power. 

In chapter 3 we describe the Mugol environment This is an expert system building package 

intended to solve many of the problems involved in the construction of large knowledge based 

programs. This comprises an induction engine (Mugmaker), a rule language (Mugol) and an 

explanation facility. Mugmaker contains a variant of the ID3 static induction algorithm. Although 

we have investigated and tested sequence induction algorithms (chapters 5,6,7,8) the Mugol 

environment does not as yet contain such facilities. 
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Although in some respects Mugol has the characteristics of high-level languages such as 

Pascal or A~ its explanation facility and rule format uniquely distinguish it for use in an expert 

system environment. 

In comparison to other expert system approaches we believe that although our knowledge 

representation, in the form of decision trees, is no better than production rules, the fact that 

knowledge can be presented in the form of examples as well as rules means that the process of 

knowledge acquisition is greatly eased. It has been noted often during the construction of Mugol

based applications that whereas designers using dialogue acquisition methodologies report that 

construction of a prototype expert system takes two to three man years of effort (Shortliffe and 

Buchanan, 1975; Du~ Gashnig and Hart, 1979), similar sized Mugol applications (see Appendices 

A and B) have been consistently prototyped in around six person months. 

Typical expert system applications contain aspects of both classification and control tasks. 

The Mugol environment provides a consistent knowledge representation for these disparate problem 

elements. Furthermore, an interface to external sources and sinks of information is provided. Such 

an interface, although not always recognised as a necessity for expert system development, has 

been found to be absolutely essential in all large Mugol applications (Appendices A, B and H). 

In chapter 4 we describe a small robot planning system, ARCH, which was built by the 

author. The solution we describe works only for a small number of blocks, and only in simulation. 

However, Shepherd {Appendix H) has extended this solution within the Mugol environment, to 

build large recursively defined structures (around 30 blocks). Moreover, Shepherd's solution has 

been tested within a real-time robot environment using Puma robots and camera based sensory 

feedback. 

As mentioned earlier in this section, the Mugol environment in its present form demands that 

the control structure of Mugol finite state machines be hand-coded. In chapters 5 and 7 we 

investigate techniques for automatically constructing finite state structures from traces of their 

intended execution (i.e. sequences of calls to predefined tests and actions). The techniques are 
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based on "grammatical induction", i.e. discovery of grammar from example sentences. In chapter 

5 we present a survey of algorithms which infer a regular language from a given subset of that 

language. It is evident that an increasing number of heuristic approaches exist for inferring regular 

languages. We present a powerful new algorithm of low-order polynomial time complexity which 

generalises a number of those already in . the literatur~ and provides a systematic framework for 

testing and comparing existing approaches without the burden of re-implementing many different 

algorithms. 

In chapter 6 we describe six small but varied applications of the KR and SKR induction 

algorithms (see sections 7 .2.2 and 7 .4.5). The applications include automatic VLSI circuit 

synthesis, user modelling in a mathematical educational environment and generalisation of robot 

plans. 

It is interesting to note that whereas each problem was inherently fairly difficult, the problem 

was automatically broken into a number of smaller problems, each of which would require very 

little decision making during execution of the automaton. 

The method of constructing robot plans from example sequences has also been investigated 

by Dufay and Latombe (1984). However, they used a simpler inductive algorithm, essentially the 

same as that described by Miclet (5.4.5.3). Angluin (1982b) has shown Miclet's algorithm is merely 

a special case of k-reversible induction. We therefore believe our method to have a wider scope 

than that of Dufay and Latombe. 

In chapter 7 we describe a new algorithm KR which is input/output equivalent to Angluin's 

k-RI algorithm (Lemma 7 .6). However, whereas Angluin' s algorithm runs in time 0(n3
), KR has 

been designed to run in time O(n) (Theorem 7.9). 

All algorithms described in chapter 5 have the common feature that no effective inductive 

inference is feasible with single example strings, no matter how long the given example. In section 

7.3 we investigate the k-contextual language class for which effective induction is possible from 

singleton example sets. We also show that the k-contextual languages are a restricted subset of the 
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k-reversible languages (Theorem 7 .20). In section 7 .3.3 we give a simple algorithm, KC, which 

induces k-contextual languages. This is shown to run in time O(n) (Theorem 7.23). Like the 

algorithm KR, KC has the propeny of being capable of identifying k-contextual languages in the 

limit (Theorem 7.24). 

In section 7.4 we describe a method of automatically choosing the appropriate value of k for 

inductive construction of k-reversible and k-contextual Mealy machines. This is made possible by 

use of the semantic content of situation/action sequence examples. This method of inductive 

inference based on situation/action sequences is called sequence induction to distinguish it from 

grammatical induction. Sequence induction is demonstrated by application in chapters 6 and 8. 

In chapter 8 the algorithm SKC (section 7 .4. 7) is applied to the construction of expert chess 

strategies. In a pilot study a small expen system for playing part of the King and two Bishops 

against King and Knight endgame (KBBKN) was automatically constructed using this technique. 

A great deal of further work is necessary to expand the work described here to completely 

cover the highly complex domain of KBBKN. However, the methodology used was found by the 

expert to be natural in terms of the example presentation requirements, as chess players are quite at 

home with describing play in terms of example move sequences. Furthermore, the bottleneck of 

structuring was eased, though not completely removed by the use of sequence induction. Whereas 

other attempts at automatic structuring have led to solutions which are not acceptable to experts, 

results produced by sequence induction were found to be intuitively correct by the endgame 

specialist John Roycroft. 

In accordance with theoretical results (see section 7.3.7), the k-contextual induction algorithm 

used was found to have good incremental behaviour. By using two levels of induction (sequence 

induction and static induction) very powerful generalisations are produced. The induced solution of 

chapter 8 has been executed in a Mugol environment (see Appendices F and G). 
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9.2. Directions for further work 

Commercially available packages (McLaren, 1984; A-Razzak, Hassan and Pettipher, 1984; 

Michie, Muggleton, Riese and Zubrick, 1984) have already, during their short existence, proved the 

power of inductive inference in the construction of expert systems. These packages allow 

development-time savings in building large expert systems of at least an order of magnitude over 

the traditional "deductivist" rule extraction technique. However, it cannot be said that the 

"inductivists" have yet completely met their targets. Although present day inductive inference 

techniques go a long way towards easing what Feigenbaum (1979) called the bottleneck of 

knowledge acquisition, one might say that this bottleneck has merely shifted. The new bottleneck 

involves the hierarchical structuring of problem domains. This problem, related to what Michalski 

(1986) has termed constructive induction has had very little attention so far. Clearly however, 

investigation in this area is crucial to the further development of practical knowledge acquisition 

tools. 

Along these lines, the author has recently been investigating a technique for interactive 

knowledge structuring and generalisation (Muggleton, 1986). The Prolog program which presently 

embodies this technique is called Duce. Duce uses a new transformational programming approach 

to automatically structure and generalise examples/rules described as horn clauses in propositional 

calculus. Six simple operators are used to progressively compress the rules by forming new 

concepts and generalisations. Duce is interactive, in that it both requests names for the various new 

concepts produced, as well as checking the validity of concepts against the user (or oracle). 

Duce uses "illustrative examples" to describe new concepts to a human oracle in a graphical 

form. Thus in the chess world, the chess expert will decide on the comprehensibility of a new 

concept based on a number of chess board positions which exemplify the new concept These 

positions are displayed graphically, allowing the expert to make decisions in a more natural setting 

than that of having to view a complex description based on low-level attribute descriptors. 
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Duce has been tested on two small tasks and one large task. The smaller tasks were those of 

finding a structure for the "even-parity" problem (see chapter 2) and developing a taxonomic 

structure for a small number of animal descriptions. Both of these tests were passed satisfactorily; 

Duce discovered a divide and conquer algorithm similar to that discussed in chapter 2 for the first 

problem and found the concepts of bird and primate in the second case. 

The thir~ and most taxing test of Duce's capabilities depends on its ability to rediscover, and 

possibly improve on, a structure for deciding the predicate won for white for any chess position 

within the chess end-game domain of K.Pa7KR. A structure for this problem was originally created 

manually by Shapiro and Kopec, and described in Shapiro's PhD thesis (1983). The domain 

contains around 200,000 positions. This was reduced to around 3,000 examples by describing the 

positions in terms of 36 low-level descriptors suggested by the chess end-game specialist Danny 

Kopec. These examples form a complete enumeration and were automatically generated by use of 

a mini-max backup algorithm. Although experimentation within this domain is still in progress, the 

new high-level concepts of delayed queening and mate threat proposed by Duce have been 

accepted and named by another chess end-game specialist, Ivan Bratko. 

As indicated in chapter 8, the problem of hierarchical knowledge structuring applies just as 

strongly to sequence induction as it does to static induction. to look at methods of inducing 

context free grammars from example sentences. This would require the construction of intermediary 

terms. According to Gold (1967) it is possible to identify context free grammars in the limit using a 

positive and negative example source. However, it may well make sense to also look for an oracle 

based transformational solution to this problem. 
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Appendix A 

WILLARD 

Abstract. The Mugol environment has been tested in the construction of two large expert classification 

systems, WILLARD and EARL. In this section we describe Steve Zubrick's implementation of WILLARD 

and discuss the validation methods that have been used to assess WILLARD's performance. The thesis author 

aided in suggesting the structuring methodology used in WILLARD. 

Introduction 

WILLARD (Zubrick, 1984) is an expert system for predicting the likelihood of severe 

thunderstorms occurring in the central USA. The system was written by Steve Zubrick, a 

meteorologist at Radian Corporation. Extensive testing of the system (Zubrick, 1986) has shown 

that it is capable of producing predictions which can usefully complement those of the US National 

Weather Service. The author gave help and advice in the structuring and example acquisition of 

WILLARD. 

On average, over 1000 severe thunderstorms are reported each year in the central United 

States, causing the loss of many lives and billions of dollars of property damage. The Nation

al Weather Service defines severe thunderstorms as the occurrence of one or more of the fol

lowing conditions: 

wind gusts greater than 50 knots, 

tornados, and/ or 

hailstones greater than 3/4 inch in diameter. 
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Severe thunderstorm forecasting for the entire U.S. is currently done by highly skilled 

meteorologists at the National Severe Storms Forecast Center (NSSFC). 

This time-consuming task entails continuous analysis of vast amounts of raw data and 

numeric modelling results, much of which turns out to be irrelevant. An expert system might 

automatically screen the data. providing the meteorologists with suggested forecasts together with · 

their justifications. 

A large number of specific case studies of occurrences of severe thunderstorms have been 

documented and analysed in the meteorological literature. However, no coherent system of rules 

covering all possible cases has yet been synthesised. For this reaso~ an inductive rule generator 

would appear to be a powerful tool for generalising this accumulated knowledge. 

The system 

For the purposes of rapid development, an initial set of examples provided by the expert were 

used to build the prototype expert system. Additional cases of real weather data have subsequently 

been applied in the ongoing refinement of WTILARD. An illustration of the use of inductive 

inference in the development of WILLARD is given in figure 3.1 (section 3.3). 

The WILLARD expert system is composed of a hierarchy of thirty modules, each of which 

contains a single decision rule (see figure A.l). This hierarchy is on average four levels deep. All 

modules' rules were developed using inductive generalisation. A total of around 140 examples 

were used in building WILLARD. WILLARD has a domain size of approximately nine million 

measurably different situations. 

For the top level module, the inductive algorithm was able to order the critical 

meteorological factors in a manner consistent with the way forecasters perform their analysis. For 

example, if the key factors are unfavourable, then a decision can be made rapidly, otherwise, more 

parameters are investigated until a decision can be reached. 
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Figure A.l WILLARD structure 

Although WILLARD is essentially an expert classification system, the Mugol environment 

facilitates the use of control loops required for top level control and the monitoring of incoming 

data. 

WILLARD can operate in interactive or automatic forecast mode. In the manual mode, the 

system asks questions of the meteorologist about pertinent weather conditions for the forecast area 

and produces a complete, reasoned forecast. 

In the automatic mode, WILLARD obtains all necessary information from National 

Meteorological Center data files. External FORTRAN functions were interfaced to WILLARD to 

access and operate on these data files. The user may specify an area, in which WILLARD will 

generate a grid of nodal values for the chance of severe thunderstorms for that area. A sample 

explanation of a forecast is shown in figure A.2. 

Validation 
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FULL EXPLANATION OF THE FORECAST: 

Since upper level cold air advection causing increased 
upwards vertical velocities is present 

it follows that the upper-level destabilisation 
potential is sufficient ( 1) 

Since the K Index is strong 
when the Lifted Index is strong 
it follows that the stability indices condition 

is favourable (2) 
Since daytime heating acting as a possible trigger mechanism 

for potential instability release is strong 
when (2) the stability indices condition is favourable 
it follows that low-level destabilisation potential 

is favourable (3) 
Since an approaching 500 millibar short wave trough is present 

it follows that the vertical velocity field 
is~ur~ ~ 

Since a high 850 mb dew point is present 
when surface dew point classification is moderate 
it follows that the low-level moisture field 

is marginal (5) 
Since (1) the upper-level destabilisation potential is sufficient 

when (3) low-level destabilisation potential is favourable 
and (4) the vertical velocity field is favourable 
and (5) the low-level moisture field is marginal 
it was necessary to advise: 

'There's a MODERATE CHANCE that thunderstorms occurring 
12 hours from now will be severe at this location.' 

in order to actually forecast the chance of severe thunderstorms 

Figure A.2 Sample WILLARD forecast explanation 

Steve Zubric~ with help from the US National Weather Service (NWS), has carried out 

comparisons of WILLARD's forecasting ability versus that of the standard collective outlook issued 

by forecasters of the Severe Local Storms Unit (SELS) (Zubrick, 1986). 
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The validation data used spanned a 24 day period in the spring of 1984. Severe thunderstorm 

outlooks were given by both WILLARD and SELS in terms of the following three aerial 

density/risk categories. 

a) Slight Risk - 2 to 5 percent aerial coverage. 

b) Moderate Risk - 6 to 10 percent aerial coverage. 

c) High Risk- greater than 10 percent aerial coverage. 

Three statistics were quantified over all of the wn..LARD and SELS predictions. These 

were 

x - severe storm reports correctly predicted (i.e. those reports found within a severe risk 

outlook area); 

y - severe storm reports not predicted (i.e. those lying outside the severe risk outlook area); 

z - non-severe weather predicted to be severe. 
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In terms of these values WILLARD and the SELS predictions were compared according 

to three criteria which are believed by meteorologists to give a good indication of predictive 

skill. These criteria were 

1) Probability of Detection (PoD). This is defined as 

PoD= _x_ 
(x+y) 

2) False Alarm Ratio (FAR). This is defined as 

FAR= _z_ 
(z+x) 

3) Critical Skill Index (CSI). This is defined as 

CS/= X 
(x+y+z) 

Figure A.3 shows a comparison of WILLARD and SELS in terms of these 3 criteria over a 

representative selection of days during the test period. 

From the table we see that although WILLARD' s probability of detection is generally lower 

than that of the SELS predictions, it has a generally better false alarm rate. The critical skill index 

gives us the clearest overall view of skill, and shows WILLARD to have skill which although 

generally lower than SELS, is still comparable. 



Date PoD(%) FAR CSI 
SELSIWILLARD SELS/WILLARD SELS/Wll.LARD 

25 04 84 87J57 .46'.22 .49/.49 

26 04 84 88/20 .44/.41 .521.81 

29 04 84 85/54 .51/.34 .45/.42 

25 05 84 100/68 .58/.48 .43/.42 

26 05 84 33/91 .74/.90 .17/.10 

27 05 84 89/26 .50/.21 .47/.24 

04 06 84 70/50 .54/.89 .39/.10 

06 07 84 92J71 .441.31 .54/.54 

Figure A.3 Comparison of WIU.ARD and SELS forecasts 
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EARL 

Abstract In this section we describe Charles Riese's implementation of EARL and discuss the validation 

testing that has been used to assess EARL's performance. EARL is presently in routine industrial use. The 

author aided in suggesting the structuring methodology used in EARL. 

Introduction 

EARL (Riese, 1984) is a system for diagnosing imminent break-down in large oil-cooled 

electrical transformers. The system was constructed by Charles Riese who is a software engineer 

working for the Hartford Steam Boiler Company. When EARL was tested against 859 test-cases, its 

diagnosis was correct in 99.5% of the cases studied. 

Large oil-filled transformers are used by utilities for power distribution. These transformers 

sometimes fail due to insulation deterioration, overheating due to overload, failure of bolted or 

compression joints, corona, arcing, and overheating from inadvertent grounded core. All of these 

failure modes involve some form of heating of the oil and/or insulation. These materials 

decompose when heated and some of the decomposition products are hydrogen and hydrocarbon 

gases which dissolve in the oil. The concentrations of these gases can be measured with 

conventional gas chromatographs. Over the past 20 years, techniques have been developed to 

diagnose transformers' conditions from dissolved gas analyses. 

When large transformers (in excess of 10 MW) fail, the service interruption and repair or 

replacement costs may run into millions of dollars. This provides financial incentive to detect the 

onset of transformer failures before catastrophic damage occurs. Hartford Steam Boiler Inspection 

and Insurance Company (HSB) insures industrial equipment and has sponsored the development of 

a Mugol based expert system which utilises oil sample analyses to prepare transformer condition 
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reports and to make recommendations on repair action. 

The classificatory portion of the expert system contains 27 modules, each having one or more 

induced rules. Since this is a developing fiel~ the theory relating gas concentrations to faults is not 

well worked out or documented. It was necessary to rebuild the expert system structure several 

times, as better organisations of the knowledge became apparent. The induction of rules· from 

examples proved valuable in this rule construction and testing process. 

The rules can be divided into several categories. First there are rules to check the validity of 

data, to determine if there was a leak during sample transport or a chemical analysis error. Other 

rules determine the presence of failure symptoms: is there low or high temperature heating?, is 

heating near insulation?, etc. A third set of rules diagnoses particular faults from the symptoms and 

gas concentrations, and the final set of rules decides which corrective actions to recommend. 

The primary system is used for screening the gas analysis results at the chemistry laboratory. 

Experts seem to make better use of their time, and to be able to check more transformers. 

Validation 

Owing to the high cost involved in incorrect diagnoses (in the order of millions of dollars), 

the accepted rate of human diagnostic failure in this domain is below 0.1 %. 

EARL was tested using 859 test cases for which gas concentration data was available. In 208 

of these cases EARL and the expert concurred that a problem existed and that the transformer 

needed to be overhaule~ while in the other 651 cases they both agreed that no problem existed. 

Out of the 208 cases in which they decided that a problem existed, in 204 cases the expert's 

explanation was the same as EARL while in the remaining 4 cases the expert's explanation differed 

from EARL. This highlights the importance of explanation in the "debugging" stage of expert 

system development. Without explanation, these 4 cases would have been taken as EARL 

dell vering a correct decision, however it would not be realised that it was based on the wrong 

reasoning; the danger being that later erroneous reasoning could be used to reach the wrong 
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conclusion, with potentially serious consequences. 

In 10 of the 204 cases in which both EARL and the expert agreed on the diagnosis, engineers 

overhauling the transformers checked to find what the real problem was (this is done rarely as it is 

very expensive), and in all 10 cases found that EARL and the expert's joint opinion had in fact 

been correct 

According to these statistics EARL gave the the same advice as the expert for the sam reason 

in 99.5% of cases tested. In the remaining 0.5% of cases, EARL actually gave the the same advice 

as the expert, but for different reasons. 

It is not known to the author exactly what the estimated cost advantage of using EARL is, 

nor what the typical rate of inter-expert diagreement is. 

Conclusion 

EARL is now in full-time field use and automatically drafts textual reports for HSB clients. 

Both the expert and the knowledge engineer involved in building EARL were satisfied with the 

Mugol expert system environment Inductive knowledge acquisition allowed the expert system to 

be constructed to field test standard in an order of magnitude less time than that expected using 

dialogue acquisition techniques. 
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Appendix C 

Example move sequences (see ch.8) 

Actions 

Ba) wK approaches release position (eg. h3) by moving along rank or file 

Bb) wK moves to non-check position on direct diagonal which is closest to release position 

Be) wB(light) moves out of corner along its diagonal 

Bd) white takes bN 

Attributes 

B 1) white free to take bN 

B2) wK on the same diagonal as release position 

B3) wBhl can move 

B4) (wK on direct diagonal) and (direct diagonal position closest to release position is covered) 



Example move sequences (see ch.8) 

Sequence 1 Starts from w Ka8 and bN does delaying check 

Bl B2 B3 B4 Acuon Pos1tton 

n n n n Ba wKa8 wBhl wBh2 bK.f3 bNg2 
n n n n Ba wKb8 wBhl wBh2 bKf2 bNg2 
n y n n Bb wKc8 wBhl wBh2 bKf3 bNg2 
n y n n Bb wKd7 wBhl wBh2 bKf2 bNg2 
n y n n Bb wKe6 wBhl wBh2 bKfl bNg2 
n y n n Ba wKf5 wBhl wBh2 bKfl bNe3 
n n n n Bb wKg5 wBhl wBh2 bKfl bNg2 
n y n n Bb wKg4 wBhl wBh2 bKf2 bNg2 
n - y n Be wKh3 wBhl wBh2 bKfl bNf3 

The '-' in the last line allows the algorithm to generalise to 
the case in which bN releases w B(light). 

Sequence 2 Starts from wKb7 and bN does delaying check 

Bl B2 B3 B4 Action Position 

n n n n Ba wKb7 wBhl wBh2 bKf2 bNg2 
n n n n Ba wKc7 wBhl wBh2 bKf3 bNg2 
n y n n Bb wKd7 wBhl wBh2 bKf2 bNg2 
n y n n Bb wKe6 wBhl wBh2 bKfl bNg2 
n y n n Ba wKf5 wBhl wBh2 bKfl bNe3 
n n n n Bb wKg5 wBhl wBh2 bKfl bNg2 
n y n n Bb wKg4 wBhl wBh2 bKf2 bNg2 
n - y n Be wKh3 wBhl wBh2 bKfl bNf3 

Move 

wKb8 
wKc8 
wKd7 
wKe6 
wKf5 
wKg5 
wKg4 
wKh3 
wBa8 

Move 

wKc7 
wKd7 
wKe6 
wKf5 
wKg5 
wKg4 
wKh3 
wBa8 



Example move sequences (see ch.8) 

Sequence 3 Starts from wKb8 and bN does delaying check 

Bl B2 B3 B4 Acuon Position Move 

n n n n Ba wKb8 wBhl wBh2 bKf2 bNg2 wKc8 
n y n n Bb wKc8 wBhl wBh2 bKf3 bNg2 wKd7 
n y n n Bb wKd7 wBhl wBh2 bK.f2 bNg2 wKe6 
n y n n Bb wKe6 wBhl wBh2 bKfl bNg2 wKf5 
n y n n Ba wKf5 wBhl wBh2 bKfl bNe3 wKg5 
n n n n Bb wKg5 wBhl wBh2 bKfl bNg2 wKg4 
n y n n Bb wKg4 wBhl wBh2 bK.f2 bNg2 wKh3 
n - y n Be wKh3 wBhl wBh2 bKfl bNf3 wBa8 

Sequence 4 Starts with w Ka8 and bN does not do delaying check 

Bl B2 B3 B4 Action Position Move 

n n n n Ba wKa8 wBhl wBh2 bKf3 bNg2 wKb8 
n n n n Ba wKb8 wBhl wBh2 bKf2 bNg2 wKc8 
n y n n Bb wKc8 wBhl wBh2 bKf3 bNg2 wKd7 
n y n n Bb wKd7 wBhl wBh2 bK.f2 bNg2 wKe6 
n y n n Bb wKe6 wBhl wBh2 bKfl bNg2 wKf5 
n y n n Bb wKf5 wBhl wBh2 bK.f2 bNg2 wKg4 
n y n n Bb wKg4 wBhl wBh2 bKfl bNg2 wKh3 
n - y n Be wKh3 wBhl wBh2 bK.f2 bNf3 wBa8 

Sequence 5 Starts with wKg4 

Bl B2 B3 B4 Action Position Move 

n y n n Bb wKg4 wBhl wBh2 b.Kfl bNg2 wKh3 
n - y n Be wKh3 wBhl wBh2 bK.f2 bNf3 wBa8 



Example move sequences (see ch.8) 

Sequence 6 Starts with wKh3 

Bl B2 B3 B4 Action Position Move 

n - y n Be wKh3 wBhl wBh2 bKf2 bNf3 wBa8 

Black plays badly 

Sequence 7 Starts with w Ka8 after bK has left bN undefended (en prise) 

Bl B2 B3 B4 Action Position Move 

y - n n Bd wKa8 wBhl wBh2 bKe2 bNg2 wB xN! 

Sequence 8 Starts with wKa8 and bK leaves bN as first move 

Bl B2 B3 B4 Action Position Move 

n n n n Ba wKa8 wBhl wBh2 b.Kf3 bNg2 wKb8 
y - n n Bd wKb8 wBhl wBh2 bKe3 bNg2 wB xN! 



Example move sequences (see ch.8) 

Sequence 9 Starts with wKg4 and bK leaves bN as first move 

Bl B2 B3 B4 Action Position Move 

n y n n Bb wKg4 wBlil wBh2 bKfl bNg2 wKh3 
y - n n Bd wKh3 wBhl wBh2 bKel bNg2 wB xN! 

Sequence 10 Starts with w Kb8, bN does not do delaying check but allows the 

release of w B 

Bl B2 B3 B4 Action Position Move 

n n n n Ba wKb8 wBhl wBh2 bKt2 bNg2 wKc8 
n - y n Be wKc8 wBhl wBh2 bKf2 bNdl wBc6 

Sequence 11 Starts with wKe6, bN does delaying check and then allows the release 

ofwB 

Bl B2 B3 B4 Action Position Move 

n y n n Bb wKe6 wBhl wBh2 b.Kfl bNg2 wKf5 
n y n n Ba w.Kf5 wBhl wBh2 b.Kfl bNe3 wKgS 
n - y n Be wKg5 wBhl wBh2 b.Kfl bNdl wBc6 



Example move sequences (see ch.8) 

Sequence 12 Starts with wKe6, bN does delaying check and then allows itself to be 

taken (by moving to g4). 

Bl B2 B3 B4 Action Position Move 

n y n n Bb wKe6 wBhl wBh2 bKfl bNg2 wKfS 
n y n n Ba wKf5 wBhl wBh2 bKfl bNe3 wKg5 
y - n n Bd wKgS wBhl wBh2 bKfl bNg4 wKg4! 

Sequence 13 Starts with wKd7, bN checks allowing itself to be taken by wB(dark) 

Bl B2 B3 B4 Action Position Move 

n y n n Bb wKd7 wBhl wBh2 bKf2 bNg2 wKe6 
y y y n Bd wKe6 wBhl wBh2 bKf2 bNf4 BxN 



Appendix D 

Result of sequence induction (see ch.8) 

Actions 

Ba) wK approaches release position (eg. h3) by moving along rank or file 

Bb) wK moves to non-check position on direct diagonal which is closest to release position 

Be) wB(light) moves out of corner along its diagonal 

Bd) white takes bN 

Attributes 

B 1) white free to take bN 

B2) wK on the same diagonal as release position 

B3) wBhl can move 

B4) (wK on direct diagonal) and (direct diagonal position closest to release position is covered) 

Bl B2 B3 B4 (Actlon,NextState) 

STATE 0 

n y n •> (Bc,GOAL) 
n n n n •> (Ba,l) 
n y n n •> (Bb,2) 
y n n •> (Bd,GOAL) 

STATE 1 

n y n •> (Bc,GOAL) 
n n n n •> (Ba,l) 
n y n n •> (Bb,2) 
y n n •> (Bd,GOAL) 

STATE2 

n y n •> (Bc,GOAL) 
n y n n •> (Bb,2) 
n y n y •> (Ba,3) 
y n n •> (Bd,GOAL) 
y y y n •> (Bd,GOAL) 

STATE3 

n y n •> (Be, GOAL) 
n n n n •> (Bb,4) 
y n n •> (Bd,GOAL) 

STATE4 

n y n n •> (Bb,2) 



Appendix E 

Automata after ID3-like induction (see ch.8) 

Actions 

Ba) wK approaches release position (eg. h3) by moving along rank or file 

Bb) wK moves to non-check position on direct diagonal which is closest to release position 

Be) wB(light) moves out of corner along its diagonal 

Bd) white takes bN 

Attributes 

B 1) white free to take bN 

B2) wK on the same diagonal as release position 

B3) wBhl can move 

B4) (wK on direct diagonal) and (direct diagonal position closest to release position is covered) 

STATE 0 
[Bl] 

STATE 1 
[Bl] 

STATE 2 
[Bl] 

STATEJ 
[Bl] 

STATE 4 
( Bb, 2) 

GOAL 

y : •> ( Bd, GOAL ) 
n: [B3] 

y : •> ( Be. GOAL ) 
n: [B2] 

y: •> ( Bb, 2) 
n: •> ( Ba, 1) 

y : •> ( Bd, GOAL ) 
n: [B3] 

y : •> ( Be, GOAL ) 
n: [B2] 

y: •> ( Bb, 2) 
n: •>(Ba,l) 

y : •> ( Bd, GOAL ) 
n: [B3] 

y : •> ( Be, GOAL ) 
n: [B4] 

y: •>(Ba,3) 
n: •> ( Bb, 2) 

y : .. > ( Bd, GOAL ) 
n: [B4] 

y : •> ( Be, GOAL ) 
n: •> ( Bb, 4) 



Appendix F 

KBBKN Mugmaker induction file (see ch.8) 

MODULE: wKsupp 
DEa.ARA TIONS: 
INTENT: MJDOYe wK to support the aUKk oC wBhl 011 bN&l•J 

AcnQNS: 
wiC.Ipp [prima ~K approKhes releue positioa (q. h3)\\D•; 

aclYiM M by movina a10111 rmlt or dlc•J 
wiCJIOCIC [priuta ~K movea to llOil-dlect poeiliOil 011 clireel\\d'; 

priDta M cliaaoaal whieb il cl01e1t 10\\DM; 
..s.ue. the releue poaitioo (q. h3j) 

wBoat [priDl MwB(llght) mo¥es out of comcr alq iCa\\D 
aclYile M cliaaoaalMI 

wtala:8 [adYile "white laltes bN") 
CONDITDNS: 

wcmate [ult Mll wbile free to !alto bN? • "y,D") 
{y D} 

wKlDclt [ut Mlllbe wK In c.beclt? M "y,D") 
{y D} 

wKoocl [ut •11 wK 011 same clia&oaal u releue poeitioa7 • 
•y,n•J {y D} 

wBcmmY [ut •CaD the comaed wB DCW move? • •y,n•J 
{y D} 

cllagcw [prinla •& tbc wK oo tbc clirec:t cllaaoaal mcl\\D•; 
priDta • the cllr=t cliaaoaaJ poaidoa clOICit\\d'; 
u1t • to lbe releue poailioa la c:o¥ered\\d' "y ,n•J 

{y D} 

sr ATE.: zero 
EXAMPLES: 

D n y n -> (wBoat,OOAL) 
n n n n D •> (wiC.Ipp,l) 
D n y n n •> (wKDoDc,2) 
y n n n •> (wlaitei,OOAL) 

SfATE.: oae 
EXAMPLES: 

n n n n n •> (wiC.Ipp,l) 
n D y n n -> (wKDoDc,Z) 
y n n n •> (wlalta,OOAL) 

SfATE.: two 
EXAMPLES: 

n n y •> (wKapp,J) 
n n y n •> (wBout,OOAL) 
n n y n n •> (wKDoDc,Z) 
y n n n •> (wlaitei,OOAL) 

sr ATE.: 1t1ree 
EXAMPLES: 

n n y n •> (wBoot,OOAL) 
n n n n n •> (wKDoDc,4) 
y n n n -> (wlaitei,GOAL) 

sr ATE.: fear 
EXAMPLES: 

n n y n n •> (wiCDOa:,Z) 



Appendix G 

KBBKN Mugol code generated from Appendix F (see ch.8) 

The following Mugol module was generated from the Mugmak:er file given in Appendix F. 
The module was partially verified against the K.BBKN data-base (see section 8.2) using a sample 
set of sequences. However, the test sequences used were not exhaustive. 

MODUI.E wKsupp IS 
INTENT: "move wK to support the anack of wBhl on bNg2" 

STATE: zero 
IF (ask "Is white free to take bN7" "y,n") IS 

"y" : ( advise "White takes bW, GOAL ) 
ELSE IF (ask "Can the cornered wB now move?" "y,n") IS 

"y" : ( advise "wB(light) moves out of corner along its diagonal", GOAL ) 
ELSE IF (ask "Is wK on same diagonal as release position?" 

"y,n") IS 
"y" : (advise "wK moves to non-check position on direct diagODal which is cloaest to the release position (eg. h3)", two) 
ELSE ( advise "wK approaches release position (eg. h3) by moving along rank or file", ooe ) 

STATE: one 
IF (ask "Is white free to take bN7 " "y,n") IS 

"y" : ( advise "White takes bW, GOAL ) 
ELSE IF (ask "Can the cornered wB now move? " "y,n") IS 

"y" : ( advise "wB(light) moves out of corner along its diagonal", GOAL ) 
ELSE IF (ask "Is wK on same diagonal as release position?" 

"y,n") IS 
"y" : (advise "wK moves to non-check position on direct diagonal which is cloaest to the release position (eg. h3)", two) 
ELSE (advise "wK approaches release position (eg. h3) by moving along rank or file", one) 

STATE: two 
IF (ask "Is white free to take bN7" "y,n") IS 

"y" : ( advise "White takes bW, GOAL ) 
ELSE IF (ask "Can the cornered wB now move? " "y,n") IS 

"y" : ( advise "wB(light) moves out of corner along its diagonal", GOAL ) 
ELSE IF (ask "Is the wK on the direct diagonal and the direct diagonal position closest to the release position is covered?" "y,n") IS 

"y" : ( advise "wK approaches release position (eg. h3) by moving along rank or file", three) 
ELSE ( advise "wK moves to non-check position on direa diagonal which is closest to the release position (eg. h3)", two ) 

STATE: three 
IF (ask "Is white free to talce bN7" "y,n") IS 

"y" : ( advise "White talces bW, GOAL ) 
ELSE IF (ask "Is the wK on the direct diagonal and the direct diagonal position closest to the release position is covered?" "y,n") IS 

"y" : ( advise "wB(light) moves out of corner along its diagonal", GOAL ) 
ELSE ( advise "wK moves to non-check position on direct diagonal which is closest to the release position (eg. h3)", four) 

STATE: four 
( advise "wK moves to non-check position on direct diagonal which is cl01est to the release position (eg. h3)", two ) 

GOAL OF wKsupp 



Appendix H 

GENARCH: a practical solution to general arch building 

by Barry Shepherd 

Abstract. The problem solved by GENARCH is an extension of the simple arch problem of ARCH (chapter 

4). Again the arch consists of two piles and a beam, but now the piles can contain any number of blocks 

which can be of any size, although the final heights of the piles must be equal. In addition each block within 

a pile can itself be an arch, and the beam can also be an arch. This nesting can be to any level. 

Introduction. 

A strategy for building a simple arch in a blocks world has already been generated using the Mugol 

environment (Michie, Muggleton, Riese and Zubric~ 1984). This Mugol solution is called ARCH 

(see chapter 4 of main thesis) and is based on a strategy first proposed by Dechter and Michie 

(1984). The ARCH problem consists of assembling an arch using four equal height blocks and a 

single beam. The blocks are assembled into two piles of two blocks in a specific order, and the 

beam is placed to bridge these piles. Initially the blocks are stacked in any order on two work 

piles, and the beam is placed in a beam-store. Blocks must be cleared (if necessary) before they 

can be moved. Blocks cleared from the top of other blocks can only be placed on one of the work 

piles. 

ARCH cannot be considered a practical solution since it solves the problem only in simulation and 

then only in a symbolic manner. Although the planning aspects of the problem are solved the 

(mainly numerical) complexities of actually directing a robot to pick up and move the various 

blocks are not tackled. GENARCH is a practical solution to a more general arch building problem 

and has also been generated using the Mugol environment GENARCH can be run either in 



GENARCH: a practical solution to general arch building 

simulation or in a real environment using a Puma 200 robot 

The problem solved by GEN ARCH is an extension of the simple·· arch problem considered by 

ARCH. Again the arch consists of two piles and a beam, but now the piles can contain any 

number of blocks which can be of any size, although the final heights of the piles must be equal. 

In addition each block within a pile can itself be an arch, and the beam can also be an arch. This 

nesting can be to any level. Initially the blocks and beams are stacked in any order in any number 

of work_piles. 

An example of a structure which can be categorised as a general arch is shown in figure H.l. 

D D 
D D 

I I I I 
D D D D 
D D D D 

I I I I I I I I 
D DD D D DD D 
D DD D D DD D 

Figure H.l Example of a general arch 



GEN ARCH: a practical solution to general arch building 

Structure of the solution. 

The problem is divided into a hierarchy of sub-problems for Mugol, this hierarchy is shown in 

figure H.2. The Mugol modules "build_arch", "onto", "pick_up" and "place_at" perform high-level 

actions. The lowest level actions which are specified in Mugol are the set of robot primitives: 

move_to(x y z oat) 

grasp 

release 

home 

set_ speed 

These robot primitives are coded in "C" and provide a basic device-independent interface between 

Mugol and the robot chosen to perform the task. At present they have been created for a Puma 

Figure H.2 Solution strucwre 
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200, and also a Rhino XR-1. 

The Mugol modules "fully _on" and "other" return high-level, problem-specific information about 

the current state of the assembly task. However GENARCH is a "blind" solution and thus requires 

detailed knowledge of the state of the world at all times. This knowledge must be both relational 

(eg "what's on red_blockl?") and also numerical (eg. the position, orientation and size of 

red_blockl). A "C" coded world model has been created in order to store this information. This is 

described in more detail in a later section. The following primitives are an example of the 

interface between Mugol and this world-model: 

above( object_ name) 

top_ of(pile _name) 

property( object_ name, property_ name) 

Note: all objects (whether blocks, beams, piles, arches or places) are stored in the same manner in 

the world model and are referenced by Mugol using only their names. 

The Mugmaker induction modules. 

Listings of all of the Mugol modules are given later. 

The action module build arch 

A major part of the solution is the module "build_ arch". This takes as its input the name of a 

place where an arch is to be built and the names of all of the components of the arch. 

build_ arch(location, left_list, right _list, beam) 

Where left_list and right_ list are lists of the names of those objects (in the correct order) which are 

to be used to make the arch left_pile and right_pile (call these component lists), beam is the name 

of the object to be used as the arch beam. 
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Eg: 

build_ arch(" table top" "[redblk,greenblk]" "[blueblk,blueblk]" "yellow beam") 

In summary build_ arch examines each constituent object in turn and checks to see if it is in 

position (using the module "fully _on"), if not it moves the object to the correct position (using the 

module "onto"), this may entail clearing the top of the object if it is not clear. 

The query module fully_ on. 

In the module "build_arch" an object in the left or right pile is assumed to be in its final position if 

it is on top of the object which occurred before it in the object list for that pile. The beam is in 

position if it is on top of both the left pile and the right pile. The module: 

object fully_ on place 

checks to see if the named object (whether a primitive object or a structure) is fully located on the 

stated place. If the object is a primitive object than the world_ model primitive "above" can be 

used on its own to answer this question, if the object is itself an arch then its status (ie 

fully_ assembled or partially assembled) must also be checked. 

The action module onto. 

The module: 

object_name onto place/object_narne 

moves an object (a primitive or a structure) onto another object (a primitive object, structure or 

place). If the object to be moved is a primitive object and if it is clear then it can be picked up by 

the robot (module "pickup") and placed on the correct location (module "place_ at"). If the object 

is a structure (ie an arch) then it cannot be moved as a single entity by the robot but instead must 

be assembled (using "build _arch") at the specified location. 
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M ugol modules. 

The modules pick_ up. place _at and other were not derived inductively but were written directly in 

Mugol. Pick_ up takes as an argument an object name extracts its position and orientation from the 

world model and and generates a series of "move_ to" instructions in order to move the robot 

gripper horizontally from its home position to a point directly above the object and then down onto 

the object, close the gripper and return back the way it came. Place_ at takes as its argument the 

name of a place and operates similarly to Pick_ up in order to put the held object on the place so 

that the centroid of the object is directly above that of the place and their orientations ·(the 

orientation of a block is the direction of its principal axis) align. Other takes the name of an object 

as argument and returns the name of the smallest work _pile other than the one in which it is 

currently located. 

The world model. 

The world model consists of a hierarchy of lists. Each object in the proble~ whether a primitive 

object (eg a block) or a structure (eg an arch) or a place (eg a work_pile) is represented in the 

model by a list This list contains the properties of that object and also sub _lists representing the 

objects contained within that object (none if its a primitive object). An object can have any 

number of properties but most objects will possess:-

name 

type (eg: cuboid,sphere,disc,pile,arch,surface etc) 

position(x,y,z,) - usually the position of its centroid. 

orientation(o,a,t) - the orientation of its principle axis. 

dimensions (length, width,height) 

Examples of other properties are colour, material, weight etc. 

Any property of an object can be extracted from the world model using the primitive : 
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property{ object_ name, property_ name) 

Frequently used properties can also be extracted using individual primitives eg: 

X( object_ name ),Len( object_ name). 

All objects are referenced using their name. Object names do not have to be unique, eg. many 

identical block's can all be called "redblock", however distinct objects do require individual entries. 

When an object is referenced the first object found when doing a search of the world-model will be 

the one which is used. If a particular object is required then its "path" in the world-model (which 

is unique) can be used instead of the object name. 

Relational information can be obtained from the position of the object in the world model. For 

example a structure consisting of a pile of blocks will be represented in the world model by a list 

which will contain (in addition to its own properties) a sub-list for all of those objects contained in 

the pile. The order in which these occur is the physical order in which they are stacked on top of 

each other. This ordering has different meanings for different types of structure/place etc. 

The following primitives are used by GENARCH to extract relational information from the model: 

above( object_ name) 

bottom_ of( pile_ name) - bottom of a pile or stack. 

top_ of(pile _name) - top of a pile or stack. 

In order to initialise the model the following primitive is used: 

new_ object(place _name, object_ name, property _list) 

This will create a new object with the name and properties specified and insert into the world 

model at the specified place. 

The movement of objects within the model resulting from real actions performed by the robot is 
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achieved using: 

model_ to_ hand( object_ name) 

This extracts the stated object, it can now be referenced using the name "held_ object". 

hand_ to_ model(place _name) 

insert the held object into the stated place. 

Specifying a particular task. 

The modules described so far contain a strategy for building a general arch given the names of 

the components of that arch. Hence a specific arch could be built with the following "main" 

module: 

MODULE: GENARCH 

STATE: start 

initialise_ model; 

build _arch(" table _top" "[redblk,redblk]" "[blueblk,blkblk]" "grnbeam"), 

goal 

GOAL OF GENARCH 

where "initialise_ model" creates entries in the world model for all of the primitive objects (ie the 

blocks and beams), the work-piles and the place the arch is to be built on (ie "table_top"). If one 

component of this arch was another arch then the above "main" module would be inadequate. This 

is solved by creating what can be called a "task description module" which gives the names and 
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composition of all of the structures in the complete arch. The task description module for the arch 

shown in the introduction (towerl) is given below. 

MODULE: build 

INTENT: "build $1 at $2" 

IN: string {object, place} 

STATE: start 

if (object) is 

"tower": (build_arch(object place "[tow _L]" "[tow _R] "towbm"),goal) 

"tow _L": (build _arch( object place "[towLL]" "[towLR] "towLbm"),goal) 

"tow_ R": (build_ arch( object place "[towRL]" "[towRR] "towRbm"),goal) 

"towLL": (build_arch(object place "[Yl,Y2]" "[Y3,Y4] "Ybml"),goal) 

"towLR": (build_arch(object place "[Bl,B2]" "[B3,B4] "Bbml"),goal) 

"towRL": (build_arch(object place "[YS,Y6]" "[Y7,Y8] "Ybm2"),goal) 

"towRR": (build_ arch( object place "[BS,B6]" "[B7 ,B8] "B bm2"),goal) 

"towbm": (build_ arch( object place "[G l,G2]" "[G3,G4] "Gbml "),goal) 

"towLbm": (build_arch(object place "[Rl,R2]" "[R3,R4] "Rbml"),goal) 

ELSE (build_ arch( object place "[RS,R6]" "[R6,R7] "Rbm2"),goal) 

GOAL OF build 

The "main" module for GENARCH can now be 



GENARCH: a practical solution to general arch building 

MODULE: GENARCH 

STATE: start 

initialise_ model; 

build(" tower" "table _top"), 

goal 

GOAL OF GENARCH 

(Note: the module "onto" is changed to call the "build" module instead of the "build_arch" module 

when a structure is to be moved). 

This mechanism for defining arches can easily be extended to other structures, eg: walls, steps, 

pyramids etc. For example in the arch defined above the component towL can be defined as a 

wall by replacing its definition line with: 

"towL": (build_wall{place name "redblock" 6 5)); 

where build_ wall is a strategy for building a wall using redblocks which is 6 blocks long and 5 

blocks high. 



GENARCH: a practical solution to general arch building 

Example structures. 

The structure shown in the introduction (towerl) contains 28 blocks and 7 beams, one 

particular goal state is shown in figure H.3 and this has been built using the Puma from an initial 

state also shown below. 

Another structure which has been build using GEN ARCH (simulation only so far) is shown 

in figure H.S (tower2). One set of initial positions is also shown, this initial state required 83 

moves in order to reach the goal. 

The task specification module for "tower2" is shown below, note that this structure can be 

built by simply replacing the task specification module for "towerl" with that for "tower2". 

I Gbml I 
~ [SE] 
[QI] @] 
Rbml Rbm2 

[@ lliil mm am 
~ [!21 []§] []] 

I Ybml I I Bbml I I Ybm2 I I Rbm2 I 
ITI1 [Y!J~ [M] IIill [TIJ[@ (@ 
m [YTI[!IJ m1l [Y2] m~ mZ1 

Figure H.3 A goal state for towerl 



GENARCH: a practical solution to general arch building 

Figure H.4 An initial state for towerl 



GENARCH: a practical solution to general arch building 

I bmS I 
[IT] ~ 
IIT1 I bm 7 I 
l1!r] [}[] [!!] 
II1 I bm) I ~ 
m cm cm ~ 
[!] I bm4 I liD 

I 5m~ I ~ cm 11!1 
m [7J [El ~ IT§] 
[2] [@] I bm 3 I [ill 

I bm 1 I !m ~ ~I bm6 I 
m [!] IT!] ~ ~m cm rEI 
[JJ m cm lTI1 [TI][ill [ill 

Figure H.S Goal state for tower 2 

Figure H.6 Initial state for tower2 



GENARCH: a practical solution to general arch building 

Task specification module for tower2. 

MODULE build IS 

INTENT: "construct $1 at $2" 

IN: string {narne,place} · 

STATE: do it 

IF (name) IS 

"tower": ( build_arch(name place "[tow_L]" "[tow_R]" "bmTm"), goal) 

"tow_L" : ( build_arch(name place "[tow_LL]" "[13,14,15]" "bmTL"), goal) 

"tow_R" : ( build_arch(name place "[tow_RL1,tow_RL2,tow_RL3]" 

"[tow _RR,35,36,37,38,39,40]" "bmTR" ), goal) 

"bmTm" : ( build_arch(name place "[07,08,09,10,11,12]" "[42]" "bm08" ),goal) 

"tow LL" : ( build_arch(name place "[01,02]" "[03,04]" "bm01" ) , goal) 

"bmTL" : ( build_arch(narne place "[05,06]" "[16,17]" "bm02" ) , goal ) 

"tow_RLl" : ( build_arch(narne place "[18,19,20]" "[21,22,23]" "bm03" ) , goal) 

"tow_RL2" : ( build_arch(narne place "[24,25]" "[26,27]" "bm04" ) , goal) 

"tow_RL3" : ( build_arch(narne place "[28]" "[29]" "bm05" ) , goal) 

"tow_RR" : ( build_arch(name place "[31,32]" "[33,34]" "bm06" ) , goal) 

ELSE ( build_arch(narne place "[30]" "[41]" "bm07" ) , goal) 

GOAL OF build 
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Mugol modules. 

NODULE pick_up IS 

IN: string 

LOCAL: 

object 

float h t 

STATE: start 

above (ht + "15") object 

release ; 

above (ht + "5") object ; 

above (ht + "2.5") object 

above (ht + "0.5") object 

robot_speed("slow"), 

grabit 

STATE : g r ab i t 

if (ht > "1") is 

"T": (above (ht - "1") object , backof) 



ELSE ( above ( h t I " 2" ) ob j e c t , b a c k o f ) 

STATE: backof 

) 

grasp 

above (ht + "0.5") object 

robot_speed("medium"); 

above (ht + "2.5") object 

above (ht + "5") object ; 

above (ht + "15") object; 

Model to hand object, 

goal 

GOAL OF pick_up 

NODULE place_at IS 

IN: 

LOCAL: 

string 

float 

place 

ht 

STATE : s t a r t 

Ht "held_object" -> ht 

(Ht place) + ht -> ht 

above (ht + "15") place ; 

above (ht + "5") place ; 

above (ht + "2.5") place 



above (ht + "0.5") place 

robot_speed("slow") , 

releaseit 

STATE: releaseit 

if (ht > "1") is 

"T": (above (ht - "1") place , backof) 

ELSE (above (ht/"2") place , backof) 

STATE: backof 

( 

release ; 

above (ht + "0.5") place 

robo t_speed( "med i urn"); 

above (ht + "2.5") place 

above (ht + "5") place ; 

above (ht + "15") place; 

Data_update("held_object" "X" ftos(X place)) 

Data_update("held_object" "Y" ftos(Y place)) 

Data_update("held_object" "Z" ftos(Z place + (Ht 

Data_update("held_object" "Hd" f to s ( Hd place)) 

Data_update("held_object" "Az" ftos( Az place)) 

Data_update("held_object" "Ro" ftos( Ro place)) 

Data_update(place "Ht" ftos((Ht place) + ht)) ' 

Hand to model place, 

place))} 

' 



goal 

GOAL OF place_at 

NOXJLE other IS 

IN: string place 

OUT: string best_place 

LOCAL: string toplace 

LOCAL: list plist 

STATE: get_top_place 

( " [] " -> plist ; 

place !< plist -> plist; 

headof p 1 is t -> top lace, 

decide 

) 

STATE: decide 

IF (toplace) IS 

"pl" : ( smallest("[p2,p3,p4,p5,p6,p7,p8,p9,pl0]") -> best_pl~ 

"p2" smallest("[pl,p3,p4,p5,p6,p7,p8,p9,pl0]") -> best_place, GOAL ) 

"p3" : ( smallest("[pl,p2,p4,p5,p6,p7,p8,p9,pl0]") -> best_pl~ 

"p4" smallest("[pl,p2,p3,p5,p6,p7,p8,p9,pl0]") -> best_place, GOAL ) 

"p5" : ( smallest("[pl,p2,p3,p4,p6,p7,p8,p9,pl0]") -> best_pl~ 

"p6" smallest("[pl,p2,p3,p4,p5,p7,p8,p9,pl0]") -> best_place, GOAL) 

"p7" : ( smallest("[pl,p2,p3,p4,p5,p6,p8,p9,pl0]") -> best_pl~ 

"p8" smallest("[pl,p2,p3,p4,p5,p6,p7,p9,pl0]") -> best_place, GOAL) 



"plO" 

"p9" : ( smallest("[pl,p2,p3,p4,p5,p6,p7,p8,pl0)") -> best_pl~ 

smallest("[pl,p2,p3,p4,p5,p6,p7,p8,p9]") -> best_place, GOAL) 

" b 1 " ( " b 2" - > be s t _p 1 ace , OOAL 

ELSE " b 1 " -> be s t _ p 1 a c e , GOAL ) 

GOAL OF other 

Mugol robot primitives. 

I* This provides the N.Wgol interface to the robot primitives 

I* All code below this level is device dependent & coded in C *I 

PRIMITIVE :.MXXJLE in it robot is 

INTENT: " i n i t i a 1 i se the rob o t arm" 

OUT: string status 

GOAL of init robot 

PRIMITIVE :.MXXJLE robot home is 

INTENT: "put robot arm in its home position" 

OUT: string status 

GOAL of robot home 

PRIMITIVE :.MXXJLE move to is 

IN: float {x,y,z,h,a,r} 

OUT: string status 

GOAL of move to 

PRIMITIVE :.MXXJLE g r asp i s 

INTENT: "close the robot gripper onto an object" 

GOAL of grasp 



PRIMITIVE~ release is 

INTENT: "fully open the robot gripper" 

GOAL of release 

PRIMITIVE~ robot_speed is 

INTENT : " c h an g e t he s p e e d o f t he rob o t " 

IN: string speed 

GOAL of robot_speed 

PRIMITIVE MXXJLE robot wait is 

INTENT: "wait for the robot to stop moving" 

GOAL of robot wait 

Mugol world-model primitives. 

I* This provides the N.Wgol interface to the model primitives. */ 

/*--------------------------------------*/ 

1* N.bdel update and access routines */ 

PRIMITIVE~ Init model is 

INTENT: " i n i t i a 1 i se the wo r 1 d mode 1 " 

GOAL o f In i t trod e 1 

PRIMITIVE MXXJLE Pr trode 1 is 

INTENT: " p r i n t t he wo r 1 d mode 1 " 

GOAL of Pr mode 1 

PRIMITIVE~ Draw_model is 

INTENT: "draw the wor 1 d mode 1" 

GOAL of Draw trode 1 



PR~ITIVE MODULE New_object is 

INTENT : " c r e a t e a new ob j e c t c a 1 1 e d $2 i n $ 1 " 

IN: string {where,nrune,data} 

GOAL of New_place 

PRIMITIVE MODULE Insert is 

INTENT: "insert $1 into $2" 

IN: string {object,place} 

GOAL of Insert 

PRIMITIVE MODULE Extract is 

INTENT: "extract $1" 

IN: s t r in g ob j e c t 

GOAL of Extract 

PRIMITIVE MODULE Path is 

INTENT: 

IN: string 

our: string 

GOAL of Path 

"find the path nrune of the object $1" 

ob j nrune 

answer 

PR~ITIVE M:XXJLE Is in is 

INTENT: "determine if $1 is in $2" 

IN: 

our: 

string 

boo lean 

GOAL of Is in 

{object,place} 

answer 

PR~ITIVE M:XXJLE :Mode 1 to_hand is 

INTENT: "move $1 from the model to the hand-store" 



IN: string object 

GOAL of ~del to hand 

PRllv!ITIVE .MXULE Hand to mode 1 is 

INTENT: "move $1 from the hand-store to the model" 

IN: string place 

GOAL of Hand to roode 1 

I* -----------------------------------------------------------*1 

* these are not C coded routines but are an integral part 

*of accessing the world model. 

*I 

NODULE build_arch.In is 

INTENT: "add $1 to the end of $2" 

IN: string 

CXIT: string 

STATE: begin 

if name is 

{nrume, path} 

newpa th 

"" . (path -> newpath,goal) 

ELSE (path main.# main.# nrume -> newpath,goal) 

GOAL of In 

NODULE Locn is 

INTENT: "the location of $1" 

IN: string path 

CXIT: string locn 

LOCAL: 1 i s t p 1 is t 



STATE: begin 

if path is 

"" . ( 11" -> locn,goal) 

ELSE ( " [ ] " -> plist; 

path !< p l i s t -> plist; 

headof p 1 i s t -> locn; 

tailof p l i s t -> plist, loop) 

STATE: loop 

if plist is 

"[]": (null,goal) 

ELSE (locn main.#"," main.# (headof plist) -> locn; 

tailof plist -> plist, loop) 

GOAL of Locn 

MXXJLE Name is 

INTENT: "the name of $1" 

IN: string path 

CXJT: string name 

LOCAL: 1 i s t p 1 is t 

STATE: begin 

if path is 

"" . 

ELSE 

GOAL of Name 

("" -> name,goal) 

("[]" -> plist; 

path !< plist -> plist; 

headof (reverse plist) -> nrume, goal) 



I* +++++++++++++++++++++++++++++++++++++++++++++++++++ *I 

I* N.bdel query routines ... Probably problem dependent *I 

PRIMITIVE M:XXJLE Above is 

INTENT: 

IN: string 

OUT: string 

GOAL of Above 

" find t he n ame o f t he ob j e c t on t op o f $ 1 11 

ob j name 

answer 

PRIMITIVE M:XXJLE Top_of is 

INTENT : 11 find t he name o f t he t o p memb e r o f t he s t a c k $ 1 11 

IN: string name 

OUT: string answer 

GOAL of Top_of 

PRIMITIVE M:XXJLE Bot tom of is 

INTENT: " find the name of the b o t tom memb e r of t he s t a c k $ 1 11 

IN : s t r i n g n ame 

OUT: string answer 

GOAL of Bottom of 

PRIMITIVE M:XXJLE Place l en is 

INTENT: " find t he n urn o f i t ems i n $ 1 11 

IN: string name 

OUT: integer answer 

GOAL of Place len 

PRIMITIVE :MXXJLE Data l en is 

INTENT: "find the number of data items in $1" 



IN: string name 

OOT: integer answer 

GOAL of Data len 

PRIMITIVE ?vOXJLE Type_of is 

INTENT: "find the type $1" 

IN: 

OUT: 

string 

string 

GOAL of Type_of 

PRIMITIVE ?vOXJLE X i s 

object 

answer 

INTENT: "find the X co-ord of $1" 

IN: string object 

OOT: float answer 

GOAL of X 

PRIMITIVE M:DJLE Y is 

INTENT: "find theY co-ord of $1" 

IN: string object 

OUT: float answer 

GOAL of Y 

PRIMITIVE ?vOXJLE Z i s 

INTENT: "find the Z co-ord of $1" 

IN: string object 

OUT: float answer 

GOAL of Z 

PRIMITIVE MJIXJLE Hd i s 



INTENT: "find the heading of $1" 

IN: string object 

OOT: float answer 

GOAL of Hd 

PRIM! TIVE MXXJLE Az i s 

INTENT: "find the azimuth of $1" 

IN: s t r i n g ob j e c t 

OOT: float answer 

GOALofAz 

PRIMITIVE MXXJLE Ro i s 

INTENT: "find the rotation of $1" 

IN: string object 

OOT: float answer 

GOAL of Ro 

PRIMITIVE MXXJLE Len is 

INTENT: "find the length of $1" 

IN: string object 

OUT: float answer 

GOAL of Len 

PRIMITIVE MXXJLE Wi d is 

INTENT: "find the width of $1" 

IN: string object 

CXJT: float answer 

GOAL of Wi d 



PRIMITIVE M:lXJLE Ht is 

INTENT: "find the height of $1" 

IN: string object 

CXJT: float answer 

GOAL of Ht 

PRIMITIVE M:lXJLE S t a tu s of i s 

INTENT: 

IN: string 

CXJT: string 

GOAL of Status of 

"determine the status of $1" 

object 

answer 

PRIMITIVE M:lXJLE Data it em is 

INTENT: "determine the $2 th data item in $1" 

IN: string object 

IN: integer indx 

CXJT: string answer 

GOAL of Data i tern -

PRIMITIVE ~E Data_update is 

INTENT: 

IN: 

IN: 

IN: 

string 

string 

string 

"update the $2 th data item in $1 with $3" 

object 

name 

value 

GOAL of Data_update 

PRIMITIVE ~E Set_global is 

INTENT: "create/update the global $1 with the value $2" 

IN: string name 



IN: string value 

GOAL of Set_global 

PRIMITIVE MlXJLE Global is 

INTENT: "retrieve the value of the global $1" 

IN: string 

OOT: string 

GOAL of Global 

name 

value 
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