

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Turing Institute

LIBRARY

Inductive Acquisition of Expert Knowledge

Stephen H. Muggleton

Ph.D.

University of Edinburgh

1986

Dedication

This thesis is dedicated to Thirz~ for all the happiness and fun between the lines.

Acknowledgements

The work described in this thesis was carried out while the author was in receipt of an SERC

studentship. I am thankful for facilities provided by Edinburgh University Machine Intelligence

Research Uni4 Edinburgh University Deparunent of Artificial Intelligence, Intelligent Terminals

Lt~ Radian Corporation (Texas) and the Turing Institute (Glasgow). Especial thanks are due to my

primary supervisor Professor Donald Michie who has been a source of constant inspiration and

encouragement I am most grateful to Dr Denis Rutowitz and Dr Timothy Niblett for their

additional help and instructive supervision, to Charlie Riese and Steve Zubrick for allowing my

participation in the structuring of the two major Mugol expert system applications EARL and

WILLARD, to John Roycroft for his invaluable chess expertise used in the construction of the

KBBKN strategic expert system and to Barry Shepherd who built the GEN ARCH robotic system

using the Mugol environment I must also thank Dr Peter Mowforth for showing interest in my

work, Alen Shapiro for invaluable practical help and suggestions and Andy Paterson and Andrew

Blake for many interesting conversations about inductive inference. My thanks to all the secretarial

and administrative staff at Edinburgh University, especially Penni Montgomery, who helped with so

many essential details. Thanks also to Ned, our servitor, who kept me constantly amused with his

anecdotes, songs and cheery personality. I must not forget my good friend and companion Mike

Bain who has always listened sympathetically to my ideas and broadened my view in many areas.

Last and not least I would like to thank my parents, Louis and Sylvia, for their kind support and

encouragement throughout

Publications

Part of Chapter 3 has appeared_as RuieMaster: a second-generation knowledge-engineering facility

in the Proceedings of the First Conference on Artificial Intelligence Applications.

A slightly extended version of chapter 8 is to appear as An efficient method of inductively acquiring

chess strategies in Machine Intelligence 11, Oxford University Press.

Abstract

Expert systems divide neatly into two categories: those in which (1) the expert decisions result in

changes to some external environment (control systems), and (2) the expert decisions merely seek

to describe the environment (classification systems). Both the explanation of computer-based

reasoning and the "bottleneck" (Feigenbaum, 1979) of knowledge acquisition are major issues in

expert systems research. We have contributed to these areas of research in two ways. Firstly, we

have implemented an expert system shell, the Mugol environment, which facilitates knowledge

acquisition by inductive inference and provides automatic explanation of run-time reasoning on

demand. RuleMaster, a commercial version of this environment, has been used to advantage

industrially in the construction and testing of two large classification systems. Secondly, we have

investigated a new technique called sequence induction which can be used in the construction of

control systems. Sequence induction is based on theoretical work in grammatical learning. We

have improved existing grammatical learning algorithms as well as suggesting and theoretically

characterising new ones. These algorithms have been successfully applied to the acquisition of

knowledge for a diverse set of control systems, including inductive construction of robot plans and

chess end-game strategies.

Table of contents

Dedication

Acknowledgements

Declaration

Publications

Abstract

Table of contents

Table of figures

Chapter 1. Overview
1.1 What are expert systelllS? ..•........................ 1

1.2 How expertise is acquired: the debug cycle ... 3
1.3 Induction ... 4

1.3.1 Static induction ... 4

1.3.2 Sequence induction .. 6
1.4 An environment for inductively acquiring expert knowledge 8
1.5 Applications 8

1.5.1 Applications of static induction ... 8
1.5.2 Applications of sequence induction ... 9

1.6 Conclusion .. 10

Chapter 2. Inductive inference

2.1 Generalisation 11
2.2 Examples and rules .. 12

2.2.1 Ordering ·· 13
2.2.2 Types of example material .. 14

2.3 Criteria for inductively generated results .. 14
2.3.1 Effectiveness ... 14

2.3.2 Verification of inductive results .. 15
2.4 Languages involved in inductive inference ... 16
2.5 Classification learning .. 17

2.5.1 Parity problem (unstructured) .. 18
2.5.2 Parity problem (structured) .. 19
2.5.3 Example and description complexities .. 21

2.6 Finite state automata and strategy learning ... 23

2.6.1 Finite state acceptors .. 23
2.6.2 Parity example revisited ... 23
2.6.3 Formal definition of finite state acceptors .. 24

2.6.4 Complexity measure for finite state parity solution ... 25
2.6.5 Mealy and Moore machines .. 25
2.6.6 Expressive power of DU1MMs ... 27
2.6.7 Limits on expressive power of finite state machines 28
2.6.8 Recursion and variables ... 29

2.7 Induction of finite state automata .. 29
2.8 Conclusion .. 30

Chapter 3. The Mugol environment

3.1 Some issues in knowledge engineering ... 32
3.2 The Mugol environment ... 34

3 .2.1 Overview 34
3.3 Knowledge acquisition ... 35
3.4 TYJ>eS of expert systems supported .. 38
3.5 The Mugol.language .. 39

3.5.1 Finite automata ... 39
3.5.2 Mugol syntax .. 43
3.5.3 Mugol program structure ... 43
3.5.4 Form of individual states ... 45

3.6 Individual Mugol modules ... 47
3.6.1 TYJ>e 0 modules -normal Mugol modules ... 47

3.6.2 Type 1 modules - C-coded procedures ... 50
3.6.3 Type 2 modules -generic modules ... 50
3.6.4 Type 6- user-defined abstract data types ... 51

3.6.5 Type 7 - system-defined abstract data types .. 52
3.7 Operator definitions .. 53
3.8 Explanation 54

3.9 The Mugmak:er cod.e generator ..•... 55
3.9.1 Mugmak:er syntax.. 59
3.9.2 Single-state module .. 59
3.9.3 Multiple-state module .. 61
3.9.4 Induction of a hierarchy of rules ... 64

3.10 External information sources ... 66
3.11 Conclusion 66

Chapter 4. ARCH

4.1 Introduction ... 68
4.2 The problem: building a five block arch ... 69
4.3 The action arch ... 70
4.4 The action onto ... 72
4.5 The action clear .. 74
4.6 A session ... 76
4.7 Conclusion .. 76

Chapter 5. Overview of grammatical induction theory
5.1 Introduction ... 78
5.2 Language Identification ..•..................... 80
5.3 Mixed Positive/Negative Presentations ... 81
5.4 Theoretical results of grammatical induction from positive samples 82

5.4.1 Definitions ... 82
5.4 .2 Properties of induced acceptors 89
5.4.3 Algorithm IM1 ... 89
5.4.4 Time complexity of IM1 ... 90
5.4.5 Heuristics used in the literature ... 90

5.4.5.1 Biermann and Feldman's k-tail predicate ... 91
5.4.5.2 Levine's heuristic ... 91
5.4.5.3 Miclet's algorithm .. 92
5.4.5.4 Angluin's heuristic algorithm fork-reversible languages 92

5.4.6 Limitations of existing heuristics .. 93
5.5 Informal presentation of results ... 93

5.5.1 Various heuristics ... 97

5.5.1.1 Biermann and Feldman's k-tail heuristic .. 97
5.5.1.2 Levine's heuristic ... 98
5.5.1.3 Miclet's heuristic algorithm ... 100
5.5.1.4 Angluin's heuristic algorithm fork-reversible languages 100

5.6 Conclusion .. 102

Chapter 6. Sequence induction applications

6.1 Introduction 103
6.2 A silllple grammar 104
6.3 1 bit binary adder ... 106
6.4 Traffic light controller 108
6.5 Reverse motor problem .. 112
6.6 Algebra problem ... 112
6. 7 Hanging pictures in a room ... 119
6.8 Conclusion .. 122

Chapter 7. New sequence induction theory

7.1 Introduction ... 124
7.2 An efficient algorithm for induction of k-reversible languages 125

7 .2.1 Uniquely terminated acceptors .. 125

7 .2.2 The KR algorithm .. 127
7 .2.3 The correctness of KR ... 130
7 .2.4 Time complexity of K.R ...•.••.•••••.•••.••••••••.•.•.••••••.•.••••••..•.•••.•••.••••.•.••..••••. ...••••.••• 135
7.2.5 Upciating a k-reversible guess .. 136
7 .2.6 Using negative data .. 136

7.3 k-contextual languages ... 137
7.3.1 k-contextuality .. 138

7 .3.2 Relationship between k-reversibility and k-contextuality 141
7.3.3 The KC algorithm .. 142
7 .3.4 The correcttless of KC ... 142
7 .3.5 The running time of KC .. 144
7 .3.6 Identification in the limit of k-contextual languages .. 144
7 .3.7 Incremental nature of KC .. 145
7 .3.8 Using negative data ..•...............•..•............................ 146

7.4 Use of semantic information .. 146
7 .4.1 Uniquely terminated Mealy machines ... 147
7.4.2 Operational meaning of DUTMM's .. 149
7.4.3 Situation/action sequences ... 149

7 .4.4 Mappings .. 150
7.4.5 The SKR algorithm .. 151
7 .4.6 Correctness of SKR .. 152

7 .4.7 k-contextual sequence induction .. 152
7.5 Conclusion .. 152

Chapter 8. Inductive acquisition of chess strategies
8.1 Introd.uction ... 154

8.1.1 Computer chess research .. 154
8.1.2 Sequence induction .. 156

8.2 The problem - KBBKN .. 156
8.2.1 Initial position .. 157
8.2.2
8.2.3

158
162

8.2.4 The solution .. 163
8.3 Conclusion .. 164

Chapter 9. Discussion
9.1 Summary ... 166
9.2 Directions for further work .. 171

References

Appendices

Appendix A- Wll.LARD

Appendix B - EARL

Appendix C- Example move sequences (see ch.8)

Appendix D - Result of sequence induction (see ch.8)

Appendix E - Automata after ID3-like induction (see ch.8)

Appendix F - KBBKN Mugmaker induction file (see ch.8)

Appendix G- KBBKN Mugol code generated from Appendix F (see ch.8)

Appendix H- GENARCH: a practical solution to general arch building

Table of figures

Chapter 2
2.1. Examples of Even-parity .. 18

2.2. ID3 decision tree for Even-parity .. 19

2.3. Even-parity ... 20
2.4. Examples of First-half-even ... 20

2.5. Examples of Second-half-even .. 20

2.6. New ID3 decision tree for Even-parity ... 21

2. 7. The Even-parity finite state acceptor ... 24

2.8. Complexity results, N =- number of binary variables dealt with 25

2.9. The Even-parity Moore machine ... 26

2.10. The Even-parity Mealy machine ... 27

2.11. DU1"MM equivalent of decision trees ... 28
2.12. Hierarchy of arithmetic expressiveness ... 29

Chapter 3
3.1. Table found in (NTIS, 1969) of examples used in lapse rate determination

3.2. A binary adder as a finite state machine transition diagram.

3.3. A simple daily routine. ' , ' means 'or'

3.4. Relationship between Finite state automata and Production rules
3.5. Relationship .between Mugol and Algorithmic languages

3.6. The syntax of Mugol ...•................................

3. 7. The visibility of module m
3.8. Decision tree within state which decides whether to use an umbrella

3.9. The interpretation of the 8 different types of Mugol module

3.10. A value-returning Mugol module

3.11. A non-value-returning Mugol module which plays noughts-and-crosses

3.12. The primitive module 'ask' .. .

3.13. Generic modules and instantiations .. .
3.14. The abstract data type 'coordinate' .. .

3.15. Integer data-type operators

3.16. Sample Wll...LARD forecast explanation
3.17. Method of ordering explanation.

3.18. The syntax of Mugma.ker .. .

3.19. Mugmaker induction file for Mugol module of figure 3.10
3 .20. Induction file for the choke problem .. .

3.21. Mugol module produced from the Mugmaker file of figure 3.19

3.22. Induction file for artificial respiration
3.23. Mugol module produced from the Mugmaker file of figure 3.22

37
41

42

42

43
44

45

46

48

48

49

50
51

52

53

56
57
58

59
62

63

65
66

Chapter 4
4.1. An initial situation .. 69

4.2. The goal situation ... 70
4.3. Hierarchical breakdown of the problem .. 71
4.4. Mugmaker file describing the top level goal .. 72

4.5. The Mugmaker file describing the action 'onto' .. 73
4.6. Mugmaker file describing the action 'clear' ... 75
4.7. User interaction for blocks problem .. 77

Chapter 5
5.1. The finite state acceptor representing the language a*b* 79
5.2. A positive sample and its corresponding prefix tree acceptor 94

5.3. The canonical acceptor of the sample ... 95
5.4. A new acceptor derived from that of figure 5.3 ... 96
5.5. The universal acceptor for the symbol set {~b} .. 96

5.6. Effect of k-tail inference, k-2, on prefix tree acceptor of figure 5.2 98

5. 7. Matrix of Stren for all pairs of states .. 99
5.8. Acceptor produced from sample using Levine's algorithm, Strn-415 •••••••••• 100
5.9. Graphical representation of conditions for merger of q1 and q2 •••••••••••••••••• 101
5.10. The result of applying Angluin's algorithm, k=1 102

Chapter 6
6.1. Induced state transition table for sentences {ab,bb,aab,abb} 104
6.2. Induced state transition table for sentences {A.,~ab,bb,aab,abb} 105

6.3. Diagrammatic representation of figure 6.2 .. 106

6.4. Example situation/action sequences describing 1 bit binary adder 107
6.5. Inductively generated state transition table for a 1 bit binary adder 108
6.6. Meanings of action abbreviations used in figures 6.7 and 6.8 109

6.7. Situation/action sequences describing a traffic light controller 110
6.8. Induced state transition table for traffic light controller 111
6.9. Situation/action sequences describing a motor controller 113

6.10. Induced state transition table for motor controller 114
6.11. Meanings of situational attributes used in figures 6.13 and 6.14 114
6.12. Meanings of actions used in figures 6.13 and 6.14 115

6.13. Situation/action sequences describing algebraic equation solver 118
6.14. Inductively generated state transition table for the equation solver 118
6.15. Meanings of actions used in figures 6.16 and 6.17 119

6.16. Situation/ action sequences describing the robots actions 120
6.17. Inductively generated state transition table for the robot controller.......... 121

Chapter 7
7 .1. Graphical representation of conditions for merger of q1 and q2 •••••••••••••••••• 132
7.2. Updating a guess .. 137
7.3. The canonical acceptor of the language o+t+ ... 140

7.4. Example of a DUTMM .. 148

Chapter 8

8.1. The initial position, WIM•...•.. 158

8.2. wB(light) prepares to prevent wK from moving to h2, WTM 159

8.3. bK retreats after being checked by wB(light), W1M 160

8.4. wB(light) takes up fortified position, W1M ... 161

8.5. The goal of liberating wB(dark}, bN forced to retreat, BTM 162

1

Overview

Abstract With reference to Michie's definition of "expert systems" (Michie, 1985) we discuss and emphasise

the necessity for machine-executable knowledge to be comprehensible to human experts. Expert systems are

shown to divide neatly into two categories: those in which (1) the expert decisions result in changes to some

external environment (control systems), and (2) the expert decisions merely seek to describe the environment

(classification systems). Both the explanation of computer-based reasoning and the "bottleneck'' (Feigenbaum.

1979) of knowledge acquisition are major issues in expert systems research. We have contributed to these areas

of research in two ways. Firstly, we have implemented an expert system shell, the Mugol environment, which

facilitates knowledge acquisition by inductive inference and provides automatic explanation of run-time

reasoning on demand. RuleMaster, a commercial version of this environment, has been used to advantage

industrially in the construction and testing of several large classification systems. two of which we describe in

appendices. Secondly, we have augmented grammatical learning techniques and successfully applied these to

the acquisition of knowledge for a diverse set of control systems, including inductive construction of robot

plans and chess end-game strategies.

1.1. What are expert systems?

In recent years expert systems have been exciting a great deal of interest in the computational

and cognitive sciences. What, however, do we mean by an "expert system"? An often-repeated but

naive definition says that an expert system is a program that solves problems which would

otherwise require a highly skilled human for their solution. Powerful, but essentially "black box"

problem solvers, such as autopilots in the aircraft industry or the MACSYMA system (Moses,

1975) for symbolic manipulations, would qualify under such a definition. The definition is generally

extended to include the property of self-explanation. Thus Feigenbaurn (1979) required that the

Overview 2

system "be able to explain its activity; else the question arises of who is in control ... " and sees the

issue as crucial to user acceptance. However it would be naive to go to the other extreme and say

that an expert system is a computer program which has all the behavioural characteristics of a

human expert. Clearly the latter definition is not restrictive enough as we would not expect a

computer program to go out for lunch at midday. For the purposes of this thesis, we will adopt

Michie's (1985) definition of an expert system.

An expert system embodies in a computer the knowledge-based component of an expert skill in
such a form that the system can generate intelligent actions and advice and can also on demand jus
tify to the user its line of reasoning.

With reference to this definition we should stress two important aspects; firstly an expert

system's task performance should be demonstrably at least as good as that of a human expert in the

given domain, and secondly the system must be capable of explaining its line of reasoning on

demand. We should note that this definition does not exclude problem domains too complex for

human specialists to have acquired mastery. If, by some means, a program were constructed which

gave an account of its faultless play of the chess end-game of King and two Bishops against King

and Knight in terms which end-game specialists could understand and apply, then the program

would qualify as an expert (superexpert?) system. Expert systems are the knowledge-based sub-

category of a larger class of computer programs which display good task performance based upon

large amounts of information (for a definition of the technical meaning of the term knowledge used

here, see (Michie, 1982)). This larger category we will call domain-specific problem solvers. The

information for the latter class may be held implicitly, as in search-driven game-playing programs,

or explicitly as look-up. For the above mentioned expert-inscrutable Bishop-Bishop-Knight ending a

tabulation by K. Thompson (Roycroft, 1983; Thompson, 1985) of the complete space of several

hundred million legal positions can be made to yield optimal play. Note that this does not

constitute an expert system but does exemplify the larger class.

Both domain-specific problem solvers and expert systems can be partitioned into the

following two distinct classes.

Overview 3

a) Classification systems. In a classification system like MYCIN (Shortliffe and Buchanan,

1975), it is assumed that the state of the world being classified does not change during the

operation of the system. Thus, if some statement could be made about the situation being

classified at the beginning of the process of classification, the same statement would hold

throughout

b) Control systems. In a control system such as VM (Fagan et al, 1979), no such steady-state

assumption holds, and indeed it is generally part of the function of the system to carry out

operations which change the state of the world.

1.2. How expertise is acquired: the debug cycle

Many of the problems of building and using an expert system involve the human interface.

The reasons for this, over and above the usual problems of providing user interfaces for normal

programs, lie in the fact that an expert system, like an expert's knowledge, is never complete. Once

the system has been shown to perfonn well in some domain, its owner typically seeks either to

improve on this proficiency or expand the scope of expertise. Thus expert systems are often

continually being debugged. Moreover, this debugging cycle does not only involve a programmer

or knowledge engineer but also a human expert Experts, though knowledgeable in their own field

cannot be expected to be acquainted with programmer-oriented tools. Thus in the study of expert

systems we need to be able to answer at least the following questions.

1) How does the expert assess the system's present knowledge? The answer seems to lie in

allowing the expert to use example test-cases. The expert checks a natural language

representation of the system's reasoning in particular example cases and uses this to infer the

reasoning process. This was first shown to be effective in the MYCIN project (Shortliffe and

Buchanan, 1975).

2) How does the expert alter the systems knowledge? By symmetric analogy to the first

answer, we would expect that experts should be allowed to express, by example, their

reasoning to the system in a natural fonnat The system could then infer how its own

Overview 4

reasoning process must adapt to fit that of the expert. This methodology was first tested by

Michalski and Chilausky (Michalski and Chilausky, 1980) who found it gave excellent

results.

Algorithms, like that used by Michalski et al., which infer generalised descriptions from

example material are collectively termed inductive inference algorithms. If the outputs of such

algorithms are in user-intelligible and mentally checkable form. then it is customary to speak of

inductive learning algorithms. The study of such algorithms and their application in expert system

technology forms the main thrust of this work.

1.3. Induction

In the following sections we give a brief overview of the uses of inductive algorithms. A

fuller review of the subject of inductive inference is given in chapter 2.

1.3.1. Static induction

Logical induction is the process of generating concept descriptions which are either

equivalent to or more general than some set of examples describing that concept Typically

descriptions generated by inductive algorithms are more compact than the original example set As

these descriptions can generally be executed, induction can also be viewed as an automatic

programming technique. Work originating at Illinois (Michalski and Chilausky, 1980) and

extended at Edinburgh (Shapiro, 1983) has shown the potential for constructing expert knowledge

bases in the relaxed framework of concepts generalised from examples. Commercially available

packages (McLaren, 1984; A-Razzak, Hassan and Pettipher, 1984; Michie, Muggleton, Riese and

Zubrick, 1984) have already, during their short existence, proved the power of this approach, with

development-time savings in building large expert systems of at least an order of magnitude over

the traditional "deductivist" rule extraction technique. By the traditional method (e.g. MYCIN),

rules are extracted during a long series of interviews between the knowledge engineer and the

expert. However, it cannot be said that the "inductivists" have yet completely met their targets.

Overview 5

The ultimate learning/knowledge environment might be a "laboratory" in which the scientist

(expert), unaided by knowledge engineers, uses machines to carry out experimentation and theory

formation by mechanisms which learn from mistakes. Some form of inductive engine must surely

lie at the core of any such environment.

Under the present inductive regime, examples represent static descriptions of world situations

to which labels are attached indicating a classification or action to be taken. The world described

often has a finite number of distinguishable states or situations. Rules may be developed

inductively in various different formalisms ranging from decision trees (Quinlan, 1979), to

propositional and predicate calculi (Michalski, 1983). The most serious problem to emerge from

the development of this approach is that although inductive generators, when presented with

sufficient example sets can generate efficient and correct rules, these rules can be so large and

complex that they are incomprehensible to human experts (Quinlan, 1982b). Ease of

comprehension is a crucial factor in the debug cycle of inductively generated knowledge. Two

complementary approaches to this apparent impasse have so far been suggested

a) Structured induction. Shapiro (Shapiro, 1983) has shown that large expert domains can be

effectively dealt with by employing the techniques of structured programming in an inductive

environment. Thus, the expert is expected to structure his knowledge in a top-down fashion

manually, and then present examples for each part of the hierarchy. These examples are then

used to construct the individual rules (or decision trees) automatically. Facilities to aid this

structuring process have been built into the Mugol environment which is described fully in

chapter 3.

b) Human subset languages. Michie (Michie, 1984) has suggested that by constraining every

constituent rule to take one or other of two alternative forms (either linear thresholded sum or

linear decision tree) and by also constraining the form of the "calling diagram" relating

linearised procedures to each other, rulebases can be constructed that are easily understood

and force builders to structure their problem. Arbab (Arbab and Michie, 1985) has

Overview 6

implemented a new version of a rule-induction algorithm due to Bratko (Bratko, 1983) which

constructs a linear rule where one exists and otherwise presents the most nearly linear tree

which can be constructed from the data.

Manually structured induction is not the final solution. In any expert system building task,

the structuring of the problem now becomes the new knowledge acquisition bottleneck. Attempts

have been made (Michalski and Stepp, 1982; Paterson, 1983) to automatically structure domains

from example material. These have used statistical clustering in an attempt to extract structural

information from the example set The results however, have not been very promising, with the

machine's suggested hierarchies not necessarily having any significance to experts in the domain

(Paterson, 1983). The primary reason for failure seems to lie in the fact that although the example

set is a rich enough knowledge source for rule construction, additional information is necessary to

indicate humanly comprehensible higher level structure. We suggest a new approach that offers a

partial solution to this problem for control domains (see section 1.1, "Control systems"). The full

theoretical basis for this approach is developed in chapters 5 and 7, with experimental results being

given in chapters 6 and 8.

1.3.2. Sequence induction

The new approach relies on the presentation of example sequences to an inductive algorithm.

Each element of the sequence is a situation/action pair similar in form to the static descriptions

such as those described in section 1.3.1. These sequences can be taken to represent a series of

world descriptions which are altered by actions operating on that world. The output of the

inductive process is a finite state control structure in which each state contains a small number of

the static description examples describing the actions and state transitions which should be carried

out in various situations. These static description examples can be used by a static induction

algorithm to produce rules or a decision tree for each state. Although we do not produce a

hierarchical structure, we achieve some of the aims of structured induction (i.e. a set of small

understandable rules) by making use of the additional structural information which lies within each

Overview 7

example. Whereas structured static induction seems to be of most use in classification systems,

sequence induction lends itself more readily to the construction of control systems (see section 1.1).

In tenns of automatic programming, sequence induction is used to design the overall branching and

looping structure of routines in a program, while static induction is used at a lower level to decide

the internal ordering of nested if-then-else statements.

The basis for sequence induction techniques lies in the study of grammatical inference, that is

the inference of grammatical structures from example sentences of a language (see chapter 5).

Under the generative paradigm of computational linguistics, the grammar produced can be viewed

as the control structure of a program which generated the example sentences. Some of the earliest

work in the area of grammatical induction was done by Biermann and Feldman (Biermann and

Feldman, 1972), who devised an algorithm to induce a finite state automaton representing a

particular language from example strings contained in that language. Although their algorithm was

capable of identifying any regular language given a sufficient example set, the algorithm requires

an arbitrary complexity parameter and also has rather low example efficiency (ie. a large number of

examples are needed to infer anything). Angluin (Angluin, 1982b) has described an algorithm

which infers only a limited subset of the regular languages. This subset she calls the k-reversible

languages. By limiting the target result set, Angluin's algorithm achieves example efficiency higher

than that of Biermann and Feldman's algorithm.

The author (see chapter 7) has taken Angluin' s algorithm and redesigned it to run in linear

time complexity rather than Angluin's original 0(n3) time. Furthermore, we have discovered an

even smaller, but useful subset of the k-reversible languages, which we call the k-contextual

languages. The algorithm for inferring members of the k-contextual languages is again more

example efficient than even Angluin's, to the extent that inference is possible from samples

containing only a single example (all other methods in the literature presuppose more than a single

example). We have also discovered a method that circumvents the need for supplying the algorithm

with an arbitrary complexity measure, something which is required by all other methods in the

Overview 8

literature (Angluin, 1982b; Biermann and Feldrnan, 1972; Levine, 1982; Micle~ 1980). We achieve

this by making use of the semantic content of static examples in the construction of finite state

schemas.

1.4. An environment for inductively acquiring expert knowledge

In order to test the hypothesis that expert control knowledge can be acquired conveniently by

inductive inference, it is necessary to have an environment which is capable of being used for the

routine inductive construction and execution of knowledge-bases. It is desirable that this

environment have the following properties

a) An induction engine. Inductive apparatus both for static and for sequence induction.

b) A rule language. This is used to express the output of a) in a natural and comprehensible

fashion. Such a language should provide support for problem structuring and the manipulation

of whatever data is needed for the task at hand.

c) An explanation facility. According to the definition of section 1.1 this is necessary for the

construction of any expert system.

In chapter 3 we discuss the Mugol environment which has been constructed to meet these

requirements. The only above requirement not yet fully met is the integration of the sequence

induction algorithm with other tools in the Mugol environment.

1.5. Applications

1.5.1. Applications or static induction The Mugol environment has been tested in the

construction of two major expert classification systems. The techniques used for the construction of

both of these were based on the structured static induction methodology first advocated and tested

by Shapiro and Niblett (Shapiro and Niblett, 1982). The systems were

a) WILLARD. WILLARD (Zubrick, 1984) is an expert system for predicting the likelihood of

severe thunderstorms occurring in the central USA. The system was written by Steve Zubrick,

Overview 9

a meteorologist at Radian Corporation. Extensive testing of the system (Zubrick, 1986) has

shown that it is capable of producing predictions which usefully complement those of the US

National Weather Service. A fuller description of WILLARD can be found in Appendix A.

b) EARL. EARL (Riese, 1984) is a system for diagnosing imminent break-down in large oil

cooled electrical transformers. The system was constructed by Charles Riese who is a

software engineer working for the Hartford Steam Boiler Company. When EARL was tested

against 859 test-cases, it managed a diagnostic success rate in excess of 99%. EARL is now

in routine industrial use. A fuller description of EARL can be found in Appendix B.

The author gave help and advice in the structuring and example acquisition of both the above

systems. Details of a smaller control system called ARCH are given in chapter 4.

1.5.2. Applications of sequence induction

The author has shown (see chapter 6) that sequence induction can be applied successfully to

a diverse set of problems, including automatic VLSI circuit synthesis, user modelling in a

mathematical educational environment and generalisation of robot plans.

More recently, using sequence induction, we have successfully built an expert system for

playing a fragment of the chess endgame domain of King and two Bishops against King and Knight

(see chapter 8). This endgame is so complex that even the chess endgame specialist, John

Roycroft, has failed after months of continuous study, aided by unlimited access to machine

generated facts and variations, to acquire more than a partial and patchy understanding of it.

However, when presented with the expert system built from his example move sequences, he easily

recognised and agreed with the various states of the generalised structure which had been built The

most complex states (in terms of the number of static examples placed), were precisely those which

Roycroft had spent most time describing in the sequence acquisition stage. The expert system

although very compact, is also very easily comprehended.

Overview 10

1.6. Conclusion

In this chapter we introduce the topic of expert system research, following Michie's definition

of an expert system. Expert system development involves continuous debugging of knowledge

structures. We argue that the two most important tools in this debugging process are a) an

explanation facility and b) an inductive knowledge acquisition mechanism. The major topic of

interest within this thesis is that of inductive inference.

We describe two different forms of induction. Static induction algorithms take examples

which represent descriptions of world situations to which labels are attached. These labels indicate

a classification or an action to be taken. On the other hand, sequence induction relies on the

presentation of example sequences to an inductive algorithm. Each element of the sequence is a

situation/action pair similar in form to the static descriptions.

We have constructed an expert system construction environment called the Mugol

environment. This comprises an induction engine, a rule language and an explanation facility.

Although the Mugol environment in its present form only has facilities for static induction, it would

be a simple matter to introduce a sequence induction package based on the techniques developed in

this thesis.

Generally whereas static induction techniques have been found to be effective knowledge

acquisition methodologies in classification domains such as chess classification (Quinlan, 1982b;

Shapiro and Niblett, 1982; Shapiro, 1983), weather forecasting and transformer diagnosis (see

chapter 4), we believe sequence induction to be similarly promising as a strategy-acquisition

methodology in control domains such as robot planning (see chapter 6) and chess endgame play

(see chapter 8).

2

Inductive inference

Abstract. The notion of inductive inference is discussed with reference to its inverse, deductive inference. We

point out that inductive algorithms do not necessarily carry out generalisation. Inductive algorithms take

example world descriptions and produce executable rules. Properties of example material and inductive

algorithms are described and discussed. By way of a simple example we show the strengths and weaknesses of

various rule formalisms. The basis for the Mugol language is given, with emphasis being placed on

transparency of expression and the ability to inductively generate the finite state control structure of Mugol

modules.

2.1. Generalisation

Deduction is the process of deriving specific statements from more general ones. For

instance, let a list be an ordered set Thus

["John", "Mary", "Harry"]

is a list of people's names. A legitimate corresponding general statement concerning the members

of a list might be the following

X is a member of the list L if X is the first element of L or if X is a member of the
list formed by removing the first element of L. (1)

Many statements are deductively derivable from the statement of list membership. For instance

"John" is a member of the list L, where L =["John", "Mary", "Harry"] since "John"
is the first element of L. (2)

Inductive inference 12

Note that by using deductive inference we could. in principle, replace all general statements s

such as statement (1} by a {potentially unlimited) set S of particular statements such as statement

(2).

The inductive algorithms described in this thesis take a set of descriptive statements E, called

the example set, and propose a new set of descriptive statements R, called the rule set, where each

example e E E can be deductively derived from some rule r E R. In addition, there may or may

not exist a descriptive statement e' e E which can be deductively derived from a rule in R. Such a

descriptive statement e' which is derivable from R but not originally given in E is a "guess". These

guesses are usually introduced in order to compact R as much as computational trade-offs permit

(see also later discussion of Popper's philosophical comment on inductive generalisation). It can·

therefore be said that these inductive algorithms generate a rule set R which is more general or

equivalent to the given example set E, i.e. if E' is the set of all deductions from R then E' ;2 E.

The phrase "inductive inference" for such a process is in some ways unfortunate since it may to

some readers imply the necessary involvement of generalisation.

The advantage of employing an inductive algorithm in developing expert systems seems to

lie not necessarily in the inductive algorithm's ability to "guess" the classifications of previously

unseen examples, but rather in a particular psychological fact: whereas experts can easily suggest

particular situations to which they can apply their knowledge, it is much more difficult for them to

formulate general rules.

2.2. Examples and rules

Expert systems carry out tasks relating to a particular though not necessarily explicit world.

For instance, in medical expert systems the world is the set of possible states of a patient's body

together with relevant anatomical and physiological laws, while in game-playing domains the world

might be the set of legal arrangements of pieces on a board together with the laws of chess. Often

the program will contain a model of the world. which is some simplified and abstracted

representation of the world in question, containing enough detail for the program to work on.

Inductive inference 13

For any particular model of the world. there exists a set of situations or arrangements of the

model, e.g. in the chess domain, a "ground model" might have as its set of situations the complete

set of different arrangements of pieces on the board. These situations can be abstracted by defining

a set of attributes (relationships between parts of the world) in terms of which a particular situation

can be described. In the chess world one possible attribute might be the black king is in check.

In a classification problem. such as deciding whether a chess endgame is a win-for-white

(Shapiro, 1983) an example consists of a particular situation described in terms of the values of all

relevant attributes together with the classification given. For instance, we might have

Example: win-for-white if A and 8 and C and D and E

where A. B, C, D, and E are a set of attributes, observable from the world model, which are used

to decide whether white can force a win. A general rule derived from this example might be

Example: win-for-white if 8

Note that the rule does not necessarily use all the attributes necessary to describe a particular world

situation: an ideal rule uses as few attributes as possible. In the case of Shapiro' s wo~ one such

simple rule for the KPa7KR domain was that white wins if it can safely capture the black rook.

In general we call the input to an inductive algorithm the example set and the output the rule

set. Examples and rules may take a very different form from those shown above, for instance in

sequence induction (chapters 5,6, 7,8).

2.2.1. Ordering

Ideally we would want the order in which examples are presented to an inductive algorithm

not to affect the results given. In fact this is true for all inductive techniques dealt with in this

thesis. Not only is the order of examples essentially irrelevant to these techniques but also the order

of attributes given has no effect on the result. In contrast, in sequence induction the internal

ordering within particular examples does, justifiably, affect results of induction (see chapters

5,6,7,8), remembering that in this context an "example" includes the specification of a particular

Inductive inference 14

ordering.

2.2.2. Types of exam pie material

Examples presented to an inductive algorithm are said to be either positive or negative in the

sense that they respectively exemplify or counter-exemplify the concept being conveyed. Moreover,

the nature of example material differs according to the method in which it is employed. In this

thesis a source of examples is referred to as an oracle when it can be interrogated interactively by

an inductive algorithm. Alternatively, when examples are given according to some fixed

presentation scheme, the source of examples is said to be text. Inductive algorithms in this thesis

use textual example material.

2.3. Criteria for inductively generated results

It is important to be able to make sound statements about

a) Algorithmic effectiveness. What results do we expect the algorithm to be able or unable to

produce, or not produce.

b) Validity of induced results. Since any inductive process potentially involves the assertion of

facts which are not originally given as being true, the question arises as to how confident one

can be in the application of the resultant information.

We investigate these problems in the following sections.

2.3.1. Effectiveness

Suppose an inductive algorithm A conjectures a series of rule sets

in response to an enumeration of instances of a given rule set R. Each Rt.1 is proposed as soon as

the rule set R; is found to be inconsistent with the instance source (oracle or text). The algorithm A

is said to identify in the limit the rule set R if and only after a finite amount of time A proposes the

Inductive inference 15

rule set R;, which is equivalent to R, and does not subsequently change this proposal. We discuss

the notion of "identification in the limit" further in chapters 5 and 7 in the context of sequence

induction.

Clearly, the ability to prove that an algorithm will identify in the limit some rule set from a

class of rule sets effectively imbues the user with confidence in that algorithm. However, from the

outsider's viewpoint, if the specification of the target total set is not available, it will never be clear

that any particular guess made by such an algorithm will not be subsequently changed. Hence one

cannot necessarily ever have complete confidence in any particular result generated by such an

algorithm if it is known only that a correct rule-set will eventually be generated. It is therefore

also necessary to have some independent means of verifying inductive results.

2.3.2. Verification or inductive results

Induction is believed by some to be logically and philosophically unsound since it is not

possible in general to positively prove a generalisation of some facts, only disprove it {Popper,

1972). Thus we might, on the basis of experience of a number of example cases, have

hypothesised the descriptive law that the sun will rise every morning. This hypothesis could not be

positively proved, only disproved. Although these objections are perfectly valid, it is widely agreed

that all human and animal knowledge is acquired on the basis of experiencet. Thus it is not the

usefulness of inductive inference which is in question but rather the way in which confidence can

be gained in its results.

Let us separate the class of computable functions into the sub-classes F (finite) and I

(infinite). Functions within F have a finite domain while functions within I have an infinite

domain. Clearly hypothesised functions within F have a finite number of instances. Thus these

could, in principle, be completely verified by enumerating all expressible problems and checking

the solution's results against an oracle. However, functions hypothesised within I cannot be

t It might be argued that many behavioural responses, especially instinctual ones, are inherited genetically which can
be interpreted as indicating that these responses are "learned" by evolution.

Inductive inference 16

exhaustively proved like this since a potentially infinite number of instances exist for any function

within /. Instead we might turn to the method of mathematical induction• for a proof here. By

this technique we attempt to find an incremental operator which if applied repetitively can

deductively derive all possible instances from a set of base statements. If the base statements are

found to be valid according to the oracle, and an arbitrary application of the operator to non-base

statements also produces statements consistent with the oracle, then we can infer the entire set of

statements to be correct As this method of proof is often used to prove human-generated programs

it seems reasonable to use the same technique for machine-generated programs. This latter

technique has not been applied to inductively-generated programs in this thesis, but is believed to

be a pressing topic for further research.

2.4. Languages involved in inductive inference

If inductive inference is to be used as an automatic programming tool, as is the case with the

Mugol environment (see chapter 3), it should be recognised that there are three languages involved.

1) Implementation language. In terms of logic, this is a meta-language which is used to

inductively transform examples into rules. In the Mugol environment the implementation

language for the inductive rule generator is the programming language C.

2) Example language. This language comprises a simplified symbolic representation of

decision-making in the world being modelled. In this thesis, as explained in chapter 1, we

deal with two distinct forms of example material:

a) static examples, represented by <Situation/classification> pairs.

b) dynamic or sequence examples, consisting of sequences of <situation/action> pairs

which represent a changing situation controlled by actions effected on the world.

3) Rule language. The rule language expresses descriptive or prescriptive statements about the

world. In an inductive programming environment, such rules are fragments of some

• Note that this is not related in any simple way to "induction" as used generally in this thesis.

Inductive inference 17

executable program or knowledge·base. In the Mugol environment, classification rules are

expressed as multi·branching decision trees. Control infonnation is expressed in the format

of recursive transition networks, i.e. a set of finite state automata (see section 2.6) which call

each other. A desirable feature of a rule language in expert systems work is that its

expressions should correspond well with the expert's own conceptual representations.

2.5. Classification learning

Simple concepts can be stated in logic as propositions in the propositional calculus. For

instance we might define the concept of bird as follows

fred·is-bird if fred-has--wings and not(fred-is·aeroplane) (3)

Note that this could either be viewed as an example of a bird or as a general rule for

recognising birds. The example language of Quinlan's ID3 inductive algorithm (Quinlan, 1979)

recognises only tabulated disjunctions of conjunctions where each conjunction (or example) could

be directly translated into a statement such as (3).

ID3' s rules are generated as binary decision trees in a language having the equivalent of the

context-free grammar

rule~ TRUE

rule~ FALSE

rule ~ IF attribute THEN rule ELSE rule

where attribute is simply the name of a test Although simple, a generalised form of ID3 has been

found in this thesis to be useful in the construction of large expert systems (see chapter 3 and 4 and

Appendices A and B). However, a small artificial example developed in the following sections

shows the limitations imposed by the expressibility of the output of such inductive inference.

Inductive inference 18

2.5.1. Parity problem (unstructured)

Imagine that we want to inductively develop a rule for deciding whether a set of four truth

values contains an even number of trues. This is nonnally called the problem of even-parity. We

give ID3 a full tabulation of all examples as shown in figure 2.1. CLASS is the value of Even-

parity for the particular situation. ID3' s result is shown in figure 2.2.

Far from compacting the data in this case (as ID3 generally does), the decision tree has as

many leaves as examples, and is very difficult to understand due to its bulk. This is admittedly a

worst-case problem for ID3, however it should be asked how problems of this type can be solved,

as similarly difficult problems may turn up in real world situations. Shapiro and Niblett (1982) have

suggested the use of structuring to simplify the solution of such problems. Can structuring help in

solving the parity problem?

Attribute-! Attribute-2 Attribute-3 Attribute-4 CLASS

false false false false TRUE
false false false true FALSE
false false true false FALSE
false false true true TRUE
false true false false FALSE
false true false true TRUE
false true true false TRUE
false true true true FALSE
true false false false FALSE
true false false true TRUE
true false true false TRUE
true false true true FALSE
true true false false TRUE
true true false true FALSE
true true true false FALSE
true true true true TRUE

Figure 2.1 Examples of Even-parity

Inductive inference

IF Attribute-! THEN

ELSE

IF Attribute-2 THEN
IF Attribute-3 THEN

IF Attribute-4 THEN
ELSE

ELSE IF Attribute-4 THEN
ELSE

ELSE IF Attribute-3 THEN
IF Attribute-4 THEN
ELSE

ELSE IF Attribute-4 THEN
ELSE

IF Attribute-2 THEN
IF Attribute-3 THEN

IF Attribute-4 THEN
ELSE

ELSE IF Attribute-4 THEN
ELSE

ELSE IF Attribute-3 THEN
IF Attribute-4 THEN
ELSE

ELSE IF Attribute-4 THEN
ELSE

TRUE
FALSE
FALSE
TRUE

FALSE
TRUE
TRUE
FALSE

FALSE
TRUE
TRUE
FALSE

TRUE
FALSE
FALSE
TRUE

Figure 2.2 103 decision tree for Even-parity

2.5.2. Parity problem (structured)

19

One structuring method is the following. Let the top-level decision, "Even-parity" be based

on two sub-attributes

1) First-half-even. This checks whether the attributes Attribute-] and Attribute-2 have between

them an even number of trues.

2) Second-half-even. This checks whether the attributes Attribute-3 and Attribute-4 have

between them an even number of trues.

Figures 2.3, 2.4 and 2.5 show the examples for the new "Even-parity", "First-half-even" and

"Second-half-even" sub-problems respectively.

Inductive inference 20

First-half-even Second-half -even O...ASS

false false TRUE
false true FALSE
true false FALSE
true true TRUE

Figure 2.3 Even-parity

Attribute-! Attribute-2 CLASS

false false TRUE
false true FALSE
true false FALSE
true true TRUE

Figure 2.4 Examples of First-half-even

Attribute-3 Attribute4 CLASS

false false TRUE
false true FALSE
true false FALSE
true true TRUE

Figure 2.5 Examples of Second-half-even

Inductive inference

IF First-half-evenTHEN
IF Second-half-even THEN
ELSE

ELSE IF Second-half-even THEN
ELSE

TRUE
FALSE
FALSE
TRUE

Figure 2.6 New 103 decision tree for Even-parity

21

Note that although the examples are still tabulated fully, only 12 examples are needed rather

than the original 16 for figure 2.3. Note also, coincidentally, that since all three example sets are

identical in terms of the examples present, we only show the new decision tree for "Even-parity" in

figure 2.6, the other two decision trees having the same outline. ID3 can do no compaction in

generating these trees, though this time, since the tree is small, it is easier to understand.

2.5.3. Example and description complexities

It is of interest to note the number of examples, size of description and description execution

time for unstructured and structured solutions of the parity problem. Let N be the number of

primitive attributes+ used (i.e. the original number of truth-values being dealt with). No decision

can be made about even-parity without considering all primitive attribute values. ·-

Let us consider first the unstructured solution. In this solution it is necessary to present ID3

with all possible examples in order to obtain a correct decision tree (see figure 2.1), i.e. 2N

examples are required (in figure 2.1 24 = 16). Again, since all primitive attribute values must be

considered in making any decision on even-parity, all leaves of the unstructured decision tree will

need to be at maximum possible depth in the tree, i.e. depth N. There must be 2N leaves in such a

decision tree (one for each example), and by simple summation of nodes at different levels there

must be (2N+1-1) nodes of them (in figure 2.2, 24+1-1 ~ 31). When executing the tree the number

of decisions made in gaining any particular result is always N, the maximum depth of the tree.

+ By primitive attributes we mean those that are not described hierarchically in terms of any sub-attributes.

Inductive inference 22

Thus we say that the unstructured solution requires 0(2N) examples, 0(7!') description space and

O(N) time to execute the description.

Let us now consider the structured solution. We can extend the solution shown in figures

2.3-2.5 to deal with any number of primitive attributes N, by using sub-attributes which repeatedly

break the attribute set in half. For instance, given 8 attributes, "First-half-even" would have the

sub-problems of "First-first-half-even" and "Second-first-half-even" instead of Attribute-! and

Attribute-2 (see figure 2.4). It works out that the number of examples needed for N primitive

attributes is 4(N-l) (in the solution of figure 2.3-2.5, 4 x 3 - 12 examples). The descriptive size

of the solution, i.e. the total number of nodes in all trees in the solution, is 7 (N-1) (21 in the

solution of the example set of figures 2.3-2.5). In order to decide on even-parity using the

structured set of trees it is necessary to execute all internal nodes of all trees in the solution, which

in general amounts to 3(N-1) nodes (9 nodes in the solution of figures 2.4-2.5). Therefore the

unstructured solution requires O(N) examples, O(N) description space and O(N) time to execute the

description. The complexity results for various representational methods of describing the parity

problem are summarised later in figure 2.8.

The author is not aware of any such quantitative analysis of worst case for structured and

unstructured induction presented elsewhere. However, these results are in line with Shapiro' s

observation (1983) that in his chess end-game solution for the domain of KPa7KR, while the

execution time for structured solutions is not noticeably different from that of unstructured

solutions, considerably fewer examples are needed and the total size of description produced is

smaller.

Thus structuring can be an effective technique both for compaction and for understandability.

However, let us change the parity problem slightly and try to build a decision tree for checking

even-parity of an arbitrarily long stream of truth-values.

Let us imagine that an inductive algorithm has a training phase in which examples of even

parity are presented and a rule set is produced. With either the unstructured or structured ID3

Inductive inference 23

solution, an example set can only define a window into a finite portion of the stream of truth

values. Remembering that no decision can be made about even-parity without checking all

primitive attribute values, the generated decision tree will work only for segments of the truth-value

stream which are less than or equal to the length (number of attributes) described by the example

set. In order to deal with sequences of arbitrary, unbounded or even infinite length, using a finite

amount of training, we must turn to finite state machine theory.

2.6. Finite state automata and strategy learning

A finite state automaton is a mathematical model of a controller having a discrete set of

inputs and outputs. This controller has a predefined fixed set of internal states through which it

passes in carrying out its function. The output response of the controller to any set of inputs

presented to it is determined not only by the input values, but also by the value of its internal state.

2.6.1. Finite state acceptors

A finite state acceptor is a limited form of finite state automaton which has an output

repertoire of {accept, reject} when applied to any particular series of symbols.

2.6.2. Parity example revisited

Let us reconsider the "parity problem" of section 2.5, and pose this as a problem for a finite

state acceptor. The allowable symbols for any element of a sequence presented to a parity checking

automaton are chosen from the set {true, false}. The acceptor has two states, "Even-so-far" and

"Odd-so-far". When in state "Even-so-far" the acceptor will report with the action "accept", and

will give the answer "reject" when in the state "Odd-so-far". If the string of symbols terminates

leaving the acceptor in the state "Even-so-far" we will know that there were an even number of

trues, otherwise there were an odd number. Figure 2.7 illustrates such an automaton. In figure 2.7

circles represent states. A state is denoted by a double circle when it is associated with an accept

output and by a single circle for the output being reject. Labelled arrowed arcs joining circles

represent transitions that are taken between states on recognition of particular symbols in the input

Inductive inference 24

false false

true

Figure 2. 7 The Even-parity finite state acceptor

sequence. The unlabelled arc leading into the state "Even-so-far" from the left indicates that this is

the state in which the automaton starts when presented with the first symbol in the sequence.

Finite state acceptors have especial importance in the theory of formal languages. It can be

shown (Hopcroft and Ullman, 1979) that the class of languages acceptable by finite state automata

is exactly that of the regular languages. In these terms strings of true/false values accepted by our

even-parity acceptor would be sentences in the language of even-parity.

2.6.3. Formal definition of finite state acceptors

We formally denote a finite state acceptor by a 5-tuple (Q, 1:, o, I, F) where Q is a finite set

of states ({Even-so-far, Odd-so-far} in example), 1: is a finite input alphabet ({true, false} in

example), I ~ Q is the set of initial states ({Even-so-far} in example), F ~ Q is the set of final or

accepting states ({Even-so-far} in example) and o is the transition function mapping Q x 1: to Q

(the labelled arcs of figure 2.7). That is, o(q,a) is a state in Q for each state q and input symbol a.

Inductive inference 25

2.6.4. Complexity measure for finite state parity solution

In terms of the complexity measures of section 2.5.3, it can be seen that two decision nodes

are needed in the finite state solution of figure 2. 7 irrespective of the number of truth-values

inspected. Thus the descriptive complexity is constant, which we denote 0(0). In terms of

execution steps, as always we need to look at all N of the values in any particular string of values

to decide on even-parity. Thus the time complexity is still O(N). In chapter 5 we will show that

parity acceptors can be built by the 0-reversible induction algorithm using a fixed number of

examples. The example complexity using this algorithm is thus constant, or 0(0).

Figure 2.8 sums up the various complexity results for different representations of the even-

parity problem solution.

2.6.5. Mealy and Moore machines

Although finite state acceptors are a powerful model for representing predicates which decide

whether or not a string of symbols belongs to a particular set of such strings, a general purpose

controller needs to be able to produce more than the two outputs {accept, reject}. There are two

different formalisms used to generalise the notion of finite state acceptors to automata capable of

producing a selection of more than two outputs.

Unstructured tree Structured trees Finite state machine

Example 0(2N) O(N) 0(0)
complexity

Description 0(2N) O(N) 0(0)
complexity

Execution O(N) O(N) O(N)
time

Figure 2.8 Complexity results. N • number of binary variables dealt with

Inductive inference 26

a) Moore machines. The output values are paired with particular states. Figure 2.9 shows the

Moore machine version of an "Even-parity" finite state automaton. Note that if the machine

in figure 2.9 had more than two outputs it would need more than two states.

b) Mealy machines. The output value is paired with particular inputs. Figure 2.10 shows the

Mealy machine version of an "Even-parity" finite state automaton.

A specific form of Mealy machine, namely deterministic uniquely terminated Mealy machines

(DUTMlvis) are described in chapter 7. DUTMMs are the basis of the control within modules of

Mugol programs (see chapter 3). These machines have a unique goal state, entry into which causes

termination of the module's execution. The input and output symbol pairs which label the arcs of a

Mealy machine equate to particular situations which cause actions to be fired, with a simultaneous

state transition. In turn, the situation vectors represent sets of callable Mugol modules, each of

which returns a value. The action is a callable Mugol module which does not return a value. In the

false false

true

Figure 2.9 The Even-parity Moore machine

Inductive inference 27

false/accept false/reject

true/reject

true/accept

Figure 2.10 The Even-parity Mealy machine

next section we investigate the expressive power of Mugol modules.

2.6.6. Expressive power of D UTMMs

In order to show that DUTMMs have more expressive power than decision trees, it is

necessary to show that they can describe all decision tree solutions to problems and that at least

one other problem solution can be described using a finite state automaton but not using any

structured or unstructured set of decision trees. The first condition, that DUTMMs can describe all

decision tree solutions to problems, is shown to be true by figure 2.11. In this figure each

situation/classification pair s/ci (1 ~ i ~ n) derivable from some decision tree is used to label the

arcs leading from the start state of the DUTMM to the goal state, the particular decision ci being

returned on recognition of situation s;. Clearly an automaton such as that in figure 2.11 can be

constructed to be behaviourly equivalent to any given decision tree.

Inductive inference 28

start
s le

goal
n n

Figure 2.11 DUTMM equivalent of decision trees

The second condition is apparent from the fact that a one-way infinite lengthed string parity

problem is insoluble by use of decision trees (see end of section 2.5.3), as any decision tree must

be finite, though simply soluble as a Mealy machine (figure 2.10) which reports parity-so-far for

any prefix of the one-way infinite string.

2.6.7. Limits on expressive power of finite state machines

Finite state automata, in turn have limits to their expressiveness, and form only one rung in

the ladder of arithmetic expressiveness. Figure 2.12 describes a simple version of this hierarchy,

Universal Turing Machines being the most expressive computational formalism.

In fact the only difference between a finite state machine and a Universal Turing machine is

the latter's ability not only read to from a tape of symbols which can be moved backwards and

forwards, but also to write symbols onto that tape. In our example the tape of symbols was the

string of truth values which the finite state machine was allowed to read from. The extra ability to

Inductive Unference

i Expressive
power

Universal Turing machines
I

Finite state automata
I

Decision trees

Figure 2.12 Hierarchy of arithmetic expressiveoesa

29

write to the tape equates to the use of variables and program stack in computer programs. As

shown in the next section, the Mugol language (chapter 3) has these abilities, and therefore has the

expressivity of a Universal Turing machine.

2.6.8. Recursion and variables

The Mugol language caters for recursively defined functions and procedures by allowing

situational conditions and actions to be evaluated by the mechanism of procedure call. To complete

the requisites of full computational expressiveness any high-level language must allow for the

creation and manipulation of variables. Mugol permits the use of variables by the standard

methods of variable declaration, value assignment and module parameterisation. The use of

variables and recursion are illustrated in chapters 3 and 4.

2.7. Induction or finite state automata

Although in the last section we emphasised the expressivity of finite state representations

over simpler classification formalisms, this aspect is secondary to human comprehensibility of these

description formats. The transition mechanism of finite state automata has a direct parallel with the

goto statement of many programming languages. As unconstrained use of gotos in programs is

known to lead to highly opaque code which is difficult to create and maintain, it might be felt that

we are trying to re-open a ''Pandora's box" which has previously been almost successfully closed.

In practice, knowledge engineers using the Mugol environment without any way of inducing finite

Inductive inference 30

state control from sequence information have largely preferred to avoid the use of multiple state

modules, and limited themselves to building classification systems by structuring a hierarchy of

single state modules in the manner proposed and tested by Shapiro (1983).

However, human beings seem to find it easy and natural to generate "control plans"

consisting of sequences of <situation/action> pairs. If such "plans" could be used by an inductive

algorithm to produce finite state automata the problem of origination and maintenance would be

eased considerably. Algorithms which do so are presented, together with examples of their use in

chapters 5-8.

This still leaves the problem of opacity of automatically generated finite state automata. This

might be approached in a similar fashion to that suggested for decision trees (Michie, 1984). Thus

inductive algorithms would be limited, by some constraint, so that only humanly comprehensible

finite state automata were produced. For instance the two state automaton of figure 2.10 seems

quite comprehensible, though a twenty state automaton with arbitrary transitions would be very

difficult to understand. One approach that suggests itself immediately is to place an upper limit

upon the product of the number of states and transitions which is acceptable in an automatically

generated finite state automaton. However, in this thesis we have not dealt with these aspects of

comprehensibility.

2.8. Conclusion

In this chapter we characterise the nature of inductive algorithms. Inductive algorithms use

various typeS of example material to generate hypotheses in various rule formats. By definition,

inductive algorithms make "guesses" concerning unknown facts. These guesses must be shown to

be sound according to some demonstrable criteria.

In sections 2.5 and 2.6 we use the "parity" problem to illustrate properties of various rule

representations. In figure 2.8 we give a table of complexity results for the three chosen

representations. This table shows that, for this problem at least, it is preferable to use a finite state

machine representation rather than a decision-tree based one. We go on to show that finite state

Inductive inference 31

machine representations have more expressive power than those of propositional calculus and

decision trees. However, there exist formalisms, such as Turing machines, which have even more

expressive power than finite state machines. One might ask whether formal power is the ultimate

criterion for deciding between representations. We state that for expert system applications expert

comprehensibility is more pertinent to the choice of an appropriate representation than formal

power.

3

The Mugol environmentt

Abstract. The Mugol environment implements a hierarchically ordered system of inductive learning for the

acquisition of expert knowledge. The inductive component is a derivative of ID3, an algorithm which performs

static induction. The environment allows the development of both classification and control oriented expert

systems. A powerful facility is provided for interfacing rules to other knowledge sources.

3.1. Some issues in knowledge engineering

Expert systems differ from other computer programs in the following aspects.

1) Explanation. Expert systems are capable of inspecting their own reasoning in order to

explain why certain factors are being investigated and how particular conclusions are reached.

2) Problem type. Expert systems are more suitable than an algorithmic approach for problems

which involve a large amount of branching.

3) Partial certainty. Expert systems are usually able to deal with a set of values between true

and false which represent the partial certainty of a proposition. The Mugol environment

described in this chapter does not provide facilities to deal with partial certainty.

It has been stated (Feigenbaum, 1979) that the most difficult part of expert system building

lies in the acquisition of knowledge from experts. A key issue here is the difference between

dialogue acquisition of rules and the use of inductive learning. The latter approach relieves experts

of much of the burden of authoring rules directly, allowing them to present merely instances of

t The original authors of the paper "RuleMaster: a second-generation knowledgo-eogineering facility" (Michie, Mug
gleton, Riese and Zubrick, 1984) have kindly consented to the inclusion in this chapter of material relevant to the thesis
author's contribution.

The Mugol environment 33

correct decision-making, while the machine produces generalisations of these decisions.

One of the goals of AI programming language design (as pursued. though not yet fully

attained. by the logic programming school) is that users should be able to tell the machine relevant

facts, theories, advice etc. in any order that occurs to them rather than in some fixed sequence as

demanded by traditional programming languages. A degree of order-independence which has so far

eluded every Prolog interpreter can be supplied by a new style of programming based on inductive

rather than deductive mechanisms. Strictly speaking, inductive programming involves the user in

creating operational specifications which can be transformed by the inductive mechanism into well

sequenced. efficient programs.

Large knowledge bases can become unwieldy and difficult to understand. Experts tend to

organise their knowledge as a set of interrelated factors. By making a hierarchy of attributes

explicit (Shapiro, 1983) it is possible to make the interrelationship of problem attributes easier to

understand and maintain. Furthermore, Shapiro showed that structuring even paid off in terms of

strict store-cost and processor cost (see also section 2.5.3). Even though this approach involves the

human overhead of structure formation, its advantages outweigh this disadvantage.

As explained in section 1.1, expert systems can be broadly divided into two main categories:

classification, eg. MYCIN (Shortliffe and Buchanan, 1975) and control, eg. VM (Pagan et al, 1979).

Often expert systems require a combination of these abilities. In many systems the form of

knowledge representation supports one of these approaches while impeding the other.

Practical expert systems require information sources other than the rules which the expert

uses for decision making. For instance, a medical diagnostic system might read biomedical

sensors, access patient records and do mathematical modelling of bodily processes. Facilities for

linking to external routines may therefore be considered as an essential component of modem

expert system software.

The Mugol environment

3.2. The Mugol environment

3.2.1. Overview

The Mugol environment is a general purpose expert system building tool. It consists of

two major components: Mugol and Mugmaker. Mugmaker is an inductive generator of exe

cutable expressions in a rule language called Mugol. Mugmaker allows users to describe their

knowledge in a declarative form, while Mugol executes the more procedurally oriented form

generated by Mugmaker. Mugmaker is discussed in the knowledge acquisition section below,

while some of the special features of Mugol are described in further sections.

34

It is a well recognised fact that over 50% of the time taken creating an expert system is spent

on building support facilities for carrying out calculations, reading instrumentation or accessing

databases. As a high-level language Mugol combines both an ability to represent conditionals rules

and to carry out calculations· and communicate with procedures written in other languages (see

section 3.10). While other high-languages might have provided similar facilities in this respect,

Mugol is unique in its ability to provide explanation of reasoning as an integral part of the program

specification.

The development of the Mugol environment was motivated by a desire to solve the

knowledge engineering issues involved in building large expert systems, (described in the section

3.1). The original basis for the inductive techniques used in Mugmaker are those of Quinlan's

(Quinlan, 1979) ID3 algorithm. This method was later refined and improved by Shapiro and Niblett

(Shapiro and Niblett, 1982) and Paterson and Niblett (Paterson and Niblett, 1982). A basis for

structuring inductively generated rule sets was developed and tested by Shapiro and Niblett

(Shapiro and Niblett, 1982). The explanation facility used by the Mugol interpreter is derived from

a proposal by Shapiro and Michie (Shapiro and Michie, 1986). The Mugol environment is the

academic counterpart of the commercial product RuleMaster (Michie, Muggleton, Riese and

The Mugol environment 35

Zubrick, 1984).

The Mugol environment is written as a set of interrelated C programs written under the

UNIX* operating system. There are current working versions running on the following machines:

DEC V~ SUN Microsystems, IBM PC/XT and PC/AT, and AT&T UNIX machine.

3.3. Knowledge acquisition

The approach taken in the Mugol environment differs considerably from that of hand-crafting

rules. It is well known that experts explain complex concepts to human apprentices implicitly by

way of examples rather than explicitly by stating principles. The apprentice intuitively generalises

these sample decisions to form more widely applicable rules. A computer can learn in the same

way as the human apprentice if it is able to produce general rules from specific instances.

The Mugol environment allows the expert system builder to use rules authored either

explicitly by an expert or by the machine from examples. The machine builds rules by a process

called rule induction. In induction of classification rules, rules are induced by generalisation over

examples of expert decision-making. An example is expressed as a vector of values pertaining to

attributes of the decision, together with the expert's classification. For instance, in a very simple

case, if we are trying to build a rule to classify animals, the attributes of the decision might be

colour and size. A possible classification is ELEPHANT. Given the example:

Colozu

grey

Size

big =>

Class

ELEPHANT

The induction algorithm would generalise this example to the rule:

irrespective of the animal's colour or size, it is an ELEPHANT

• UNIX is a trademark of Bell Laboratories.

The Mugol environment

In order to get a more accurate generalisation, more examples would need to be added,

and a more complex rule would be induced. For instance, with the following example set:

Colour

grey

yellow

grey

Size

big

big

small

=>

=>

Class

ELEPHANT

GIRAFFE

TORTOISE

the following decision tree is generated:

If the animal's colour is

a) yellow, then it is a GIRAFFE

b) grey, then if the animal's size is

i) big, then it is an ELEPHANT

ii) small. then it is a TORTOISE

36

In the Mugol environment, a class is composed of an action and a next-state. The action

specifies what to do in the example situation, and the next-state says which context must be entered

after the action has been carried out. The induction subsystem which supports this is known as

Mug maker. The syntax and semantics of Mugmaker are described in section 3.7.

An illustration of the power of inductive inference to weed out irrelevance is shown in the

following example taken from the WILLARD expert system (see Appendix A). Contained within a

widely used meteorological manual (NTIS, 1969) is a table (Figure 3.1) of three attributes used to

determine the expected change of lapse rate.

The Mugol environment 37

Vertical Vertical Vertical Change in
Divergence Motion Thickness Lapse Rate

divergent descending shrinking ::a> more stable
divergent ascending shrinking ::a> more stable
divergent ascending stretching => less stable
convergent descending shrinking => more stable
convergent descending stretching => less stable
convergent ascending stretching => less stable
divergent none shrinking => more stable
convergent none stretching => less stable
divergent ascending no change :a> no change
convergent descending no change ::a> no change
none ascending stretching =-> less stable
none descending shrinking => more stable

Figure 3.1 Table found in (NTIS, 1969) of examples used in lapse rate detennination

The rule generated from these examples used only one of the three given attributes. This

rule was as follows:

if the thickness (distance between the two constant pressure surfaces)

a) shrinks then the lapse rate becomes more stable

b) stretches then the lapse rate becomes less stable

c) does not change then the lapse does not change

This simple relation was never spotted by meteorologists although the table had appeared for

years in standard texts. The rule was found to be correct and consistent with a physical model of

the atmosphere (based on the hypsometric equations).

Entering rules by examples has several distinct advantages over writing production rules.

When the example set has insufficient information to cover the entire problem space, Mugmaker

will generalise these examples in order to produce a decision tree which covers all the possible

The Mugol environment 38

situations. If the knowledge is entered directly as rules no generalisation is carried out. When too

many attributes are present (as in the case shown in figure 3.1), redundant information is ignored

by Mugmaker. Again, production systems do not have this ability to compact knowledge.

The knowledge is given as examples in a more implicit declarative form than production

systems, and this is automatically transformed into a more explicit procedural fonn than that of

production systems. Thus experts can enter and revise knowledge without regard to order, while

reviewing and executing an economical procedural fonn constructed for them by the system. In

logic programming the equivalent of Mugmaker's example set would be an arbitrarily ordered set

of Horn clauses in a propositional subset of first order logic.

3.4. Types of expert systems supported

A wide range of approaches may be taken in the construction of expert systems. These

approaches employ varying knowledge representations, including production systems (eg. Shortliffe

and Buchanan, 1975), first-order predicate logic (eg. Niblett, 1985), frames (Minsky, 1975),

inference networks (eg. Duda et al., 1979), causal models (eg. Mozetic, Bratko and Lavrac, 1984),

object-oriented models (eg. Bobrow and Stefik, 1983) or hybrid approaches (eg. Intellicorp, 1984).

The best understood of these are classificatory in nature. However, expert system packages made

by removing the knowledge component from an expert classification system, as was done with

EMYCIN (Van Melle, 1980), often have difficulty handling procedural actions. The Mugol

environment was designed from the start to allow a wide range of control strategies, so that the

system could be applied to a broad set of problem types.

An expert system application built with the Mugol environment consists of a set of Mugol

modules. Each module consists of a transition network of states, each of which contains a single

decision tree. When invoked, each decision tree carries out a sequence of tests until a decision is

reached to perform an action. After execution of this action, control is passed to a new state within

the calling module. Control only moves from one module to another via the mechanism of

procedure call. The ability to do conditional branching together with that of calling modules

The Mugol environment 39

recursively allows the building of arbitrarily complex control structures (see sections 2.6.6 and 2.6.7

for a discussion of the expressivity of the Mugol language). More details concerning the Mugol

language are given in section 3.5.

The two large expert systems which have been built with the Mugol environment are

primarily classificatory and only use a subset of the Mugol language (see Appendices A and B).

However, small but effective control expert systems have been built. For example, an expert

system which builds an arch out of a set of blocks from an arbitrary starting position to a given

goal position was inductively constructed from sample arch-building action-decisions (see chapter

4). Although this was only a demonstration of the Mugol environment's capabilities, the domain

contains several of the features of non-classificatory applications (e.g. simple design and

scheduling).

3.5. The Mugol language

Mugol is a language for the run-time orchestration of an incremental library of C-coded

procedures. It accordingly leaves all actual computations to these, including I/0. One can say

that all that a Mugol program ever does is to execute rules/control statements and assign strings to

variables.

3.5.1. Finite automata

The language has its formal basis in finite automata theory (see section 2.6). The subclass of

finite state automata which are of interest here, DUTMMs (see section 2.6 and 7.3), consists of

machines whose output signal is entirely dependent on the combination of their input signals and

their internal machine state.

The Mugol environment

More formally, the behaviour of the machine is described by the 6-tuple {Q, :E, ~. o, q0, q1} in

which

(1) Q = {q01 q1, ••• } is a set of machine states.

(2) :E is a set of legal inputs.

(3) ~ is a set of legal outpws.

(4) o is the next state function which gives the next state based on the current state and the

current situation (in the case of a machine measuring the situation on the basis of two

binary values we have o : Q x {0, 1} x {0, 1} ~ Q)

(5) q0 is the start state of the automaton.

(6) q1 is the unique goal state of the automaton.

40

o can be described by a tabulation of inputs and outputs related to particular states. This is

usually called the state transition table. However, a finite state function is often more clearly

represented in terms of a state transition diagram. Figure 3.2 depicts a finite state diagram of an

automaton capable of taking two streams of binary input digits and producing one stream

representing their sum using the states q0 and q1 to represent the "carry." The initial state is

indicated by a start arrow, and the state transition arcs are labelled with the two input digits read

in, together with the one output digit produced. At any moment in time, the machine's situation is

the pair of values being read in, eg. <0,1>. The action chosen will either be to output "0" or to

output "1".

By analogy with the above, we could imagine a sequential procedure being represented in the

style of figure 3.3, with conditional tests replacing the input symbols, and procedure calls replacing

The Mugol environment 41

01,10/1 01,10/0

Figure 3.2 A binary adder as a finite state machine transition diagram.

the output symbols. The figure is a diagrammatic representation of a possible Mugol program

module. The module while in state "in bed" decides to do the action "sleep" and stay in state "in

bed" if conditions "tired" and "not-hungry" are true. Alternatively, if tired is untrue or hungry is

true, then action "get up" is carried out, and the module enters state "up." It is left to the reader to

follow the remaining transitions.

An approximate correspondence between this formalism and the production-rule formalisms

more familiar to knowledge engineers is shown in the table of figure 3.4. We shall follow the

EMYCIN use of the term "context" to denote a self-contained bundle of rules which can be entered

from another context as a result of firing an action which contains a "goto".

In terms of algorithmic programming (an inductively generated application can be viewed as

an efficient block-structured program) we have the correspondence of figure 3.5.

The Mugol environment 42

-.

tired,not-hungry/sleep

not-hungxy ,not-tired/wait

Figure 3.3 A simple daily routine. ' , ' means 'or'

Finite state automata Production rule systems

state context
situation antecedent
action consequent
transition arc goto <context>

Figure 3.4 Relationship between Finite state automata and Production rules

The Mugol environment 43

Mugol Algorithmic

module routine (may or may not return value)
state labelled if-then-else block
situation set of callable value-returning routines
action non-value-returning routine
transition arc goto <label>

Figure 3.5 Relationship between Mugol and Algorithmic languages

3.5.2. Mugol syntax

Figure 3.6 shows the syntax of Mugol as a syntax diagram. The following sections use

illustrative examples to describe the structure of Mugol programs.

3.5.3. Mugol program structure

A Mugol program consists of a collection of inter-related modules. An individual module

can represent either an executable procedure or a piece of data. In order to aid the imposition of a

structure on these modules, they are arranged in a tree. The scope of referencing a module from

any other is limited by a recursive scope rule called visibility. Visibility is defined (figure 3.7) as

follows:

module m2 is visible to module ml iff
m2 is a child of ml or
m2 is visible to the parent of ml

Figure 3.7 represents a hypothetical program tree with modules named by the letters of the

alphabet. Note that the highest module in the tree, root, by the definition of visibility cannot be

referenced by any module in the tree. The circular modules are those visible to module "m".

Rather than using block bracketing to indicate the tree structure of a Mugol program, each module

is identified using its unique path from the root in the program tree, e.g. module m's complete

name is "b.g.rn."

The Mugol environment

I declarauons ~[J,!nu:~nu§2o!n=J-r------r---4•~

b""=-t1
mtentlon

~ IN'IEN'I ::=t
w~SILBNT~

~ .. ~~
. transition ~

•

is1WWI2D'E
ex 10

cxpn:ss1o

1•1e"'"'""~lfj letter
di "t

j operator nam~ oprrator charac:tal 1

~

Kcywcrda: CHILD
EI.SB
GENERIC
GOAL
lP

IN
INTENT
IS
LOCAL
MODULB

Figure 3.6 The syntax of Mugol

44

•

•

•

•

...

..

•

...
OF STORAGE
OUT
PRIMI11VB
SILENT
STATB

The Mugol environment 45

root

Figure 3.7 The visibility of module m

3.5.4. Form of individual states

Each Mugol module consists of a declaration section together with a number of named states.

Each state in a module has a single decision tree associated with it which decides, on the basis of a

number of tests, what action should be taken, and which state within the present module to enter

subsequently. The decision trees have tests at internal nodes and action/next state pairs at the

leaves.

The state shown in figure 3.8 is from a module to decide whether to use an umbrella.

The Mugol environment

STATE: decide
IF (weather) IS

"wet" : IF (inside) IS
"yes" : ("DONTIJSE" ~ result, goal)
ELSE IF (soaked) IS

"yes": ("DONTIJSE" ~ result, goal)
ELSE ("USE" ~ result, goal)

"sunny" : ("DONTUSE" ~ result, goal)
ELSE ("DONTUSE" ~ result, goal)

Figure 3.8 Decision tree within stale which decides whether to use an umbrella

The decision tree is expressed as nested "case statements" each of form

IF <test> IS

<Vall> <tree 1>

<Va12> <tree 2>

ELSE <tree N>

where each <tree X> is either of the same form or of the form

(<action>, <next-state>)

46

The Mugol environment

In figure 3.8:

(1) weather, inside and soaked are tests producing the quoted string values shown (e.g.,

weather can be "wet," "sunny" or some other value).

(2) '"USE" ~ result' and '"DONTUSE" ~ result' are actions indicating the assignment of

the string literals "USE" and "DONTUSE" to the variable 'result'.

(3) goal is the name of a special state which is found in every Mugol module. When en

tered, it merely returns control to the calling module.

3.6. Individual Mugol modules

A Mugol module can be labelled with certains combination of:

(1) PRIMITIVE.

(2) GENERIC.

(3) STORAGE.

47

Figure 3.9 tabulates the meaning of the 8 different combinations of these three labels. These

various module types are explained in the following sections.

3.6.1. Type 0 modules· normal Mugol modules

There are two basic classes of type 0 module: modules which return a value to the calling

module and modules which do not When used in expert system wo~ this distinction is between

modules which carry out some diagnostic value-returning test that does not affect the state of the

world and modules which carry out a non-value-returning control action which is intended to affect

The Mugol environment 48

Type Module labelling Meaning

0 MODULE A normal callable procedure
1 PRIMITIVE MODULE Callable C-coded procedure
2 GENERIC MODULE A module which can be instantiated

for operation on different types
3 PRIMITIVE GENERIC MODULE Unused combination
4 STORAGE MODULE Unused combination
5 PRIMITIVE STORAGE MODULE Unused combination
6 GENERIC STORAGE MODULE User-defined abstract data type
7 PRIMITIVE GENERIC STORAGE MODULE System-defined abstract data type

Figure 3.9 The interpretation of the 8 different types of Mugol module

the world (see section 1.1 for distinction between classification and control). Figure 3.10 shows an

example of the former type of module (value-returning) while figure 3.11 shows an example of the

latter (non-value-returning). Figure 3.10 is the complete Mugol module from which the state shown

in figure 3.8 was excerpted. The module rain exists in the program tree as a child of main (hence

MODULE main.rain IS
INTENT: "decide whether to use an umbrella"
CHll.D: weather, inside, soaked
OUT: string result
STATE: decide
IF (weather) IS

"wet" : IF (inside) IS
"yes" : ("DONTIJSE" ~ result, GOAL)
ELSE IF (soaked) IS

"yes": ("DONTUSE" ~ result, GOAL)
ELSE ("USE" ~ result, GOAL)

"sunny" : ("DONTUSE" ~ result, GOAL)
ELSE ("OONTUSE" ~ result, GOAL)

GOAL OF rain

Figure 3.10 A value-returning Mugol module

The Mugol environment

MODULE oax IS
INTENT: "play noughts and crosses"
STATE: decide
IF (ask "is board full" "yes,no") IS

"yes" : (advise "Board full - end of game", GOAL)
ELSE IF (ask "can 0 win immediately" "yes,no") IS

"yes" : (advise "complete line to win", GOAL)
ELSE IF (ask "can X win immediately" "yes,no") IS

"yes" : (advise "block X", decide)
ELSE IF (ask "is middle free" "yes,no") IS

"yes" : (advise "take centre", decide)

GOALOFoax

ELSE IF (ask "Is there a corner free" "yes,no") IS
"yes" : (advise "take the corner with most WEIGHT", decide)
ELSE (advise "take any free space", decide)

Figure 3.11 A oon-value-rewming Mugol module which plays noughts-and-crosses

49

the path name is main.rain). The system will use the string following the keyword INTENT when

referring in explanation to the execution of this module. rain is a single-state module the state

being called 'decide'. Examples of modules containing multiple states are given in section 3.9.

Module rain has five sub-modules, weather, inside, soake~ incar and result. result is an

instantiation of the primitive generic storage module string and is used as the output variable of

rain.

The module oax of figure 3.11 plays the noughts' side of the game noughts-and-crosses by

asking a number of questions about the board state, such as "is board full". On the basis of these

questions it advises an action, such as "take any free space". Paired with this action is the next state

which can either be the present state, decide, which causes looping, or the special module exit

state, GOAL, which causes termination of play. Note that the major difference between the module

shown in figures 3.10 and 3.11 is the respective presence and absence of the OUT declarations in

these modules.

The Mugol environment 50

3.6.2. Type 1 modules - C-coded procedures

Mugol programs can call programs written in other languages (presently C and FORTR._AN)

by the mechanism of PRIMITIVE MODULES. Figure 3.12 shows the interface to the primitive

module ask which is called by the noughts-and-crosses playing module of figure 3.11. Note that

the explanation string for ask is labelled with the keyword SILENT here rather than INTENT since

we do not want any of the workings of ask to be shown in any explanation of execution (see

section 3.8). The input prompt string (IN: string prompt) is substituted for the $1 in the

explanation string. Any occurrence of a '$' followed by some number N causes the runtime

substitution of the Nth input argument into the explanation string when an explanation of execution

is given.

The Mugol interpreter executes PRIMITIVE modules either by mapping each call via a

look-up table to a unique C-function compiled into the interpreter, or failing this, by requesting

"remote" execution of the procedure in a "slave" process which runs as a concurrent process

connected by a UNIX pipe to the Mugol interpreter.

3.6.3. Type 2 modules - generic modules

Generic modules are code segments which can be multiply instantiated to act on different

data types. For instance the module square of figure 3.13 can be multiply instantiated as in modules

sqri and sqrf. to operate on either integers or floating point numbers. The interpreter automatically

PRIMITIVE MODULE ask IS
SILENT: "the answer to '$1 '"
IN: string prompt
OUT: string answer

GOAL OF ask

Figure 3.12 The primitive module 'ask'

The Mugol environment 51

infers the appropriate meaning for "*" in the instantiated modules from the types of its operands.

3.6.4. Type 6 - user-defined abstract data types

When an expert describes his proble~ he would prefer to state it using terminology pertinent

to his own subject. Thus a thrust force of 5000 N is to a turbo engineer more than the integer

value "5000". Abstract data types allow the expert to invent his own data types together with

operators for manipulating them. Users can define their own abstract data types within a Mugol

program by the declaration of GENERIC STORAGE MODULEs. The direct children of a generic

storage module are taken as being operators which act only on data of the corresponding type.

Thus figure 3.14 describes a new type of object called a "coordinate~ which consists of three

values, x, y and z. The operations which can be carried out on a coordinate are "read" (which

reads a coordinate value from the user), "print" (which prints a coordinate value onto the screen)

and "offset" (which adds a 2D offset to a coordinate position). Note that since this is a storage

module, it has no executable bcxly.

GENERIC MODULE square (type) IS
IN: type val_in
OUT: type val out
STATE: calculate

(val in * val in -> val out, GOAL)
GOAL OF square - -

MODULE m IS
LOCAL: square (integer) sqri, square (float) sqrf
STATE: show

(print sqri 5 ; print sqrf 5.0, GOAL)
GOAL OF m

Figure 3.13 Generic modules and instantiations

The Mugol environment

GENERIC STORAGE MODULE coordinate IS
LOCAL: float { x,y ,z}
CHILD: read, print

GOAL OF coordinate

MODULE m IS
LOCAL: coordinate {top, bottom}
STATE: gets how

(read "Bottom? " -> bottom; read "Top? " -> top; print bottom, GOAL)
GOAL OF m

Figure 3.14 The abstract data type 'coordinate'

3.6.5. Type 7 - system-defined abstract data types

The Mugol language has no inherent data types built into its syntax, all variables being

stored internally as strings for the convenience of inter-process communication. However, cer-

tain data types are supplied to the interpreter along with any application. Such base types are

declared as PRIMITIVE GENERIC STORAGE MODULEs. In all other ways primitive gener-

ic storage modules are identical to the GENERIC STORAGE MODULEs of section 3.6.4. The

Mugol interpreter at present supports the following data types

string

integer

float

list

52

The Mugol environment 53

3. 7. Operator definitions

In several languages, including Prolog, programmers are provided with the ability to declare

procedures (or predicates in Prolog's case) in such a way that they can be called using infix, prefix

or postfix notation within expressions. Such a facility is also provided in the Mugol language by

allowing the declaration of "operator properties" together with the definition of modules. Figure

3.15 illustrates the use of such operator properties in the definition of the integer data type

operators. In the definition + {20,1 ,1} of figure 3.15, the three numbers stand respectively for

precedence, left arity and right arity. The first of these, precedence, indicates +'s binding strength

within an expression. Imagine an expression depicted in the standard form as a tree, hanging

downwards from the root. The lower the precedence, the lower the operator will be in the tree.

Left and right arity indicate the number of arguments expected on the left and right side of the

operator. Clearly the sum of the left and right arities should be equal to the number of input

PRIMITIVE GENERIC STORAGE MODULE integer IS
child: + {20,1,1},

- {20,1,1},
• {30,1,1},
•• {50,1,1},
I {30,1,1},
< {15,1,1},
<= {15,1,1},
> {15,1,1},
>= {15,1,1},
== {10,1,1},
!= {10,1,1},
i_to_s,
s_to_i,
real,
read,
print {8,0, 1}

GOAL OF integer

Figure 3.15 Integer dala-type operators

The Mugol environment 54

arguments expected by the corresponding procedure. Note that in figure 3.15 the operators i_to_s,

s _to _i, real and read have no declared operator properties. In such a case the interpreter assigns a

default precedence of 100, a left arity of 0 and a right arity equal to the number of input

arguments. Operators have a maximum precedence of 511.

3.8. Explanation

The Mugol interpreter has the ability to explain its line of reasoning at any time during a

session. When an expert system is consulted, the reasoning behind a piece of advice may influence

its acceptance. For example, if the explanation indicates that a critical factor has been ignored, the

user may decide to reject the advice. Requests for explanation during hypothetical test cases can

also be used to instruct novices. Explanation has additional value at development time. In

explanation-driven development the expert checks that correct decisions are reached, and that they

are reached for the right reasons. This increases the likelihood that situations outside the training

set will be dealt with correctly. A point in case occurred during the validation of the EARL expert

system (see Appendix B), in which it was discovered that in 4 cases out of 859 tested EARL

reached the correct conclusion for the wrong reasons. Without the ability to validate both the result

and the explanation against the expert, this would never have been realised.

Our implementation of explanation follows that described in Shapiro and Michie (Shapiro and

Michie, 1986), though we have not incorporated the irrelevance-suppression option which Shapiro

and Michie regarded as important; instead we present the explanation in rule-sized chunks so as not

to overburden the user.

Each Mugol module requires a text segment containing optional slots for run-time

substitution of the input arguments of that module (such as the INTENT statement of figure 3.10

and the SILENT statement of figure 3.12). These pieces of text are combined in a standard set of

masks to produce English phrases. An algorithm orders the individual phrases to form a proof

which justifies the reasoning by building from axiomatic facts towards the final conclusion. The

explanation is given piecemeal, the most relevant portion being presented first, with further

The Mugol environment 55

elaboration on demand. Actions and tests are dealt with differently by the presentation algorithm.

Users can request explanation at any time that they are asked a question or given advice. In

addition the users can interrupt the system at any time to find out what is happening. Furthermore,

a full report of the line of reasoning leading to some final conclusion can be produced at the end of

a session. Although the ordering is revised, this form of explanation is similar to that given by

MYCIN.

An example of automatically generated explanation is given in figure 3.16 (this figure is

identical to figure A.2 in Appendix A and has been reprinted for the reader's convenience).

It should be noted that the bracketed numbers in figure 3.16 are not produced by the present

version of the Mugol environment, but are included in the diagram for ease of reading. This would

be a simple and desirable addition to the system's capabilities.

The following example illustrates the mechanism by which explanation is ordered. The

Mugol interpreter saves a full trace of a program's execution as a proof tree. When an explanation

is demanded, the proof tree is presented in postfix order with keywords (such as Since) being

inserted. Thus if in figure 3.17 the tree represents the execution proof tree, with A being proved by

the conjunction of B and C being true etc., the explanation would be presented bottom-up, as

shown in the same diagram. This explanation shows how axioms are presented before lemmas,

which are in turn presented before the final theorem being proved. This ordering seems very close

to that used by human beings in explaining logical proofs.

3.9. The Mugmaker code generator

Experts using the Mugol environment have the freedom to build their expert system without

ever having to write actual Mugol code, generating it instead from example decisions. For this

purpose Mugmaker uses the ACLS algorithm (Paterson and Niblett, 1982) to generate a single rule

for each state of the module. Mugmaker distinguishes between "test" and "action" modules, in

that whereas the former returns a value, the latter does not.

The Mugol environment

FUlL EXPLANATION OF TIIE FORECAST:

Since upper level cold air advection causing increased
upwards vertical velocities is present

it follows that the upper-level destabilisation
potential is sufficient (1)

Since the K Index is strong
when the Lifted Index is strong
it follows that the stability indices condition

~~~~ m 
Since daytime heating acting as a possible trigger mechanism 

for potential instability release is strong 
when (2) the stability indices condition is favourable 
it follows that low-level destabilisation potential 

is favourable (3) 
Since an approaching 500 millibar short wave trough is present 

it follows that the vertical velocity field 
~~~~ ~ 

Since a high 850 mb dew point is present
when surface dew point classification is moderate
it follows that the low-level moisture field

is marginal (5)
Since (1) the upper-level destabilisation potential is sufficient

when (3) low-level destabilisation potential is favourable
and (4) the vertical velocity field is favourable
and (5) the low-level moisture field is marginal
it was necessary to advise:

"There's a MODERATE CHANCE that thunderstorms occurring
12 hours from now will be severe at this location."

in order to actually forecast the chance of severe thunderstorms

Figure 3.16 Sample WILLARD forecast explanation

56

The Mugol environment

!l\
D E F

gives:

A

Since D
whenE
andF

!l\
G H I

it follows that B
Since G

whenH
and!
it follows that C

Since B
whenC
it follows that A

Figure 3.17 Method of ordering explanation.

57

The Mugol environment

I bead ootiou~•

~ rL. __ E __ ~_i::_state_sta_tc_tf __

literal §!3tc ~ state heading ~[=tc~xt]b~loc~lcL}----••

58

actsecuon

L:iAcriONS~

~LJtc~x~t~bl~oc~Jc~r-r------------~•

text block Htypc descnptioDJ

loperatio~

For dcfiuitions of alpha name, opcratcr name, lcttl:r aDd
digit see Mugol syntax diagram (figun: 3.6)

Keywords: AcnON
AcnONS
BOOL
CONDmONS

DECLARATIONS
EXAMPLFS
INT
TEST

Figure 3.18 The syntax of Mugmaker

The Mugol environment

TEST: main.rain { USE DONTUSE }

DECLARATIONS:

[CHTI..D: weather, inside, soak~ incar
OUT: string result

STATE: decide

ACTIONS:
DONTUSE
USE

CONDmONS:

weather
inside

soaked

EXAMPLES:

sunny
blustery-
wet yes
wet no yes
wet no no
wet no no

in car

no
yes
no

["DONTUSE" -> result]
["USE" -> result]

[weather]
[inside]
[soaked]
[incar]

{wet sunny blustery}
{yes no}
{yes no}
{yes no}

=> (DONTUSE, goal)
=> (DONTUSE, goal)
=> (DONTUSE, goal)
=> (DONTUSE, goal)
=> (DONTUSE, goal)
=> (USE, goal)

Figure 3.19 Mugmaker induction file for Mugol module of figure 3.10

3.9.1. Mugmaker syntax

59

For every Mugol module there exists a Mugmaker file which was used to generate that

module. Figure 3.18 shows the syntax of Mugmaker files. In the following sections we use

illustrative examples to describe the structure of these files.

3.9.2. Single-state module

The Mugol module of figure 3.10 was generated automatically from the induction file of

figure 3.19. The module has only one state where the action is to return a string giving the

The Mugol environment 60

decision. Below we give an infonnal description of the keywords and major sections of this

Mugmaker file.

(a) TEST: is followed by the path of the Mugol module to be induced, "main.rain". Following

this are return value options. In this case the return value is a string with two possible

values: "USE" and "DONTUSE".

(b) DECLARATIONS: introduces a piece of text (between square brackets) to be placed at the

top of the module produced. The declarations indicate the modules associated with "rain".

(c) STATE: is followed by the name of a state in the object module. The actions, conditions,

and examples define the rule for that state.

(d) ACTIONS: indicates a set of action-names found in the implication of example clauses.

Each action name is followed by a piece of Mugol code in brackets, which is substituted for

the action name in the object program. In the umbrella example the actions are simple

assignments of strings to the output argument "result"

(e) CONDITIONS: are a set of value producing expressions. Like actions, each condition name

is followed by a piece of Mugol substitution code in square brackets. Following this in curly

brackets is the set of values that can be produced by this conditional expression. The

conditions have a one-to-one correspondence with the example value vectors. For this

reason, the condition descriptions are stepped in order to line up with the columns of the

example set

(t) EXAMPLES: are vectors of values, one value from each condition expression, each followed

by an (=>) and an (action, next state) pair. These are used to induce the decision tree for

this state. A "-" in an attribute column is called a don't care value. Don't care values are

interpreted as representing all possible values which the corresponding attribute could take.

The Mugol environment 61

Thus an example containing one don't care value for an attribute with N possible values,

actually represents N distinct examples. An examples with more than one don't care value

represents a number of examples equal to the product of all the numbers of attribute values

for which the don't care values are present.

3.9.3. Multiple-state module

The next example file (Figure 3.20) defines a routine with two states. The rules instruct an

individual on the "Heimlich method" actions to be taken in case of an adult choking victim who is

standing up. The conditions to be checked are the victim's airway, consciousness, pulse, and

whether the patient is breathing.

One new feature seen here is compound Mugol statements, joined by ";", as the action

implicated by examples. The statements may be expressions or assignments. Mugol modules

named in expressions will often be primitives written in C. For example, "prints" and "reads" are

C utility routines for printing and reading strings. Each application will typically add its own set of

domain-dependent utility routines.

The Mugol environment

MODULE: main.choko

freed

no
no
yes
yes
no
yes

DECLARATIONS:

l CHILD: ar I
ACI10NS: t• global acti0111 •t

hit [prints "hit victim's back 4 timea\n"]
sweep [prints "sweep victim's mouth with tingertn"]
olc [prints "comfort the victim\n"]

STATE: primary

ACI10NS:
squeeze
brace
amb

CONDmONS:

freed

falling

EXAMPLES:

yea
no
no

yea
no
yea

[prints "squeeze victim's chest 4 times\n"]
[prints '"brace victim to prevent falling\n"]
[prints "call an ambulance\n"]

(reads "Is tho obltnu:tiOD clear?"]
{yea no}

[read "Is the victim falling? "]
{yea no}

colllcioua [reads "Is the victim coDICioua? "]
{yea no}

•> (brace; olc. GOAL)
•> (hit; squeeze; sweep. primary)
•> (brace; hit; squeeze; sweep. primary)
•> (amb, unconsc:ioua)

yea

STATE: unCODICioua

no

yea
yea
yea
no
yea •> (olc. GOAL)

breathing

yea
no
no
no
no
yea

ACI10NS:
thrust [prints "apply 4 chest tluusts\n"]
ar (ar] t• Artificial respiratioa •t
cpr [prints "apply cpr. lS compressi0111, 2 brealbl\n"]
cmt [prints ,et EMT staff take ovet\n"]
olc [prints "You just helped save a life\n"]

CONDmONS:

pulse

(reads "Is the obstsuctiOD clear?"]
{yes no}

[read "Is the victim breathing? "]
{yes no}

[reads "Is there a pulle? "]
{yes no}

conscious [reads "Is the victim conscioua? "]
{yes no}

amb [reads "Has the ambu1aDce arrived?"]
{yea no}

EXAMPLES:

yea no no -> (hit; thrust; sweep, unconscioua)
yes no no -> (ar, unconscious)
yes no no •> (ar, unconscious)
no no no •> (cpr, unconscious)
no no no •> (hit; thrust; sweep; cpr, unconscious)
yes yes no •> (olc, primary)

yes •> (emt. GOAL)

Figure 3.20 Induction file for the choke problem

62

The Mugol environment

MODULE main.choke IS
CHILD: ar
STATE: primary

IF (reads "Is the victim conscious? ") IS
"yes" : IF (reads "Is the obstruction clear? ") IS

"yes" : IF (reads "Is the victim falling? ") IS
"yes" : (prints "brace victim to prevent falling\n";

prints "comfort the victim\n", GOAL)
ELSE (prints "comfort the victim\n", GOAL)

ELSE IF (reads "Is the victim falling? ") IS
"yes" : (prints "brace victim to prevent falling\n";

prints "hit victim's back 4 times\n";
prints "squeeze victim's chest 4 times\n";
prints "sweep victim's mouth with finger\n", primary)

ELSE (prints "hit victim's back 4 times\n";
prints "squeeze victim's chest 4 times\n";
prints "sweep victim's mouth with finger\n", primary)

ELSE (prints "call an ambulance\n", unconscious)

STATE: unconscious
IF (reads "Has ambulance arrived? ") IS
"yes" : (prints "let EMT staff take over\n", GOAL)
ELSE IF (reads "Is the obstruction clear? ") IS

"yes" : IF (reads "Is there a pulse? ") IS
"yes" : IF (reads "Is the victim breathing? ") IS

"yes" : (prints "You just helped save a life!\n", primary)
ELSE (ar, unconscious)

ELSE (prints "apply cpr: 15 compressions, 2 breaths\n", unconscious)
ELSE IF (reads "Is the victim breathing? ") IS

"yes" : (prints "hit victim's back 4 times\n";
prints "apply 4 chest thrusts\n";
prints "sweep victim's mouth with finger\n", unconscious)

ELSE IF (reads "Is there a pulse? ") IS
"yes" : (ar, unconscious)
ELSE (prints "hit victim's back 4 times\n";

prints "apply 4 chest thrusts\n";
prints "sweep victim's mouth with finger\n", unconscious)

GOAL OF choke

Figure 3.21 Mugol module produced from the Mugmaker file of figure 3.19

Each of the two induced states passes control sometimes to the other induced state, and

sometimes to the goal state. Thus looping control algorithms can be induced from a set of

63

The Mugol environment

example files. In figure 3.11:

(a) Under DECLARATIONS, "ar" (artificial respiration) is a child of choke, and is called as·

one of the AcriONs of choke in the STATE called "unconscious".

(b) There are three ACTIONS sections. The first describes actions which are global to both

the STATEs "conscious" and "unconscious." Each STATE also has local ACfiONS to

be used only for the rule in that STATE. All AcriONS apart from "ar" call the C

coded primitive "prints" to print a message to the user.

(c). No global CONDmONS are represented in the induction file. However, both states

have local CONDmONS. These all involve calling "reads" to prompt the user for an

answer. However, a more complex example might call a sub TEST module to test the

condition.

The induction file presented in figure 320 is transformed by Mugmaker into the Mugol

module of figure 3.21.

3.9.4. Induction or a hierarchy or rules

64

Much of the power of the Mugol environment to solve industrial-scale problems derives from

the ability to induce a hierarchy of rules from a set of example files. A list of actions, conditions,

and examples is supplied for each rule in the system, and the automatic induction process generates

both the individual rules for each state, as well as the connections between states in a module, and

between modules.

The choke example above uses a sub-module called "ar" (artificial respiration) as a sub action

module. The example file of figure 3.22 defines the ar routine. The induction file was transformed

by Mugmaker into the Mugol program shown in figure 323.

The Mugol environment

AcriON: main.choke.ar /* artificial respiration */

STATE: arproc
AcriONS:

CONDmONS:

airway [prints "tilt head - open airway\n"]
breath [prints "give 1 breath/5 sec\n"]
ok [prints "reassure victim\n"]
stop [prints "stop applying ar\n"]
monitor [prints "monitor victim\n"]
cpr [prints "apply cpr -15/2\n"]

pulse [reads "Is there a pulse?"]
{yes no}

breath [read "Is victim breathing?"]

EXAMPLES:

yes
yes
yes
no

no
yes
yes
no

{yes no}
breath [read "Is victim conscious?"]

{yes no}

no
no
yes
no

=> (airway;breath, arproc)
=> (stop;monitor, arproc)
=> (ok, GOAL)
=> {cpr, arproc)

Figure 3.22 Induction file for artificial respiration

65

The Mugol environment

MODULE main.choke.ar IS

STATE: arproc
IF (reads "Is victim breathing?") IS

"yes" : IF (reads "Is victim conscious?") IS
"yes" : (prints "reassure victim\n", GOAL)
ELSE (prints "stop applying ar\n";

prints "monitor victim\n", arproc")
ELSE IF (reads "Is there a pulse?") IS

"yes" : (prints "tilt head- open airway\n";
prints "give 1 breath /5 sec\n", arproc)

ELSE (prints "apply cpr- 15/2\n", arproc)

GOAL OF ar

Figure 3.23 Mugol module produced from the Mugmaker file of figure 3.22

3.10. External information sources

66

Virtually all large expert system applications will require access to external information

sources, such as sensors, files, data bases, and specially written or existing programs. External

resources can also be used to incorporate alternate reasoning approaches into a system. External

output to conttol devices to update data bases may also be desired.

To deal with these demands, the Mugol environment allows the developer to set up separate

processes under the operating system. Communication with these other processes is defined by a

simple interface which allows external programs to be called in the same manner as Mugol

modules (see section 3.6.2). At execution time instructions and data are passed across a UNIX pipe

between the Mugol environment and the external programs. These programs can be written in any

language supported by UNIX (eg. FORTRAN, C, LISP, Prolog).

3.1L Conclusion

The Mugol environment is an expert system building package intended to solve many of the

problems involved in the construction of large knowledge based programs. An inductive learning

The Mugol environment 67

system (Mugmaker) allows rapid and effective acquisition of expert knowledge. The Mugol

language allows structured organisation of large quantities of knowledge acquired in such a manner.

Mugol also provides a facility for presenting ordered explanation of reasoning to the level of

elaboration required. However, the Mugol environment does not explicitly support any form of

reasoning based on partial certainty.

In comparison to other expert system approaches we believe that although our knowledge

representation, in the form of decision trees, is no better than that of production systems, the fact

that knowledge can be presented in the form of examples from which rules can be refined means

that the process of knowledge acquisition is greatly eased. It has been noted often during the

construction of Mugol-based applications that whereas designers using dialogue acquisition

methodologies talk of constructing prototype systems in tenns of years, Mugol-based applications

have been consistently prototyped in around six person months.

Typical expert system applications contain aspects of both classification and conttol tasks.

The Mugol environment provides a consistent knowledge representation for these disparate problem

elements. Furthermore, an interface to external sources and sinks of information is provided.

A method of inducing the state transition structure of Mugol modules from trace information

would be desirable. The theoretical basis for such a mechanism is given in chapters 5 and 7.

4

ARCH

Abstract. A small robot planning system, ARCH, was built by the author and an augmented Mugol version

has subsequently been successfully tested by Barry Shepherd using a Rhino robot (see Appendix H). Barry

Shepherd's system builds a specified arch out of children's blocks.

4.1. Introduction

In this chapter we describe how a planner for blocks world problems can be inductively

generated using the Mugol environment The problem chosen is identical to that attempted by

Dechter and Michie (Dechter and Michie, 1984). Whereas Dechter and Michie used "Expert-Ease"

(McLaren, 1984), the choice of Mugol for our re-implementation overcame several of the problems

which they encountered.

The domain of planning deals with finding a sequence of tests and conditional operations

which transforms some initial situation into a goal situation. The problem domain is described by a

situation-space, containing a set of legal situations together with a set of actions. Each action is

usually described in terms of a precondition that should be satisfied by a situation before the action

can be applied, and a postcondition which should hold following the action's application. When

using the inductive algorithm we formulate the set of situations as the set of objects. The set of

attributes is the set of features by which the situations are described. The set of actions are the set

of classes.

For every goal, there is a set of plans, each corresponding to an initial situation, for achieving

this goal. Given such a goal, a situation is classified to the first action in the plan for achieving this

ARCH 69

goal from this situation. Accordingly, for every goa4 a set of examples which partially describe the

above relationships between situations and actions can be created. For this set of examples, a

conditional rule is induced. Thus given an initial situation, the induced rules can be used to select

the appropriate action.

4.2. The problem: building a five block arch

The problem involves generating a plan for the simple activity of building an arch out of five

blocks named A, B, C, D and beam. Five platforms are used to hold the blocks. These platforms

are called pilel, pile2, beam store, right arch and left arch. In the initial world situation, the

blocks ~ B, C, D are stacked on pile 1 and pile2. The beam is placed on the beam store. Figure 4.1

illustrates a typical initial situation. The goal is to build an arch on the right arch and left arch

platforms in the configuration shown in figure 4.2.

The problem was divided into a hierarchy of sub-problems for the Mugol environment This

hierarchy is shown in figure 4.3. Dechter and Michie (1984) showed that without such problem

decomposition, inductively generated decision tree solutions require an unmanageable number of

beam

pile 1 pile 2

Figure 4.1 An initial situation

ARCH 70

beam

c D

r-- ._

A B

left right

Figure 4.2 The goal situation

examples. However, whereas the package used by Dechter and Michie did not allow the creation

and iterative execution of a hierarchy of decision trees, the Mugol environment does (see section

3.9.4). The action main merely calls the top level action arch.

4.3. The action arch

The top level action, arch, defines the order in which five different goals must be reached, ie.

A, B, C and D must be moved to their respective positions and the beam must be placed across the

top. In figure 4.4 we give the Mugmaker file which describes this top level goal. Note that at this

level no examples are needed as the task can be described by this simple sequence of goals.

main.arch is the path leading from the root of the problem hierarchy to this action node. arch

has three children in the problem hierarchy. These are onto, from and to. onto produces a plan

which will move a particular block onto its goal position. from and to are actions which, given that

a block is clear of other blocks, respectively pick up a block from a given position and place it on

some other given position. The action names are used as infix operators (see section 3.7) in

expressions like

"A" onto "the left arch"

ARCH 71

Figure 4.3 Hierarchical breakdown of the problem

ARCH

ACTION: main. arch

and

DECLARATIONS;
[CHILD: onto {100,1,1}, from {110,1,1}, to {100,1,1}]

STATE: only
[("A" onto "the left arch";

"B" onto "the right arch";
"C" onto "A (left arch)";
"D" onto "B (right arch)";
"BEAM" from "beam store" to "C and D",
GOAL)]

Figure 4.4 Mugmaker file describing the top level goal

"BEAM" from "beam store" to "C and D"

Thus the declaration

CHILD: onto {100,1,1}, ...

72

says that onto has a precedence of 100 and takes 1 argument on the left, and one on the right. This

allows a more English-like statement of the required activity than that produced by Dechter and

Michie (1984).

4.4. The action onto

The action onto is described by the Mugmaker file of figure 4.5. onto has two INput

parameters called block and place, as described in the previous section. It also has one child in the

problem hierarchy. onto, like all the modules within ARCH is a single state module. The examples

use a number of ACTIONS which are described between square brackets as small pieces of Mugol

code. eg.

block from "pilei" to place

ARCH

ACTION: main.arch.onto

DECLARATIONS:
[IN: string {block, place}

CHILD: clear]

STATE: decide

ACTIONS:

xitoplace [block from "pilei" to place]
x2toplace [block from "pile2" to place]
clearxi [clear block "pilei"]
clearx2 [clear block "pile2"]
null [null]

CONDmONS:

xon

clearx

pilex

EXAMPLES:

yes
no yes pilei
no yes pile2
no no pilei
no no pile2

[reads "is " #block#" on " #
place # "? (yes/no) "]

{yes no}

[reads "is " # block #
" clear of blocks? (yes/no) "]

{yes no}

[reads "which pile is " #
block#
" on? (pilellpile2) "]

{pilei pile2}

::s> (null, GOAL)
=> (xI top lace, GOAL)
=> (x2toplace, GOAL)
=> (clearxi; xltoplace, GOAL)
=> (clearx2; x2toplace, GOAL)

Figure 4.5 The Mugmaker file describing the action 'onto'

73

says that the block given to onto as a first parameter must be picked up from pile 1 and put onto the

place given as onto's second parameter. The possible siruations are described using the

CONDmONS xon, clearx and pilex. These merely invoke questions which are directed at the user.

ARCH 74

In terms of these three CONDITIONS, a set of EXAMPLES are given which specify what to do

under different circumstances. The action done for each circumstance is paired with the next state

to enter, which for each of these is GOAL. Entering the GOAL state returns control from the

action being carried out.

Note the use of parameterisation (i.e. block and place) in this module. This was found by

Dechter and Michie (1984) to be particularly awkward to simulate using Expert-Ease (McLaren,

1984).

4.5. The action clear

The action clear is described by the Mugmaker file of figure 4.6. In the examples for clear,

if there is nothing on the block being cleared, then the goal has been reached. If one of the blocks

A-D is on the block being cleared, then clear is recursively called for the upper block. Once the

upper block has been cleared, it is moved to the other pile.

The use of recursion in an inductively generated solution for clearing blocks was suggested

by Dechter and Michie (1984). However, again because of the limitations of Expert-Ease, a

separate decision tree needed to be developed for clearing "A", clearing "B", clearing "C" and

clearing "D". As shown, this can be avoided when using the Mugol environment by careful use of

parameterisation.

However, figure 4.6 illustrates a weakness of the Mugol environment which was noted by

Dechter and Michie with reference to Expert-Ease i.e. actions and condition values cannot be

parameterised. With the solution shown in figure 4.6 it would have been useful to be able to write

examples of the form

ARCH

ACTION: main.arch.onto.clear

DECLARATIONS:

STATE: decide

[IN: string {block, place}
CHILD: other {120,0,1}]

ACTIONS:
A other
Bother
Cother
Dother
clear A
clearB
clearC
clearD
null

["A" from place to other place]
["B" from place to other place]
["C" from place to other place]
["D" from place to other place]
[clear "A" place]
[clear "B" place]
[clear "C" place]
[clear "D" place]
[null]

CONDffiONS:
onx

[reads "which block is on" #block
"? (NB/CID/nothing) "]

{nothing AB CD}

EXAMPLES:
nothing => (null, GOAL)
A => (clearA; Aother, GOAL)
B => (clearS; Bother, GOAL)
C =-> (clearC; Cother, GOAL)
D => (clearD; Dother, GOAL)

Figure 4.6 Mugmaker file describing the action 'clear'

CONDffiONS:

onX

EXAMPLES:

nothing => (null, GOAL)

y => (clear(Y); to_other(Y), GOAL)

75

ARCH 76

4.6. A session

Given the initial situation presented in figure 4.1, the Mugol program produced from the

Mugmaker files for this problem produces the interaction shown in figure 4.7. User answers are

shown in italics and primitive operations in the plan are shown in bold print.

Oearly, although rather a lot of questions are asked, a plan is produced which satisfies the

goal.

4. 7. Conclusion

Arch building is a classic Artificial Intelligence problem in which search-based planners are

often employed. The Mugol environment facilitates the development of an· elegant inductive

solution to the ARCH problem by supporting hierarchical problem decomposition, the use of

variables, parameterisation and user definable expression syntax. Whereas a classical search-based

planning solution to this problem might be able to deal with four or five brick problems before

computational overheads became too high, Barry Shepherd has shown that the solution presented

here can be extended to thirty or forty brick problems without such overwhelming overheads (see

Appendix H). The advantage of search-based planning over merely programming a solution lies in

the fact that the specification is simple, declarative and compact. However, inductive specifications

also have these advantages.

Further work needs to be done to allow the use of variable condition values in examples.

ARCH

is A on the left arch? (yes/no) no
is A clear of blocks? (yes/no) no
which pile is A on? (pilellpile2) pilei
which block is on A? (A/B/C/0/nothing) C
which block is on C? (A/B/C/0/nothing) nothing

!! pick up C from pilel
! ! put C onto pilel
!! pick up A from pilel
!! put A onto the left arch

is B on the right arch? (yes/no) no
is B clear of blocks? (yes/no) no
which pile is B on? (pilel/pile2) pile2
which block is on B? (A/B/C/0/nothing) D
which block is on 0? (A/B/C/0/nothing) C
which block is on C? (A/B/C/0/nothing) nothing

!! pick up C from pilel
!! put C onto pilel
!! pick up D from pilel
!! put D onto pilel
! ! pick up B from pilel
!! put B onto the right arch

is Con A (left arch)? (yes/no) no
is C clear of blocks? (yes/no) no
which pile is C on? (pilellpile2) pilei
which block is on C? (A/B/C/0/nothing) D
which block is on 0? (A/B/C/0/nothing) nothing

!! pick up D from pilel
!! put D onto pilel
!! pick up C from pilel
!! put C onto A (left arch)

is 0 on B (right arch)? (yes/no) no
is 0 clear of blocks? (yes/no) yes
which pile is 0 on? (pilellpile2) pile2

!! pick up D from pilel
!! put D onto B (right arch)

!! pick up BEAM from beam store
!! put BEAM onto C and D

Figure 4. 7 User interaction for blocks problem

77

5

Overview of grammatical induction theory

Abstract. The Mugol environment in its present form demands that the control structure of Mugol finite state

machines be hand-<:oded. In this chapter and chapter 7 we investigate techniques for automatically

constructing finite state structures from trace information. The techniques are based on "grammatical

induction", i.e. discovery of grammar from example sentences. First we present a survey of algorithms which

infer a regular language from a given subset of that language. We introduce a general algorithm for this task,

which has a low order polynomial time complexity. Several previously devised algorithms are demonstrated

by way of adaptations to this general algorithm.

S.l. Introduction

This chapter deals with grammatical induction techniques, that is, methods of hypothesising

the grammar rules of a language from example "sentences". For the reader's convenience we will

repeat some of the details concerning finite state machines found in chapter 2.

We have limited the scope of investigation to the inference of regular languages (for a

general survey of inductive inference methods see (Angluin and Smith, 1982)). As an example of

the kind of problem which we intend to solve, let us suppose that we present the inductive

inference program with the following sample of strings

aaabbb

ab

abb

b

a

Overview of grammatical induction theory 79

We might expect it to return with the rule

This represents the regular language

one or more a's followed by one or more b' s

Alternatively we can describe a machine which accepts strings of this kind diagrammatically as a

finite state acceptor. Indeed it has been shown (Hopcroft and Ullrnan, 1979) that any regular

language can be recognised by some finite state acceptor. As the converse is also true, i.e. any

finite state acceptor can be expressed as a regular expression, these representations are equivalent. ·

The aim of this investigation is to develop an algorithm for inducing Mugol modules (see

chapters 2 and 3) from traces of their intended execution (i.e. sequences of calls to predefined tests

and actions). Finite state acceptors differ from the type of finite state automata which represent

Mugol modules, in that the arcs of finite state automata are labelled with pairs of tokens rather than

singlets. Although the methods of induction presented here are for finite state acceptors, adaptations

a b

Figure 5.1 The finite state acceptor representing the language a•b•

Overview of grammatical induction theory 80

of these algorithms to produce finite state automata are presented in chapter 7. These adapted

algorithms build automata in Mealy machine form from trace information. We call this adapted

form of grammatical induction sequence induction.

Most papers on this subject suggest particular solutions to the problem. The algorithms

presented are tailored to be as efficient as possible for the heuristic being used; for the sense in

which heuristic is here used, see section 5.4.5 and following. We attempt to show that by devising

a general algorithm ("llvtl", section 5.4.3 below) which can be specialised to any one of a number

of existing grammatical inference schemes eases comparison of the properties of the latter. In

section 52 and 5.3 we present a brief resume of the background of this research. In section 5.4 we

give the theoretical results of grammatical induction from positive samples. In section 5.5 the

issues of section 5.4 are discussed in an informal fashion by use of examples which illustrate the

behaviour of various algorithms.

5.2. Language Identification

Gold's theoretical study of language learnability (Gold, 1967) introduced an abstract setting

for the problem of grammatical induction. The grammatical induction problem is that of deciding

which language L from a class of languages C is characterised by a set of examples E. An

example from the set E can be positive or negative in the sense that it is stated whether it is inside

or outside L. Thus supposing C is the set of regular languages over the symbol set 1: ::z {0,1}, then

E = { <OO,in>, <l,out>, <ll,in>, <000ll,in>, <01000,out:>, .. }

might exemplify the regular language L = (0, 10*1)* containing only binary strings of even parity

(this is the same problem as that of section 2.6.2 with 0 and 1 replacing false and true

respectively). In Gold's work, inference is carried out on an infinite list of examples containing

one or more occurrences of every possible string along with an indication of whether it is in the

target language. Gold defined an inference algorithm I as identifying a language in the limit if and

only if after a certain number of examples are provide~ I chooses the correct explanation and does

not subsequently change this explanation as more examples are presented.

Overview of grammatical induction theory 81

Next Gold introduced the general inference technique of identiftcmion by enumeration in

which a generator exhaustively postulates in some fixed order L1, L,., ~. ... all languages L; from

the set C and rewms the first which is consistent with the examples so far.

Gold went on to show that for any class of languages C containing all finite languages (those

with a finite number of legal sentences) and at least one infinite language, it is impossible for an

inference algorithm to identify an arbitrary element of C using only positive examples. This can

easily be seen by taking C to be the set of regular languages over the symbol set ~ and showing

that for any positive example set E there are at least two languages which can be postulated;

namely the universal language ~· and the finite language containing only the members of E.

Gold distinguishes between two types of presentation of mixed positive/negative examples. A

presentation can be text, in which case the inference algorithm I is presented with a passive list of

facts. Alternatively, I can be supplied with an informant or oracle, an agent which answers

membership questions about the unknown language.

5.3. Mixed Positive/Negative Presentations

Although regular sets can be identified from positive and negative text, Angluin (Angluin,

1978) has shown that the problem of finding a minimal regular expression from such samples is

NP-hard. Furthermore, Gold (Gold, 1978) showed that the corresponding problem of finding a

minimal finite acceptor from positive and negative samples is also NP-hard.

Given an oracle, Moore (Moore, 1956) has shown that it is possible to identify a language

only if we are also given additional information about L. Moore's algorithm has an NP complexity

bound, and requires, as additional information, an upper bound on the number of states in the

canonical (state-minimal) acceptor of L. Pao and Carr (Pao and Carr, 1978) and later Angluin

(Angluin, 1982a) suggest the use of a representative sample of L, that is, a finite subset of L that

exercises every transition in the canonical acceptor of L. Whereas Pao and Carr's enumerative

algorithm is NP in the number of queries made of the oracle, Angluin' s algorithm requires only a

polynomial number of queries for the same problem.

Overview of grammatical induction theory 82

5.4. Theoretical results of grammatical induction from positive samples

In section 5.2 we stated Gold's theorem which says that particular classes of languages

cannot be identified in the limit from positive examples only. This does not imply necessarily that

negative examples are an imperative, only that some form of additional constraint must be used in

order to guarantee identification in the limit. In this section we investigate algorithms which use

parameterised constraint predicates which allow identification of languages in the limit from

positive example sets. As might be expected, all these algorithms have the property that the

proposed language L does at least contain the sample setS.

As far as the author is aware, there are only four algorithms in the literature for inducing

finite state automata from positive examples. A general algorithm is given in § 5.4.3 which, with

suitable alteration of the driving heuristic produces the same results as all of the existing algorithms

except Angluin's (Angluin, 1982b).

5.4.1. Definitions

Below we present some basic definitions from set theory and formal language theory which

will be used both in this chapter and chapter 7. The notation used roughly follows that of Angluin

in (Angluin, 1982b).

!SI - the cardinality of the setS.

2s - the power set of S, 2s = { S' : S' !:: S }. 12sl = 2ISI.

- a finite alphabet with cardinality 11:1 ~ 2.

Overview of grammatical induction theory 83

:E* - the infinite set of strings made up of zero or more letters from :E.

- the empty string.

uv - the concatenation of the strings u and v.

lul - the length of string u.

- the reverse of the string w.

L - a language L is any subset of l:*.

Lr -the reverse of L, Lr = {w: wE L}.

Pr(L) - the prefixes of elements of L, Pr(L) = {u: for some v,uv E L}.

TL(u) - the left-quotient of u in L, TL(u) = {v: uv E L}.

Overview of grammatical induction theory·

Tf(u) - the k-tails of u in L, 7!(u) =- {v: v e TL(u), lvl S k}.

- a positive sample s+- of L is any finite subset of L.

1ts - a partition of some set S, 1ts, is a set of pairwise disjoint nonempty subsets of S

B(s,1ts)

refines

such that the union of all sets in 1ts is equal to S.

- the unique block (element) of 7ts containing s, where s e S.

- given two partitions, 1t and 7t', 1t refmes 1t' if and only if every block of 7t' is a

union of blocks of 1t.

- the characteristic predicate function of a partition over S is defined as

ftrue if s,s' e S, B(s,1ts) - B(s',1ts)

Xlts(s,s') = ltalse otherwise

X can easily be shown to be an equivalence relation. A relation R is an Jts

equivalence relation if and only if it has the properties of being reflexive (for all s

e s+-. Xlts(s,s) is true), transitive (X1Cs(s,s') and Xlts(s',s") implies X"s(s,s")) and sym-

metric (Ms(s,s') implies xJts<s',s)).

84

Overview of grammatical induction theory

A • an acceptor is a tuple A =- (Q, 1:, o, I, F), where Q is the non-empty finite state

set, 1: is the input alphabet, o: 2Q x 1:--+ 2a, is the transition function. The transi

tion function for strings O*: 2Q X 1:* --+ 2Q, is defined using the recursive

definition

o*<Q',A.> .. Q'
o*(Q',bu) .. o*(o(Q',b),u)

where q e Q, b e 1: and u e 1:*, I ~ Q is the set of initial states, and F ~ Q is

the set of final states. A deterministic acceptor is defined similarly, the difference

being that /, 0 and o* represent single element sets. When dealing with determinis-

tic acceptors, we will write q0 for the initial state set I = {q0}, o(q,b) = q' for

O({q},b) = {q'} and o*(q,u) = q' for o*({q},u) = {q'}.

L(A) - the regular language L(A) recognised by A consists of strings u which are accept-

ed by A, that is o*(/,u) e F.

or - the reverse transition function or is defined as

or(Q',a) = {q': q e O(q',a)} for all a e 1:, q e Q.

85

Overview of grammatical induction theory

A' - the reverse of the acceptor A is A' = (Q. L. 5'. I. F). Diagrammatically, A' is A

with the initial and final states swapped and all transition arcs reversed in direc

tion. It can easily be shown that L(A') = (L(A))'.

In the following, let A = (Q. :E. 5. I. F) and A' = (Q'. :E'. 5'. I'. F') be two acceptors.

a-successor- for some q, q' e Q. a e t, q is an a-successor of q' if and only if q e 5(q',a).

k-follower - a string u is said to be a k-follower of a state q e Q if and only if lul = k and

5(q,u) * 0. Every state has exactly one 0-follower, namely A..

k-leader - a string u is a k-leader of a state q e Q if and only if 5'(q,u') * 0. Every state

also has exactly one 0-leader, A..

isomorphic - we say that A is isomorphic to A' if and only if there exists a bijective mapping

h: Q -+ Q' such that h(l) = !', h(F) = F', and for every q e Q and b E :E,

h(5(q,b)) = 5'(h(q),b). In other words, two acceptors are isomorphic if a renaming

of their states makes them identical.

86

Overview of grammatical induction theory

subacceptor- A' is a subacceptor of A if and only if Q' ~ Q, I'~/, F' ~ F and for every q' e

Q' and b e ~ o'(q',b) ~ o(q',b). Alternatively, A' is a subacceptor of A if and only

if L(A') ~ L(A). Diagrammatically a subacceptor is formed from an acceptor by

removing some nodes and arcs from the transition diagram of the original accep

tor.

live - if q E Q, then q is called live if and only if for some U,V, q E o*(/,u) and O(q,v)

r1 F -:1: 0. A state is called dead if it is not live. A' is called a stripped subaccep

tor of A if and only if Q' ... {q': q' e Q and q' is live}.

Al1ta - let 7ta be some partition of Q, the state set of A. A' ... Al1tQ, the quotient of A

and 7ta is defined as follows. Q' is the set of blocks of 1ta· I' is the set of blocks of

7ta that contain at least one element of I. Similarly, F' is the set of blocks of 1ta

that contain at least one element of F. Block B2 is a member of o'(Btta) if and

only if there exists q1 e B1 and q1 e B1 such that q1 e O(q1,a).

87

Overview of grammatical induction theory

A(L) - the canonical or minimal acceptor for a language L, A(L) :s (Q, :E, o, I. F) is

defined as follows

PT(s+)

Q = {TL(u): u E Pr(L)},

I= {TL(A.)} if L -:~: 0, otherwise I :s 0,

F = {TL(u): u e L},

if u,ua e Pr(L).

Note that the canonical acceptor A(L) has the minimum number of states possible

for an acceptor of L. None of these states is dead, thus A(L) is stripped. Any ac

ceptor A' which is isomorphic to A(L) is called canonical.

- if s+- is a positive sample of L, we define the prefix tree acceptor of s+-, PT(s+) =

(Q, 1:, o, I, F), as

Q = Pr(s+),

I :s {A.} ifs+-:~: 0, otherwise I - 0,

F = s+-,

O(u,a) ,.. ua whenever u,ua e Pr{s+).

representative sample

- s+- is a representative sample of L if and only if for every transition {q,b) in A(L)

there is a string u e s+ which exercises {q,b).

88

Overview of grammatical induction theory 89

acceptor for s+. Let 7tP7{s+) be the partition 1tc. restricted to Pr(s+). Then A(/1tP1{s+) is isomorphic to

a subacceptor of A(L). Thus L(Ac/1tP1{s+)) ~ L.

Corollary 5.2. L(AJ1tP1{s+)) is contained in L.

The following Lemma is due toFu and Booth (Fu and Booth, 1975)

Lemma 5.3. Every acceptor Al1tP1{s+) derived from the prefix sets+ is a valid solution.

5.4.3. Algorithm IMl

We now present a simple, though general, algorithm for carrying out inference by merging

the states of PT(s+). Many of the algorithms in the literature are special cases of this algorithm.

Describing these algorithms in terms of our algorithm, IMl, facilitates their presentation and

comparison. To the author's knowledge no algorithm similar to IMl has appeared in any

publication previously.

Overview of grammatical induction theory 90

Jl\.11 applies the characteristic predicate Xx (~v) (hereafter called X(~v)) to every pair
Pr{s+)

u,vePr(s+). If X returns true, IMl merges the blocks containing u and v. The resultant acceptor

Aof1tt is non-deterministic. Hopcroft and Ullman (Hopcroft and Ullman, 1979) give an algo-

rithm which can be used to convert this to the equivalent minimal deterministic acceptor.

Algorithm IMl

Input: a nonempty positive sample s+'

Output: the acceptor Ao/1t Pr(s+)

• Initialisation Let Ao .. (Q0, l:, So. I O• F o) be PT(s+). Let 1to bo the trivial partition of Qo- Let i • 0.

• Merging For all pairs (~V) in Qo do begin

lfX(~v) then begin

Let Bt • B(~1t;). B2 • B(v,1t;).

Let 1ti+t be 1t; with Bt and B2 merged.

Increase i by 1. end end

•Termination

Let/= i and output the acceptor Ao/1tf

5.4.4. Time complexity of IMl

As every pairwise test of elements of Q0 is made, X is applied n(n-1)/2 times, where n = IQ01.

Thus the time complexity of the algorithm is 0(n2
).

5.4.5. Heuristics used in the literature

Although the heuristics described in (Angluin, 1982b; Biermann and Feldman, 1972; Levine

1982; Miclet 1980) were not originally described in terms of the function X of Jl\.11, predicates

Overview of grammatical induction theory 91

giving equivalent results can easily be described and compared in this manner.

5.4.5.1. Biermann and Feldman 's k-tail predicate

Biermann and Feldman's heuristic (Biermann and Feldman, 1972) is functionally equivalent

to the predicate

frrue if 7*s+-(u) = 7*s+-(v)

x<u,v> = ltatse otherwise

where k is some positive integer supplied by the user. The resultant acceptor A is more compact the

smaller k is. Biermann and Feldman proved that given the correct value of k for the target

language, their algorithm will identify in the limit an acceptor A which when minimised is

isomorphic to A(L). However, the correct value of k cannot be determined without first knowing

what A(L) is. Biermann and Feldman show that by using a hashing function to merge states it is

possible to carry out induction using this predicate in O(n) time.

5.4.5.2. Levine's heuristic

Although Levine (Levine, 1982) applied his heuristic algorithm primarily to inference of tree

systems, he shows that it is also possible to use it for inference of finite acceptors. Levine defines a

strength function which measures the maximum overlap between pairs of tail sets .

The heuristic predicate he uses is

frrue if Stren(u,v) ~ Strn
x(u,v) = 1false otherwise

• i ~ 0

where Strn is a user defined parameter in the range 0 to 1. As with Biermann and Feldman's k

parameter, the acceptor has a compactness which is roughly proportional to the value of Strn. The

calculation of Stren itself has an upper bound time complexity of O(n), thus giving the complete

algorithm a time complexity of 0(n3
) when using IMl.

Overview of grammatical induction theory 92

5.4.5.3. Miclet's algorithm

Miclet (Miclet, 1980) designed a heuristic algorithm based on statistical clustering techniques.

The algorithm uses a distance function to do successive clustering and merging of states. Although

this is a fairly general methodology, in his examples he uses a heuristic which approximates in its

results . to one described fully by Angluin (Angluin, 1982b). The heuristic identifies in the limit the

maximally sized zero-reversible language containing the input sample. The heuristic is the simplest

of all those presented here. The zero-reversible heuristic described by Angluin is equivalent to

ftrue if T s+(u) t1 T s+(v) -:1: 0

X(u, v) = lralse otherwise

Angluin in (Angluin, 1982b) presents a method of computing A using this heuristic in

approximately O(n) time.

5.4.5.4. Angluin's heuristic algorithm for k-reversible languages

Angluin (Angluin, 1982b) has shown that there are a class of languages, that she calls k-

reversible, which can be identified in the limit The acceptor A is defined to be "deterministic with

lookahead k" if and only if for any pair of distinct states q1 and q21 if q1, q2 e I or q1, q2 e S(q3,a)

for some q3 e Q and a e L, then there is no string that is a k-follower of both q1 and q2• This

guarantees that any noncleterministic choice in the operation of A can be resolved by looking ahead

k symbols past the current one.

An acceptor A is defined to be k-reversible if and only if A is deterministic and Ar is

deterministic with lookahead k. A language L is defined to be k-reversible if and only if there exists

a k-reversible acceptor A such that L = L(A).

Angluin presents an algorithm which, starting with the prefix tree acceptor, successively

refines acceptors by merging any two states q1 and q2 which violate the condition of k-reversibility.

The algorithm continues this process until no such pair of states q1 and q2 exist As no more than n

mergers can be made (the prefix tree acceptor contains only n nodes}, and 0(n2
) comparisons must

be made for each merger, the time complexity of the algorithm is 0(n3
). Angluin shows that her

Overview of grammatical induction theory 93

heuristic will identify in the limit any particular language in any of the classes of k-reversible

languages. However, she also shows that not all regular languages are members of a k-reversible

language class.

5.4.6. Limitations of existing heuristics

It may be seen from inspection that a common factor of all the heuristics listed above is that

T s+-(u) fi T s+-(v) * 0 must at least hold for X(u,v) to be true. The following theorem shows the

limitation of such a requirement.

Theorem 5.4. For any X(u,v) which implies T s+-(u) fi T s+-(v) = 0, the induced partition 1tPrl.s+) is

the trivial partition 7rQ whenever ls+l = 1.

Proof. Let s+ = {w}. Let two distinct prefixes of w be Ut and u,. Let T s+-(u1) = {v1} and

T st"(ui) = {v2}. As Ut and u2 are distinct prefixes of w, lutl * lu21 and lwl = lutl + lvtl = lu2l + lv21·

Thus v1 * v2, T s+-(u1) * T s+-(u2) and X(u1,u2) will always be false. As no mergers would ever be

made, 1tP1(s+) = 1to· QED.

Human beings are capable of making inferential "guesses" about regular languages from

single pieces of evidence. For instance, given the string

aaabbb

one might suspect L to be

a*b*

The author's k-contextual algorithm presented in chapter 7 avoids this limitation.

S.S. Informal presentation of results

Having been presented with a sample of a particular regular language, the first step in our

general method of finding an appropriate candidate acceptor is to fonn the unique prefix tree

acceptor corresponding to the sample. This prefix tree acceptor is itself a finite acceptor. It is

Overview of grammatical induction theory 94

formed by taking each string in the sample and using it to extend a path from the tree root to one

of the leaves. The individual segments of the string are used as the labels of the arcs along this

path. Moreover, any state at which a string terminates is marked in a special manner with a double

ci.rcl~ and called an accepting state. Note that. whereas all leaves are accepting states, accepting

states. can also be found at some internal nodes of the tree. Figure 5.2 illustrates the relationship

between the sample and the prefix tree. Clearly this finite acceptor will accept no more and no less

than the strings presented in the sample. As with any tree, we can name each node uniquely by

describing the path from the root to that node. In the case of the prefix tree acceptor shown above,

we can represent the states as the set of all prefixes of strings in the sample,

Pr(s+) = {A.,a,b,aa,ab,bb,aab,abb}

where A. is the empty string representing the root node, or start state.

Sample, s+": { ab,bb,aab,abb}

Prefix tree acceptor, PT(s+"):

Figure 5.2 A positive sample and its corresponding prefix tree acceptor

Overview of grammatical induction theory 95

By merging some of the nodes of the acceptor of figure 5.2 it is possible to form a smaller

acceptor which will still accept only the strings represented in the sample. This new acceptor is

shown in figure 5.3. The acceptor of figure 5.3 is in fact the smalles4 or canonical acceptor which

will accept only the sample (this has been confirmed algorithmically). By further merger of the

states of the acceptor of figure 5.3 we produce acceptors which accept successively more and more

strings. In this way it is possible to infer languages which are generalisations of the original

sample, and of which the sample is a proper subset To illustrate this figure 5.4 shows an acceptor

formed by the merger of three of the states of the acceptor of figure 5.3. This process of merger, if

carried on in an arbitrary manner will in the limit produce an acceptor containing a single state and

single arc. Such an acceptor, called a universal acceptor, accepts any string consisting of symbols

present in the original sample. This is shown in figure 5.5. This result is almost certainly an over

generalisation of the target grammar. Thus it is necessary to introduce a restraining factor into the

inference process. This is done by using a predicate to qualify the merger of candidate states. This

Language accepted, s+": { ab,aab.abb,bb}

Canonical acceptor, A(s+):

Figure 5.3 The canonical acceptor of the sample

Overview of grammatical induction theory 96

Acceptor of L:

Figure 5.4 A new acceptor derived from that of figure 5.3

Acceptor of L:

a,b

Figure 5.5 The universal acceptor for the symbol set {a.b}

predicate is called the characteristic predicate and is often merely a heuristic. During the process

of inference every possible pair of nodes in the original prefix tree acceptor is tested using the

heuristic to decide whether they should be merged in the resultant acceptor.

Overview of grammatical induction theory 97

5.5.1. Various heuristics

All heuristics developed so far for this problem have depended on matching some local

properties of pairs of candidate nodes. If the heuristic does find a match then the nodes are merged.

Below we sketch informally how four of these matching heuristics work.

5.5.1.1. Biermann and Feldman's k-tail heuristic

Biermann and Feldman (Biermann and Feldman, 1972) describe a heuristic which merges

states having identical "k-tail" sets. A k-tail of a node is a string of length k or less formed by

taking a directed path from that node to an accepting state in the prefix tree acceptor of the sample.

We will refer to the states of the prefix tree acceptor in figure 5.2 by way of the unique prefix of

each node (these are given immediately below figure 5.2). Below we denote the k-tail set of a

particular node by T!+(prefix). k is some integer value chosen by the user. Thus for the prefix tree

acceptor of figure 5.2, with k=l,

T~(A.) =0

T~(a) = {b}

T~(b) = {b}

T~(aa) = {b}

T~(ab) = {A.,b}

T~(bb) ={A.}

T~(aab) ... {A.}

T~(abb) ={A.}

We can now partition the original prefix set into subsets of prefixes with matching tail sets

{ {A},{a,b,aa},{ab},{bb,aab,abb}}

The effect of having merged these nodes is shown in figure 5.6. The reader may notice that two

Overview of grammatical induction theory 98

Language accepted, L: (a,b)a*(b,bb)

Prefix tree acceptor, PT(s+):

a

Figure 5.6 Effect of k-tail inference, k-2, on prefix tree acceptor of figure 5.2

arcs labelled with a "b" emanate from the state labelled "2" in the diagram above. This implies that

a non-deterministic decision must be made at this point when exercising the acceptor. Such an

acceptor is called a non-deterministic acceptor and can transformed to an equivalent deterministic

acceptor using a procedure described in (Hopcroft and Ullman, 1979).

5.5.1.2. Levine's heuristic

Le vine's (Le vine, 1982) heuristic is based on maximising and thresholding a function on each

pair of states in the prefix tree acceptor. For each pair of states (u, v) in the prefix tree acceptor we

compute the function

[21T~(u) f1 T~(v)l]
Stren(u,v) = max 0 0

i IT~(u)I+IT~(v)l
, i '?:. 0

In order to demonstrate the algorithm, we present below the tail sets of all states in the prefix

tree acceptor of figure 5.2. These tail sets are equivalent to k-tail sets with k set to infinity. In

Overview of grammatical induction theory 99

figure 5.7 we show the 2-dimensional matrix representing the computation of Stren for all pairs of

states.

T s+-(A.) = {ab,bb,aab,abb}

T s+"(a) = {b,ab,bb}

T s+-(b) = {b}

T s+-(aa) = {b}

T s+-(ab) = {A.,b}

T s+-(bb) = {A.}

T s+-(aab) ={A.}

T s+-(abb) ={A.}

For purposes of thresholding, the user provides a value Strn between 0 and 1. If Stren(u,v)?:Strn

for any pair (u,v) then this pair is merged. Thus if we choose Strn to be 213 we get the partition

representing the universal acceptor (figure 5.5). By setting Strn to 4/5 rather, we produce the

following partition

{ {A.,a,b,aa }, { ab,bb,aab,abb}}

A. a b a a ab bb aab abb
A. 1 415 0 0 0 0 0 0
a 415 1 1 1 2/3 0 0 0
b 0 1 1 1 2/3 0 0 0
aa 0 1 1 1 2/3 0 0 0
ab 0 2/3 2/3 2/3 1 1 1 1
bb 0 0 0 0 1 1 1 1
aab 0 0 0 0 1 1 1 1
abb 0 0 0 0 1 1 1 1

Figure 5.7 Matrix of Stren for all pairs of states

Overview of grammatical induction theory 100

Figure 5.8 shows the acceptor representing this partition.

5.5.1.3. Miclet's heuristic algorithm

Miclet (Miclet, 1980) gives an algorithm which is general in the sense that it can be used

with a variety of heuristics. However, he uses it with a heuristic which is equivalent to applying

Levine's heuristic with Strn always set to be the lowest non-zero value represented in the matrix.

As shown above, this leads to production of the universal language with our particular example.

5.5.1.4. Angluin's heuristic algorithm for k-reversible languages

Angluin's algorithm (Angluin, 1982b), like others describ~ uses a parameter k provided by

the user. The algorithm operates by successively merging any two states q1 and q2 for which one of

the conditions represented in figure 5.9 holds. In words these conditions are

Language accepted. L: (a,b)*b+

Acceptor of L:

a,b b

Figure 5.8 Acceptor produced from sample using Levine's algorithm. Strn-415

Overview of grammatical induction theory 101

Either 1)

b a L

Or 2) a) b)

u u

Figure 5.9 Graphical represeDlation of conditioos for merger of ql and q2

1) There exist two arcs labelled with a common symbol leading out from state q3 to q1 and q2•

2) Two paths labelled with a common string of length k lead to q1 and qz, where q1 and q2 are

either a) both accepting states or b) both have paths· labelled with a common string of length

1 leading to some state q3•

Figure 5.10 shows the result of applying Angluin's heuristic with k=1 to the prefix tree acceptor of

figure 5.2. When minimised, this acceptor represents the language a*b+. Of all the results from

heuristic predicates presented so far, this seems to be the most intuitively correct guess for the

sample s+. However, as Angluin's algorithm has a time complexity of 0(n3
) this algorithm is not

practical for large samples.

Overview of grammatical induction theory 102

Language accepted. L:

Acceptor of L:

a

b

Figure 5.10 The result of applying Angluin's algorithm. k•1

5.6. Conclusion

We have presented a general efficient algorithm for computing and enabling comparison of a

very large class of heuristic algorithms. It is evident that an increasing number of heuristic

approaches exist for inferring regular languages. One of the goals of this chapter is to show that by

use of a general framework for testing and comparing existing approaches re-implementation of

large numbers of algorithms can be avoided.

6

Sequence induction applications

Abstract. In this chapter we describe six small but varied applications of the KR and SKR induction

algorithms of chapter 7.

6.1. Introduction

Inductive algorithms, such as ID3 (Quinlan, 1979), take sample descriptions of a static world

and produce generalisations of these descriptions. For many real world problems it is more

appropriate for descriptions of activities to be given as sequences of static descriptions changing

over time.

In this chapter we describe the application of sequence induction (see chapters 5 and 7) in a

varied set of domains. Our intention is to investigate the applicability of sequence induction

techniques within the Mugol environment In chapter 5 we described a number of algorithms for

carrying out grammatical induction. In that chapter we showed that one of these algorithms, that of

Angluin (section 5.4.5.4), gave better results than any of the others (section 5.5.1.4). However, we

noted that Angluin's k-reversible algorithm runs in time 0(n3) and is thus not practical for large

samples. Nevertheless, in the following chapter (section 7 .2) we give an algorithm (KR) which is

input/output equivalent to Angluin's k-reversible algorithm, but runs in time O(n). In this chapter

we use both KR (used in section 6.2) and a sequence induction version of KR called SKR

(described in 7.4.5 and used in sections 6.3 - 6.7).

Sequence induction applications 104

6.2. A simple grammar

This experiment was to see if the KR algorithm could induce the grammar a*b*, (zero or

more a's followed by zero or more b's). The algorithm requires a small integer value, k, to be

given to it to tell it how much generalisation is necessary. Generally the smaller k is, the more

compact its guess. In this experiment k =- 1 since k =- 0 leads to an over-generalisation, the

automaton having only a single state.

Given the set of sentences

s+ =- { ab,bb,aab,abb}

the KR algorithm infers the automaton which is shown as a state transition table in figure 6.1.

't is merely a termination symbol. Thus state 2 is shown to be an acceptor state by the fact

that a termination symbol can be accepted. State 0 is the start state of the automaton. As in

Mugol (see chapter 3}, the unique goal state has no outgoing arcs. In descriptions of automata

given in later sections of this chapter the symbols are situation/action pairs, and in any system

Present State Input symbol Next State

0 a 1
0 b 2

1 a 1
1 b 2

2 b 2
2 't GOAL

Figure 6.1 Induced state transition table for sentences {ab,bb,aab,abb}

Sequence induction applications 105

producing state example information for Mugmaker, 't would be given by the user as the

situation/action pair used when control is returned from the Mugol module.

The automaton shown above, is not the target language a*b* (0 or more a's followed by 0 or

more b's). In order to get the algorithm to find a*b* it is necessary to give it the strings a and A.

(empty sentence) in addition to the sentences provided. Thus the sample sentences given to the

algorithm would be

s+ :z {A.,a,ab,bb,aab,abb}

The resultant automaton is shown as a state transition table in figure 6.2 and as a state

transition diagram in figure 6.3.

This represents the desired automaton, although it is not minimal. Minimisation of automata

is a well understood process, and a standard algorithm could be used for this purpose.

Present State Input symbol Next State

0 a 1
0 b 2
0 't GOAL

1 a 1
1 b 2
1 t GOAL

2 b 2
2 t GOAL

Figure 6.2 Induced state transition table for sentences {A.,a,ab,bb,aab,abb}

Sequence induction applications 106

a b

b

Figure 6.3 Diagrammatic representatioo of figure 6.2

6.3. 1 bit binary adder

In the next experiment we try to infer a 1 bit binary adder. Such a piece of circuitry can be

produced automatically as a VLSI layout once the underlying finite state machine has been

designed. The algorithm was used with the parameter setting of k - 1.

Figure 6.4 shows the sequences given, together with their binary sums.

Sequences are separated in the table by double lines. Instead of the input symbols used in

the previous experiment, we have used situation/action tuples. The two binary numbers to be added

are given in 1 bit situation pairs, the lower order bits being presented first. The result after each

input pair is given as the action.

In figure 6.5 we give the algorithm's solution as a transition table.

Sequence induction applications 107

Situation Action Comment
(lnput1,Input2) Output

A null sequence is legal

(0,0) 0 0 + 0 = 0

(0,1) 1 0 + 1 = 1

(1,0) 1 1 + 0 = 1

{1,1) 0 1 + 1 = 10
{0,0) 1

{1,1) 0 11 + 11 = 110
(1,1) 1
(0,0) 1

{1,1) 0 1 + 11 = 100
{0,1) 0
{0,0) 1

{1,1) 0 11 + 1 = 100
{1,0) 0
{0,0) 1

Figure 6.4 Example silUation/action sequences describing 1 bit binary adder

Sequence induction applications 108

Present State Situation Action Next State
(Inputl,Input2) Output

0 't NULL GOAL
0 (0,0) 0 0
0 {0,1) 1 0
0 {1,0} 1 0
0 {1,1} 0 1

1 (0,0) 1 0
1 {0,1) 0 1
1 {1,0) 0 1
1 {1,1) 1 1

Figure 6.5 Inductively generated state transition table for a 1 bit binary adder

This solution is complete and correct The two states correspond to the carry and non-carry

states. Thus from 7 example sums, the algorithm found a solution to an indefinite precision adder.

6.4. Traffic light controller

This example came from the book "Introduction to VLSI systems" by Mead and Conway.

The book is a standard reference book for VLSI technology and contains an example of a finite

state circuit for controlling traffic. Here is some of the description of the problem taken directly

from the book.

Sequence induction applications 109

The following simple example will help to illustrate the basic concepts of finite-state machines aDd their implementa-

tioos in n.MOS circuitry. A busy highway is intersected by a little-used fannroad. Detectors are installed that cause the

signal C to go high in tho presence of a car or cars on the fannroad. .• We wish to control traffic lights at the intersec-

tion, so that in the absence of any cars waiting to cross or wrn left on the highway from the fannroad. the highway

lights will remain green. If any cars are detected ..• , we wish the highway lights to cyclo through caution to red and the

farmroad lights then to turn green. The farmroad lights are to remain green only while the detectors signal the presence

of a car or cars, but never longer than some fraction of a minute. The farmroad lights are then to cycle through caution

to red and the highway lights then to turn green. The highway lights are not to be interruptible again by the farmroad

traffic until some fraction of a minute has passed.

Figure 6.6 shows the meanings of actions used in figures 6.7 and 6.8. Figure 6.7 shows

sequences given to the algorithm for this problem. It is assumed that the problem starts with the

highway traffic lights being green.

The symbols y and n stand for yes and no respectively. The '-' symbol indicates that any

non-clashing value of the attribute can be taken at this point

Abbreviation Meaning

wait Null action

ST+HY Start the timer and turn the highway lights yellow

ST +HR+ FG Start the timer, turn the highway lights red and
turn the farmroad lights green

ST+FY Start the timer and turn the farmroad lights yellow

ST + FR + HG Start the timer, turn the farmroad lights red and
turn the highway lights green

Figure 6.6 Meanings of action abbreviations used in figures 6.7 and 6.8

Sequence induction applications 110

Situation Action Comment
(Farmroad cars,
Long time-out,
Short time-out)

Null sequence
acceptable

(n, -, -) wait Waiting for farmroad
cars

(y, y, -) ST+HY A complete cycle of
(-, -, y) ST +HR +FG changing the lights
(-, -, y) ST+FY with no waiting
(-, -, y) ST + FR + HG

(y, y, -) ST+HY A complete cycle of
(-, -, n) wait changing the lights
(-, -, y) ST +HR+ FG with one wait
(-, -, y) ST+FY
(-, -, y) ST + FR + HG

(y, y, -) ST+HY A complete cycle of
(-, -, n) wait changing the lights
(-, -, y) ST +HR+ FG with two waits
(y, n, n) wait
(-, -, y) ST+FY
(-, -, y) ST + FR + HG

(y, y, -) ST+HY A complete cycle of
(-, -, n) wait changing the lights
(-, -, y) ST +HR+ FG with three waits
(y, n, n) wait
(-, -, y) ST+FY
(-, -, n) wait
(-, -, y) ST + FR + HG

Figure 6. 7 Situation/action sequences descnoing a traffic light controller

Sequence induction applications 111

Figure 6.8 shows the transition table of the automaton produced with parameter setting k= 1. .

Again the automaton is complete and correct according to the book. The states correspond to

0) Highway lights are green. Traffic is travelling along the main highway.

1) Highway lights have changed to yellow. The timer has been started and the automaton is

waiting for the short timeout

2) Highway lights have turned yellow. The farmroad lights are green. the timer has been

restarted. The automaton is waiting for either the long timeout or for cars to stop flowing

along the farmroad.

3) The farmroad lights have turned yellow. The timer has been restarted again and the

automaton is waiting for the shon timeout

It is interesting to note that the authors of the book from which this example was taken, in

order to show how the automaton works, describe it in terms of example sequences of events.

Present State Situation Action Next State
(Farmroad cars,
Long time-out,

Stime-out)

0 t NULL GOAL
0 {n, -, -) wait 0
0 {y, y, -) ST+HY 1

1 {-, -, y) ST +HR+ FG 2
1 {-, -, n) wait 1

2 {-, -, y) ST+FY 3
2 (y, n, n) wait 2

3 {-, -, y) ST + FR + HG 0
3 {-, -, n) wait 3

Figure 6.8 Induced state transition table for traffic light controller

Sequence induction applications 112

6.5. Reverse motor problem

This problem is conceptually very simple. A large electric motor is controlled by three

buttons. The buttons are marked "left", "right" and "stop". When the motor is not moving, pressing

the left button will cause the motor to start turning to the lef4 the right button to the right The

only complication is that if the motor is turning in a particular directio~ any attempt to force it to

turn in the opposite direction will cause the motor to stop, rather than immediately changing

polarity on the motor. This is necessary due to the momentum of the motor. Obviously the stop

button is used to stop the motor if it is turning in either direction. It is assumed that the motor

starts not turning in either direction. Figure 6.9 shows the sequences given to the algorithm. Figure

6.10 shows the transition table of the automaton produced with parameter setting k=l.

As with the grammar example, using a k setting of 1, the automaton, although correct, is not

minimal. The reader may notice that state(O) and state(1) are identical and should have been

merged. It is generally true that the automata produced are only minimal if the k setting is 0. States

0 and 1 correspond to the motor being stopped, states 2 and 3 correspond to the motor turning left

and right respectively.

6.6. Algebra problem

For this experiment various different solutions of simple linear equations were presented as

sequences of situation/action tuples. The same problem was tackled previously by Andrew Paterson

using the static induction package ACLS (Paterson, 1984) (ACLS is based on ID3 (Quinlan, 1979)).

The sequences are presented along with the automaton produced. Whereas Paterson used 7

attributes, it was found that only 4 attributes were needed when using the grammatical induction

algorithm. Figure 6.11 shows the meanings of situational attributes used in figures 6.13 and 6.14,

the table of sequences. Figure 6.12 gives the meanings of the actions used in figures 6.13 and 6.14.

Figure 6.14 shows the transition table of the automaton produced with parameter setting k = 1.

Sequence induction applications 113

Situation Action Comment
Button pushed

Null sequence acceptable

- motor stop Pushing the stop button
leaves the motor at rest

- motor stop It does not matter how
- motor stop many times it is pushed

left motor left Any button other
- motor stop than left stops the motor

when it is turning left

left motor left Pushing left when it is
left motor left turning left keeps it
- motor stop turning left

- motor stop Similar
left motor left
- motor stop

right motor right Any button other than

- motor stop right stops the motor
when it is turning right

right motor right Pushing right when it is
right motor right turning right keeps it

- motor stop turning right

- motor stop Similar
right motor right

- motor stop

Figure 6.9 Situation/action sequences describing a motor controller

Sequence induction applications 114

Present State Situation Action Next State
Button pushed

0 t NULL GOAL
0 - motor stop 1
0 left motor left 2
0 right motor right 3

1 t NULL GOAL
1 - motor stop 1
1 left motor left 2
1 right motor right 3

2 - motor stop 1
2 left motor left 2

3 - motor stop 1
3 right motor right 3

Figure 6.10 Induced state transition table for motor controller

Attribute Meaning

Brackets The equation contains at least one
bracketed term

X on the right There is a term in x on the right-hand
side of the equation

Const on left There is a constant term on the left-hand
side of the equation

Similar terms Either side of the equation contains
two or more constants or terms in x

Ok There is a single term in x on the left

Figure 6.11 Meanings of siluational auributes used in figures 6.13 and 6.14

Sequence induction applications 115

Action Meaning

Divide both Divide through both sides of the
equation by the coefficient of x

Add similar Add together any similar terms
(see 'Similar terms' in figure 6.11)

Multiply brackets Multiply out any bracketed
term by its coefficient

X to left Move a term in x from the right to
the left of the equation

Const to right Move a constant term from the left to
the right of the equation

Figure 6.12 Meanings of actions used in figures 6.13 and 6.14

Sequence induction applications 116

Situation Action Equation
(Brackets,X on the right,

Const on left,Similar tenns,Ok)

3x = 6
(n,n,n,n,y) Divide both X=2

3x + 4x = 6
(n,n,n,y,-) Add similar 7x = 6
(n,n,n,n,y) Divide both X= 6/7

3x + 4x + 5x = 6
(n,n,n,y,-) Add similar 7x + 5x"'" 6
(n,n,n,y,-) Add similar 12x =-6
(n,n,n,n,y) Divide both X= 1/2

5(3x) = 7
(y,-,-,-,-) Multiply brackets 15x = 7

(n,n,n,n,y) Divide both X = 7/15

5(3x + 4x) = 7
(y ,-,-,-,-) Multiply brackets 15x + 20x = 7
(n,n,n,y,-) Add similar 35x = 7
(n,n,n,n,y) Divide both X= 1/5

5(3x) + 6(4x) = 7
(y ,-,-,-,-) Multiply brackets 15x + 6(4x) = 7
(y,-,-,-,-) Multiply brackets 15x + 24x = 7

(n,n,n,y,-) Add similar 39x = 7
(n,n,n,n,y) Divide both X= 7/39

5(3x) = 2x + 7
(y,-,-,-,-) Multiply brackets 15x = 2x + 7
(n,y,-,-,-) X to left 15x- 2x = 7
(n,n,n,y,-) Add similar 13x = 7
(n,n,n,n,y) Divide both X = 7/13

Figure 6.13 continued over page

Sequence induction applications 117

Figure 6.13 (contd)

Situation Action Equation
(Brackets,X on the righ4

Const on left,Similar terms,Ok)

5(3x) + 7 = 2
(y,-,-,-,-) Multiply brackets 15x + 7 = 2
{n,n,y,-,-) c to right 15x = 2- 7
{n,n,n,y,-) Add similar 15x = -5
{n,n,n,n,y) Divide both X= -1/3

5x = 7 + 2x
(n,y,-,-,-) X to left 5x- 2x = 7
(n,n,n,y,-) Add similar 3x = 7
{n,n,n,n,y) Divide both x .. 3n

5x = 7 + 4x + 3x
(n,y,-,-,-) X to left 5x- 4x = 7 + 3x
{n,y,-,-,-) X to left 5x- 4x- 3x = 7
{n,n,n,y,-) Add similar x- 3x = 7
{n,n,n,y,-) Add similar -2x = 7
{n,n,n,n,y) Divide both X = -'2J7

5x + 7 = 3x + 5
{n,y,-,-,-) X to left 5x- 3x + 7 = 5
{n,n,y,-,-) c to right 5x- 3x =5-7
{n,n,n,y,-) Add similar 8x =5-7
{n,n,n,y,-) Add similar 8x = -2
(n,n,n,n,y) Divide both X= -1/4

5x + 2 = 7
(n,n,y,-,-) c to right 5x = 7- 2
{n,n,n,y,-) Add similar 5x = 5
(n,n,n,n,y) Divide both X= 1

5x + 2 + 3 = 7
{n,n,y,-,-) c to right 5x + 3 = 7- 2
{n,n,y,-,-) c to right 5x = 7- 2- 3
{n,n,n,y,-) Add similar 5x =5-3
{n,n,n,y,-) Add similar 5x = 2
{n,n,n,n,y) Divide both X= 2/5

Figure 6.13 Situation/action sequences describing algebraic equation solver

Sequence induction applications 118

Present State Situation Action Next State
(Brackets,X on the right,

Const on left,Similar terms,Ok)

0 (n,n,n,n,y) Divide both 3
0 (n,n,n,y,-) Add similar 4
0 (y,-,-,-,-) Multiply brackets 1
0 (n,y,-,-,-) X to left 5
0 (n,n,y,-,-) C to right 2

1 (n,n,n,n,y) Divide both 3
1 (n,n,n,y,-) Add similar 4
1 (y ,-,-,-,-) Multiply brackets 1
1 (n,y,-,-,-) X to left 5
1 (n,n,y,-,-) C to right 2

2 (n,n,n,y,-) Add similar 4
2 (n,n,y,·,·) c to right 2

3 t NULL GOAL

4 (n,n,n,n,y) Divide both 3
4 (n,n,n,y,·) Add similar 4

5 (n,n,n,y,.) Add similar 4
5 (n,y,·,·,·) X to left 5
5 (n,n,y,·,·) _c to right 2

Figure 6.14 Inductively generated state transition table for the equation solver

Again state 0 and 1 should be the same state. States 0 and 1 deal with repetitively

multiplying out the brackets. State 5 then repetitively moves all "x" terms to the left hand side.

State 2 repetitively moves all "constant" tenns from the right hand side of the equation to the left

State 4 repetitively adds up similar terms and divides both sides through by the divisor of "x". It

should be obvious that by dividing the task up into these smaller tasks, the user will not need to be

asked as many questions when executing the automaton (given that it is being done interactively),

as in each context it can be assumed that the jobs of the preceding contexts have been carried out

satisfactorily. In order for this saving however, much more example information needed to be given

than in Paterson's solution, which only required 9 ACLS examples.

Sequence induction applications 119

6.7. Hanging pictures in a room

This last example is more typical of the usual situation/action problems posed for robot-like

worlds. The problem is as follows. A robot is in a room which contains a door and some pictures

placed on the floor against walls on which they should be hung. The robot can start off facing in

any direction and must hang all the pictures on the appropriate walls. The robot is able to see

objects and knows its position (either at a wall or 'other'). The robot uses the ability to see the

door to make sure it has hung all the pictures before stopping. It is able to 'turn', which involves

rotating in a clockwise direction until its situation vector changes in some way. It can also move

forward, again until the situation vector changes. Sub-problems such as actually hanging the

picture on the chosen wall could have been developed as individual, simple automata. Figure 6.15

gives the meanings of the actions used in figures 6.16 and 6.17. Figure 6.16 shows sequences

given to the algorithm. Figure 6.17 shows the transition table of the automaton produced with

parameter setting k = 0.

Action Meaning

Forward Keep moving forward until the
situational vector changes

Turn Keep turning clockwise until the
situational vector changes

Hang picture Hang the picture which is on the
floor on the wall

Lie down Lie down on the ground

Figure 6.15 Meanings of actions used in figures 6.16 and 6.17

Sequence induction applications 120

Situation Action Comment
(See, At)

(door, -) Turn All pictures hung,
(other, -) Turn start at the door
(door, -) Lie down

(other, -) Turn All pictures hung,-
(door, -) Turn start elsewhere
(other, -) Turn
(door, -) Lie down

(door, -) Turn 1 picture to hang
(other, -) Turn start at door

(picture on the tloor, -) Forward
(picture on the tloor, wall) Hang picture

(other, wall) Turn
(other, -) Turn
(door,-) Lie down

(other, -) Turn Start elsewhere
(picture on the tloor, -) Forward

(picture on the tloor, wall) Hang picture
(other, wall) Turn

(door,-) Turn
(other, -) Turn
(door, -) Lie down

Figure 6.16 Situation/action sequences describing the robots actions

Sequence induction applications 121

Present State Situation Action Next State
(See, At)

0 (door, -) Turn 1
0 (other, -) Turn 0
0 (picture on the floor, -) Forward 6

1 (other, -) Turn 2

2 (door, -) Lie down 3
2 {picture on the floor, -) Forward 4

3 t NULL GOAL

4 {picture on the floor, wall) Hang picture 5

5 (other, wall) Turn 1

6 (picture on the floor, wall) Hang picture 7

7 (other, wall) Turn 0

Figure 6.17 Inductively generated state transition table for the robot controller

The states have an interpretation as follows

0) The robot starts in this state and must decide what line of action is appropriate.

a) If the robot sees the door, it will turn, and go to state 1 from which

it will do a single pass around the room looking for pictures

until it sees the door again.

b) If it sees something other than the door or a picture on the floor,

it turns in order to find one of these two.

c) If it sees a picture on the floor it will move forward to the picture,

go to state 6 and proceed by hanging the picture and returning

to state 0.

1) Having entered state 1, the robot must have seen the door at least once. Thus it is only

Sequence induction applications

necessary to mop up all remaining pictures and keep turning until it sees the door. This

will be done in either repeating the sequence state 1 - state 2 - state 4 - state 5 - state 1,

or by seeing the door in state 1 and stopping.

2) This state is part of the loop described for state 1, and contains the terminating condition

that the door can be seen.

3) This state merely terminates the module unconditionally.

4) This state is part of the loop starting in state 1.

5) This state is part of the loop starting in state 1.

6) This state is part of the loop starting in state 0.

7) This state is part of the loop starting in state 0.

122

Dufay and Latombe (1984) describe a similar method of automatically programming robots.

They use an inductive algorithm which is essentially the same as that of Miclet (1980) (see section

5.4.5.3). In their system, low-level robot sequences are generated by a planner and fed into an

inductive algorithm. The resultant generalised finite state automaton is represented in a robot

programming language for execution. The robot program contains not only manipulator directives

but also tests to be carried out on the world state.

6.8. Conclusion

The problems described in sections 6.3 - 6.5 are conceptually different from those in sections

6.6 - 6.7. The difference lies in the fact that whereas in the first three, a particular world situation

is assumed for the start state (eg. the highway lights start off being green in the traffic light

example) the latter problems make no such assumptions (eg. the robot can start anywhere in the

room, facing in any direction). Although the first examples could be developed with this "any

situation starts" approach, it seems not typical as a whole of problems occurring in engineering. It

is also interesting to note that whereas each problem is fairly difficult, it was automatically broken

Sequence induction applications 123

into a number of smaller and simpler problems.

Angluin's k-reversible algorithm (section 5.4.5.4) seems to be very powerful, and capable of

dealing with building complex automata from a skimpy presentation of sample sequences.

Moreover our efficient version of this algorithm (section 7 .2) runs at quite acceptable speeds,

typically around 10 - 20 seconds for the automata presented in this chapter.

As stated in section 6. 7, the method of constructing robot plans from example sequences has

also been investigated by Dufay and Latombe (1984). However, they used a simpler inductive

algorithm, essentially the same as that described by Miclet (5.4.5.3). Angluin (1982b) has shown

Miclet's algorithm to be merely a special case of k-reversible induction. We therefore conclude that

our method has a wider scope than that of Dufay and Latombe.

7

New sequence induction theory

Abstract. A new algorithm implements Angluin's k-reversible induction in time O(n) rather than Angluin's

time O(n3). The new algorithm is shown to identify k-reversible languages in the limit and can be modified to

use negative data rather than a k value. We also propose and demonstrate a new method of grammatical

induction called k-(;ontextual induction. This has the advantage over all other methods in the literature of being

capable of generating natural solutions from samples as small as a single example. Next we show how these

algorithms can be used to generate control structures for Mugol modules in the form of Mealy machines.

7 .1. Introduction

In this chapter we describe a new approach to the automatic construction of control strategies

from example material. Our intention is to build control or strategic expert systems from example

sequences. Each element of the sequence is a static example of the ID3 (Quinlan, 1979) variety.

The output of the inductive process is a finite state structure in which each state contains a small

number of the static examples. These can in turn be used by ID3-like induction schemes to produce

rules or decision trees for each state. Thus although we do not produce a hierarchical structure,

we achieve some of the aims of structured induction (i.e. a set of small understandable rules) by

using example material which contains additional structural information within each example.

The basis for these techniques lies in the study of grammatical induction, that is the inference

of grammatical structures from example sentences of a language (see chapter 5). The grammar

produced can be viewed as the control structure of a program which generated the example

sentences. As explained in chapter 5, some of the earliest work in this area was done by Biermann

New sequence induction theory 125

and Feldman (Biennann and Feldman, 1972) who devised an algorithm to induce finite state

automata from strings of a language. Although their algorithm was capable of finding any regular

language given a sufficient example set, the algorithm requires an arbitrary complexity parameter.

Angluin (Angluin, 1982b) has described an algorithm which infers only a limited subset of the

regular languages. This subset she calls the k-reversible languages. By limiting the target language

class, Angluin's algorithm is capable of finding the correct language using fewer examples than

Biennann and Feldman's algorithm.

The author has taken Angluin' s algorithm and redesigned it to run with linear time

complexity rather than Angluin's original 0(n3) time (see section 7.2). Furthermore, we have

discovered an even smaller, but useful subset of the k-reversible languages, which we call the k

contextual languages (section 7.3). The algorithm for inferring members of the k-contextual

languages requires even fewer examples to infer any particular k-contextual language than

Angluin's, to the extent that sensible inference is possible from samples containing only a single

example. All other methods in the literature (Angluin, 1982b; Biennann and Feldman, 1972;

Levine, 1982; Miclet, 1980) presuppose more than a single example.

7.2. An efficient algorithm for induction of k-reversible languages

In section 5.4.6.1 we introduced Angluin's k-reversible algorithm. This algorithm has time

complexity 0(n3). In this section we describe a new algorithm, KR, which carries out Angluin's k

reversible induction in time O(n). The definitions given in section 5.4.1 are assumed as precursors

to the following discussion.

7.2.1. Uniquely terminated acceptors

Let the finite state acceptor (FSA) A be described by the n-tuple A = (Q, :E, o, /, F). We say

that A is a 't-terminated acceptor (ITA), (where 't e :E is a unique termination symbol) if and only

if for any state q e Q, O(q, 't) = q' implies q' e F. Otherwise O(q, 't) = 0. i.e. we call a finite

state acceptor a ITA if it has the property that any transition arc is labelled with the termination

New sequence induction theory 126

symbol 't if and only if it leads into an acceptor state. It should be clear that any string w accepted

by a ITA will have the form w = utv if and only if v is the empty string, A.. i.e. the symbol 't can

only be found as the last symbol of w.

The acceptor A is a goal state acceptor (GSA) if and only if it has a single accepting state qg

(called the goal state) and the set of states reached- by a single transition from qg, is empty. In other

words, a GSA has a unique goal state which has no outgoing arcs.

We call any acceptor that is both a IT A and a GSA, uniquely terminated.

Theorem 7.1 There exists a bijection ~ such that for any acceptor A = {Q, 1:, o, /, F} in which 't

rl. 1:, ~A) is a uniquely terminaJed acceptor that accepts the language L(A).{'t}.

Proof. The mapping function ~ is as follows. Let A = (Q, L. o, I, F). Now we construct the

uniquely terminated acceptor Au = MA) = (Qu, :Eu. Ow lu, Fu) with Q" = Q u {qg} (where q1 is the

goal state), Lu = L u 't, Ou(qf. 't) = {q,} for all qf E F, Ou(q, b) = o(q,b) for all q E Q, b E Land

014(q1, b') - 0, b' e :E.., lu = I, F = {q1}. Clearly Au is a ITA since all arcs leading to q1 are

labelled with 't. It is also a GSA since q1 is unique and Ou(qg, b') .., 0, b' e :Eu.

In order to show that ~ is a bijection, we need to prove the existence of the inverse function

li.;1• Let Au be a uniquely terminated acceptor Au- (Qu, :Ew Ou, lu, Fu) where Fu- {q1}. Now we

construct the finite state acceptor A = li;1(AJ = (Q. 1:, o, I, F) with Q = Q" - {q1}, :E = :Eu - 't,

o(q, 't) = 0 for all q E Q, o(q. b) = Ou(q,b) for all q E Q - F, o(qp b) = Ou(qf,b) for all qf E F

where b E L. I = lw F = {q: q e Q", 014(q,'t) = {q1} }. Given that Au is uniquely terminated,

clearly A is by definition a finite state acceptor since it is fully specified and does not accept any

symbols other than those of :E. QED.

New sequence induction theory 127

We say that an acceptor A is ku-reversible if and only if

1) A is uniquely terminated and

2) !i;1(A) is k-reversible (see definition of k-reversibility in section 5.4.5.4).

7 .2.2. The KR algorithm

The following algorithm constructs a ku-reversible acceptor by augmenting the sample set s+

to S'".{'t} and using a process similar to that of Angluin's ZR algorithm. The final result is

normalised to being a k-reversible acceptor using H;1•

New sequence induction theory

Algorithm KR

Input: a nonempty positive samples+ and a parameter k.

Output: a k-reversible acceptor A.

* Initialisation
Let~ be s+.{'t}
Let Ao =- (Qo. T.o. Oo. Io. Fo) be PT(Si;).
Let 7to be the trivial partition of Q0•

For each b E ~and q E Qo lets({q},b) = Oo(q,b) and p({q},b) = O()(q,b).
Choose some q' e F O·

Let LIST contain all pairs (q',q) such that q E Fo - {q1.
Let i = 0.

*Merging
While LIST ~ 0 do
begin

Remove some element (q1,q2) from LIST.
Let Bt =- B(qtt1t;),B2 - B(q2,1t;).
If B 1 ~ B2 then
begin

Let B3 be B1 and B2 merged.
Let 1ti+t be 7t; with B3 replacing B 1 and 82.
For each b E Lo, s-UPDATE(B1.B2.B3,b) and pk-UPDATE(Bt.B2,B3,b,k).
Increase i by 1.

end
end

*Termination
Let/ =t i
Output 11;1 (Arfrc1).

Although s-UPDA TE remains the same as that described by Angluin (Angluin, 1982b), we in-

elude it here for the sake of completeness.

Algorithm s-UPDATE

Input: blocks B 1.B2 and 8 3, and a symbol b E ~.

If s(B1,b) and (B2,b) are noncmpty then
begin

Place s((B~tb),(B2,b)) on UST.
end

If s(B t.b) is nonempty
then letp(B3,b) = p(B~tb)
else let p(B3,b) = p(B2,b).

128

New sequence induction theory

Angluin's p-UPDATE is replaced by pk-UPDATE which is described below.

Algorithm pt.UPDATE

Input: blocks B 1J3z and 83, a symbol b e 1:o and a k parameter.

For each q1 e p(Bbb) and q2 e p(B2,b)
begin

If ql and q2 have a common k-leader in Ar/rti then
begin

Place (qttqv on LIST.
end

end

If p(B ~tb) is nonempty
then letp(B3,b) = p(B~tb)
else let p(B3,b) =- p(B2,b).

(1)

129

Lemma 7 .2. Let s+ be a non-empty positive sample, k a non-negative integer, and 7t; the partition

formed by KR on input s+ and k after i steps. If some u1 v1 and u2v2 are in the same non-goal

Proof. From inspection of KR, two strings u1v1 and u2v2 are in the same block B of 7tj only if at

some step j, previous to i, B(u1 Y~t7tj) was merged with B(u2vz,1tj). Let the pair (qttq2) be the pair of

states representing B(u1Ytt7ti') and B(u2v217t1), placed on LIST during some step j', previous to j.

(q~tq2) can have been placed on LIST only either

a) during initialisation, in which case v1 and v2 are terminated by a 't symbol (i.e. v1 = w1't, v2 =

w2't and are within a goal block B
8

of 7tj). However, Lemma 7.2 only applies to non-goal

blocks or

b) by pk-UPDATE. pk-UPDATE would only merge q1 and q2 if they had a common k-leader in

Ao, i.e. v = v1 = v2 and lvl = k or

New sequence induction theory 130

c) by s-UPDATE. As Ao is PT(Si;), which is by definition deterministic, s-UPDATE would only

merge ql and q2 if they were both b-successors (b e ~- {'t}) of some state q 3• Also, as A0

is deterministic, q3 must have been formed by a similar chain of 0 or more merges by s

UPDA TE preceded by a pk-UPDA TE. Thus all strings leading into q1 and q2 must have a

common tail of at least length k. QED.

The condition that q1 and q2 have a common k-leader in Ao/7t; from statement (1) of the

algorithm pk-UPDA TE can be computed efficiently and simply as follows. Let q1 and q2

correspond to B(utYtt7t;) and B(u2v2,7t;), where u1vtt u2v2 e s+. To check whether q1 and q2 have a

common k-leader in Ar/7ti, we need merely check that lv11 = k - lv21 and v1 - v2• It can be seen

from Lemma 7.2 that it does not matter which u1v1 and ~v2 are taken as representatives of the two

blocks.

Lemma 7 .3. Let s+ be a non-empty positive sample and k a non-negative integer. The output of

algorithm KR on input s+ and k is isomorphic to the prefix tree acceptor PT(s+) whenever k is

greater than the length of the longest string within s+.

Proof. Let 7tt be the partition formed by KR on input s+ and k, and let u1v1w1 and u2v2w2 be two

members of s+. During initialisation Ao is set to be PT(Si;) where S: is s+.{'t}. By Lemma 7.2 u1v

and u2v are only within the same non-goal block B of 1t1 when lv11 = k = lv21 and v1 = v2.

However, since k is greater than the longest string within s+, there can exist no such substrings v1

and v2 of length k. Thus no non-goal state of A0 will be merged. However, all and only goal states

are placed on UST during initialisation, thus all such goal states are merged into a single goal

state. Therefore the output of KR, n;1(ArJ7t1) must be isomorphic to PT(s+) by the definition of h;1

(proof of 7.1). QED.

7 .2.3. The correctness of KR

Angluin (Angluin, 1982b) describes an algorithm, k-RI, for inducing k-reversible languages

which repetitively merges any two blocks B(q1,1t;) and B(q2,7t;) from successive partitions 7t; of the

New sequence induction theory 131

original prefix tree PT(s+) if and only if they violate the conditions of k-reversibility. We now

define the conditions of ku-reversibility in a similar manner to those of Angluin's.

1) No two arcs labelled with a common symbol b (b e :I:o) leading out from any state q3 lead to

any other two states q1 and q2• i.e. a ku-reversible acceptor is deterministic.

2) Given that there exists two paths labelled with a common string u of length k leading to two

states q1 and q2, there must not also be two arcs labelled with a common symbol b (b e :I:o)

leading from q1 and q2 to some other state q3•

If either of these two conditions is present, then the states q1 and q2 mentioned should be merged.

Diagrammatically we can represent the conditions as those shown in figure 7.1.

Lemma 7 .4. Let s+ be a non-empty positive sample, k a non-negative integer, A0 the prefix tree

acceptor of S:, and 1tf the final partition found by K.R on input s+. Then re1 is the finest partition of

the states of A0 such that Aflre1 is ku-reversible.

New sequence induction theory

Either 1)

be Lu

Or 2)

lul = k, be Lu

Figure 7.1 Graphical representation of conditions for merger of ql and q2

Proof. If the pair (qltqi) is ever placed on LIST, then q1 and q2 must be in the same block of

the final partition, that is, B(qtt1tf) = B(q2,1t1). Thus in order to prove that KR always produces

a ku-reversible acceptor, it suffices to show that two states q1 and q2 are always placed on

LIST if and only if they violate the conditions of ku-reversibility. From inspection of KR, it

can be seen that (q1,qi) can have been placed on UST only either

a) during initialisation.

i) This corresponds to all those occurrences of condition 2) (figure 7 .1) in which b

= 't.

ii) Owing to the initialisation of LIST all occurrences of condition 2) (figure 7.1) in

132

New sequence induction theory 133

which b ='twill be found and merged.

b) by pk-UPDATE.

i) This corresponds to all those occurrences of condition 2) (figure 7.1) in which b

:;f: 't.

ii) As A0 has the graphical form of a tree (each state has a maximum of one arc

leading into it), and condition 2) depicts a graph containing a state (q3) with two

arcs leading into i4 q3 must have been formed as the product of a merger. Fol-

lowing this merger, q1 and q2 would have been placed on LIST. Thus such con-

ditions will always be found.

c) by s-UPDA TE.

i) This corresponds to all those occurrences of condition 1) (figure 7.1).

ii) Since A0 is deterministic, the state q3 depicted in condition 1) of figure 7.1 must

have been formed as the product of a merger. Following this merger, q1 and q2

would have been placed on LIST by s-UPDA TE. Agai~ such conditions will al-

ways be found.

We have shown that the states (qttq2) will be merged in cases a-c i) only if the conditions of

ku-reversibility are violated. Also we have shown in all cases a-c ii) that (qttq2) are always placed

on LIST if the conditions of ku-reversibility are violated. Thus Au = AcJrt1 is ku-reversible.

It remains to show that if 1t is any partition of Q0 such that Ao/rt is ku-reversible then rt1

refines rt. We prove by induction that rt; refines 1t for i = O,l,.f. Clearly 1to refines rt. Suppose n:o.

rt1, •• rt; all refine 1t and '1ti+t is obtained from rt; in the course of processing (q~tq2) for LIST. Since

1t; refines 1t, B(q1,rtJ is a subset of B(q1,1t) and B(q2trt;) is a subset of B(q2,1t), so to show that rti+1

refines rt, it suffices to show that B(q1,1t) = B(q2,1t).

(
••
. ;
: ;

G

' .

New sequence induction theory 134

Either (qhqi) was first placed on LIST during the initialisation stage or not. If so, then q1 and

q2 are both accepting states, and since Aoltt is ku-reversible and thus by definition is a GSA, it has

only one accepting state, so B(qittt) ~ B(qlttt). Otherwise, (qttqi) was first placed on LIST in

consequence of some previous merge, let us say the merge to produce 1ti from 1t;-~t where 0 < j ~ i.

merged in fanning 1ti and b is some symbol. Then q1 and q2 are b-successors (resp. b-predecessors)

of two states in some block B of tti. Since 1ti refines 1t by the induction hypothesis, q1 and q2 are

b-successors (resp. b-successors) of some block B' in 1t, and since Ao/1t is ku-reversible, B(qtt7t) -

B(q2t1t). Thus in either case 1ti+t refines tt, and by induction we conclude that tt1 refines 1t. QED.

Lemma 7 .5. Let s+ be a non-empty positive sample, k a non-negative integer, A0 the prefix tree

acceptor of~ tt1 the final partition found by KR on inputs+ and k, and A - li;,1(ArJtt1) the output

automata. Then A is isomorphic to the automata A' ~ PT(s+}ltt, where 1t is the finest partition of

the states of PT(s+) such that A' is k-reversible.

Proof. From the definitions of k-reversibility and the mapping n;,1• since ArJ7tt is ku-reversibility. it

follows that n;,1 (ArJtt1) is k-reversible.

made under condition (figure 7.1)

1) are the same

2) be ~- {t} merges are fork-reversible reasons. b = t, q1 and q2 would be accepting states.

Thus merges are made in the same way as those for conditions of Angluin's k-reversibility

for all states other than goal states. All and only necessary states are merged (proof of 7.4). Thus

A is isomorphic to the automata A' = PT(s+)ltt, where 1t is the finest partition of the states of

PT(s+) such that A' is k-reversible. QED.

We have thus shown that the KR algorithm is input/output equivalent to Angluin's algorithm

(Angluin, 1982b).

~
c

't .

New sequence induction theory 135

Theorem 7.6. Lets+' be a nonempty positive sample, k a natural number and let Aw =- ~1 (Ad7tt) be

the acceptor output by KR on input s+" and k. Then L(A) is the smallest k-reversible language

containing s+-.

Proof. As KR is input/output equivalent to Angluin's algorithm, k-RI (Angluin, 1982b), and

Angluin proves this to be true for k-RI, it clearly holds for KR.

Theorem 7.7. Let L be a nonempty k-reversible language and w1, w2, w3, ••• any positive

presentation of L. On this input, the output At. A2, A3, ••• of KR converges to A(L) (i.e. KR identifies

L in the limit).

Proof. As KR is input/output equivalent to Angluin's algorithm, k-RI (Angluin, 1982b), and

Angluin also proves this to be true for k-RI, it clearly holds for KR.

7 .2.4. Time complexity of KR

Theorem 7 .8. Let s+- be a non-empty positive sample, k a non-negative integer. The algorithm KR

WE~

may be implemented to run in time O(n) where n is (~ lul) + ls+l + 1.

uteS: west"
Proof. During initialisation, S: is composed as s+'.{'t}. Let n = (~ IU'tl) + 1 = (~ lul) + ls+l

+ 1. The prefix tree acceptor A0 = PT(~, which has exactly n states can be constructed in time

O(n). Similarly the time taken to output the final acceptor n;1(ArJ7t1) is O(n). As A0 is a tree, it

contains n- 1 transition arcs and thus there are exactly n- 1 sand p relations. Blocks are merged

if they are distinct, which can happen at most n- 1 times. Similarly s-UPDATE and pk-UPDATE

can effectively merge a total maximum of n - 2 pairs of s and p relations respectively. Thus

assuming block mergers and s and p mergers take constant time the time complexity of KR is O(n).

QED.

(
't

• • . ;
(

. ~

' t
I

New sequence induction theory 136

7.2.5. Updating a k-reversible guess

Angluin (Angluin, 1982b) shows how her ZR algorithm can be modified to have good

incremental behaviour. We now demonstrate how the KR algorithm described here can be modified

for the same ends. Given the ku-reversible automaton A" :s Ar/1tf computed by KR on input s+, and

given a new string w, we may easily update A14 to be the ku-reversible acceptor computed by KR on

inputs+' = s+ u {w}. The method for doing this is to start at the initial state of Au and follow the

transitions A1 makes on the input string wt. If no undefined transitions are encountered and the last

state reached is the goal state, then A" already accepts wt and nothing need be done. Otherwise,

add new states and transitions for each symbol of w starting with the first undefined transition (if

any). Mark the last state reached by wt as accepting, and place the pair consisting of this state and

the goal state of Au on LIST. Continue the merging portion of the algorithm KR until UST is

empty, and output the k-reversible acceptor ~1 (AJ7t'), where 7t' is the final partition of the states of

A". The correctness of this procedure is verified in the same way as that of the original algorithm

KR, since the order of detecting and performing required merges is immaterial.

Example 7.9 If we run KR with a setting of k = 0 on the input {0,00,11,1100}, we obtain the

acceptor shown in figure 7.2. If we then add the string 101 to the sample and perform the updating

procedure just described, we first obtain the acceptor shown in figure 7.2b. This is then "folded up"

as shown in Figure 7 .2c and d to obtain as a final result an acceptor for strings with an even

number of 1 's.

7.2.6. Using negative data

Negative data can be used in the same way as that described by Angluin (Angluin, 1982b).

That is, we are given a positive and negative example set (s+ Sl, such that s+ and s- are disjoint

finite sets of strings. We compute the k-reversible languages for k = 0,1,2, ... using the positive

examples, s+, until we find some k for which the inferred language does not contain any of the

strings from the negative set s-.

. ~

~
t

1 c .

New sequence induction theory 137

(a) (b)

0

(d)

(c)

Figure 7.2 Updating a guess

7 .3. k-contextual languages

According to theorem 5.4, all three of the algorithms reviewed in chapter 5 (Biennann and

Feldman, 1972; Levine, 1982; Miclet, 1980) have the common property that they require at least

two examples in order to carry out any generalisation. It can also be easily shown that Angluin's

k-reversible method has exactly the same limitation. However, human beings have little difficulty in

hypothesising grammars from sufficiently long single strings.

The k-contextual language class described in this section has the property that the smallest k-

contextual language which is consistent with a single example may contain more than one string

(see Example 7 .17), i.e. algorithms which hypothesise k-contextual languages can carry out

generalisation using only one example.

I
I

'i
I

New sequence induction theory 138

7.3.1. k-contextuality

First we give a language characterisation of k-contextual sets.

Definition 7 .10. Let L be a regular language. Then L is k-contextual if and only if whenever u1 vw1

and u2vw2 are in L and lvl = k, TL(u1v) = TL(u2v).

We extend the notion of k-contextuality to cover not only languages but their corresponding

acceptors.

Definition 7.11. An acceptor A is k-contextual if and only if L(A) is k-contexrual.

Remark 7.12. If a language L is k-contextual and contains two not necessarily distinct strings

u1vw1 and ~vw21 where lvl = ~ then L also contains u1vw2 and ~vw1 • This is merely a

particularisation of Definition 7.1 a.

Remark 7.13. Any a-contextual language L containing two not necessarily distinct strings u1w1

and u2w2 also contains u1w2 and u2w1• This is a particularisation of Remark 7.12.

Lemma 7.14. Any a-contextual non-empty language L is equal to l:* the universal language

where b e l: if and only if there is some ubv e L.

Proof. Let L be a non-empty a-contextual language. We prove by induction that L = l:* where b

e :E if and only if there is some ubv e L. Let w be an element of L. Since w = A..w = w.A. it

follows from Remark 7.13 that A. is an element of L. By the inductive hypothesis we suppose that L

contains all members of l:* of length less than or equal to n. Now suppose that lubvl = n + 1. The

strings u, v and b are all members of L since they are all of length less then n. Since u.A., A..b e L,

by Remark 7.13 ub e L. Similarly since ub, A..v e L, by Remark 7.13 ubv e L, which completes

the inductive step and the proof. QED.

As shown in section 5.5 inductive algorithms which use positive data to identify a language

must avoid overgeneralisation, that is choosing a language which is a superset of the target

New sequence induction theory 139

language. For this purpose Angluin (Angluin, 1982b) has shown the need to define a characteristic

sample for any class of languages. A characteristic sample of a k-contextual language L is a sample

s+- of L with the property that L is the smallest k-contextual language that contains s+-. If a

characteristic sample for L is found in the sampl~ then proposing L is not an overgeneralisation.

Remark 7.15. A = (Q, 1:, o, {q0}. F) is k-contextual if and only if for all strings u1vw1 and ~vw2

accepted by A, where lvl = k, there is a unique state q such that o(qOtu1v) = q = O(q0,~v).

As k-contextual languages have a lot in common with k-reversible languages (we show later

in Theorem 7.20 that every k-contextual language is k-reversible), the following proof follows a

similar proof of Angluin's (Angluin, 1982b) closely.

Theorem 7 .16. For any k-contextual language L there exists a characteristic sample s+- of L.

Proof. If L = 0 then s+- = 0 is a characteristic sample of L so suppose L:;: 0. Let A = (Q, 1:, o.

{q0}, F) be the canonical acceptor of L. For each q e Q let Lq denote the set of k-leaders of q in

A. For each pair q e Q and x e Lq let u(q,.x) be some string u such that o(qOtux) = q. The sample

s+ is defined as containing all strings u of length less than k which are in L, some string u(q,.x)xbv

e L for each q e Q, x e Lqo be l:, and some string u(qpX)x e L for each q1 e F, x e Lq1 No other

strings are ins+. Lemma 7.14 establishes that in the case k = 0, L = 1:* where b e 1: if and only if

there is some ubv e L. Thus s+ is a characteristic sample of L for k = 0 if for every b e 1: there is

some string of the form ubv e s+, which is so by the definition of s+-. Suppose S ~ 1.

Let L' be any k-contextual language containing s+-. We must show that L is contained in L'.

Clearly any element of L of length less than k is in s+ and therefore in L'. We show by induction

that for every w e Pr(L) of length at least k, TL{w) = TL·(u(q,.x),.x), where x is the suffix of w of

length k and q = o(qo,w). If w has length exactly k, then w = X and u(q,x) = A., so this condition is

satisfied. Using the inductive hypothesis we suppose that for every n ~ k this condition is satisfied

for all strings w e Pr(L) of length at most n. Suppose w is any element of Pr(L) of length n + 1.

Let w = w'axb, where lxl = k - 1 and a,b e 1:. By the inductive hypothesis TL{w'ax) =

New sequence induction theory 140

TL{u(q,ax)ax), where q = o(qo,w'ax). Thus TL·(w) ,. TL{u(q,ax)axb). Let q' =- O(q,b) = O(qo,w).

Then s+ contains the strings u(q,ax)axbv1 and u(q' ,xb)xbv2, so L contains these strings. By Remark

7.15, this implies that TL{u(q,ax)axb) =- TL·(u(q' ,xb)xb), so TL'(w) = TL{u(q' ,xb)xb), completing the

induction step.

Now let w be any element of L of length at least k, and let x be the suffix of w of length k.

Then TL·(w) = TL{u(qp.x)x), where q1 e F. The string u(qp.x)x is contained in s+ by construction and

therefore is in L'. Hence w is in L', which completes the proof that L is contained in L'. Thus L is

the smallest k-contextuallanguage containing s+, and s+ is a characteristic sample of L. QED.

Example 7.17. Consider the language o+t+ whose canonical acceptor is shown in figure 7.3. Using

the construction method of the above proof to construct a characteristic sample s+ for this !

contextual language, we obtain LA = {0}, L8 = {1} and s+ = {0011}. Note that this is only one

0

Figure 7.3 The canonical acceptor of the language o+t+

New sequence induction theory 141

possible solution for s+". Among other characteristic samples are s+" .,. {001. 011} and s+" =

{0000111}.

Oearly a characteristic sample of a k-contextual language can consist of a single string. This

is not true of any other similar language group in the literature (Angluin, 1982b; Biermann and

Feldman, 1972; Levine, 1982; Miclet, 1980).

Lemma 7.18. If A is a k-contextual acceptor and A' is any subacceptor of A, then A' is a k

contextual acceptor.

Proof. Let k be a natural number, A = (Q, :E, o, I, F) be some k-contextual acceptor, and A'.,. (Q',

r.', o', I', F') be a subacceptor of A. A' is a subacceptor of A only if o'(q',b) ~ o(q',b) for all q' E

Q' and b E r.. Let us assume that A' is not k-contextual. Thus by Remark 7.15 o'(qo. UtV) *' o'(qo.

u2v) for some u1vw1, u1vw1 E L(A'). We can show trivially by mathematical induction that since

by the definition of subacceptors (see section 5.4.1) O'(q',b) ~ O(q',b) for all q' E Q', b E :E', it

follows that o'(q',w) ~ O(q',w) for all w E :E'*. Remark 7.15 shows that O(qo. UtY) = O(qo. u2v) =

{q}. Thus since o'(q',w) ~ O(q',w) for all w E :E'*, it follows that both o'(qo. UtY) ~ {q} and o'(qo.

~v) ~ {q}. However o'(qo. UtY) *' 0 and o'(qo. u2v) *' 0 since UtVWt, ~vw2 E L(A'). Thus o'(qo.

u1v) = o'(q0, u2v) = {q}. This contradicts our assumption that A' is not k-contextual. Therefore A'

is k-contextual. QED.

7 .3.2. Relationship between k-reversibility and k-contextuality

The following definition of k-reversible languages is given by Angluin (Angluin, 1982b).

Definition 7.19. Let L be a regular language. Then L is k-reversible if and only if whenever u1vw

and u2vw are in L and lvl = k, TL(u1 v) = TL(u2v).

Comparing this definition with that of k-contextuality (Definition 7 .10), gives us the following

theorem.

New sequence induction theory 142

Theorem 7 .20. Any k-contextual language L is k-reversible.

The proof of theorem 7.20 follows trivially from the fact that the definition for k-contextuality

subsumes that of k-reversibility.

7.3.3. The KC algorithm

value.

The following algorithm constructs a k-contextual acceptor given a positive sample and a k

Algorithm KC

Input: a nonempty positive samples+ and a k parameter.

Output: a k-contextual acceptor A.

• Initialisation
Let A0 = (Q0, r.o. Bo. l 0• F 0) be PT(s+).
Let 1to be { {u}: u e Qo. lul < k}.
Let Q0' be Q0 - U1to·

• Merging
For each state u1 v e Q0' where I vi = k do
begin

If there exists some block B1 such that B1 = B(u2v,1t;) then
Let B2 be B1 u {u1v}.

else
Let B2 be {Ut V}.

Let 1tt+t be 1ti with B 2 replacing B 1•

Increase i by 1.
end

*Termination
Let/= i
Output Arf1tt-

Note that only 1t1 is a complete partition of Q0•

7.3.4. The correctness of KC

The following Lemma describes the effect of KC.

New sequence induction theory 143

Lemma 7 .21. Let s+ be a nonempty positive sample~ k a natural number and let Ac/1tt be the

acceptor output by KC on input s+ and k. Then 1t1 is the finest partition of the states of A0 such that

Ac/1tt is k-contextual.

Proof. Let Ao = (Qo. Lo· oo. Io. Fo). By inspection we note that the initialisation and merging

sections of KC guarantee that every state of Q0 will be placed into exactly one block of 1tr Thus 1t1

is a partition of Q~ and Ar/1t1 is a legal acceptor. Furthermore a trivial inductive argument can be

employed to show that every block B of 1t1 contains either a single state u e Q0 for which lul < k,

or all states uv e Q0 for which uv has a particular suffix v of length k.

Let u1vw1 and ~vw2 be two strings in a language L, where lvl = k. By Definition 7.10, L is

k-contextual if and only if TL(u1v) ,.. TL(~v)~ i.e. u1v and ~v lead to the same state in A(L). Since

all states uv e Q0 for which uv has a particular suffix v of length k are contained within the same

block of 1t1 it follows that u1v and u2v lead to the same state in Ac/1t1 for any u1vw1, ~vw2 e s+.

Thus Ao/1t1 is k-contextual.

It remains to show that if 1t is any partition of Q0 such that Ar/1t is k-contextual~ then 1t1

refines 1t. Let us assume the opposite, i.e. there exists some 1t which refines 1t1 where 1t is not equal

to 1t1 and L = L(Ac/1t) is k-contextual. Thus at least one block of 1t1 is the union of more than one

block of 1t. But as all blocks of 1t1 contain either singletons or contain all states uv e Q0 for which

uv has a particular suffix v of length k there must exist at least two blocks of 1t containing states

with the same k-leader. Let these two blocks 8 1 and 8 2 contain u1v and u2v respectively, where v is

the common k-leader. This implies that TL(u1v) ;e TL{u2v) and therefore L is not k-contextual;

which contradicts the original assumption and shows that 7tt refines all partitions 1t for which Ac/1t

is k-contextual. This completes the proof. QED.

The following theorem is analogous to a theorem proved by Angluin (1982b) for her k-RI

algorithm.

Theorem 7 .22. Let s+ be a nonempty positive sample~ and let A1 be the acceptor output by

New sequence induction theory 144

algorithm KC on inputs+". Then L(A1) is the smallest k-contextuallanguage containing s+-.

Proof. Lemma 7.21 shows that L(A1) is a k-contextual language containing s+-. Let L be any k

contextual language containing s+, and let 1t be the restriction of the partition 1tL to the elements of

Pr(s+). If A0 denotes the prefix tree acceptor fors+, then Lemma 5.1 shows that Ao/1t is isomorphic

to a subacceptor of A(L), and Corollary 5.2 shows that L(Ao/1t) is contained in L. From Lemma

7.18, L(Ao/1t) is k-contextual. Thus by lemma 7 21 re, refines 1t, so L(Ar/1t1) is contained in L(Ar/1t).

Consequently, L(A1) is contained in L, and L(A1) is the smallest k-contextuallanguage containing s+.

QED.

7 .3.5. The running time of KC

Theorem 7.23. The algorithm KC may be implemented to run in time O(n) where n is one more

than the sum of the lengths of the input strings.

Proof. Let s+- be the set of input strings and n be one more than the sum of the lengths of strings

in s+. The prefix tree acceptor PT(s+) can be constructed in time O(n) and contains no more than n

states. Both 7to and Q0' can be created in a single pass over all strings ins+, and thus also take time

O(n). Since Q0' contains at most n strings and each pass through the iteration can be completed in

constant time given a hashing mechanism for finding the appropriate block B 1, merging also takes

O(n) time. The output automaton Ao/1tt can also be created in time O(n). Since no operation takes

more than time O(n) it follows that the algorithm KC completes within time O(n). QED.

7.3.6. Identification in the limit of k-contextual languages

In this section we show that KC is able to identify in the limit any language L (see section

5.2). We define an operator KC_ which given an infinite sequence of strings w1, w2 , w3 , ... and a

parameter k produces an infinite sequence of acceptors A1• A2, A3, ... in which

New sequence induction theory 145

An infinite sequence is called a positive presemation of a language L if and only if the range

of the sequence is exactly L, that is, every element of the sequence is an element of L and vice

versa. The following theorem shows that KC .. identifies k-contextuallanguages in the limit

Theorem 7.24. Let L be a nonempty k-contextual language for some natural number k. Let w1,

w2, w3, ••• be a positive presentation of L, and A1, A2, A3, ••• be the output of KC_ on this input

Then L(A1), L(A2), L(A3), ••• converges to L after a finite number of steps.

Proof. By Theorem 7.16, L contains a characteristic sample. Let N be sufficiently large that w1,

w2, ••• , wN contains a characteristic sample for L. For n ~ N, L(A,.) is the smallest k-contextual

language containing w1, w2, ••• , wN, by definition of KC .. and Theorem 1.12. Thus L(A,.) - L, by the

definition of a characteristic sample (section 7.3.1). QED.

7.3.7. Incremental nature of KC

As stated in section 1.2 expert systems are generally built in an incremental fashion. For this

reason it is desirable that any inductive tool used in the construction of expert systems produces a

gradually changing output given progressive augmentation of the example set Without this

guarantee, the knowledge engineer (or expert) presenting the example material has no ability to

predict the effect that any particular new example is likely to have on the system's knowledge

structure. We therefore propose the following definition of incremental modification for

grammatical induction algorithms.

Definition 7 .25. Let A be the acceptor output by some grammatical induction algorithm I given the

positive sample s+ and let the acceptor A' be the output of I on input s+ u {w}. We say that I is

incremental if and only A is a subacceptor of A'.

Theorem 7 .26. Given a fixed natural number k, the algorithm KC is incremental on input k and

any positive presentation of some k-contextual language L.

Proof. Let k be a natural number, s+ be a positive sample, w be some string, A = PT(s+)l1t = (Q,

New sequence induction theory 146

:E. o, I. F) be the output of KC on input k and s+, and A' = PT(s+ u w)lpi' =- (Q', 'L', o', I'. F') be

the output of KC on input k and s+ u {w}. We need to show that A is a subacceptor of A'.

By definition A is a subacceptor of A' if and only if Q ~ Q', I~ I'. F ~ F' and O(q, b) ~

o'(q, b) for all q e Q and b e :E. Following a similar argument to that of Lemma 7.21, we get that

1t = { {u}: uv e s+". lul < k} u {By: xyz e s+,!yl=k, uv e By} and 7t' = { {u}: uv e s+ u {w}, lul <

k} u {By: xyz e s+" u {w},IYI=k. uv e By}. Thus for every block B = {u} in 1t for which uv e

s+,lul < k there exists one and only one corresponding block B' = {u} in 1t'. Similarly, for every

block Bv in 1t there is a corresponding block B/ in 1t'. It follows from the definition of quotient that

Q ~ Q', I ~ !', F ~ F' and o(q, b) ~ o'(q, b) for all q e Q and b e 'L. Thus A is a subacceptor of

A'. QED.

7 .3.8. Using negative data

Negative data can be used in the same way as that described in section 7 .2.6. That is, we are

given a positive and negative example set (s+,S), such that s+ and s- are disjoint finite sets of

strings. We compute the k-contextual languages for k ... 0,1,2, ... using the positive examples, s+,

until we find some k for which the inferred language does not contain any of the strings from the

negative set s-.

7 .4. Use or semantic information

Gold has shown (Gold, 1967) that no algorithm can identify the entire set of regular

languages from positive example sentences alone. Thus various approaches have been used which

present a language identification algorithm with positive examples together with additional

information. Generally, this additional information is sufficient to allow identification in the limit.

Up until now the additional information has taken the following forms.

1) Negative examples. Angluin (Angluin, 1982a) shows how a combination of positive and

negative examples can be used to infer any finite automata in polynomial time.

New sequence induction theory 147

2) A limit on the total number of states. Moore (Moor~ 1956) suggested this.

3) ;A value related to the compactness of the output automata. (Angluint 1982b; Biermann and

Fel~ 1972; Levin~ 1982) have all suggested variants on this theme.

In this section we explain a new approach to example presentation. which requires neither an

ad hoc numerical measuret nor the need for negative data. Instead we present semantic information

in the positive examplest by way of situation action pairs. The output of the new technique is a

finite state automaton (rather than a finite state acceptor), which is expressed in a similar manner to

Mealy machines. It is described how variants of existing algorithms for inducing finite state

acceptors can be used in this new framework.

7.4.1. Uniquely terminated Mealy machines

Let the automaton M be (Q, X, Y, o, I, F). Q is the set of states contained in M. I is the set of

initial states of M (I ~ Q). F is the set of final states of M (F ~ Q). X is the situalion symbol set

of M. Y is the action symbol set of M. o is the transition function of Mt which maps

state/situation pairs of the form (q,x) to sets of action/next-state pairs of the form (y,q') where q and

q' are members of Q, x is a member of the situation symbol set X, and y is a member of the action

symbol set Y. We call M a terminated Mealy machine, in that it is similar to a form of finite state

machine called a Mealy machine (see section 2.6.5). This similarity holds in all respects except

that Mealy machines do not have accepting states. We call a terminated Mealy machine M - (Q,

X, Y, o, I, F) deterministic if and only if

a) I contains exactly one member, qi and

b) if O(q,x) - (y,q') (for some q,q' e Q, x e X and y e Y) there exists no other y' e Y, q" e Q

such that O(q,x) - (y',q").

Let the terminated Mealy machine M be described by the n-tuple M = (Q, X, Y, 5, I, F).

We extend the definition of 't-termination of finite state acceptors to terminated Mealy machines as

follows. M is a 't-terminated Mealy machine (ITM) if and only if for any state q e Q, O(q~) =

New sequence induction theory 148

(y'ttq') implies q' E F (where .:Gt E X, Y-e e Y).

We also extend the definition of goal state acceptor to that of a goal state Mealy machine

(GSM) as follows. The automaton M is a GSM if and only if it has a single accepting state qg and

the set of states reached by a single transition from qg, {q: x e X, ye Y, F = {qg}, o(qg,x) = (y,q)}

is empty. In other words, a GSM has a unique goal state which has no outgoing arcs.

We call any terminated Mealy machine that is both a ITM and a GSM, uniquely terminated.

In the following sections we will discuss mainly the properties of deterministic uniquely terminated

Mealy machines (DUTMM). As mentioned in 2.6.5, DUTMMs are the basis of control within

modules of the Mugollanguage (chapter 3), and thus have special significance within this thesis.

Example 7.27. Figure 7.4 is a diagrammatic representation of the DUTMM M= (Q, X, Y, o, I, F)

Figure 7.4 Example of a DUIMM

New sequence induction theory 149

for which Q = {qhq2,q3}, I = {qt}, F ,. {q3}, X = {xt,x2~}, Y = {yttJ2tY-t}, o(qt,xt) :::11 {(yttq2)},

o(q2,xv = {(y2tq1)}, o(q2~) = {(y'tlq3)} otherwise O(q,x) = 0 for all other q E Q, x E X, y E Y.

7.4.2. Operational meaning of DUTMM's

Let M = (Q, X, Y, o, {q;}. {q8}) be a DUTMM. M can be viewed as having semantic

properties which are akin to those of a subroutine of a programming language. M becomes live

when called (the term live is used here to indicate that M is presently executing). M's executing

state is initialised to the start state q;. When executing some state q, M's present situation x is

compu~ and using the transition function the next state and next action o(q,x) = (y,q'), can be

found. The next action y is executed, and on its termination, the presently executing state of M is

changed to q. If at any point M's present executing state is the goal state q1 then M returns to

being unlive (the term unlive is used to indicate that M is no longer executing).

7.4.3. Situation/action sequences

Let X be the universe of situation symbols and Y be the universe of action symbols. Lsa =

(XxY), we call the universe of situation/action pairs. We call u a situation/action sequence if and

on! y if u e :t:a,

A terminaled Mealy machine M = (Q, X, Y. o, /, F) is said to generate the situation/action

sequence u = (xhy1)(~,Jv ... (x"'y,J if and only if there exists a sequence of not necessarily distinct

states, qo, ql, q2• ... q" such that (yi+ltqi+l) E o(q;,Xi+l) for 0 S i S (n-1), qo E I and q,. E F.

Clearly the concept of "generation of sequences by terminated Mealy machines" is analogous to

that of "acceptance of strings by finite state acceptors".

We call a set of situation/action sequences Lsa a situation/action language. The set of all

situation/action sequences generated by some terminated Mealy machine M, LSQ(M) is called the

situation/action language of M. S:a is a positive sample of a situation/action language LSQ if and

only if s.!"a is a subset of Lsa-

New sequence induction theory 150

7 .4.4. Mappings

Lemma 7.28. Given a bijection hb which maps elements of ~a to the universal alphabet :E, there

exists a bijection ha which maps terminated Mealy machines to FSA's.

Proof. First we prove the existence of ha by construction. Let M = (Q"', X, Y, o"', !"', F ,J be a

terminated Mealy machine. ha constructs an FSA Aa = <aa. l:, Oa, la, F J. For every state q e Q"'

there is exactly one state q' E Q41 • For every initial state qi E /"' there is exactly one state q/ E la.

For every final state q1 E F"' there is exactly one state qf E Fa- Oa(q"'b) ~ qa' if and only if

o"'(q,.,x) = (y,q"' '), the pairs of states (q""qa) and (q"'',qa') correspond in M and Aa, and hb((x,y)) =

b.

In order to show that ha is a bijection, we need to prove the existence of the inverse mapping

hi/. This is also done by construction. Let Aa = (Q41 , l:, Oa, I a• F J be a FSA. ha constructs a

terminated Mealy machine M = (Q"', X, Y, o"'. I"'' F ,.). For every state q E Qa there is exactly one

state q' E Q"'. For every initial state qi e la there is exactly one state q/ e /"'.For every final state

qf E Fa there is exactly one state qf E F"'" o"'(q,.,x) = (y,q"'') if and only if oa(q"'u) .,. q41', the pairs

of states (q""qa) and (q"'',q41') correspond in M and Aa, and hi/(b) = (x,y). QED.

Lemma 7 .29. Given a bijection hb which maps elements of l:m to :E, there exists a bijection hu

which maps situation/action sequences to strings.

Proof. hu is very simply proved by construction. Let the situation action sequence Usa be

(xhy1)(x2,y:z) ... (x"'y,.). hu constructs the string u = b1b2 ... b" such that hb((xi,Yi)) = ui, 1 ~ i ~.

The existence of the inverse mapping, h;1 can be shown trivially and is thus omitted.

Lemma 7 .30. Given the bijection hu which maps situation/action sequences to strings, there exists

a bijection hs+" which maps sets of situation/action sequences into sets of strings.

Proof.

New sequence induction theory 151

The existence of the this mapping and its inverse mapping, hi- can be shown trivially and is

thus omitted.

7.4.5. The SKR algorithm

Let M be a terminated Mealy machine. We extend the usage of the term k-reversible to

Mealy machines by saying that if A = ha(M) and A is k-reversible then M is also called k-

reversible.

The following algorithm uses only a positive situation/action sequence sample in order to find

the k-reversible Mealy machine with minimal value of k which produces the sequence.

Algorithm SKR

Input: a nonempty positive situation/action sample S!z.

Output: the minimal-k reversible terminated Mealy machine M1 and
k's final value f.

• Initialisation
Letk = 0.
Let s+ be hs(s:a).

While k ~ (the maximum length of a sequence in s+.rcz) + 1 do
until M 1c is deterministic
begin

Let A1c be KR(s+,k).
Let M1c be hm(Aic).
If M 1c is not deterministic

then increase k by 1.
end

*Termination
If M 1c is not deterministic

then
fail.

else
begin

Let/= k
Output (M1J).

end

Note that SKR can end in failure if the sample s:a inherently leads to a non-deterministic

Mealy machine Mk. for all settings of k.

New sequence induction theory 152

7 .4.6. Correctness of SKR

Theorem 7.30. Let S:a be a positive sample. of situation/action sequences. Given S!z as input, the

algorithm SKR will output, when it can, the pair (M1J) where f is the smallest value of k such that

Mk is both k-reversible and deterministic. Otherwise, if no such pair exists, SKR will fail.

Proof. By inspection SKR will output the required pair (M~) for the lowest value of k between 0

and the maximum length of sequence within S:a, given that Mk is k-reversible and deterministic.

According to Lemma 7.3 output of algorithm KR on any input s+- and k is isomorphic to the prefix

tree acceptor PT(s+) whenever k is greater than the length of the longest string within s+-. Thus if

Mk is not deterministic when k is one greater than the maximum length of any string within s+-,

then Mi is non-deterministic for all i greater than k, since all such Mi are isomorphic to the prefix

tree acceptor of s+-. QED.

7.4.7. k-contextual sequence induction

The algorithm SKC which creates k-contextual Mealy machines given situation/action

sequences is a trivial adaptation of SKR with a call to KC replacing that to KR. In fact, Biermann

and Feldrnan's k-tail algorithm (1972) can be similarly adapted to work within a situation/action

sequence environment with the accompanying advantage of eliminating the need for an arbitrary k

parameter.

7 .S. Conclusion

In this chapter we describe a new algorithm KR which is input/output equivalent to Angluin's

k-RI algorithm (Lemma 7.6). However, whereas Angluin's algorithm runs in time 0(n3
), KR has

been designed to run in time O(n) (Theorem 7 .9).

All algorithms described in chapter 5 have the common feature that no effective inductive

inference is feasible with single example strings, no matter how long the given example. In section

7.3 we investigate the k-contextual language class for which effective induction is possible from

New sequence induction theory 153

singleton example sets. We also show that the k-contextual languages are a restricted subset of the

k-reversible languages (Theorem 7.20). In section 7.3.3 we give a simple algorithm, KC, which

induces k-contextual languages. This is shown to run in time O(n) (Theorem 7.23). Like the

algorithm KR, KC has the property of being capable of identifying k-contextual languages in the

limit (Theorem 7.24).

In section 7.4 we describe a method of automatically choosing the appropriate value of k for

inductive construction of k-reversible and k-contextual Mealy machines. This is made possible by

use of the semantic content of situation/action sequence examples. This method of inductive

inference based on situation/action sequences is called sequence induction to distinguish it from

grammatical induction. Sequence induction is demonstrated by application in chapters 6 and 8.

:·)

8

Inductive acquisition of chess strategies

Abstract. A variation of an algorithm for inducing "k-contextual" regular language grammars from sample

sentences is applied to the construction of expert chess strategies. In a pilot study a small expert system for

playing part of the King and two Bishops against King and Knight endgame (KBBKN) has been automatically

constructed using this technique. The generated knowledge-base is directly executable in a Mugol environment

(see chapter 3 and Appendices F and G).

8.1. Introduction

8.1.1. Computer chess research

In the study of expert system development, Michie (Michie, 1982a) has noted that use of

chess expertise as a testbed domain is ideal in many respects. The domain is non-trivial though

finitely bounded. It has a wealth of recorded expertise going back many centuries which has

certainly not yet been fully exercised. Whereas chess specialists have developed a depth of

understanding which is at least comparable with the expertise of more lucrative disciplines, expert

level chess players are generally more readily available for consultation.

Early work in programming computers to play chess was concentrated around efficiently

implementing Shannon's chess playing strategy (Shannon, 1950). This employs extensive

lookahead in order to compute approximations to the best next move. As this failed to produce

results comparable with human expert play, recent research has focussed on more knowledge-rich

approaches. Bratko and Michie (Bratko and Michie, 1980) described such a knowledge-based

'l

Inductive acquisition of chess sttategies 155

system, ALl, based partly on earlier work by Huberman (Huberman, 1968). ALl's advice module

generated a list of preference ordered pieces of advice. A separate search module used the board

state and advice list to produce a "forcing ttee" which was applied as a strategy for play. As with

all solutions in which knowledge must be hand-coded, the knowledge acquisition process becomes

a developmental bottleneck.

Quinlan (Quinlan, 1979) suggested a method of bypassing this bottleneck by using inductive

inference. Quinlan's algorithm, ID3, based on Hunt's CLS algorithm (Hunt, Marin and Stone,

1966), was used to build decision trees which classified end-game positions as won, drawn or lost

A vector of attribute values is used to describe any particular position. This vector together with a

class value comprises an example classification. Although the solutions were exhaustively proved

correct and ran five times faster than hand-crafted algorithms, they were also completely

incomprehensible to chess experts.

In order to circumvent this understandability barrier Shapiro and Niblett (Shapiro and Niblett,

1982) introduced the notion of structured induction, in which a chess expert is required to

hierarchically decompose the endgame classification rules; each sub-problem can then be solved

inductively. While this approach avoids the problem of incomprehensibility, it unfortunately

introduces a new bottleneck of problem structuring.

Paterson (Paterson, 1983) has described an attempt to automatically structure the KPK chess

endgame domain from example material, using the statistical clustering algorithm CLUSTER

(Michalski and Stepp, 1982). The results however have not been very promising, with the

machine's suggested hierarchy not having any significance to experts. The primary reason for

failure seems to lie in the fact that although the example set is a rich enough source of knowledge

to be used for rule construction, additional information is necessary to indicate any higher level

structure.

Inductive acquisition of chess strategies 156

8.1.2. Sequence induction

In chapter 7 we described an efficient implementation of two sequence induction techniques,

k-reversible induction and k-contextual induction. The k-contextual algorithm used for the

experiments described here requires only positive examples. The necessary constraint on solutions

is that the finite state acceptor produced be equivalent to the minimum sized k-contextual language

containing the positive examples (see chapter 7). As described in section 7 .4, when dealing with

sequences of ID3-like examples, we can use the semantic content provided by the situational vector

as an additional constraint mechanism, and thus circumvent the need for supplying the algorithm

with the arbitrary measure required by all similar algorithms in the literature (Angluin, 1982b;

Biermann and Feldman, 1972; Levine, 1982; Miclet, 1980). For this we employ the SKC algorithm

described in section 7 .4.7.

Situations in which sequence induction can be employed are many and varied (see chapter 6).

If we understand well what the properties of the algorithm being used are, often we can take

advantage of various presentation and solution constraints for different scenarios. Elsewhere (see

chapter 7) several such properties are described and proved. For our purposes, the most important

property of the k-contextual algorithm is that successive solutions are incremental (see section

7 .3.7). Accordingly, as more examples were added the automaton output by the algorithm

developed in a controlled and predictable fashion.

8.2. The problem - KBBKN

Programming strategies for chess endgames is a notoriously difficult task. Zuidema (Zuidema,

1974) commenting on two Algol 60 programs written for the King and Rook against King (KRK)

endgame illustrates the difficulties by noting that "A small improvement entails a great deal of

expense in programming effort and program length. The new rules will have their exceptions too."

In a project being carried out at the Turing Institute, the extremely complex chess endgame

KBBKN is being studied with the aid of the world-class chess endgame specialist John Roycroft

Even this chess authority admits to being out of his depth. In the only definitive study of KBBKN,

Inductive acquisition of chess strategies 157

written in 1851, Horwitz and Kling (Horwitz and Kling, 1851) claimed that with White-to-move

(WTM), the game is drawn in all but trivial cases. For over a century this claim remained

uncontested, until in 1983 Thompson revealed by exhaustive computation that almost all positions

are forced wins for White, with a maximum length win of 66 moves being obtainable from 32

different positions (Roycroft, 1983; Thompson 1985). This surprising result adds to the pressure on

the international chess community to revise the 50-move rule. According to this rule, if 50 full

moves are made without a capture, castling or pawn move then a draw can be declared. However,

clearly it may take up to 66 moves to force a win for a particular side. Thompson' s computations

have brought to light the existence of even longer minimax optimal paths in some other end-games.

The Turing Institute study involves two phases. In the first, Roycroft has studied the domain

intensely with the aim of developing a sufficient set of primitive attributes. It is in this first phase

that the author has carried out the evaluation of sequence induction as a knowledge acquisition tool.

In the second phase it is intended that Roycroft's descriptions be matched against Thompson's

exhaustive database for KBBKN.

Roycroft's first task was to select a sub-strategy within the KBBKN domain of an appropriate

size and complexity for the application of sequence induction. The choice fell on the first section of

one of the exceptional 66-move forced wins for White.

8.2.1. Initial position

Play commences from the position shown in figure 8.1.

Taking symmetry and slightly altered starting positions into account, this position is

equivalent, in terms of the number of moves to a forced win, to several other similar positions. As

this equivalence can be taken into account by the careful choice of terms when devising the expert

syste~ we will ignore this extra dimension to the problem.

Inductive acquisition of chess strategies 158

Figure 8.1 The initial position, WTM

8.2.2. Goal position

The aim of White in this sub-strategy is to liberate the dark-squares-White-bishop (wB(dark))

from the corner in no more than 12 moves. In order to achieve this it is necessary that

A) light-squares-White-bishop (wB(light)) prevents Black's king (bK) from attacking and

capturing White's-bishop-on-square-h1 (wBh1). This is illustrated in figures 8.2, 8.3 and 8.4.

B) White's king (wK) moves to support the attack of wBhl on Black's-knight-on-square-g2

(bNg2) (see figure 8.5).

Play achieving A) is trivially described and encoded. However, attaining B) is complicated

considerably by White's choice of delaying tactics, employed to impede wK approaching h3. It

was for this second goal that we used sequence induction to capture Roycroft's description.

Inductive acquisition of chess sttategies 159

Figure 8.2 wB(light) prepares to prevent wK from moving to h2, WTM

Inductive acquisition of chess strategies 160

Figure 8.3 bK retreats after being checked by wB(ligbt), W1M

Inductive acquisition of chess strategies 161

Figure 8.4 wB(light) takes up fortified position, WTM

Inductive acquisition of chess strategies 162

Figure 8.5 The goal of liberating wB(dark). bN forced to retreat, BTM

8.2.3. Attributes and actions

Roycroft was asked to give an exposition of play which included a set of sequences of moves

together with a running commentary displaying points of interest. From this the author extracted

four positional attributes (based on Roycroft's use of adjectival phrases), four action schemas taken

by White (corresponding to verb phrases) and six sequences of play. The attributes were as follows

B 1) Is White free to take bN? {y/n}

B2) Is wK on the same diagonal as the release position (h3)? {y/n}

B3) Can wBhl(dark) move? {y/n}

B4) Is the direct diagonal position closest to the release position covered? {y/n}

The actions were

Ba) wK approaches release position (h3) by moving along rank or file.

Inductive acquisition of chess strategies

Bb) wK moves to non-check position closest to release position on direct diagonal.

Be) wB(light) moves out of corner along its diagonal.

Bd) White takes bN.

163

Note that each action at this level represents a single move. However, the entire automaton to

be derived represents a unit action involving several moves. Thus we might, if necessary, have a

hierarchy of such actions and attributes, similar to that described by Shapiro and Niblett (Shapiro

and Niblett, 1982) for classification (see conclusion).

8.2.4. The solution

The sequences used are reproduced in Appendix C. These sequences were added by

stepwise-refi.nement, the result being tested after the addition of each sequence. Very early in this

process, the k-value for the solution rose from 0 to 1, at which level it remained during the rest of

development. Also, the number of states in the solution grew rapidly at first to reach a steady

value of 5, at which it too stayed fixed. Altogether this process displayed a good incremental

nature.

The first six sequences represent White's response to various well executed tactics played by

Black. These were derived directly from Roycroft' s description. Having by this stage generated a

playing strategy that dealt adequately with more than Roycroft's described positions (the k

contextual algorithm successfully generalised solutions to a larger number of positions than those

originally described) the automaton was presented and explained to Roycroft Roycroft noted that

the set of positions at which the White king can be delayed by Black was the most complex to

describe. Significantly, the stale which described just these positions contained the most ID3-

examples. The structure automaJically imposed on the solution had a clear significance to the

expert.

As yet, with only six sequences, the solution was not able to cope with non-optimal play by

Black. An additional seven sequences were added to deal with such play. The resulting k-contextual

Inductive acquisition of chess strategies 164

automaton is given in Appendix D in a form which can be directly translated into a Mugmaker

induction file. Appendix E demonstrates the transformation carried out by ID3-like induction to

produce a runnable Mugol expert system. Note that all decision trees in the solution have the form

of HSL (Michie, 1984) decision trees. Appendix F gives the Mugmaker file corresponding to the

automaton solution of Appendix D. Using this Mugmaker file, the Mugol code of Appendix G was

inductively generated.

8.3. Conclusion

We have demonstrated the feasibility of using sequence induction to construct expert-level

chess strategies for endgame play. A great deal of further work is necessary to expand the work

described here to completely cover the highly complex domain of KBBKN. However, the

methodology used was found by the expert to be natural in terms of the example presentation

requirements, as chess players are quite at home with describing play in terms of example move

sequences. Furthermore, the bottleneck of structuring was eased, though not completely removed

by the use of sequence induction. Whereas other attempts at automatic structuring have led to

solutions which are not acceptable to experts, results produced by sequence induction were found to

be intuitively correct by the endgame specialist John Roycroft.

In section 8.3.3 we noted that as the induced strategy represents a broadly defined action, it

might be found necessary to form a hierarchy of successively more detailed action descriptions in

order to create an extensive strategy. Therefore, it might be argued that our automatic structuring

aid has gained us no ground, as it may still be necessary to do further manual structuring. We do

not claim to have a complete answer to the structuring problem. However, Shapiro (Shapiro, 1983)

when constructing his structured solution of KPa7KR found that the use of more than 7 examples

within any particular context lead to unreadable machine induced solutions. We have used 13

example sequences each containing an average of 4 ID3-like sequences to produce a semi

structured solution in which each state's rule is derived from an average of only 3 examples. Thus

despite the fact that the quantity of example material used to structure this level of problem is an

Inductive acquisition of chess strategies 165

order of magnitude larger than that used by Shapiro, the generated solution contains a small

number of easily understandable decision trees.

The k-contextual induction algorithm used has good incremental behaviour (see section

7 .3.7). This algorithm has also been proved to identify the co"ect solution in the limit.

The use of two levels of induction, sequence induction and static induction, gives rise to very

powerful generalisation, with solutions being output directly as runnable expert systems.

On the negative side, we have not developed a form of explanation which deals satisfactorily

with sequence execution. It is hoped that by continued research, chess experts may be able to lead

us to the most natural form of explanation required by chess players to describe sequences of play.

Also, the k-contextual algorithm used for this research is written in Prolog. A more efficient

implementation, with a better interface to the Mugol environment is needed.

9

Discussion

Abstract Explanation of computer-based reasoning and the "bottleneck" (Feigenbaum. 1979) of knowledge

acquisition are major issues in expert systems research. We have contributed to these areas in two ways.

Firstly, we have implemented an expert system shell. the Mugol environment, which facilitates knowledge

acquisition by inductive inference and provides automatic explanation of run-time reasoning on demand.

RuleMaster, a commercial version of this environment, has been used in industry for the construction and

testing of two large classification systems. Secondly, we have investigated a new technique called sequence

induction which can be used in the construction of control systems. Sequence induction is based on theoretical

work in grammatical learning. We have improved existing grammatical learning algorithms as well as

suggesting and theoretically characterising new ones. These algorithms have been successfully applied to the

acquisition of knowledge for a diverse set of control systems, including inductive construction of robot plans

and chess end-game strategies. However, to date sequence induction has not been incorporated into the Mugol

environment We regard the automatic structuring of problem domains as the most important topic for further

inductive inference research. Lastly we describe the author's present research project, Duce. Duce is a system

for automatically structuring propositional calculus rules.

9.1. Summary

In chapter 1 we introduce the topic of expert system researc~ following Michie's definition.

Expert system development involves continuous debugging of knowledge structures. We argue that

the two most important tools in this debugging process are a) an explanation facility and b) an

inductive knowledge acquisition mechanism. The major topic of interest within this thesis is that of

inductive inference.

Discussion 167

We describe two different forms of induction. Static induction algorithms take examples

which represent descriptions of world situations to which labels are attached. These labels indicate

a classification or an action to be taken. On the other han~ sequence induction relies on the

presentation of example sequences to an inductive algorithm. Each element of the sequence is a

situation/action pair similar in form to the static descriptions.

In chapter 2 we discuss the nature of inductive algorithms. Inductive algorithms use various

types of example material to generate hypotheses in various rule formats. In their nature, inductive

algorithms make conjectures concerning unknown facts. These conjectures must be shown to be

sound according to some demonstrable criteria.

In sections 2.5 and 2.6 we use a parity problem to illustrate properties of various rule

representations. In figure 2.8 we give a table of complexity results for the three chosen

representations. This table shows that, for this problem at least, it is preferable to use a finite state

machine representation rather than a decision-tree based one. We go on to show that finite state

machine representations have more expressive power than those of prepositional calculus and

decision trees. However, there exist formalisms, such as Turing machines, which have even more

expressive power than finite state machines. One might ask whether formal power is the ultimate

criterion for deciding between representations. We argue that for expert system applications expert

comprehensibility seems to be more pertinent to the choice of an appropriate representation than

formal power.

In chapter 3 we describe the Mugol environment This is an expert system building package

intended to solve many of the problems involved in the construction of large knowledge based

programs. This comprises an induction engine (Mugmaker), a rule language (Mugol) and an

explanation facility. Mugmaker contains a variant of the ID3 static induction algorithm. Although

we have investigated and tested sequence induction algorithms (chapters 5,6,7,8) the Mugol

environment does not as yet contain such facilities.

Discussion 168

Although in some respects Mugol has the characteristics of high-level languages such as

Pascal or A~ its explanation facility and rule format uniquely distinguish it for use in an expert

system environment.

In comparison to other expert system approaches we believe that although our knowledge

representation, in the form of decision trees, is no better than production rules, the fact that

knowledge can be presented in the form of examples as well as rules means that the process of

knowledge acquisition is greatly eased. It has been noted often during the construction of Mugol

based applications that whereas designers using dialogue acquisition methodologies report that

construction of a prototype expert system takes two to three man years of effort (Shortliffe and

Buchanan, 1975; Du~ Gashnig and Hart, 1979), similar sized Mugol applications (see Appendices

A and B) have been consistently prototyped in around six person months.

Typical expert system applications contain aspects of both classification and control tasks.

The Mugol environment provides a consistent knowledge representation for these disparate problem

elements. Furthermore, an interface to external sources and sinks of information is provided. Such

an interface, although not always recognised as a necessity for expert system development, has

been found to be absolutely essential in all large Mugol applications (Appendices A, B and H).

In chapter 4 we describe a small robot planning system, ARCH, which was built by the

author. The solution we describe works only for a small number of blocks, and only in simulation.

However, Shepherd {Appendix H) has extended this solution within the Mugol environment, to

build large recursively defined structures (around 30 blocks). Moreover, Shepherd's solution has

been tested within a real-time robot environment using Puma robots and camera based sensory

feedback.

As mentioned earlier in this section, the Mugol environment in its present form demands that

the control structure of Mugol finite state machines be hand-coded. In chapters 5 and 7 we

investigate techniques for automatically constructing finite state structures from traces of their

intended execution (i.e. sequences of calls to predefined tests and actions). The techniques are

Discussion 169

based on "grammatical induction", i.e. discovery of grammar from example sentences. In chapter

5 we present a survey of algorithms which infer a regular language from a given subset of that

language. It is evident that an increasing number of heuristic approaches exist for inferring regular

languages. We present a powerful new algorithm of low-order polynomial time complexity which

generalises a number of those already in . the literatur~ and provides a systematic framework for

testing and comparing existing approaches without the burden of re-implementing many different

algorithms.

In chapter 6 we describe six small but varied applications of the KR and SKR induction

algorithms (see sections 7 .2.2 and 7 .4.5). The applications include automatic VLSI circuit

synthesis, user modelling in a mathematical educational environment and generalisation of robot

plans.

It is interesting to note that whereas each problem was inherently fairly difficult, the problem

was automatically broken into a number of smaller problems, each of which would require very

little decision making during execution of the automaton.

The method of constructing robot plans from example sequences has also been investigated

by Dufay and Latombe (1984). However, they used a simpler inductive algorithm, essentially the

same as that described by Miclet (5.4.5.3). Angluin (1982b) has shown Miclet's algorithm is merely

a special case of k-reversible induction. We therefore believe our method to have a wider scope

than that of Dufay and Latombe.

In chapter 7 we describe a new algorithm KR which is input/output equivalent to Angluin's

k-RI algorithm (Lemma 7 .6). However, whereas Angluin' s algorithm runs in time 0(n3
), KR has

been designed to run in time O(n) (Theorem 7.9).

All algorithms described in chapter 5 have the common feature that no effective inductive

inference is feasible with single example strings, no matter how long the given example. In section

7.3 we investigate the k-contextual language class for which effective induction is possible from

singleton example sets. We also show that the k-contextual languages are a restricted subset of the

Discussion 170

k-reversible languages (Theorem 7 .20). In section 7 .3.3 we give a simple algorithm, KC, which

induces k-contextual languages. This is shown to run in time O(n) (Theorem 7.23). Like the

algorithm KR, KC has the propeny of being capable of identifying k-contextual languages in the

limit (Theorem 7.24).

In section 7.4 we describe a method of automatically choosing the appropriate value of k for

inductive construction of k-reversible and k-contextual Mealy machines. This is made possible by

use of the semantic content of situation/action sequence examples. This method of inductive

inference based on situation/action sequences is called sequence induction to distinguish it from

grammatical induction. Sequence induction is demonstrated by application in chapters 6 and 8.

In chapter 8 the algorithm SKC (section 7 .4. 7) is applied to the construction of expert chess

strategies. In a pilot study a small expen system for playing part of the King and two Bishops

against King and Knight endgame (KBBKN) was automatically constructed using this technique.

A great deal of further work is necessary to expand the work described here to completely

cover the highly complex domain of KBBKN. However, the methodology used was found by the

expert to be natural in terms of the example presentation requirements, as chess players are quite at

home with describing play in terms of example move sequences. Furthermore, the bottleneck of

structuring was eased, though not completely removed by the use of sequence induction. Whereas

other attempts at automatic structuring have led to solutions which are not acceptable to experts,

results produced by sequence induction were found to be intuitively correct by the endgame

specialist John Roycroft.

In accordance with theoretical results (see section 7.3.7), the k-contextual induction algorithm

used was found to have good incremental behaviour. By using two levels of induction (sequence

induction and static induction) very powerful generalisations are produced. The induced solution of

chapter 8 has been executed in a Mugol environment (see Appendices F and G).

Discussion 171

9.2. Directions for further work

Commercially available packages (McLaren, 1984; A-Razzak, Hassan and Pettipher, 1984;

Michie, Muggleton, Riese and Zubrick, 1984) have already, during their short existence, proved the

power of inductive inference in the construction of expert systems. These packages allow

development-time savings in building large expert systems of at least an order of magnitude over

the traditional "deductivist" rule extraction technique. However, it cannot be said that the

"inductivists" have yet completely met their targets. Although present day inductive inference

techniques go a long way towards easing what Feigenbaum (1979) called the bottleneck of

knowledge acquisition, one might say that this bottleneck has merely shifted. The new bottleneck

involves the hierarchical structuring of problem domains. This problem, related to what Michalski

(1986) has termed constructive induction has had very little attention so far. Clearly however,

investigation in this area is crucial to the further development of practical knowledge acquisition

tools.

Along these lines, the author has recently been investigating a technique for interactive

knowledge structuring and generalisation (Muggleton, 1986). The Prolog program which presently

embodies this technique is called Duce. Duce uses a new transformational programming approach

to automatically structure and generalise examples/rules described as horn clauses in propositional

calculus. Six simple operators are used to progressively compress the rules by forming new

concepts and generalisations. Duce is interactive, in that it both requests names for the various new

concepts produced, as well as checking the validity of concepts against the user (or oracle).

Duce uses "illustrative examples" to describe new concepts to a human oracle in a graphical

form. Thus in the chess world, the chess expert will decide on the comprehensibility of a new

concept based on a number of chess board positions which exemplify the new concept These

positions are displayed graphically, allowing the expert to make decisions in a more natural setting

than that of having to view a complex description based on low-level attribute descriptors.

Discussion 172

Duce has been tested on two small tasks and one large task. The smaller tasks were those of

finding a structure for the "even-parity" problem (see chapter 2) and developing a taxonomic

structure for a small number of animal descriptions. Both of these tests were passed satisfactorily;

Duce discovered a divide and conquer algorithm similar to that discussed in chapter 2 for the first

problem and found the concepts of bird and primate in the second case.

The thir~ and most taxing test of Duce's capabilities depends on its ability to rediscover, and

possibly improve on, a structure for deciding the predicate won for white for any chess position

within the chess end-game domain of K.Pa7KR. A structure for this problem was originally created

manually by Shapiro and Kopec, and described in Shapiro's PhD thesis (1983). The domain

contains around 200,000 positions. This was reduced to around 3,000 examples by describing the

positions in terms of 36 low-level descriptors suggested by the chess end-game specialist Danny

Kopec. These examples form a complete enumeration and were automatically generated by use of

a mini-max backup algorithm. Although experimentation within this domain is still in progress, the

new high-level concepts of delayed queening and mate threat proposed by Duce have been

accepted and named by another chess end-game specialist, Ivan Bratko.

As indicated in chapter 8, the problem of hierarchical knowledge structuring applies just as

strongly to sequence induction as it does to static induction. to look at methods of inducing

context free grammars from example sentences. This would require the construction of intermediary

terms. According to Gold (1967) it is possible to identify context free grammars in the limit using a

positive and negative example source. However, it may well make sense to also look for an oracle

based transformational solution to this problem.

References

Angluin D. (1978), On the complexity of minimum inference of regular sets. Information and
Control 39:337-350.

Angluin D. (1982a), A note on the number of queries needed to identify regular
languages. Information and Control 51(1):76-87.

Angluin D. (1982b), Inference of reversible languages. Journal of the ACM 29:741-765.

Angluin D. and Smith C.H. (1982), A survey of inductive inference: theory and methods. New
Haven, Cf: Yale University.

Arbab B. and Michie D. (1985}, Generating rules from examples. Proceedings of the Ninlh
International Joint Conference on Artificial lnlelligence. Los Altos, CA:
Kaufmann, pp. 631-633.

A-Razzak M., Hassan T. and Pettipher R. (1984), EXTRAN-7: A Fortran-based software pack
age for building expert systems. Research ·and Development in Expert
Systems. ed. M.A. Bramer, pp 23-30. Cambridge: Cambridge University
Press.

Biennann A.W. and Feldman J.A. (1972), On the synthesis of finite-state machines from sam
ples of their behaviour. IEEE Transactions on Computers C-21:592-597.

Bobrow D.G. and Stefik M. (1983), The LOOPS manual. Palo Alto, CA: Xerox, 1983.

Bratk:o I. (1983}, Generating human-understandable decision rules. E. Kardelj University Lju
bljana (working paper).

Bratk:o I. and Michie D. (1980}, A representation of pattern-knowledge in chess endgames.
Advances in Computer Chess 2, Edinburgh: Edinburgh University Press, pp.

31-56.

Cohen P.R. and Grinberg M.R. (1983), A framework for heuristic reasoning about uncertainty.
Proceedings of the Eighth International Joint Conference on Artificial

Intelligence, Los Altos, CA: Kaufmann, pp. 355-357.

Dechter R., and Michie D. (1984}, Induction of plans. Glasgow: The Turing Institute (TIRM-
84-006).

Duda R.O., Gashnig J. and Hart P.E. (1979), Model design in the PROSPECfOR consultant
program for mineral exploration. Expert Systems in the Microelectronic
Age, ed. D. Michie. Edinburgh: Edinburgh University Press, pp. 153-167.

Duda R.O., Hart P .E., and Nilsson N. (1976), Subjective Bayesian methods for rule-based
inference systems. Menlo Park, CA: Stanford Research Institute, Artificial
Intelligence Center (Technical Note 124).

Dufay B. and Latombe J.C. (1984), An approach to automatic robot programming based on

inductive learning. International Journal of Robotics Research, 3(4): 3-20.

Fagan L.M., Kunz J.C., Feigenbaum E.A., and Osborne J.J. (1979), Representation of dynamic
clinical knowledge; measurement interpretation in the .. intensive care
unit Proceedings of the Sixth International Joint Conference on Artificial In
telligence, Tokyo, Los Altos, CA: Morgan Kaufmann Publishers, Inc., pp.
260-262.

Feigenbaum E.A. (1979), Themes and case studies of knowledge engineering. Expert Systems
in the Micro-electronic Age, Ed. D. Michie. Edinburgh: Edinburgh Universi
ty Press, pp. 3-25.

Fu K.S. and Booth T.L. (1975), Grammatical inference: introduction and survey. IEEE Tran
sactions on Systems, Man, Cybernetics. SMC-5:95-111,409-423.

Gold E.M. (1967), Language identification in the limit Information and Control 10:447-474.

Gold E.M. (1978), Complexity of automaton identification from given data. Information and
Control 37:302-320.

Hopcroft J.E. and Ullman JD. (1979), Introduction to Automata and Formal
Languages. Reading, MA: Addison-W esley.

Horwitz and Kling (1851), Chess Studies. London: Skeet

Huberman BJ. (1968), A program to play chess end-games. Stanford, CA: Stanford University,
Computer Science Department (Technical report no. CS 106).

Hunt E.B., Marin J. and Stone P. (1966), Experiments in induction. New York: Academic
Press.

Intellicorp (1984), The Knowledge Engineering Environment. Menlo Park, CA: Intellicorp.

Levine B. (1982), The use of tree derivatives and a sample support parameter for inferring tree
systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI-4:25-34.

McLaren R. (1984), Expert Ease User Manual. Glasgow: Intelligent Terminals Ltd.

Michalski R.S. and Chilausky R.L. (1980), Learning by being told and learning from exam
ples: an experimental comparison of the two methods of knowledge acquisi
tion in the context of developing an expert system for soybean disease
diagnosis. International Journal of Policy Analysis and Information Sys
tems. 4(2): 125-161.

Michalski R.S. and Stepp R. (1982), Revealing conceptual structure in data by inductive
inference. Machine Intelligence 10. Ed. J.E. Hayes, Donald Michie and Y-H
Pao. Chichester: Horwood. pp 173-196.

Michalski R.S. (1983), A theory and methodology of inductive learning. Machine Learning:
An Artificial Intelligence Approach. Palo Alto, CA: Tioga. pp. 83-134.

Michalski R.S. (1986), Understanding the nature of learning: issues and research

directions. Machine Learning: An Artificial Intelligence Approach. Vol.
2 Eds. Michalski R.S., Carbonell J.G. and Mitchell R.M. Los Altos, CA:
Kaufmann, pp. 3-25.

Michie D., Muggleton S., Riese C. and Zubrick S. (1984), RuleMaster: a second-generation
knowledge-engineering facility. Proceedings of the First Conference on
Artificial Intelligence Applications, Denver. IEEE Computer Soc., pp. 591-
597.

Michie D. (1982), Measuring the knowledge content of expert programs. The Bulletin of the
Institute of Mathematics and its Application, 18 (Nov/Dec), pp. 216-220.

Michie D. (1982a), Computer chess and the humanisation of technology. In Nature, Vol. 299,
September 1982, pp. 391-394.

Michie D. (1984), Quality control of induced rule-based programs. The Fifth
Generation. London: CGS Institute.

Michie D. (1985), Expert systems and robotics. Handbook of Industrial Robotics. Ed. S. Nof.
New York: Wiley, pp 419-436.

Miclet L. (1980), Regular inference with a tail clustering method. IEEE Transactions on Sys
tems. Man, Cybernetics SMC-10:737-743.

Minsky M. (1975), A framework for representing knowledge. The Psychology of Computer
Vision. Eel. P.Winston. NewYork: Mcgraw-Hill, 211-277.

Moore E.F. (1956), Gedanken-experiments on sequential machines. Automata Studies Eds. C.E.
Shannon and J. McCarthy. Princeton, NJ: Princeton University Press, pp.
129-153.

Moses J. (1975), A MACSYMA primer. Mathlab Memo No. 2, Computer Science Laboratory,
Massachusetts Institute of Technology.

Mozetic I., Bratko I. and Lavrac N. (1984), The derivation of medical knowledge from a quali
tative model of the heart. Ljubljana: Josef Stefan Institute.

Muggleton S.H. (1983), A process description language. M./ News No.3. Glasgow: The Turing
Institute.

Muggleton S.H. (1984a), An inductively acquired strategy for building an arch in a blocks
world, (unpublished working paper)

Muggleton S.H. (1984b), Induction of regular languages from positive examples. MJ.News
5. Glasgow: The Turing Institute.

Muggleton S.H. (1985a), Some experiments with grammatical induction. M.I.News 7. Glasgow:
The Turing Institute.

Muggleton S.H. (1986), An efficient method of inductively acquiring chess strategies. To ap
pear in Machine Intelligence 11, Oxford: Oxford University Press.

Muggleton S.H. (1986), Duce- a program for automatically structuring propositional calculus

rules, (unpublished working paper).

Niblett T. (1985), Y APES: Yet Another Prolog Expert System. CC-AI: the journal for in
tegrated study of artificial intelligence, cognitive science and applied
epistemology. Intelligent systems 2(2), 3-30.

NTIS (1969), Use of the Skew T, Log P Diagram in Analysis and Forecasting. Air Weather
Service Manual AWSM 105-124, NTIS AD695603. Springfield, VA: Nation
al Technical Information Service.

Pao T.W. and Carr J.W. III (1978), A solution of the syntactical induction-inference problem
for regular languages. Computer Languages 3:53-64.

Paterson A. (1983), An attempt to use CLUSTER to synthesise humanly intelligible subprob
lems for the KPK chess endgame. Urbana, IL: Univ. lllinois, (UIUCDCS-R-
83-1156)

Paterson A. (1984), Computer Induction in a Tutorial Context. Edinburgh: University of Edin
burgh, (M.Phil. Thesis).

Paterson A. and Niblett T. (1982), ACLS Manual. Glasgow: Intelligent Terminals Ltd.

Popper K. R. (1972), Conjectures and Refutations: the Growth of Scientific
Knowledge. London: Routledge.

Quinlan J .R. (1979), Discovering rules from large collections of examples: a case
study. Expert Systems in the Micro-electronic Age. Ed. D. Michie. Edinburgh:
Edinburgh University Press.

Quinlan J.R. (1982a), INFERNO: a caulious approach to uncertain inference. Santa Monica,
CA: RAND Corporation (RAND Note N-1898-RC).

Quinlan J.R. (1982b), Semi-autonomous acquisition of pattern-based knowledge. Introductory
readings in expert systems. Ed. D. Michie. New York: Gordon & Breach.
pp. 192-207.

Radian Corporation (1984), RuleMaster System User Manual. Austin, TX: Radian Corporation
(Technical Report DCN 84-141-603-01).

Riese C. (1984), Transformer fault detection and diagnosis using RuleMaster by Radian. Aus
tin, Tx: Radian, 1984.

Roycroft J. (1983), A prophesy fulfilled. EG magazine (November, 1983), Ed. J. Roycroft

Shafer G. (1976), A Mathematical Theory of Evidence. Princeton, NJ: Princeton University
Press.

Shannon C.E. (1950), Programming a computer for playing chess. Phil. Mag. 41 pp. 256-275.

Shapiro A.D. (1983), The Role of Structured Induction in Expert Systems. Edinburgh: Edin
burgh University (Ph.D. thesis).

Shapiro A.D. and Michie D. (1986), A self-commenting facility for inductively synthesised

endgame expertise. Advances in Computer Chess 4. Ed. D.F. Beal. Oxford:
Pergamon Press, pp. 147-165.

Shapiro A.D. and Niblett T.B. (1982), Automatic induction of classification rules for a chess
endgame. Advances in Computer Chess 3. Oxford: Pergarnon Press, pp. 73-
92.

Shortliffe E.H. and Buchanan B.G. (1975), A model of inexact reasoning in
medicine. Malhematical Biosciences 23:351-379.

Thompson K. (1986), Private letter to J. Roycroft EG magazine (January 1986), Ed. J. Ray
croft

Van Melle W J. (1980), System Aids in Constructing Programs. Ann Arbor, MJ.: UMI, (Com
puter Science. Artificial Intelligence 11).

Yung-Choa Pan J. (1984), Qualitative reasoning with deep-level mechanism models for diag
nosis of mechanism failure, Proceedings of the First Conference on Artificial
Intelligence Applications, Denver. IEEE Computer Soc., pp. 295-301.

Zadeh L.A. (1979), A theory of approximate reasoning. Machine Intelligence 9. Ed. Hayes,
Michie, Mikulich. Chichester: Horw~ pp. 149-194.

Zubrick S. (1984), Willard: a severe thunderstorm forecasting system using RuleMaster by
Radian. Austin, Tx: Radian.

Zubrick S. (1986), Validation of a weather forecasting expert system. To appear in Machine
Intelligence 11. Oxford: Oxford University Press.

Zuidema C. (1974), Chess, how to program the exceptions? Afdeling informatica IW21174.
Amsterdam: Mathematisch Centrum.

Appendix A

WILLARD

Abstract. The Mugol environment has been tested in the construction of two large expert classification

systems, WILLARD and EARL. In this section we describe Steve Zubrick's implementation of WILLARD

and discuss the validation methods that have been used to assess WILLARD's performance. The thesis author

aided in suggesting the structuring methodology used in WILLARD.

Introduction

WILLARD (Zubrick, 1984) is an expert system for predicting the likelihood of severe

thunderstorms occurring in the central USA. The system was written by Steve Zubrick, a

meteorologist at Radian Corporation. Extensive testing of the system (Zubrick, 1986) has shown

that it is capable of producing predictions which can usefully complement those of the US National

Weather Service. The author gave help and advice in the structuring and example acquisition of

WILLARD.

On average, over 1000 severe thunderstorms are reported each year in the central United

States, causing the loss of many lives and billions of dollars of property damage. The Nation

al Weather Service defines severe thunderstorms as the occurrence of one or more of the fol

lowing conditions:

wind gusts greater than 50 knots,

tornados, and/ or

hailstones greater than 3/4 inch in diameter.

WII.LARD

Severe thunderstorm forecasting for the entire U.S. is currently done by highly skilled

meteorologists at the National Severe Storms Forecast Center (NSSFC).

This time-consuming task entails continuous analysis of vast amounts of raw data and

numeric modelling results, much of which turns out to be irrelevant. An expert system might

automatically screen the data. providing the meteorologists with suggested forecasts together with ·

their justifications.

A large number of specific case studies of occurrences of severe thunderstorms have been

documented and analysed in the meteorological literature. However, no coherent system of rules

covering all possible cases has yet been synthesised. For this reaso~ an inductive rule generator

would appear to be a powerful tool for generalising this accumulated knowledge.

The system

For the purposes of rapid development, an initial set of examples provided by the expert were

used to build the prototype expert system. Additional cases of real weather data have subsequently

been applied in the ongoing refinement of WTILARD. An illustration of the use of inductive

inference in the development of WILLARD is given in figure 3.1 (section 3.3).

The WILLARD expert system is composed of a hierarchy of thirty modules, each of which

contains a single decision rule (see figure A.l). This hierarchy is on average four levels deep. All

modules' rules were developed using inductive generalisation. A total of around 140 examples

were used in building WILLARD. WILLARD has a domain size of approximately nine million

measurably different situations.

For the top level module, the inductive algorithm was able to order the critical

meteorological factors in a manner consistent with the way forecasters perform their analysis. For

example, if the key factors are unfavourable, then a decision can be made rapidly, otherwise, more

parameters are investigated until a decision can be reached.

WllLARD

Figure A.l WILLARD structure

Although WILLARD is essentially an expert classification system, the Mugol environment

facilitates the use of control loops required for top level control and the monitoring of incoming

data.

WILLARD can operate in interactive or automatic forecast mode. In the manual mode, the

system asks questions of the meteorologist about pertinent weather conditions for the forecast area

and produces a complete, reasoned forecast.

In the automatic mode, WILLARD obtains all necessary information from National

Meteorological Center data files. External FORTRAN functions were interfaced to WILLARD to

access and operate on these data files. The user may specify an area, in which WILLARD will

generate a grid of nodal values for the chance of severe thunderstorms for that area. A sample

explanation of a forecast is shown in figure A.2.

Validation

WILLARD

FULL EXPLANATION OF THE FORECAST:

Since upper level cold air advection causing increased
upwards vertical velocities is present

it follows that the upper-level destabilisation
potential is sufficient (1)

Since the K Index is strong
when the Lifted Index is strong
it follows that the stability indices condition

is favourable (2)
Since daytime heating acting as a possible trigger mechanism

for potential instability release is strong
when (2) the stability indices condition is favourable
it follows that low-level destabilisation potential

is favourable (3)
Since an approaching 500 millibar short wave trough is present

it follows that the vertical velocity field
is~ur~ ~

Since a high 850 mb dew point is present
when surface dew point classification is moderate
it follows that the low-level moisture field

is marginal (5)
Since (1) the upper-level destabilisation potential is sufficient

when (3) low-level destabilisation potential is favourable
and (4) the vertical velocity field is favourable
and (5) the low-level moisture field is marginal
it was necessary to advise:

'There's a MODERATE CHANCE that thunderstorms occurring
12 hours from now will be severe at this location.'

in order to actually forecast the chance of severe thunderstorms

Figure A.2 Sample WILLARD forecast explanation

Steve Zubric~ with help from the US National Weather Service (NWS), has carried out

comparisons of WILLARD's forecasting ability versus that of the standard collective outlook issued

by forecasters of the Severe Local Storms Unit (SELS) (Zubrick, 1986).

WILLARD

The validation data used spanned a 24 day period in the spring of 1984. Severe thunderstorm

outlooks were given by both WILLARD and SELS in terms of the following three aerial

density/risk categories.

a) Slight Risk - 2 to 5 percent aerial coverage.

b) Moderate Risk - 6 to 10 percent aerial coverage.

c) High Risk- greater than 10 percent aerial coverage.

Three statistics were quantified over all of the wn..LARD and SELS predictions. These

were

x - severe storm reports correctly predicted (i.e. those reports found within a severe risk

outlook area);

y - severe storm reports not predicted (i.e. those lying outside the severe risk outlook area);

z - non-severe weather predicted to be severe.

WILLARD

In terms of these values WILLARD and the SELS predictions were compared according

to three criteria which are believed by meteorologists to give a good indication of predictive

skill. These criteria were

1) Probability of Detection (PoD). This is defined as

PoD= _x_
(x+y)

2) False Alarm Ratio (FAR). This is defined as

FAR= _z_
(z+x)

3) Critical Skill Index (CSI). This is defined as

CS/= X
(x+y+z)

Figure A.3 shows a comparison of WILLARD and SELS in terms of these 3 criteria over a

representative selection of days during the test period.

From the table we see that although WILLARD' s probability of detection is generally lower

than that of the SELS predictions, it has a generally better false alarm rate. The critical skill index

gives us the clearest overall view of skill, and shows WILLARD to have skill which although

generally lower than SELS, is still comparable.

Date PoD(%) FAR CSI
SELSIWILLARD SELS/WILLARD SELS/Wll.LARD

25 04 84 87J57 .46'.22 .49/.49

26 04 84 88/20 .44/.41 .521.81

29 04 84 85/54 .51/.34 .45/.42

25 05 84 100/68 .58/.48 .43/.42

26 05 84 33/91 .74/.90 .17/.10

27 05 84 89/26 .50/.21 .47/.24

04 06 84 70/50 .54/.89 .39/.10

06 07 84 92J71 .441.31 .54/.54

Figure A.3 Comparison of WIU.ARD and SELS forecasts

References

Zubrick S. (1984), Willard: a severe thunderstorm forecasting system using RuleMaster by Ra-

dian. Austin, Tx: Radian, 1984.

Zubrick S. (1986), Validation of a weather forecasting expert system. To appear in Machine

Intelligence 11. Oxford University Press.

Appendix B

EARL

Abstract In this section we describe Charles Riese's implementation of EARL and discuss the validation

testing that has been used to assess EARL's performance. EARL is presently in routine industrial use. The

author aided in suggesting the structuring methodology used in EARL.

Introduction

EARL (Riese, 1984) is a system for diagnosing imminent break-down in large oil-cooled

electrical transformers. The system was constructed by Charles Riese who is a software engineer

working for the Hartford Steam Boiler Company. When EARL was tested against 859 test-cases, its

diagnosis was correct in 99.5% of the cases studied.

Large oil-filled transformers are used by utilities for power distribution. These transformers

sometimes fail due to insulation deterioration, overheating due to overload, failure of bolted or

compression joints, corona, arcing, and overheating from inadvertent grounded core. All of these

failure modes involve some form of heating of the oil and/or insulation. These materials

decompose when heated and some of the decomposition products are hydrogen and hydrocarbon

gases which dissolve in the oil. The concentrations of these gases can be measured with

conventional gas chromatographs. Over the past 20 years, techniques have been developed to

diagnose transformers' conditions from dissolved gas analyses.

When large transformers (in excess of 10 MW) fail, the service interruption and repair or

replacement costs may run into millions of dollars. This provides financial incentive to detect the

onset of transformer failures before catastrophic damage occurs. Hartford Steam Boiler Inspection

and Insurance Company (HSB) insures industrial equipment and has sponsored the development of

a Mugol based expert system which utilises oil sample analyses to prepare transformer condition

EARL

reports and to make recommendations on repair action.

The classificatory portion of the expert system contains 27 modules, each having one or more

induced rules. Since this is a developing fiel~ the theory relating gas concentrations to faults is not

well worked out or documented. It was necessary to rebuild the expert system structure several

times, as better organisations of the knowledge became apparent. The induction of rules· from

examples proved valuable in this rule construction and testing process.

The rules can be divided into several categories. First there are rules to check the validity of

data, to determine if there was a leak during sample transport or a chemical analysis error. Other

rules determine the presence of failure symptoms: is there low or high temperature heating?, is

heating near insulation?, etc. A third set of rules diagnoses particular faults from the symptoms and

gas concentrations, and the final set of rules decides which corrective actions to recommend.

The primary system is used for screening the gas analysis results at the chemistry laboratory.

Experts seem to make better use of their time, and to be able to check more transformers.

Validation

Owing to the high cost involved in incorrect diagnoses (in the order of millions of dollars),

the accepted rate of human diagnostic failure in this domain is below 0.1 %.

EARL was tested using 859 test cases for which gas concentration data was available. In 208

of these cases EARL and the expert concurred that a problem existed and that the transformer

needed to be overhaule~ while in the other 651 cases they both agreed that no problem existed.

Out of the 208 cases in which they decided that a problem existed, in 204 cases the expert's

explanation was the same as EARL while in the remaining 4 cases the expert's explanation differed

from EARL. This highlights the importance of explanation in the "debugging" stage of expert

system development. Without explanation, these 4 cases would have been taken as EARL

dell vering a correct decision, however it would not be realised that it was based on the wrong

reasoning; the danger being that later erroneous reasoning could be used to reach the wrong

EARL

conclusion, with potentially serious consequences.

In 10 of the 204 cases in which both EARL and the expert agreed on the diagnosis, engineers

overhauling the transformers checked to find what the real problem was (this is done rarely as it is

very expensive), and in all 10 cases found that EARL and the expert's joint opinion had in fact

been correct

According to these statistics EARL gave the the same advice as the expert for the sam reason

in 99.5% of cases tested. In the remaining 0.5% of cases, EARL actually gave the the same advice

as the expert, but for different reasons.

It is not known to the author exactly what the estimated cost advantage of using EARL is,

nor what the typical rate of inter-expert diagreement is.

Conclusion

EARL is now in full-time field use and automatically drafts textual reports for HSB clients.

Both the expert and the knowledge engineer involved in building EARL were satisfied with the

Mugol expert system environment Inductive knowledge acquisition allowed the expert system to

be constructed to field test standard in an order of magnitude less time than that expected using

dialogue acquisition techniques.

References

Riese C. (1984), Transformer fault detection and diagnosis using RuleMaster by Radian. Aus

tin, Tx: Radian, 1984.

Appendix C

Example move sequences (see ch.8)

Actions

Ba) wK approaches release position (eg. h3) by moving along rank or file

Bb) wK moves to non-check position on direct diagonal which is closest to release position

Be) wB(light) moves out of corner along its diagonal

Bd) white takes bN

Attributes

B 1) white free to take bN

B2) wK on the same diagonal as release position

B3) wBhl can move

B4) (wK on direct diagonal) and (direct diagonal position closest to release position is covered)

Example move sequences (see ch.8)

Sequence 1 Starts from w Ka8 and bN does delaying check

Bl B2 B3 B4 Acuon Pos1tton

n n n n Ba wKa8 wBhl wBh2 bK.f3 bNg2
n n n n Ba wKb8 wBhl wBh2 bKf2 bNg2
n y n n Bb wKc8 wBhl wBh2 bKf3 bNg2
n y n n Bb wKd7 wBhl wBh2 bKf2 bNg2
n y n n Bb wKe6 wBhl wBh2 bKfl bNg2
n y n n Ba wKf5 wBhl wBh2 bKfl bNe3
n n n n Bb wKg5 wBhl wBh2 bKfl bNg2
n y n n Bb wKg4 wBhl wBh2 bKf2 bNg2
n - y n Be wKh3 wBhl wBh2 bKfl bNf3

The '-' in the last line allows the algorithm to generalise to
the case in which bN releases w B(light).

Sequence 2 Starts from wKb7 and bN does delaying check

Bl B2 B3 B4 Action Position

n n n n Ba wKb7 wBhl wBh2 bKf2 bNg2
n n n n Ba wKc7 wBhl wBh2 bKf3 bNg2
n y n n Bb wKd7 wBhl wBh2 bKf2 bNg2
n y n n Bb wKe6 wBhl wBh2 bKfl bNg2
n y n n Ba wKf5 wBhl wBh2 bKfl bNe3
n n n n Bb wKg5 wBhl wBh2 bKfl bNg2
n y n n Bb wKg4 wBhl wBh2 bKf2 bNg2
n - y n Be wKh3 wBhl wBh2 bKfl bNf3

Move

wKb8
wKc8
wKd7
wKe6
wKf5
wKg5
wKg4
wKh3
wBa8

Move

wKc7
wKd7
wKe6
wKf5
wKg5
wKg4
wKh3
wBa8

Example move sequences (see ch.8)

Sequence 3 Starts from wKb8 and bN does delaying check

Bl B2 B3 B4 Acuon Position Move

n n n n Ba wKb8 wBhl wBh2 bKf2 bNg2 wKc8
n y n n Bb wKc8 wBhl wBh2 bKf3 bNg2 wKd7
n y n n Bb wKd7 wBhl wBh2 bK.f2 bNg2 wKe6
n y n n Bb wKe6 wBhl wBh2 bKfl bNg2 wKf5
n y n n Ba wKf5 wBhl wBh2 bKfl bNe3 wKg5
n n n n Bb wKg5 wBhl wBh2 bKfl bNg2 wKg4
n y n n Bb wKg4 wBhl wBh2 bK.f2 bNg2 wKh3
n - y n Be wKh3 wBhl wBh2 bKfl bNf3 wBa8

Sequence 4 Starts with w Ka8 and bN does not do delaying check

Bl B2 B3 B4 Action Position Move

n n n n Ba wKa8 wBhl wBh2 bKf3 bNg2 wKb8
n n n n Ba wKb8 wBhl wBh2 bKf2 bNg2 wKc8
n y n n Bb wKc8 wBhl wBh2 bKf3 bNg2 wKd7
n y n n Bb wKd7 wBhl wBh2 bK.f2 bNg2 wKe6
n y n n Bb wKe6 wBhl wBh2 bKfl bNg2 wKf5
n y n n Bb wKf5 wBhl wBh2 bK.f2 bNg2 wKg4
n y n n Bb wKg4 wBhl wBh2 bKfl bNg2 wKh3
n - y n Be wKh3 wBhl wBh2 bK.f2 bNf3 wBa8

Sequence 5 Starts with wKg4

Bl B2 B3 B4 Action Position Move

n y n n Bb wKg4 wBhl wBh2 b.Kfl bNg2 wKh3
n - y n Be wKh3 wBhl wBh2 bK.f2 bNf3 wBa8

Example move sequences (see ch.8)

Sequence 6 Starts with wKh3

Bl B2 B3 B4 Action Position Move

n - y n Be wKh3 wBhl wBh2 bKf2 bNf3 wBa8

Black plays badly

Sequence 7 Starts with w Ka8 after bK has left bN undefended (en prise)

Bl B2 B3 B4 Action Position Move

y - n n Bd wKa8 wBhl wBh2 bKe2 bNg2 wB xN!

Sequence 8 Starts with wKa8 and bK leaves bN as first move

Bl B2 B3 B4 Action Position Move

n n n n Ba wKa8 wBhl wBh2 b.Kf3 bNg2 wKb8
y - n n Bd wKb8 wBhl wBh2 bKe3 bNg2 wB xN!

Example move sequences (see ch.8)

Sequence 9 Starts with wKg4 and bK leaves bN as first move

Bl B2 B3 B4 Action Position Move

n y n n Bb wKg4 wBlil wBh2 bKfl bNg2 wKh3
y - n n Bd wKh3 wBhl wBh2 bKel bNg2 wB xN!

Sequence 10 Starts with w Kb8, bN does not do delaying check but allows the

release of w B

Bl B2 B3 B4 Action Position Move

n n n n Ba wKb8 wBhl wBh2 bKt2 bNg2 wKc8
n - y n Be wKc8 wBhl wBh2 bKf2 bNdl wBc6

Sequence 11 Starts with wKe6, bN does delaying check and then allows the release

ofwB

Bl B2 B3 B4 Action Position Move

n y n n Bb wKe6 wBhl wBh2 b.Kfl bNg2 wKf5
n y n n Ba w.Kf5 wBhl wBh2 b.Kfl bNe3 wKgS
n - y n Be wKg5 wBhl wBh2 b.Kfl bNdl wBc6

Example move sequences (see ch.8)

Sequence 12 Starts with wKe6, bN does delaying check and then allows itself to be

taken (by moving to g4).

Bl B2 B3 B4 Action Position Move

n y n n Bb wKe6 wBhl wBh2 bKfl bNg2 wKfS
n y n n Ba wKf5 wBhl wBh2 bKfl bNe3 wKg5
y - n n Bd wKgS wBhl wBh2 bKfl bNg4 wKg4!

Sequence 13 Starts with wKd7, bN checks allowing itself to be taken by wB(dark)

Bl B2 B3 B4 Action Position Move

n y n n Bb wKd7 wBhl wBh2 bKf2 bNg2 wKe6
y y y n Bd wKe6 wBhl wBh2 bKf2 bNf4 BxN

Appendix D

Result of sequence induction (see ch.8)

Actions

Ba) wK approaches release position (eg. h3) by moving along rank or file

Bb) wK moves to non-check position on direct diagonal which is closest to release position

Be) wB(light) moves out of corner along its diagonal

Bd) white takes bN

Attributes

B 1) white free to take bN

B2) wK on the same diagonal as release position

B3) wBhl can move

B4) (wK on direct diagonal) and (direct diagonal position closest to release position is covered)

Bl B2 B3 B4 (Actlon,NextState)

STATE 0

n y n •> (Bc,GOAL)
n n n n •> (Ba,l)
n y n n •> (Bb,2)
y n n •> (Bd,GOAL)

STATE 1

n y n •> (Bc,GOAL)
n n n n •> (Ba,l)
n y n n •> (Bb,2)
y n n •> (Bd,GOAL)

STATE2

n y n •> (Bc,GOAL)
n y n n •> (Bb,2)
n y n y •> (Ba,3)
y n n •> (Bd,GOAL)
y y y n •> (Bd,GOAL)

STATE3

n y n •> (Be, GOAL)
n n n n •> (Bb,4)
y n n •> (Bd,GOAL)

STATE4

n y n n •> (Bb,2)

Appendix E

Automata after ID3-like induction (see ch.8)

Actions

Ba) wK approaches release position (eg. h3) by moving along rank or file

Bb) wK moves to non-check position on direct diagonal which is closest to release position

Be) wB(light) moves out of corner along its diagonal

Bd) white takes bN

Attributes

B 1) white free to take bN

B2) wK on the same diagonal as release position

B3) wBhl can move

B4) (wK on direct diagonal) and (direct diagonal position closest to release position is covered)

STATE 0
[Bl]

STATE 1
[Bl]

STATE 2
[Bl]

STATEJ
[Bl]

STATE 4
(Bb, 2)

GOAL

y : •> (Bd, GOAL)
n: [B3]

y : •> (Be. GOAL)
n: [B2]

y: •> (Bb, 2)
n: •> (Ba, 1)

y : •> (Bd, GOAL)
n: [B3]

y : •> (Be, GOAL)
n: [B2]

y: •> (Bb, 2)
n: •>(Ba,l)

y : •> (Bd, GOAL)
n: [B3]

y : •> (Be, GOAL)
n: [B4]

y: •>(Ba,3)
n: •> (Bb, 2)

y : .. > (Bd, GOAL)
n: [B4]

y : •> (Be, GOAL)
n: •> (Bb, 4)

Appendix F

KBBKN Mugmaker induction file (see ch.8)

MODULE: wKsupp
DEa.ARA TIONS:
INTENT: MJDOYe wK to support the aUKk oC wBhl 011 bN&l•J

AcnQNS:
wiC.Ipp [prima ~K approKhes releue positioa (q. h3)\\D•;

aclYiM M by movina a10111 rmlt or dlc•J
wiCJIOCIC [priuta ~K movea to llOil-dlect poeiliOil 011 clireel\\d';

priDta M cliaaoaal whieb il cl01e1t 10\\DM;
..s.ue. the releue poaitioo (q. h3j)

wBoat [priDl MwB(llght) mo¥es out of comcr alq iCa\\D
aclYile M cliaaoaalMI

wtala:8 [adYile "white laltes bN")
CONDITDNS:

wcmate [ult Mll wbile free to !alto bN? • "y,D")
{y D}

wKlDclt [ut Mlllbe wK In c.beclt? M "y,D")
{y D}

wKoocl [ut •11 wK 011 same clia&oaal u releue poeitioa7 •
•y,n•J {y D}

wBcmmY [ut •CaD the comaed wB DCW move? • •y,n•J
{y D}

cllagcw [prinla •& tbc wK oo tbc clirec:t cllaaoaal mcl\\D•;
priDta • the cllr=t cliaaoaaJ poaidoa clOICit\\d';
u1t • to lbe releue poailioa la c:o¥ered\\d' "y ,n•J

{y D}

sr ATE.: zero
EXAMPLES:

D n y n -> (wBoat,OOAL)
n n n n D •> (wiC.Ipp,l)
D n y n n •> (wKDoDc,2)
y n n n •> (wlaitei,OOAL)

SfATE.: oae
EXAMPLES:

n n n n n •> (wiC.Ipp,l)
n D y n n -> (wKDoDc,Z)
y n n n •> (wlalta,OOAL)

SfATE.: two
EXAMPLES:

n n y •> (wKapp,J)
n n y n •> (wBout,OOAL)
n n y n n •> (wKDoDc,Z)
y n n n •> (wlaitei,OOAL)

sr ATE.: 1t1ree
EXAMPLES:

n n y n •> (wBoot,OOAL)
n n n n n •> (wKDoDc,4)
y n n n -> (wlaitei,GOAL)

sr ATE.: fear
EXAMPLES:

n n y n n •> (wiCDOa:,Z)

Appendix G

KBBKN Mugol code generated from Appendix F (see ch.8)

The following Mugol module was generated from the Mugmak:er file given in Appendix F.
The module was partially verified against the K.BBKN data-base (see section 8.2) using a sample
set of sequences. However, the test sequences used were not exhaustive.

MODUI.E wKsupp IS
INTENT: "move wK to support the anack of wBhl on bNg2"

STATE: zero
IF (ask "Is white free to take bN7" "y,n") IS

"y" : (advise "White takes bW, GOAL)
ELSE IF (ask "Can the cornered wB now move?" "y,n") IS

"y" : (advise "wB(light) moves out of corner along its diagonal", GOAL)
ELSE IF (ask "Is wK on same diagonal as release position?"

"y,n") IS
"y" : (advise "wK moves to non-check position on direct diagODal which is cloaest to the release position (eg. h3)", two)
ELSE (advise "wK approaches release position (eg. h3) by moving along rank or file", ooe)

STATE: one
IF (ask "Is white free to take bN7 " "y,n") IS

"y" : (advise "White takes bW, GOAL)
ELSE IF (ask "Can the cornered wB now move? " "y,n") IS

"y" : (advise "wB(light) moves out of corner along its diagonal", GOAL)
ELSE IF (ask "Is wK on same diagonal as release position?"

"y,n") IS
"y" : (advise "wK moves to non-check position on direct diagonal which is cloaest to the release position (eg. h3)", two)
ELSE (advise "wK approaches release position (eg. h3) by moving along rank or file", one)

STATE: two
IF (ask "Is white free to take bN7" "y,n") IS

"y" : (advise "White takes bW, GOAL)
ELSE IF (ask "Can the cornered wB now move? " "y,n") IS

"y" : (advise "wB(light) moves out of corner along its diagonal", GOAL)
ELSE IF (ask "Is the wK on the direct diagonal and the direct diagonal position closest to the release position is covered?" "y,n") IS

"y" : (advise "wK approaches release position (eg. h3) by moving along rank or file", three)
ELSE (advise "wK moves to non-check position on direa diagonal which is closest to the release position (eg. h3)", two)

STATE: three
IF (ask "Is white free to talce bN7" "y,n") IS

"y" : (advise "White talces bW, GOAL)
ELSE IF (ask "Is the wK on the direct diagonal and the direct diagonal position closest to the release position is covered?" "y,n") IS

"y" : (advise "wB(light) moves out of corner along its diagonal", GOAL)
ELSE (advise "wK moves to non-check position on direct diagonal which is closest to the release position (eg. h3)", four)

STATE: four
(advise "wK moves to non-check position on direct diagonal which is cl01est to the release position (eg. h3)", two)

GOAL OF wKsupp

Appendix H

GENARCH: a practical solution to general arch building

by Barry Shepherd

Abstract. The problem solved by GENARCH is an extension of the simple arch problem of ARCH (chapter

4). Again the arch consists of two piles and a beam, but now the piles can contain any number of blocks

which can be of any size, although the final heights of the piles must be equal. In addition each block within

a pile can itself be an arch, and the beam can also be an arch. This nesting can be to any level.

Introduction.

A strategy for building a simple arch in a blocks world has already been generated using the Mugol

environment (Michie, Muggleton, Riese and Zubric~ 1984). This Mugol solution is called ARCH

(see chapter 4 of main thesis) and is based on a strategy first proposed by Dechter and Michie

(1984). The ARCH problem consists of assembling an arch using four equal height blocks and a

single beam. The blocks are assembled into two piles of two blocks in a specific order, and the

beam is placed to bridge these piles. Initially the blocks are stacked in any order on two work

piles, and the beam is placed in a beam-store. Blocks must be cleared (if necessary) before they

can be moved. Blocks cleared from the top of other blocks can only be placed on one of the work

piles.

ARCH cannot be considered a practical solution since it solves the problem only in simulation and

then only in a symbolic manner. Although the planning aspects of the problem are solved the

(mainly numerical) complexities of actually directing a robot to pick up and move the various

blocks are not tackled. GENARCH is a practical solution to a more general arch building problem

and has also been generated using the Mugol environment GENARCH can be run either in

GENARCH: a practical solution to general arch building

simulation or in a real environment using a Puma 200 robot

The problem solved by GEN ARCH is an extension of the simple·· arch problem considered by

ARCH. Again the arch consists of two piles and a beam, but now the piles can contain any

number of blocks which can be of any size, although the final heights of the piles must be equal.

In addition each block within a pile can itself be an arch, and the beam can also be an arch. This

nesting can be to any level. Initially the blocks and beams are stacked in any order in any number

of work_piles.

An example of a structure which can be categorised as a general arch is shown in figure H.l.

D D
D D

I I I I
D D D D
D D D D

I I I I I I I I
D DD D D DD D
D DD D D DD D

Figure H.l Example of a general arch

GEN ARCH: a practical solution to general arch building

Structure of the solution.

The problem is divided into a hierarchy of sub-problems for Mugol, this hierarchy is shown in

figure H.2. The Mugol modules "build_arch", "onto", "pick_up" and "place_at" perform high-level

actions. The lowest level actions which are specified in Mugol are the set of robot primitives:

move_to(x y z oat)

grasp

release

home

set_ speed

These robot primitives are coded in "C" and provide a basic device-independent interface between

Mugol and the robot chosen to perform the task. At present they have been created for a Puma

Figure H.2 Solution strucwre

GENARCH: a practical solution to general arch building

200, and also a Rhino XR-1.

The Mugol modules "fully _on" and "other" return high-level, problem-specific information about

the current state of the assembly task. However GENARCH is a "blind" solution and thus requires

detailed knowledge of the state of the world at all times. This knowledge must be both relational

(eg "what's on red_blockl?") and also numerical (eg. the position, orientation and size of

red_blockl). A "C" coded world model has been created in order to store this information. This is

described in more detail in a later section. The following primitives are an example of the

interface between Mugol and this world-model:

above(object_ name)

top_ of(pile _name)

property(object_ name, property_ name)

Note: all objects (whether blocks, beams, piles, arches or places) are stored in the same manner in

the world model and are referenced by Mugol using only their names.

The Mugmaker induction modules.

Listings of all of the Mugol modules are given later.

The action module build arch

A major part of the solution is the module "build_ arch". This takes as its input the name of a

place where an arch is to be built and the names of all of the components of the arch.

build_ arch(location, left_list, right _list, beam)

Where left_list and right_ list are lists of the names of those objects (in the correct order) which are

to be used to make the arch left_pile and right_pile (call these component lists), beam is the name

of the object to be used as the arch beam.

GENARCH: a practical solution to general arch building

Eg:

build_ arch(" table top" "[redblk,greenblk]" "[blueblk,blueblk]" "yellow beam")

In summary build_ arch examines each constituent object in turn and checks to see if it is in

position (using the module "fully _on"), if not it moves the object to the correct position (using the

module "onto"), this may entail clearing the top of the object if it is not clear.

The query module fully_ on.

In the module "build_arch" an object in the left or right pile is assumed to be in its final position if

it is on top of the object which occurred before it in the object list for that pile. The beam is in

position if it is on top of both the left pile and the right pile. The module:

object fully_ on place

checks to see if the named object (whether a primitive object or a structure) is fully located on the

stated place. If the object is a primitive object than the world_ model primitive "above" can be

used on its own to answer this question, if the object is itself an arch then its status (ie

fully_ assembled or partially assembled) must also be checked.

The action module onto.

The module:

object_name onto place/object_narne

moves an object (a primitive or a structure) onto another object (a primitive object, structure or

place). If the object to be moved is a primitive object and if it is clear then it can be picked up by

the robot (module "pickup") and placed on the correct location (module "place_ at"). If the object

is a structure (ie an arch) then it cannot be moved as a single entity by the robot but instead must

be assembled (using "build _arch") at the specified location.

GENARCH: a practical solution to general arch building

M ugol modules.

The modules pick_ up. place _at and other were not derived inductively but were written directly in

Mugol. Pick_ up takes as an argument an object name extracts its position and orientation from the

world model and and generates a series of "move_ to" instructions in order to move the robot

gripper horizontally from its home position to a point directly above the object and then down onto

the object, close the gripper and return back the way it came. Place_ at takes as its argument the

name of a place and operates similarly to Pick_ up in order to put the held object on the place so

that the centroid of the object is directly above that of the place and their orientations ·(the

orientation of a block is the direction of its principal axis) align. Other takes the name of an object

as argument and returns the name of the smallest work _pile other than the one in which it is

currently located.

The world model.

The world model consists of a hierarchy of lists. Each object in the proble~ whether a primitive

object (eg a block) or a structure (eg an arch) or a place (eg a work_pile) is represented in the

model by a list This list contains the properties of that object and also sub _lists representing the

objects contained within that object (none if its a primitive object). An object can have any

number of properties but most objects will possess:-

name

type (eg: cuboid,sphere,disc,pile,arch,surface etc)

position(x,y,z,) - usually the position of its centroid.

orientation(o,a,t) - the orientation of its principle axis.

dimensions (length, width,height)

Examples of other properties are colour, material, weight etc.

Any property of an object can be extracted from the world model using the primitive :

GENARCH: a practical solution to general arch building

property{ object_ name, property_ name)

Frequently used properties can also be extracted using individual primitives eg:

X(object_ name),Len(object_ name).

All objects are referenced using their name. Object names do not have to be unique, eg. many

identical block's can all be called "redblock", however distinct objects do require individual entries.

When an object is referenced the first object found when doing a search of the world-model will be

the one which is used. If a particular object is required then its "path" in the world-model (which

is unique) can be used instead of the object name.

Relational information can be obtained from the position of the object in the world model. For

example a structure consisting of a pile of blocks will be represented in the world model by a list

which will contain (in addition to its own properties) a sub-list for all of those objects contained in

the pile. The order in which these occur is the physical order in which they are stacked on top of

each other. This ordering has different meanings for different types of structure/place etc.

The following primitives are used by GENARCH to extract relational information from the model:

above(object_ name)

bottom_ of(pile_ name) - bottom of a pile or stack.

top_ of(pile _name) - top of a pile or stack.

In order to initialise the model the following primitive is used:

new_ object(place _name, object_ name, property _list)

This will create a new object with the name and properties specified and insert into the world

model at the specified place.

The movement of objects within the model resulting from real actions performed by the robot is

GENARCH: a practical solution to general arch building

achieved using:

model_ to_ hand(object_ name)

This extracts the stated object, it can now be referenced using the name "held_ object".

hand_ to_ model(place _name)

insert the held object into the stated place.

Specifying a particular task.

The modules described so far contain a strategy for building a general arch given the names of

the components of that arch. Hence a specific arch could be built with the following "main"

module:

MODULE: GENARCH

STATE: start

initialise_ model;

build _arch(" table _top" "[redblk,redblk]" "[blueblk,blkblk]" "grnbeam"),

goal

GOAL OF GENARCH

where "initialise_ model" creates entries in the world model for all of the primitive objects (ie the

blocks and beams), the work-piles and the place the arch is to be built on (ie "table_top"). If one

component of this arch was another arch then the above "main" module would be inadequate. This

is solved by creating what can be called a "task description module" which gives the names and

GENARCH: a practical solution to general arch building

composition of all of the structures in the complete arch. The task description module for the arch

shown in the introduction (towerl) is given below.

MODULE: build

INTENT: "build $1 at $2"

IN: string {object, place}

STATE: start

if (object) is

"tower": (build_arch(object place "[tow _L]" "[tow _R] "towbm"),goal)

"tow _L": (build _arch(object place "[towLL]" "[towLR] "towLbm"),goal)

"tow_ R": (build_ arch(object place "[towRL]" "[towRR] "towRbm"),goal)

"towLL": (build_arch(object place "[Yl,Y2]" "[Y3,Y4] "Ybml"),goal)

"towLR": (build_arch(object place "[Bl,B2]" "[B3,B4] "Bbml"),goal)

"towRL": (build_arch(object place "[YS,Y6]" "[Y7,Y8] "Ybm2"),goal)

"towRR": (build_ arch(object place "[BS,B6]" "[B7 ,B8] "B bm2"),goal)

"towbm": (build_ arch(object place "[G l,G2]" "[G3,G4] "Gbml "),goal)

"towLbm": (build_arch(object place "[Rl,R2]" "[R3,R4] "Rbml"),goal)

ELSE (build_ arch(object place "[RS,R6]" "[R6,R7] "Rbm2"),goal)

GOAL OF build

The "main" module for GENARCH can now be

GENARCH: a practical solution to general arch building

MODULE: GENARCH

STATE: start

initialise_ model;

build(" tower" "table _top"),

goal

GOAL OF GENARCH

(Note: the module "onto" is changed to call the "build" module instead of the "build_arch" module

when a structure is to be moved).

This mechanism for defining arches can easily be extended to other structures, eg: walls, steps,

pyramids etc. For example in the arch defined above the component towL can be defined as a

wall by replacing its definition line with:

"towL": (build_wall{place name "redblock" 6 5));

where build_ wall is a strategy for building a wall using redblocks which is 6 blocks long and 5

blocks high.

GENARCH: a practical solution to general arch building

Example structures.

The structure shown in the introduction (towerl) contains 28 blocks and 7 beams, one

particular goal state is shown in figure H.3 and this has been built using the Puma from an initial

state also shown below.

Another structure which has been build using GEN ARCH (simulation only so far) is shown

in figure H.S (tower2). One set of initial positions is also shown, this initial state required 83

moves in order to reach the goal.

The task specification module for "tower2" is shown below, note that this structure can be

built by simply replacing the task specification module for "towerl" with that for "tower2".

I Gbml I
~ [SE]
[QI] @]
Rbml Rbm2

[@ lliil mm am
~ [!21 []§] []]

I Ybml I I Bbml I I Ybm2 I I Rbm2 I
ITI1 [Y!J~ [M] IIill [TIJ[@ (@
m [YTI[!IJ m1l [Y2] m~ mZ1

Figure H.3 A goal state for towerl

GENARCH: a practical solution to general arch building

Figure H.4 An initial state for towerl

GENARCH: a practical solution to general arch building

I bmS I
[IT] ~
IIT1 I bm 7 I
l1!r] [}[] [!!]
II1 I bm) I ~
m cm cm ~
[!] I bm4 I liD

I 5m~ I ~ cm 11!1
m [7J [El ~ IT§]
[2] [@] I bm 3 I [ill

I bm 1 I !m ~ ~I bm6 I
m [!] IT!] ~ ~m cm rEI
[JJ m cm lTI1 [TI][ill [ill

Figure H.S Goal state for tower 2

Figure H.6 Initial state for tower2

GENARCH: a practical solution to general arch building

Task specification module for tower2.

MODULE build IS

INTENT: "construct $1 at $2"

IN: string {narne,place} ·

STATE: do it

IF (name) IS

"tower": (build_arch(name place "[tow_L]" "[tow_R]" "bmTm"), goal)

"tow_L" : (build_arch(name place "[tow_LL]" "[13,14,15]" "bmTL"), goal)

"tow_R" : (build_arch(name place "[tow_RL1,tow_RL2,tow_RL3]"

"[tow _RR,35,36,37,38,39,40]" "bmTR"), goal)

"bmTm" : (build_arch(name place "[07,08,09,10,11,12]" "[42]" "bm08"),goal)

"tow LL" : (build_arch(name place "[01,02]" "[03,04]" "bm01") , goal)

"bmTL" : (build_arch(narne place "[05,06]" "[16,17]" "bm02") , goal)

"tow_RLl" : (build_arch(narne place "[18,19,20]" "[21,22,23]" "bm03") , goal)

"tow_RL2" : (build_arch(narne place "[24,25]" "[26,27]" "bm04") , goal)

"tow_RL3" : (build_arch(narne place "[28]" "[29]" "bm05") , goal)

"tow_RR" : (build_arch(name place "[31,32]" "[33,34]" "bm06") , goal)

ELSE (build_arch(narne place "[30]" "[41]" "bm07") , goal)

GOAL OF build

References

Dechter R., and Michie D. (1984), Induction of plans. Glasgow: The Turing Institute (TIRM-

84-006).

Mugol modules.

NODULE pick_up IS

IN: string

LOCAL:

object

float h t

STATE: start

above (ht + "15") object

release ;

above (ht + "5") object ;

above (ht + "2.5") object

above (ht + "0.5") object

robot_speed("slow"),

grabit

STATE : g r ab i t

if (ht > "1") is

"T": (above (ht - "1") object , backof)

ELSE (above (h t I " 2") ob j e c t , b a c k o f)

STATE: backof

)

grasp

above (ht + "0.5") object

robot_speed("medium");

above (ht + "2.5") object

above (ht + "5") object ;

above (ht + "15") object;

Model to hand object,

goal

GOAL OF pick_up

NODULE place_at IS

IN:

LOCAL:

string

float

place

ht

STATE : s t a r t

Ht "held_object" -> ht

(Ht place) + ht -> ht

above (ht + "15") place ;

above (ht + "5") place ;

above (ht + "2.5") place

above (ht + "0.5") place

robot_speed("slow") ,

releaseit

STATE: releaseit

if (ht > "1") is

"T": (above (ht - "1") place , backof)

ELSE (above (ht/"2") place , backof)

STATE: backof

(

release ;

above (ht + "0.5") place

robo t_speed("med i urn");

above (ht + "2.5") place

above (ht + "5") place ;

above (ht + "15") place;

Data_update("held_object" "X" ftos(X place))

Data_update("held_object" "Y" ftos(Y place))

Data_update("held_object" "Z" ftos(Z place + (Ht

Data_update("held_object" "Hd" f to s (Hd place))

Data_update("held_object" "Az" ftos(Az place))

Data_update("held_object" "Ro" ftos(Ro place))

Data_update(place "Ht" ftos((Ht place) + ht)) '

Hand to model place,

place))}

'

goal

GOAL OF place_at

NOXJLE other IS

IN: string place

OUT: string best_place

LOCAL: string toplace

LOCAL: list plist

STATE: get_top_place

(" [] " -> plist ;

place !< plist -> plist;

headof p 1 is t -> top lace,

decide

)

STATE: decide

IF (toplace) IS

"pl" : (smallest("[p2,p3,p4,p5,p6,p7,p8,p9,pl0]") -> best_pl~

"p2" smallest("[pl,p3,p4,p5,p6,p7,p8,p9,pl0]") -> best_place, GOAL)

"p3" : (smallest("[pl,p2,p4,p5,p6,p7,p8,p9,pl0]") -> best_pl~

"p4" smallest("[pl,p2,p3,p5,p6,p7,p8,p9,pl0]") -> best_place, GOAL)

"p5" : (smallest("[pl,p2,p3,p4,p6,p7,p8,p9,pl0]") -> best_pl~

"p6" smallest("[pl,p2,p3,p4,p5,p7,p8,p9,pl0]") -> best_place, GOAL)

"p7" : (smallest("[pl,p2,p3,p4,p5,p6,p8,p9,pl0]") -> best_pl~

"p8" smallest("[pl,p2,p3,p4,p5,p6,p7,p9,pl0]") -> best_place, GOAL)

"plO"

"p9" : (smallest("[pl,p2,p3,p4,p5,p6,p7,p8,pl0)") -> best_pl~

smallest("[pl,p2,p3,p4,p5,p6,p7,p8,p9]") -> best_place, GOAL)

" b 1 " (" b 2" - > be s t _p 1 ace , OOAL

ELSE " b 1 " -> be s t _ p 1 a c e , GOAL)

GOAL OF other

Mugol robot primitives.

I* This provides the N.Wgol interface to the robot primitives

I* All code below this level is device dependent & coded in C *I

PRIMITIVE :.MXXJLE in it robot is

INTENT: " i n i t i a 1 i se the rob o t arm"

OUT: string status

GOAL of init robot

PRIMITIVE :.MXXJLE robot home is

INTENT: "put robot arm in its home position"

OUT: string status

GOAL of robot home

PRIMITIVE :.MXXJLE move to is

IN: float {x,y,z,h,a,r}

OUT: string status

GOAL of move to

PRIMITIVE :.MXXJLE g r asp i s

INTENT: "close the robot gripper onto an object"

GOAL of grasp

PRIMITIVE~ release is

INTENT: "fully open the robot gripper"

GOAL of release

PRIMITIVE~ robot_speed is

INTENT : " c h an g e t he s p e e d o f t he rob o t "

IN: string speed

GOAL of robot_speed

PRIMITIVE MXXJLE robot wait is

INTENT: "wait for the robot to stop moving"

GOAL of robot wait

Mugol world-model primitives.

I* This provides the N.Wgol interface to the model primitives. */

/*--------------------------------------*/

1* N.bdel update and access routines */

PRIMITIVE~ Init model is

INTENT: " i n i t i a 1 i se the wo r 1 d mode 1 "

GOAL o f In i t trod e 1

PRIMITIVE MXXJLE Pr trode 1 is

INTENT: " p r i n t t he wo r 1 d mode 1 "

GOAL of Pr mode 1

PRIMITIVE~ Draw_model is

INTENT: "draw the wor 1 d mode 1"

GOAL of Draw trode 1

PR~ITIVE MODULE New_object is

INTENT : " c r e a t e a new ob j e c t c a 1 1 e d $2 i n $ 1 "

IN: string {where,nrune,data}

GOAL of New_place

PRIMITIVE MODULE Insert is

INTENT: "insert $1 into $2"

IN: string {object,place}

GOAL of Insert

PRIMITIVE MODULE Extract is

INTENT: "extract $1"

IN: s t r in g ob j e c t

GOAL of Extract

PRIMITIVE MODULE Path is

INTENT:

IN: string

our: string

GOAL of Path

"find the path nrune of the object $1"

ob j nrune

answer

PR~ITIVE M:XXJLE Is in is

INTENT: "determine if $1 is in $2"

IN:

our:

string

boo lean

GOAL of Is in

{object,place}

answer

PR~ITIVE M:XXJLE :Mode 1 to_hand is

INTENT: "move $1 from the model to the hand-store"

IN: string object

GOAL of ~del to hand

PRllv!ITIVE .MXULE Hand to mode 1 is

INTENT: "move $1 from the hand-store to the model"

IN: string place

GOAL of Hand to roode 1

I* ---*1

* these are not C coded routines but are an integral part

*of accessing the world model.

*I

NODULE build_arch.In is

INTENT: "add $1 to the end of $2"

IN: string

CXIT: string

STATE: begin

if name is

{nrume, path}

newpa th

"" . (path -> newpath,goal)

ELSE (path main.# main.# nrume -> newpath,goal)

GOAL of In

NODULE Locn is

INTENT: "the location of $1"

IN: string path

CXIT: string locn

LOCAL: 1 i s t p 1 is t

STATE: begin

if path is

"" . (11" -> locn,goal)

ELSE (" [] " -> plist;

path !< p l i s t -> plist;

headof p 1 i s t -> locn;

tailof p l i s t -> plist, loop)

STATE: loop

if plist is

"[]": (null,goal)

ELSE (locn main.#"," main.# (headof plist) -> locn;

tailof plist -> plist, loop)

GOAL of Locn

MXXJLE Name is

INTENT: "the name of $1"

IN: string path

CXJT: string name

LOCAL: 1 i s t p 1 is t

STATE: begin

if path is

"" .

ELSE

GOAL of Name

("" -> name,goal)

("[]" -> plist;

path !< plist -> plist;

headof (reverse plist) -> nrume, goal)

I* +++ *I

I* N.bdel query routines ... Probably problem dependent *I

PRIMITIVE M:XXJLE Above is

INTENT:

IN: string

OUT: string

GOAL of Above

" find t he n ame o f t he ob j e c t on t op o f $ 1 11

ob j name

answer

PRIMITIVE M:XXJLE Top_of is

INTENT : 11 find t he name o f t he t o p memb e r o f t he s t a c k $ 1 11

IN: string name

OUT: string answer

GOAL of Top_of

PRIMITIVE M:XXJLE Bot tom of is

INTENT: " find the name of the b o t tom memb e r of t he s t a c k $ 1 11

IN : s t r i n g n ame

OUT: string answer

GOAL of Bottom of

PRIMITIVE M:XXJLE Place l en is

INTENT: " find t he n urn o f i t ems i n $ 1 11

IN: string name

OUT: integer answer

GOAL of Place len

PRIMITIVE :MXXJLE Data l en is

INTENT: "find the number of data items in $1"

IN: string name

OOT: integer answer

GOAL of Data len

PRIMITIVE ?vOXJLE Type_of is

INTENT: "find the type $1"

IN:

OUT:

string

string

GOAL of Type_of

PRIMITIVE ?vOXJLE X i s

object

answer

INTENT: "find the X co-ord of $1"

IN: string object

OOT: float answer

GOAL of X

PRIMITIVE M:DJLE Y is

INTENT: "find theY co-ord of $1"

IN: string object

OUT: float answer

GOAL of Y

PRIMITIVE ?vOXJLE Z i s

INTENT: "find the Z co-ord of $1"

IN: string object

OUT: float answer

GOAL of Z

PRIMITIVE MJIXJLE Hd i s

INTENT: "find the heading of $1"

IN: string object

OOT: float answer

GOAL of Hd

PRIM! TIVE MXXJLE Az i s

INTENT: "find the azimuth of $1"

IN: s t r i n g ob j e c t

OOT: float answer

GOALofAz

PRIMITIVE MXXJLE Ro i s

INTENT: "find the rotation of $1"

IN: string object

OOT: float answer

GOAL of Ro

PRIMITIVE MXXJLE Len is

INTENT: "find the length of $1"

IN: string object

OUT: float answer

GOAL of Len

PRIMITIVE MXXJLE Wi d is

INTENT: "find the width of $1"

IN: string object

CXJT: float answer

GOAL of Wi d

PRIMITIVE M:lXJLE Ht is

INTENT: "find the height of $1"

IN: string object

CXJT: float answer

GOAL of Ht

PRIMITIVE M:lXJLE S t a tu s of i s

INTENT:

IN: string

CXJT: string

GOAL of Status of

"determine the status of $1"

object

answer

PRIMITIVE M:lXJLE Data it em is

INTENT: "determine the $2 th data item in $1"

IN: string object

IN: integer indx

CXJT: string answer

GOAL of Data i tern -

PRIMITIVE ~E Data_update is

INTENT:

IN:

IN:

IN:

string

string

string

"update the $2 th data item in $1 with $3"

object

name

value

GOAL of Data_update

PRIMITIVE ~E Set_global is

INTENT: "create/update the global $1 with the value $2"

IN: string name

IN: string value

GOAL of Set_global

PRIMITIVE MlXJLE Global is

INTENT: "retrieve the value of the global $1"

IN: string

OOT: string

GOAL of Global

name

value

	PhD coversheet April 2012
	Muggleton1986Phd_redact

