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Abstract

During the centennial year of his birth Alan Turing (1912-1954) has
been widely celebrated as having laid the foundations for Computer Sci-
ence, Automated Decryption, Systems Biology and the Turing Test. In
this paper we investigate Turing’s motivations and expectations for the
development of Machine Intelligence, as expressed in his 1950 article in
Mind. We show that many of the trends and developments within AI over
the last 50 years were foreseen in this foundational paper. In particular,
Turing not only describes the use of Computational Logic but also the
necessity for the development of Machine Learning in order to achieve
human-level AI within a 50 year time-frame. His description of the Child
Machine (a machine which learns like an infant) dominates the closing
section of the paper, in which he provides suggestions for how AI might
be achieved. Turing discusses three alternative suggestions which can
be characterised as: 1) AI by programming, 2) AI by ab initio machine
learning and 3) AI using logic, probabilities, learning and background
knowledge. He argues that there are inevitable limitations in the first two
approaches and recommends the third as the most promising. We com-
pare Turing’s three alternatives to developments within AI, and conclude
with a discussion of some of the unresolved challenges he posed within the
paper.

1 Introduction

In this section we will first review relevant parts of the early work of Alan Turing
which pre-dated his paper in Mind [42].

1.1 Early work: the Entscheidungsproblem

Turing’s initial investigations of computation stemmed from the programme set
out at the 1928 International Mathematical Congress by David Hilbert. Hilbert
presented three key open questions for logic and mathematics. Was mathematics
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1. complete in the sense that any mathematical assertion could either be
proved or disproved.

2. consistent in the sense that false statements could not be derived by a
sequence of valid steps.

3. decidable in the sense that there exists a definite method to decide the
truth or falsity of every mathematical assertion.

Within three years Kurt Gödel [13] had shown that not even simple forms of
arithmetic are both complete and consistent and by 1937 both Alonzo Church [5]
and Alan Turing [43] had demonstrated the undecidability of particular math-
ematical assertions.

While Gödel and Church had depended on demonstrating their results using
purely mathematical calculi, Turing had taken the unusual route of consider-
ing mathematical proof as an artifact of human reasoning. He thus considered
a physical machine which emulated a human mathematician using a pen and
paper together with a series of instructions. Turing then generalised this no-
tion to a universal machine which could emulate all other computing machines.
He used this construct to show that certain functions cannot be computed by
such a universal machine, and consequently demonstrated the undecidability of
assertions associated with such functions.

At the heart of Turing’s universal machine is a model of human calculation.
It was this choice which set the scene for later discussions on the degree to which
computers might be capable of more sophisticated human-level reasoning.

1.2 Bletchley Park

The outbreak of the Second World War provided Turing with an opportunity
and resources to design and test a machine which would emulate human reason-
ing. Acting as the UK’s main wartime decryption centre, Bletchley Park had
recruited many of the UK’s best mathematicians in an attempt to decode Ger-
man military messages. By 1940 the Bombe machine, designed by Turing and
Welchman [7], had gone into operation and was efficiently decrypting messages
using methods previously employed manually by human decoders. In keeping
with Turing’s background in Mathematical Logic, the Bombe design worked
according to a reductio ad absurdum principle which simplified the hypothesis
space of 263 possible settings for the Enigma machine to a small number of
possibilities based on a given set of message transcriptions.

The hypothesis elimination principle of the Bombe was later refined in the
design of the Colossus I and II machines. The Tunny report [15] (declassified by
the UK government in 2000), shows that one of the key technical refinements
of Colossus was the use of Bayesian reasoning to order the search through the
space of hypothetical settings for the Lorenz encryption machine. This combi-
nation of logical hypothesis generation tied with Bayesian evaluation were later
to become central to approaches used within Machine Learning (see Section 5).
Indeed strong parallels exist between decryption tasks on the one hand, which

2



involve hypothesising machine settings from a set of message transcriptions and
modern Machine Learning tasks on the other hand, which involve hypothesising
a model from a set of observations. Given their grounding in the Bletchley Park
decryption work it is hardly surprising that two of the authors of the Tunny
report, Donald Michie (1923-2007) and Jack Good (1916-2009), went on to play
founding roles in the post-war development of Machine Intelligence and Subjec-
tive Probabilistic reasoning respectively. In numerous out-of-hours meetings at
Bletchley Park, Turing discussed the problem of machine intelligence with both
Michie and Good. According to Andrew Hodges [16], Turing’s biographer

These meetings were an opportunity for Alan to develop the ideas for
chess-playing machines that had begun in his 1941 discussions with
Jack Good. They often talked about mechanisation of thought pro-
cesses, bringing in the theory of probability and weight of evidence,
with which Donald Michie was by now familiar. . . . He (Turing) was
not so much concerned with the building of machines designed to
carry out this or that complicated task. He was now fascinated with
the idea of a machine that could learn.

2 Turing’s 1950 paper in Mind

2.1 Structure of the paper

The opening sentence of Turing’s 1950 paper [42] declares

I propose to consider the question, “Can machines think?”

The first six sections of the paper provide a philosophical framework for answer-
ing this question. These sections are briefly summarised below.

1. The Imitation Game. Often referred to as the “Turing test”, this is
a form of parlour game involving a human interrogator who alternately
questions a hidden computer and a hidden person in an attempt to dis-
tinguish the identity of the respondents. The Imitation Game is aimed at
providing an objective test for deciding whether machines can think.

2. Critique of the New Problem. Turing discusses the advantages of the
game for the purposes of deciding whether machines and humans could be
attributed with thinking on an equal basis using objective human judge-
ment.

3. The Machines Concerned in the Game. Turing indicates that he
intends digital computers to be the only kind of machine permitted to
take part in the game.

4. Digital Computers. The nature of the new digital computers, such as
the Manchester machine, is explained and compared to Charles Babbage’s
proposals for an Analytical Engine.
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5. Universality of Digital Computers. Turing explains how digital com-
puters can emulate any discrete-state machine.

6. Contrary Views on the Main Question. Nine traditional philosoph-
ical objections to the proposition that machines can think are introduced
and summarily dismissed by Turing.

2.2 Learning machines - Section 7 of Turing paper

The task of engineering software which addresses the central question of Turing’s
paper have dominated Artificial Intelligence research over the last sixty years. In
the final section of the 1950 paper Turing addresses the motivation and possible
approaches for such endeavours. His transition from the purely philosophical
nature of the first six sections of the paper is marked as follows.

The only really satisfactory support that can be given for the view
expressed at the beginning of section 6, will be that provided by
waiting for the end of the century and then doing the experiment
described. But what can we say in the meantime?

Turing goes on to discuss three distinct strategies which might be considered
capable of achieving a thinking machine. These can be characterised as follows:
1) AI by programming, 2) AI by ab initio machine learning and 3) AI using logic,
probabilities, learning and background knowledge. In the next three sections
we discuss these strategies of Turing in relation to various phases of AI research
as it has been conducted over the past half century.

3 Version 1: AI by programming [1960s-1980s]

3.1 Storage capacity argument

Turing considers an argument concerning the memory requirements for pro-
gramming a digital computer with similar capacity to a human being.

As I have explained, the problem is mainly one of programming.
Advances in engineering will have to be made too, but it seems
unlikely that these will not be adequate for the requirements. Es-
timates of the storage capacity of the brain vary from 1010 to 1015

binary digits. I incline to the lower values and believe that only a
very small fraction is used for the higher types of thinking. Most of
it is probably used for the retention of visual impressions, I should
be surprised if more than 109 was required for satisfactory playing
of the imitation game, at any rate against a blind man. (Note: The
capacity of the Encyclopaedia Britannica, 11th edition, is 2× 109).
A storage capacity of 107, would be a very practicable possibility
even by present techniques. It is probably not necessary to increase
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the speed of operations of the machines at all. Parts of modern ma-
chines which can be regarded as analogs of nerve cells work about a
thousand times faster than the latter. This should provide a “margin
of safety” which could cover losses of speed arising in many ways.
Our problem then is to find out how to programme these machines
to play the game. At my present rate of working I produce about
a thousand digits of programme a day, so that about sixty workers,
working steadily through the fifty years might accomplish the job,
if nothing went into the wastepaper basket. Some more expeditious
method seems desirable.

In retrospect it is amazing that Turing managed to foresee that “Advances in
engineering” would lead to computers with a Gigabyte of storage by the end of
the twentieth century. It is also noteworthy that Turing suggests that in terms
of hardware, it is memory capacity rather than processing speed which will be
critical.

However, the final sentence of the quote above indicates that Turing could
already foresee that manual composition of a program which could pass the
Turing test was not the most “expeditious” method, despite the fact that a
dedicated group of around “sixty” programmers might complete the task within
“fifty years”” if “nothing went into the wastepaper basket”. Turing must already
have been accutely aware, from his work with the early pilot ACE computer,
that plenty goes in the waste basket in the process of debugging computer
programs.

3.2 Programming approach to AI and the Machine Intel-
ligence series

Turing’s influence on the development of AI from the 1960s to the 1980s is
particularly evident in the Machine Intelligence book series, which acted as a
vanguard of cutting edge AI research during this period. The series Executive
Editor, Donald Michie has already been mentioned as one of Turing’s Bletchley
colleagues. Michie was also the founder of Europe’s first Department of Artifi-
cial Intelligence in the 1960s in Edinburgh, and later also founded the Turing
Institute (an AI research institute) in the 1980s in Glasgow. Michie specifically
chose topics for the Machine Intelligence workshops which were closely related
to those which he and Jack Good had discussed with Turing during the war.
Indeed Jack Good was a frequent contributor to the series on Turing-inspired
topics such as Computer Chess [14]. To open the Machine Intelligence 5 volume
Michie selected “Intelligent machinery” [44], a previously unpublished article,
in which Turing discussed the idea of designing intelligent robots which could
“roam the countryside” and learn from their experience.

Turing’s Version 1 Programming approach to Artificial Intelligence was the
dominating paradigm for Artificial Intelligence research up until the mid-1980s.
Research during this period can largely be divided into broad areas associated
with 1) Reasoning, 2) Physical perception and 3) Physical action.
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Reasoning Simon and Newell’s General Problem Solver (GPS) [30] was an
early and influential attempt to program a universal problem solver which could
be applied to a variety of formal symbolic reasoning problems such as theorem
proving, geometry and chess playing. It was clear that although GPS could solve
simple problems, with more complex tasks, its reasoning was rapidly swamped
by the combinatorics of the search. Throughout the 1960s-1980s a variety of
other more specific approaches were taken to the problems of improving the
efficiency of search (eg [24, 9]) and planning (eg [8, 11, 17]). Additionally a
variety of more special purpose techniques were developed for both theorem
proving (eg [34, 20]) and chess playing (eg [38, 14]).

During the same period, attempts to address the difficulties, foreseen by Tur-
ing, of writing effective and efficient AI programs led to the rise of a number of
high-level languages. The methodologies on which these were based varied from
the use of λ-calculus (eg LISP) [21] to the development of stack-based languages
(eg POP1) [6] as well as languages based on first-order predicate calculus (eg
Prolog) [46]. The approach of heuristic programming, developed in systems such
as Dendral [4] and MYCIN [41], used constraints in the form of rules to produce
systems which could reason at the level of human experts. These expert systems
became a key demonstrator for the achievements of Artificial Intelligence in the
early 1980s.

Physical perception The 1960s-1980s witnessed a number of early and bold
attempts to write programs which could recognise three-dimensional objects
within a digital image (eg [19, 3].) However, these were generally limited to
analysis of simple polygons and it was unclear how they could be extended to
recognise real-world objects such as trees, cars or people.

In the same period considerable advances were made in natural language gen-
eration and understanding (eg [35, 36, 37]). Early systems directly addressed
one of the key assumptions of Turing’s imitation game, by supporting answer-
ing of questions posed in natural language. However, just as with the initial
attempts at computer vision, these natural language systems were limited by
the complexity of grammars provided by their programmers.

Physical action As mentioned previously Turing [44] had discussed the idea
of intelligent machines which could roam the countryside, learning for them-
selves. Probably the best known mobile robotics project from the early years
was Stanford’s Shakey project (1966-1972) [31]. By contrast, in the Edinburgh
Freddy assembly robot [2, 1] the robot arm and associated digital camera re-
mained in a fixed position while a platform containing sequentially assembled
parts was directed to move past it by the computer.

4 Version 2: AI by ab initio machine learning

In his 1950s paper Turing had already anticipated the difficulties of developing
AI by manually programming a digital computer. His suggested remedy was
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that machines must learn in the same way as a human child.

Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulates the child’s?
If this were then subjected to an appropriate course of education
one would obtain the adult brain. Presumably the child brain is
something like a notebook as one buys it from the stationers. Rather
little mechanism, and lots of blank sheets. (Mechanism and writing
are from our point of view almost synonymous.) Our hope is that
there is so little mechanism in the child brain that something like
it can be easily programmed. The amount of work in the education
we can assume, as a first approximation, to be much the same as for
the human child.

4.1 The ab initio Machine Learning movement [1980s-
1990s]

During the 1970s the success of the expert systems movement (see Section 3.2)
became increasingly stifled by the cost of involving experts in the development
and maintenance of large rule-based systems. This problem became known as
“Feigenbaum’s bottleneck” [10]. However, early experiments with Meta-Dendral
[4], and later Michalski’s Soy Bean expert system [23], showed that rules could
be automatically learned by machines from observations. Moreover, Michalski
demonstrated that not only was this a more efficient method of building and
maintaining expert systems, but it could also result in rules which were more
accurate than existing human experts. This resulted in the start of a new series
of workshops called Machine Learning [22] led by Ryszard Michalski, Jaime
Carbonell and Tom Mitchell. The workshops, which later developed into the
International Conference on Machine Learning, were originally based on the
format of Donald Michie’s Machine Intelligence workshops.

4.2 The limits of positive and negative examples

A common feature of systems developed within the standard Machine Learning
framework is that, in Turing’s words, learning is conducted ab initio (Turing’s
phrase is from “blank sheets”) using a set of vectors associated with positive
and negative classifications. Turing provides a mathematically-inspired warning
about such an approach.

The use of punishments and rewards can at best be a part of the
teaching process. Roughly speaking, if the teacher has no other
means of communicating to the pupil, the amount of information
which can reach him does not exceed the total number of rewards
and punishments applied. By the time a child has learnt to repeat
“Casabianca” he would probably feel very sore indeed, if the text
could only be discovered by a “Twenty Questions” technique, every
“NO” taking the form of a blow.
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Turing’s knowledge of information theory [39] had led him to anticipate some of
the limitations later uncovered in the 1980s by Valiant’s theory of the learnable
[45]. That is, effective ab initio machine learning is necessarily confined to
the construction of relatively small chunks of knowledge. However, Valiant
also demonstrated that the expected accuracy of the learned knowledge can be
arbitrarily high given sufficient examples. So, unfortunately we have to return
to Turing’s original question of how to programme the 1012 bits of memory
required to achieve human-level intelligence.

5 Version 3: AI using logic, probabilities, learn-

ing and background knowledge

Turing’s answer to the problems which beset ab initio machine learning follows
immediately on from the quote given in the previous Section.

It is necessary therefore to have some other “unemotional” channels
of communication. If these are available it is possible to teach a ma-
chine by punishments and rewards to obey orders given in some lan-
guage, e.g., a symbolic language. These orders are to be transmitted
through the “unemotional” channels. The use of this language will
diminish greatly the number of punishments and rewards required.

Turing’s claim is that by employing an “unemotional” symbolic language it
should be possible to reduce the number of examples required for learning.

5.1 Logic-based learning with background knowledge

The obvious question is the appropriate form and function of the symbolic
language to be employed. Again Turing’s suggestions follow immediately on
from the last quote.

Opinions may vary as to the complexity which is suitable in the child
machine. One might try to make it as simple as possible consistent
with the general principles. Alternatively one might have a complete
system of logical inference “built in”. In the latter case the store
would be largely occupied with definitions and propositions.

Alan Robinson’s introduction [34] of resolution-based automatic theorem prov-
ing in 1965 led to an explosion of interest in the use of first-order predicate
calculus as a representation for reasoning within AI systems. In line with Tur-
ing’s idea of using “built-in” logical definitions, Gordon Plotkin’s thesis [32]
used resolution theorem proving as the context for investigating a form of ma-
chine learning which involves hypothesising logical axioms from observations
and background knowledge. Within the era of Logic Programming [18] in the
1980s, these early investigations by Plotkin were taken up again by Shapiro
[40] in the context of using inductive inference for automatically revising Pro-
log programs. However, it was not until the 1990s that the school of Inductive
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Logic Programming [25, 26, 28] started to investigate this approach in depth as
a highly expressive Machine Learning paradigm. A recent survey of the field
[29] points to the maturity of theory, implementation and applications in this
area.

5.2 Uncertainty and probabilistic learning

Turing makes some interesting observations concerning the uncertainty of learned
rules.

Processes that are learnt do not produce a hundred per cent certainty
of result; if they did they could not be unlearnt.

Over the last decade there has been increasing interest in including probablities
into Inductive Logic Programming [33, 12]. These probability values are used
to give an indication of the uncertainty of learned rules. Turing also makes the
following point concerning the ephemeral nature of learning.

The idea of a learning machine may appear paradoxical to some read-
ers. How can the rules of operation of the machine change? They
should describe completely how the machine will react whatever its
history might be, whatever changes it might undergo. The rules are
thus quite time-invariant. This is quite true. The explanation of the
paradox is that the rules which get changed in the learning process
are of a rather less pretentious kind, claiming only an ephemeral
validity.

It is in the nature of a Universal Turing machine that it acts as a meta-logical
interpreter. It is this property which allows rules to be treated as data, allowing
them to be altered and updated. A recent paper [27] by the author demonstrates
that the meta-interpretive nature of the Prolog Logic Programming language
can be used to efficiently support the introduction of auxilliary ‘invented‘’ pred-
icates and recursion within the context of learning complex grammars.

6 The challenge of “super-criticality”

The previous sections indicate that many of the issues which Turing discusses
in the last section of the paper have since been explored in the AI literature.
However, one of the Machine Learning challenges which Turing mentions is still
entirely open.

Another simile would be an atomic pile of less than critical size: an
injected idea is to correspond to a neutron entering the pile from
without. Each such neutron will cause a certain disturbance which
eventually dies away. If, however, the size of the pile is sufficiently
increased, the disturbance caused by such an incoming neutron will
very likely go on and on increasing until the whole pile is destroyed.
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Is there a corresponding phenomenon for minds, and is there one
for machines? There does seem to be one for the human mind. The
majority of them seem to be ”subcritical,” i.e., to correspond in this
analogy to piles of subcritical size. An idea presented to such a mind
will on average give rise to less than one idea in reply. A smallish
proportion are supercritical. An idea presented to such a mind may
give rise to a whole ”theory” consisting of secondary, tertiary and
more remote ideas. Animals’ minds seem to be very definitely sub-
critical. Adhering to this analogy we ask, ”Can a machine be made
to be supercritical?”

Turing’s challenge to make a machine which is “super-critical” seems to only
makes sense in the context of an extreme setting of the Version 3 approach (see
Section 5) to Artificial Intelligence. The situation in which a new observation
“leads to a theory consisting of secondary, tertiary and more remote ideas”
requires both an alert mind, but also one which is abundantly stocked with rel-
evant background knowledge. Providing such abundant background knowledge
to a machine is challenging, though the advent of the World-Wide-Web offers an
obvious source, as long as the available information can be accessed for purposes
of inductive reasoning.

7 Conclusion

Turing closes the Mind paper with the following statement.

We can only see a short distance ahead, but we can see plenty there
that needs to be done.

As the present article indicates, Turing’s vision was far from myopic. Indeed he
foresaw many of the key issues which dominated Artificial Intelligence research
over the last fifty years. However, it could still be argued that there has been
no convincing demonstration of a computer passing the Turing test to date.
Modern computers are typically not well-equipped with deep natural language
facilities capable of playing the kind of parlour game which Turing describes.
On the other hand, when most people these days are faced with an arcane (or
even simple) question which they cannot immediately solve they turn to the
closest computer or smart phone to find an answer. The implicit assumption
is that the collective power of the World Web Web provides a greater degree
of intelligence than that provided by asking the same question of whichever
person is closest to hand. Computers instantly search through voluminous en-
cylopedias, find objects in images, learn patterns of user behaviour and provide
reasonable translations of text in foriegn languages. Many of the techniques
used in these tasks grew out of the research carried out by Artificial Intelligence
laboratories. We have Turing to thank not only for the concept of the Universal
Turing machine, which gave rise to the computer industry, but also his visions
of intelligent machines, which inspired the development of much of the software
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behind the digital assistants which we find around us everywhere in the modern
world.
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