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Abstract

For many reasoning-heavy tasks involving raw in-
puts, it is challenging to design an appropriate end-
to-end learning pipeline. Neuro-Symbolic Learn-
ing, divide the process into sub-symbolic percep-
tion and symbolic reasoning, trying to utilise data-
driven machine learning and knowledge-driven rea-
soning simultaneously. However, they suffer from
the exponential computational complexity within
the interface between these two components, where
the sub-symbolic learning model lacks direct super-
vision, and the symbolic model lacks accurate input
facts. Hence, most of them assume the existence of
a strong symbolic knowledge base and only learn
the perception model while avoiding a crucial prob-
lem: where does the knowledge come from? In
this paper, we present Abductive Meta-Interpretive
Learning (MetaAbd) that unites abduction and in-
duction to learn neural networks and induce logic
theories jointly from raw data. Experimental results
demonstrate that MetaAbd not only outperforms
the compared systems in predictive accuracy and
data efficiency but also induces logic programs that
can be re-used as background knowledge in subse-
quent learning tasks. To the best of our knowledge,
MetaAbd is the first system that can jointly learn
neural networks from scratch and induce recursive
first-order logic theories with predicate invention.

1 Introduction
Despite the success of data-driven end-to-end deep learn-
ing in many traditional machine learning tasks, it has been
shown that incorporating domain knowledge is still necessary
for some complex learning problems [Dhingra et al., 2020;
Grover et al., 2019; Trask et al., 2018]. In order to leverage
complex domain knowledge that is discrete and relational,
end-to-end learning systems need to represent it with a dif-
ferentiable module that can be embedded in the deep learn-
ing context. For example, graph neural networks (GNN)
use relational graphs as an external knowledge base [Zhou
et al., 2018]; some works even considers more specific do-
main knowledge such as differentiable primitive predicates

and programs [Dong et al., 2019; Gaunt et al., 2017]. How-
ever, it is hard to design an unified differentiable module
to accurately represent general relational knowledge, which
may contain complex inference structures such as recur-
sion. [Glasmachers, 2017; Garcez et al., 2019].

Therefore, many researchers propose to break the end-to-
end learning pipeline apart, and build a hybrid model that
consists of smaller modules where each of them only ac-
counts for one specific function [Glasmachers, 2017]. A rep-
resentative branch in this line of research is Neuro-Symbolic
(NeSy) AI [De Raedt et al., 2020; Garcez et al., 2019] aim-
ing to bridge System 1 and System 2 AI [Kahneman, 2011;
Bengio, 2017], i.e., neural-network-based machine learning
and symbolic-based relational inference.

However, the lack of supervision in the non-differentiable
interface between neural and symbolic systems (i.e., the
facts extracted from raw data and their truth values) leads to
high computational complexity in learning. [Li et al., 2020;
Dai et al., 2019] Consequently, almost all neural-symbolic
models assume the existence of a very strong predefined do-
main knowledge base and could not perform program induc-
tion. It limits the expressive power of the hybrid-structured
model and sacrifices many benefits of symbolic learning (e.g.,
predicate invention, learning recursive theories, and re-using
learned models as background knowledge).

In this paper, we integrate neural networks with Inductive
Logic Programming (ILP) [Muggleton and de Raedt, 1994] to
enable first-order logic theory induction from raw data. More
specifically, we present Abductive Meta-Interpretive Learn-
ing (MetaAbd) which extends the Abductive Learning (ABL)
framework [Dai et al., 2019; Zhou, 2019] by combining log-
ical induction and abduction [Flach et al., 2000] with neural
networks in Meta-Interpretive Learning (MIL) [Muggleton
et al., 2014]. MetaAbd employs neural networks to extract
probabilistic logic facts from raw data, and induces an ab-
ductive logic program [Kakas et al., 1992] that can efficiently
infer the truth values of the facts to train the neural model.

To the best of our knowledge, MetaAbd is the first system
that can simultaneously (1) train neural models from scratch,
(2) learn recursive logic theories and (3) perform predicate
invention from domains with sub-symbolic representation.
In the experiments we compare MetaAbd to the compared
state-of-the-art end-to-end deep learning models and neuro-
symbolic methods on two complex learning tasks. The results



show that, given the same amount of background knowledge,
MetaAbd outperforms the compared models significantly in
terms of predictive accuracy and data efficiency, and learns
human interpretable models that could be re-used in subse-
quent learning tasks.

2 Related Work
Solving “System 2” problems requires the ability of relational
and logical reasoning [Kahneman, 2011; Bengio, 2017]. Due
to its complexity, many researchers have tried to embed in-
tricate background knowledge in end-to-end deep learning
models. For example, [Trask et al., 2018] propose the dif-
ferentiable Neural Arithmetic Logic Units (NALU) to model
basic arithmetic functions (e.g., addition, multiplication, etc.)
in neural cells; [Grover et al., 2019] encode permutation op-
erators with a stochastic matrix and present a continuous and
differentiable approximation to the sort operation; [Wang et
al., 2019] introduce a differentiable SAT solver to enable
gradient-based constraint solving. However, most of these
specially designed differentiable modules are ad hoc approx-
imations to the original symbolic inference mechanisms.

To exploit the complex background knowledge expressed
by formal languages directly, Statistical Relational (StarAI)
and Neural Symbolic (NeSy) AI [De Raedt et al., 2020;
Garcez et al., 2019] try to use probabilistic inference or other
differentiable functions to approximate logical inference [Co-
hen et al., 2020; Dong et al., 2019; Manhaeve et al., 2018;
Donadello et al., 2017]. However, they require a pre-defined
symbolic knowledge base and only train the attached neu-
ral/probabilistic models due to the highly complex interface
between the neural and symbolic modules.

One way to learn symbolic theories is to use Inductive
Logic Programming [Muggleton and de Raedt, 1994]. Some
early work on combining logical abduction and induction can
learn logic theories even when input data is incomplete [Flach
et al., 2000]. Recently, ∂ILP was proposed for learning first-
order logic theories from noisy data [Evans and Grefenstette,
2018]. However, ILP-based works are designed for learning
in symbolic domains. Otherwise, they need to use a fully
trained neural models to make sense of the raw inputs by ex-
tracting logical facts from the data before program induction.

Machine apperception [Evans et al., 2019] unifies Answer
Set Programming with perception by modeling it with binary
neural networks. It can learn recursive logic theories and per-
form concept (monadic predicate) invention. However, both
logic hypotheses and the parameters of neural networks are
represented by logical groundings, making the system very
hard to optimise. For problems involving noisy inputs like
MNIST images, it still requires a fully pre-trained neural net
for pre-processing due to its high complexity in learning.

Previous work on Abductive Learning (ABL) [Dai et al.,
2019; Dai and Zhou, 2017] also unites subsymbolic percep-
tion and symbolic reasoning through logical abduction, but
they need a pre-defined knowledge base to enable abduction
and cannot perform program induction. Our presented Ab-
ductive Meta-Interpretive Learning takes a step further, which
not only learns a perception model that can make sense of raw
data, but also learns logic programs and performs predicate
invention to understand the underlying relations in the task.

3 Abductive Meta-Interpretive Learning
3.1 Problem Formulation
A typical model bridging sub-symbolic and symbolic learn-
ing contains two major parts: a perception model and a
reasoning model [Dai et al., 2019]. The perception model
maps sub-symbolic inputs x ∈ X to some primitive symbols
z ∈ Z , such as digits, objects, ground logical expressions,
etc. The reasoning model takes the interpreted z as input and
infers the final output y ∈ Y according to a symbolic knowl-
edge base B. Because the primitive symbols z are uncertain
and not observable from both training data and the knowledge
base, we have named them as pseudo-labels of x.

The perception model is parameterised with θ and outputs
the conditional probability Pθ(z|x) = P (z|x, θ); the reason-
ing model H ∈ H is a set of first-order logical clauses such
thatB∪H∪z |= y, where “|=” means “logically entails”. Our
target is to learn θ and H simultaneously from training data
D = {〈xi, yi〉}ni=1. For example, if we have one example
with x = [ , , ] and y = 6, given background knowl-
edge about adding two numbers, the hybrid model should
learn a perception model that recognises z = [1, 2, 3] and
induce a program to add all numbers in z recursively.

Assuming that D is an i.i.d. sample from the underlying
distribution of (x, y), our objective can be represented as

(H∗, θ∗) = argmax
H,θ

∏
〈x,y〉∈D

∑
z∈Z

P (y, z|B, x,H, θ), (1)

where pseudo-label z is a hidden variable. Theoretically, this
problem can be solved by Expectation Maximisation (EM) al-
gorithm. However, the symbolic hypothesis H—a first-order
logic theory—is difficult to be optimised together with the
parameter θ, who has a continuous hypothesis space.

We propose to solve this problem by treating H like z as
an extra hidden variable, which gives us:

θ∗ = argmax
θ

∏
〈x,y〉∈D

∑
H∈H

∑
z∈Z

P (y,H, z|B, x, θ). (2)

Now, the learning problem can be split into two EM steps:
(1) Expectation: obtaining the expected value of H and z
by sampling them in their discrete hypothesis space from
(H, z) ∼ P (H, z|B, x, y, θ); (2) Maximisation: estimating
θ by maximising the likelihood of training data with numeri-
cal optimisation approaches such as gradient descent.
Challenges The main challenge is to estimate the expecta-
tion of the hidden variables H ∪ z, i.e., we need to search for
the most probableH and z given the θ learned in the previous
iteration. This is not trivial. Even when B is sound and com-
plete, estimating the truth-values of hidden variable z results
in a search space growing exponentially with the number of
training examples, which is verified in our experiments with
DeepProblog [Manhaeve et al., 2018] in section 4.1.

Furthermore, the size and structure of hypothesis space H
of first-order logic programs makes the search problem even
more complicated. For example, given x = [ , , ] and
y = 6, when the perception model is accurate enough to out-
put the most probable z = [1, 2, 3], we have at least two
choices for H: cumulative sum or cumulative product. When



Example (〈x, y〉):
f([ , , ], 15).

Abducible Primitives (B):
add([A,B|T], [C|T]) :- C #= A+B.

mult([A,B|T], [C|T]) :- C #= A*B.

eq([A| ], B) :- A #= B.

head([H| ], H).

tail([ |T], T).

Neural Probabilistic facts (pθ(z|x)):
nn( = 0, 0.02). nn( = 1, 0.39).

...

nn( = 0, 0.09). nn( = 1, 0.02).

...

nn( = 0, 0.07). nn( = 1, 0.00).

...

Pseudo-labels (z):

[0,0,0]
...

[3,5,0]
...

[0,3,5]
...

[0,5,3]
...

[1,3,5]
...

[7,8,0]

[7,8,1]
...

[7,3,5]
...

Abduced facts:

+ #= 15.

* #= 15.

* #= 15.

...

+ #= X.

X + #= 15.

+ #= X.

X * #= 15.

...

* #= X.

X * #= 15.

...

Abductive hypotheses (H):

f(A,B) :- add(A,B).

f(A,B) :- mult(A,B).

f(A,B) :- add(A,C),eq(C,B).

...

f(A,B) :- add(A,C),f(C,B).

f(A,B) :- eq(A,B).

...

f(A,B) :- tail(A,C),f 1(C,B).

f 1(A,B) :- mult(A,C),eq(C,B).

...

f(A,B) :- mult(A,C),f 1(C,B).

f 1(A,B) :- mult(A,C),eq(C,B).

...

Figure 1: Example of MetaAbd’s abduction-induction learning. Given training examples, background knowledge of abducible primitives
and probabilistic facts generated by a perceptual neural net, MetaAbd learns an abductive logic program H and abduces relational facts as
constraints (implemented with the CLP(Z) predicate “#=”1) over the input images; it then uses them to efficiently prune the search space of
the most probable pseudo-labels z (in grey blocks) for training the neural network.

the perception model is under-trained and outputs the most
probable z = [2, 2, 3], then H could be a program that only
multiplies the last two digits. Hence, H and z are entangled
and cannot be treated independently.

3.2 Probabilistic Abduction-Induction Reasoning
Inspired by early works in abductive logic program-
ming [Flach et al., 2000], we propose to solve the challenges
above by combining logical induction and abduction. The in-
duction learns an abductive logic theoryH based on Pθ(z|x);
the abduction made by H reduces the search space of z.

Abductive reasoning, or abduction refers to the process of
selectively inferring specific grounded facts and hypotheses
that give the best explanation to observations based on back-
ground knowledge of a deductive theory.

Definition 3.1 (Abducible primitive) An abducible primi-
tive is a predicate that defines the explanatory grounding facts
in abductive reasoning.

Definition 3.2 (Abductive hypothesis) An abductive hy-
pothesis is a set of first-order logic clauses whose body
contains literals of abductive primitives.

Following is an example of using abductive hypothesis and
abducible primitive in problem-solving:

Example 1 Observing raw inputs x = [ , , ] and a
symbolic output y = 6, we could formulate an abductive
hypothesis H that is a recursive cumulative sum function,
whose abductive primitives are “+” and “=”. Hence, H
will abduce a set of explanatory grounding facts { + =
Z, Z+ = 6}. Based on these facts, we could infer that none
of the digits in x is greater than 6. Furthermore, if the current
perception model assigns very high probabilities to = 2
and = 3, we could easily infer that = 1 even when
the perception model has relatively low confidence about it,
as this is the only solution that satisfies the constraint stated
by the explanatory groundings.

An illustrative example of combining abduction and induc-
tion with probabilities is shown in Fig. 1. Briefly speaking,
instead of directly sampling pseudo-labels z and H together
from the huge hypothesis space, our MetaAbd induces ab-
ductive hypothesis H consists of abducible primitives, and
then use the abduced facts to prune the search space of z.
Meanwhile, the perception model outputs the likelihood of
pseudo-labels with pθ(z|x) defining a distribution over all
possible values of z and helps to find the most probableH∪z.

Formally, we re-write the likelihood of each 〈x, y〉 in Eq. 2:

P (y,H, z|B, x, θ) = P (y,H|B, z)Pθ(z|x)
=P (y|B,H, z)P (H|B, z)Pθ(z|x)
=P (y|B,H, z)Pσ∗(H|B)Pθ(z|x), (3)

where Pσ∗(H|B) is the Bayesian prior distribution on first-
order logic hypotheses, which is defined by the transitive
closure of stochastic refinements σ∗ given the background
knowledge B [Muggleton et al., 2013], where a refinement
σ is a unit modification (e.g., adding/removing a clause or
literal) to a logic theory. The equations hold because: (1)
pseudo-label z is conditioned on x and θ since it is the output
of the perception model; (2) H follows the prior distribution
so it only depends on B; (3) y ∪ H is independent from x
given z because the relations among B, H , y and z are deter-
mined by pure logical inference, where:

P (y|B,H, z) =
{
1, if B ∪H ∪ z |= y,

0, otherwise.
(4)

Following Bayes’ rule we have P (H, z|B, x, y, θ) ∝
P (y,H, z|B, x, θ). Now we can sample the most probable
H ∪ z in the expectation step according to Eq. 3 as follows:

1. Sample an abductive theory H ∼ Pσ∗(H|B);

1CLP(Z) is a constraint logic programming package accessible at
https://github.com/triska/clpz. More implementation details please
refer to the Appendix.



Abductive Meta-Interpreter
prove([], Prog, Prog, [], Prob, Prob).
prove([Atom|As], Prog1, Prog1, Abds, Prob1, Prob2) :-

deduce(Atom),
prove(As, Prog1, Prog2, Abds, Prob1, Prob2).

prove([Atom|As], Prog1, Prog1, Abds, Prob1, Prob2) :-
call abducible(Atom, Abd, Prob),
Prob3 is Prob1 * Prob,
get max prob(Max), Prob3 > Max,
set max prob(Prob3),
prove(As, Prog1, Prog1, [Abd|Abds], Prob3, Prob2).

prove([Atom|As], Prog1, Prog2, Abds, Prob1, Prob2) :-
meta-rule(Name, MetaSub,(Atom :- Body), Order),
Order,
substitue(metasub(Name, MetaSub), Prog1, Prog3),
prove(Body, Prog3, Prog4),
prove(As, Prog4, Prog2, Abds, Prob1, Prob2)

Figure 2: Prolog code for MetaAbd.

2. Use H ∪ B and y to abduce2 possible pseudo-labels z,
which are guaranteed to satisfy H ∪ B ∪ z ` y and
exclude the values of z such that P (y|B,H, z) = 0;

3. According to Eq. 3 and 4, score each sampled H ∪ z:

score(H, z) = Pσ∗(H|B)Pθ(z|x) (5)

4. Return the H ∪ z with the highest score.

3.3 The MetaAbd Implementation
We implement the above abduction-induction algorithm with
Abductive Meta-Interpretive Learning (MetaAbd).

Meta-Interpretive Learning [Muggleton et al., 2014] is a
form of ILP [Muggleton and de Raedt, 1994]. It learns first-
order logic programs with a second-order meta-interpreter,
which consists of a definite first-order background knowledge
B and meta-rules M . B contains the primitive predicates
for constructing first-order hypotheses H; M is second-order
clauses with existentially quantified predicate variables and
universally quantified first-order variables. In short, MIL at-
tempts to prove the training examples and saves the resulting
programs for successful proofs.
MetaAbd extends the general meta-interpreter of MIL by

including an abduction procedure (bold fonts in Fig. 2) that
can abduce groundings (e.g., specific constraints on pseudo-
labels z). As shown in Fig. 2, it recursively proves a series
of atomic goals by deduction (deduce/1), abducing explana-
tory facts (call abducible/3) or generating a new clause
from meta-rule/4.

The last argument of call abducible/3, Prob =
Pθ(z|x), describes the distribution of possible worlds col-
lected from the raw inputs. It helps pruning the search space
of the abductive hypothesis H . During the iterative refine-
ment of H , MetaAbd greedily aborts its current prove/6
procedure once it has a lower probability than the best ab-
duction so far (the 8th line in Fig. 2).

After an abductive hypothesis H has been constructed, the
search for z will be done by logical abduction. Finally, the
score of H ∪ z will be calculated by Eq. 5, where Pθ(z|x)
is the output of the perception model, which in this work is
implemented with a neural network ϕθ that outputs:

Pθ(z|x) = softmax(ϕθ(x, z)).

2The abduction can be naturally accelerated by parallel comput-
ing, more details are in the Appendix.

Meanwhile, we define the prior distribution on H by follow-
ing [Hocquette and Muggleton, 2018]:

Pσ∗(H|B) =
6

(π · c(H))2
,

where C(H) is the complexity of H , e.g., its size.

4 Experiments
This section describes the experiments of learning recursive
arithmetic and sorting algorithms from images of handwritten
digits, aiming to address the following questions:

1. Can MetaAbd learn first-order logic programs and train
perceptual neural networks jointly?

2. Given the same or less amount of domain knowledge
shown in Tab. 1, is hybrid modelling, which directly
leverages the background knowledge in symbolic form,
better than end-to-end learning?

4.1 Cumulative sum and product from images
Materials We follow the settings in [Trask et al., 2018].
The inputs of the two tasks are sequences of randomly chosen
MNIST digits; the numerical outputs are the sum and product
of the digits, respectively. The lengths of training sequences
are 2–5. To verify if the learned models can extrapolate to
longer inputs, the length of test examples ranges from 5 to
100. For cumulative product, when the randomly generated
sequence is long enough, it will be very likely to contain a
0 and makes the final outputs equal to 0. So the extrapola-
tion examples has maximum length 15 and only contain dig-
its from 1 to 9. The dataset contains 3000 and 1000 examples
for training and validation, respectively; the test data of each
length has 10,000 examples.
Methods We compare MetaAbd with following state-of-
the-art baselines: End-to-end models include RNN, LSTM
and LSTMs attached to Neural Accumulators(NAC) and
Neural Arithmetic Logic Units (NALU) [Trask et al., 2018];
NeSy system DeepProblog [Manhaeve et al., 2018]3.

A convnet processes the input images to the recurrent
networks and Problog programs, as [Trask et al., 2018]
and [Manhaeve et al., 2018] described; it also serves as
the perception model of MetaAbd to output the probabilis-
tic facts. As shown in Tab. 1, NAC, NALU and MetaAbd
are aware of the same amount of background knowledge for
learning both perceptual convnet and recursive arithmetic al-
gorithms jointly, while DeepProblog is provided with the
ground-truth program and only trains the perceptual convnet.
Like NAC and NALU, MetaAbd uses the same background
knowledge for both sum and product tasks.

Each experiment is carried out five times, and the average
of the results are reported. The performance is measured by
classification accuracy (Acc.) on length-one inputs, mean av-
erage error (MAE) in sum tasks, and mean average error on
logarithm (log MAE) of the outputs in product tasks whose
error grows exponentially with sequence length.

3We use the implementation of NAC and NALU from
https://github.com/kevinzakka/NALU-pytorch; DeepProblog
from https://bitbucket.org/problog/deepproblog



Domain Knowledge End-to-end Models Neuro-Symbolic Models MetaAbd

Recurrence LSTM & RNN Problog’s list operations Prolog’s list operations

Arithmetic functions NAC& NALU [Trask et al., 2018] Full program of accumulative sum/product Predicates add, mult and eq

Sequence & Odering Permutation matrix Psort [Grover et al., 2019] Predicates “>”, “=” and “<” [Dong et al., 2019] Prolog’s permutation

Sorting sort operator [Grover et al., 2019] swap(i,j) operator [Dong et al., 2019] Predicate s (learned from sub-task)

Table 1: Domain knowledge used by the compared models.

MNIST cumulative sum MNIST cumulative product
Acc. MAE Acc. log MAE

Sequence Length 1 5 10 100 1 5 10 15

LSTM 9.80% 15.3008 44.3082 449.8304 9.80% 11.1037 19.5594 21.6346
RNN-Relu 10.32% 12.3664 41.4368 446.9737 9.80% 10.7635 19.8029 21.8928

DeepProblog Training timeout (72 hours) 93.64% Test timeout (72 hours)

LSTM-NAC 7.02% 6.0531 29.8749 435.4106 0.00% 9.6164 20.9943 17.9787
LSTM-NAC10k 8.85% 1.9013 21.4870 424.2194 10.50% 9.3785 20.8712 17.2158
LSTM-NALU 0.00% 6.2233 32.7772 438.3457 0.00% 9.6154 20.9961 17.9487
LSTM-NALU10k 0.00% 6.1041 31.2402 436.8040 0.00% 8.9741 20.9966 18.0257
MetaAbd 95.27% 0.5100 1.2994 6.5867 97.73% 0.3340 0.4951 2.3735
LSTM-NAC1-shot CNN 49.83% 0.8737 21.1724 426.0690 0.00% 6.0190 13.4729 17.9787
LSTM-NALU1-shot CNN 0.00% 6.0070 30.2110 435.7494 0.00% 9.6176 20.9298 18.1792
MetaAbd+1-shot CNN 98.11% 0.2610 0.6813 4.7090 97.94% 0.3492 0.4920 2.4521

Table 2: Accuracy on the MNIST cumulative sum/product tasks.

Results Our experimental results are shown in Tab. 2; the
learned first-order logic theories are shown in Fig. 3a. The
end-to-end models that do not exploit any background knowl-
edge (LSTM and RNN) perform worst. NALU and NAC is
slightly better because they include neural cells with arith-
metic modules, but the end-to-end learning pipeline based on
embeddings results in low sample-efficiency. DeepProblog
does not finish the training on the cumulative sum task and
the test on cumulative product task within 72 hours because
the recursive programs result in a huge groundings space for
its maximum a posteriori (MAP) estimation.

Cumulative Sum:
f(A,B):-add(A,C),f(C,B).

f(A,B):-eq(A,B).

Cumulative Product:
f(A,B):-mult(A,C),f(C,B).

f(A,B):-eq(A,B).

Bogosort:
f(A,B):-permute(A,B,C),s(C).

s(A):-s 1(A,B),s(B).

s(A):-tail(A,B),empty(B).

s 1(A,B):-nn pred(A),tail(A,B).

(a) Learned programs

(b) Time costs of sampling z or H

Figure 3: Learned programs and
the time efficiency of MetaAbd.

The EM-based learning
of MetaAbd may be trapped
in local optima, which
happens more frequently
in cumulative sum than
produce since its distribu-
tion P (H, z|B, x, y, θ) is
much denser. Therefore, we
also carry out experiments
with one-shot pre-trained
convnets, which are trained
by randomly sampling one
example in each class from
MNIST data. Although the
pre-trained convnet is weak
at start (Acc. 20%∼35%), it
provides a good initialisation
and significantly improves
the learning performance.

Fig. 3b compares the
time efficiency between ILP’s induction and MetaAbd’s
abduction-induction in one EM iteration of learning cumula-
tive sum. “z → H” means first sampling z and then inducing
H with ILP; “H → z” means first sampling an abductive

hypothesis H and then using H to abduce z. The x-axis de-
notes the average number of Prolog inferences, the number at
the end of each bar is the average inference time in seconds.
Evidently, the abduction leads to a substantial improvement
in the number of Prolog inferences and significantly the
complexity of searching pseudo-labels.
4.2 Bogosort from images
Materials We follow the settings in [Grover et al., 2019].
The input of this task is a sequence of randomly chosen
MNIST images of distinct numbers; the output is the cor-
rect ranking (from large to small) of the digits. For exam-
ple, when x = [ , , , , ] then the output should
be y = [3, 1, 4, 5, 2] because the ground-truth labels z∗ =
[5, 9, 4, 3, 8]. The training dataset contains 3000 training/test
and 1000 validation examples. The training examples are se-
quences of length 5, and we test the learned models on image
sequences with lengths 3, 5 and 7.

Methods We compare MetaAbd to an end-to-end model
NeuralSort [Grover et al., 2019] and a state-of-the-art NeSy
approach Neural Logical Machines (NLM) [Dong et al.,
2019]4. All experiments are repeated five times.

NeuralSort can be regarded as a differentiable approxima-
tion to bogosort (permutation sort). Given an input list of
scalars, it generates a stochastic permutation matrix by apply-
ing the pre-defined deterministic or stochastic sort operator
on the inputs. NLM can learn sorting through reinforcement
learning in a domain whose states are described by vectors
of relational features (groundings of dyadic predicates“>”,
“==”, “<”) and action “swap”. However, the original NLM
only takes symbolic inputs5, which provides a noisy-free re-

4We use the implementation of NeuralSort and Neural Logical
Machines from from https://github.com/ermongroup/neuralsort and
https://github.com/google/neural-logic-machines, respectively.

5Please see https://github.com/google/neural-logic-machines



Sequence Length 3 5 7
Neural Logical Machine (NLM) 17.97% (34.38%) 1.03% (20.27%) 0.01% (14.90%)

Deterministic NeuralSort 95.49% (96.82%) 88.26% (94.32%) 80.51% (92.38%)

Stochastic NeuralSort 95.37% (96.74%) 87.46% (94.03%) 78.50% (91.85%)

MetaAbd 96.33% (97.22%) 91.75% (95.24%) 87.42% (93.58%)

Table 3: Accuracy of MNIST sort. First value is the rate of correct permutations; second value is the rate of correct individual element ranks.

lational features vector. In our experiments, we attach NLM
with the same convnet as other methods to process images.
We also compared to DeepProblog with the ground-truth pro-
gram of sorting in this task, but it does not terminate when the
neural predicate “swap net”6 is implemented to take noisy
image inputs by the aforementioned convnet. Therefore, we
do not display its performance in this task.

For MetaAbd, it is easy to include stronger back-
ground knowledge for learning more efficient sorting algo-
rithms [Cropper and Muggleton, 2019]. But in order to make
a fair comparison to NeuralSort, we adapt the same back-
ground knowledge to logic program and let MetaAbd learn
bogosort. The knowledge of permutation in MetaAbd is
implemented with Prolog’s built-in predicate permutation.
Meanwhile, instead of providing the information about sort-
ing as prior knowledge like the NeuralSort, we try to learn
the concept of “sorted” (represented by a monadic predicate
s) from data as a sub-task, whose training set is the subset of
the sorted examples within the training dataset (< 20 exam-
ples). The two tasks are trained sequentially as a curriculum.
MetaAbd learns the sub-task in the first five epochs and then
re-uses the learned models to learn bogosort.
MetaAbd uses an MLP attached to the same untrained con-

vnet as other models to produce dyadic probabilistic facts
nn pred([ , | ]), which learns if the first two items in
the image sequence satisfy a dyadic relation. Unlike NLM,
the background knowledge of MetaAbd is agnostic to order-
ing, i.e., the dyadic nn pred is not provided with supervision
on whether it should learn “greater than” or “less than”, so
nn pred only learns an unknown dyadic partial order among
MNIST images. As we can see, the background knowledge
used by MetaAbd is much weaker than the others.
Results Tab. 3 shows the average accuracy of the compared
methods in the sorting tasks; Fig. 3a shows the learned pro-
grams by MetaAbd. The performance is measured by the av-
erage proportion of correct permutations and individual per-
mutations following [Grover et al., 2019]. Although using
weaker background knowledge, MetaAbd has a significantly
better performance than NeuralSort. Due to the high sample-
complexity of reinforcement learning, NLM failed to learn
any valid perceptual model and sorting algorithm (success
trajectory rate 0.0% during training).

The learned program of s and the dyadic neural net
nn pred are both successfully re-used in the sorting task,
where the learned program of s is consulted as interpreted
background knowledge [Cropper et al., 2020], and the neural
network that generates probabilistic facts of nn pred is di-
rectly re-used and continuously trained during the learning of

/blob/master/scripts/graph/learn policy.py
6Please see https://bitbucket.org/problog/deepproblog/src/master

/examples/NIPS/Forth/Sort/quicksort.pl

sorting. This experiment also demonstrates MetaAbd’s abil-
ity of learning recursive logic programs and predicate inven-
tion (the invented predicate s 1 in Fig. 3a).

5 Conclusion
In this paper, we present the Abductive Meta-Interpretive
Learning (MetaAbd) approach that can simultaneously train
neural networks and learn recursive first-order logic theo-
ries with predicate invention. By combining ILP with neural
networks, MetaAbd can learn human-interpretable logic pro-
grams directly from raw-data, and the learned neural models
and logic theories can be directly re-used in subsequent learn-
ing tasks. MetaAbd adopts a general framework for combin-
ing perception with logical induction and abduction. The per-
ception model extracts probabilistic facts from sub-symbolic
data; the logical induction searches for first-order abductive
theories in a relatively small hypothesis space; the logical
abduction uses the abductive theory to prune the vast search
space of the truth values of the probabilistic facts. The three
parts are optimised together in a probabilistic model.

In future work, we would like to apply MetaAbd in
real tasks such as computational science discovery, which
is a typical abductive process that involve both sym-
bolic domain knowledge and continuous/noisy raw data.
Since MetaAbd uses pure logical inference for reasoning,
it is possible to leverage more advanced symbolic infer-
ence/optimisation techniques like Satisfiability Modulo The-
ories (SMT) [Barrett and Tinelli, 2018] and Answer Set Pro-
gramming (ASP) [Lifschitz, 2019] to reason more efficiently.
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