
Scalable Acceleration of Inductive Logic Programs

Andreas Fidjeland, Wayne Luk and Stephen Muggleton
Department of Computing

Imperial College
180 Queen’s Gate

London SW7 2BZ, England

Abstract

Inductive logic programming systems are recognised as
an emerging but powerful paradigm for machine learning
which can make use of background knowledge to produce
theories expressed in logic. They have been applied suc-
cessfully to a wide range of problem domains, from protein
structure prediction to satellite fault diagnosis. However,
their execution can be computationally demanding. We in-
troduce a scalable FPGA-based architecture for executing
inductive logic programs, such that the execution speed
largely increases linearly with respect to the number of
processors. The architecture contains multiple processors
derived from the Warren Abstract Machine, which has been
optimised for hardware implementation using techniques
such as instruction grouping and speculative assignment.
The effectiveness of the architecture is demonstrated using
the mutagenesis data set containing 12000 facts of chemi-
cal compounds.

1 Introduction

Inductive Logic Programming (ILP) is a relatively new
tool in the arsenal of the scientist. It combines machine
learning with logic programming, and can produce first-
order logic theories based on examples. A strength of ILP
systems as compared with other machine learning systems
is that ILP makes use of background knowledge and can
therefore build on partial theories within a field. ILP also
produces theories in a form that is human-readable and can
therefore be used in the normal scientific discourse.

ILP systems have produced new knowledge of use to
experts within a domain, such as rules for prediction of the
activity of untried drugs. In [1] the ILP system Golem is
shown to outperform other learning systems in predicting
the secondary structure of proteins. This has been one of
the hardest open problems in molecular biology and is of
great interest to the pharmaceutical industry. The prob-
lem is to predict the placement of the main three dimen-

sional sub-structures of the protein, given a sequence of
amino acid residues. Golem has an accuracy of around
80% while previous learners had an accuracy of between
50 and 60%. Other problem domains which have success-
fully been treated by ILP systems include learning diagno-
sis rules for satellites [2], creating innovative designs from
first principles [3] and learning finite element mesh analy-
sis design rules [4]. The induction process is computation-
ally demanding and can run for hours.

This paper demonstrates that for the execution of ILP
programs, the performance of an FPGA-based coprocessor
scales well with respect to chip size. Progol, the ILP sys-
tem studied here, makes a large number of calls to a Pro-
log interpreter, with calls independent of each other. Sev-
eral Prolog implementations can be mapped onto the same
chip. The speed with which problems are solved is propor-
tional to the number of Prolog implementations, and this,
in turn, grows with the size of the chip.

The paper outlines the design of an FPGA-system
based on the Warren’s Abstract Machine (WAM) execution
model for Prolog. The main achievements are the follow-
ing:

1. Adaption of the WAM for hardware using simplified
term representation.

2. Optimisation of the hardware-based WAM by fine-
grained parallelisation within instructions by means
of speculative assignments and assignment grouping.

3. An architecture containing several WAMs on the
same chip. The architecture is general in that it can
be applied to a range of applications facing a large
number of similar independent sub-problems. How-
ever, the architecture fits the nature of ILP problems
well.

4. The designs are compared to the software-based ver-
sion, using a large data set. The scalability of the
multi-WAM architecture is evaluated.

This paper is organised as follows. In section 2 an
overview is given of ILP . In the sections 3 and 4 the single-
WAM and multiple-WAM architectures are described. In
section 5 an evaluation of the above architectures are given.
Finally, section 6 contains a few concluding remarks.

2 Background

In the field of artificial intelligence, systems often have
to acquire knowledge which can, for one reason or an-
other, not be directly coded into the system. Machine
learning comprises a number of techniques, such as neu-
ral networks and belief networks, aimed at this knowledge
acquisition. Inductive logic programming (ILP) [5] is an-
other technique, combining machine learning with logic
programming. ILP systems produce predicate descriptions
from background information and examples.

ILP systems aim to find the simplest consistent hypoth-
esis which can explain the given background information
and examples. In the ILP system Progol [6], the learn-
ing process is viewed as a search problem in the space of
potential hypothesis. Each example is generalised with re-
spect to the background knowledge. This is done by find-
ing the most specific hypothesis explaining the example
and searching for an optimal hypothesis which lies be-
tween the most specific and most general hypothesis in
terms of generality. This search space forms a sub-lattice
bounded above by the most general hypothesis and below
by the least general hypothesis.

Progol uses an A*-like algorithm to find the maximally
compressive hypothesis, where compression takes into ac-
count the ability of the hypothesis to explain the example
set as well as the complexity of the hypothesis. The search
starts with the most general hypothesis and moves through
the search space guided by compression. In the worst case
all the possible hypothesis must be considered. For each
hypothesis which is considered, Progol establishes whether
or not each example is a consequence of it. Herein lies the
computational complexity, as a large number of candidate
hypothesis must be considered, and for each of these there
can be a large number of examples to test. When the op-
timal generalisation of an example is found, it is added to
the background knowledge. The background knowledge
may then explain some of the examples which have yet to
be generalised, and these are removed from the example
set. Progol then proceeds by generalising the remaining
examples in turn.

More formally we want
������� ���

where
�

is the background knowledge,
�

is the hypothe-
sis and

�
is the example set.

�
can contain both positive

and negative examples; it states both what is known to be
true and what is known to be false.

�
,
�

, and
�

can be
arbitrary logic programs, essentially databases of facts and
rules. The most common logic programming formalism is
Prolog which is based on clausal form logic and resolu-
tion. A program consists of facts (‘ 	�
����� ’) and rules (‘ ��
���
if 	�
����� ’), while a computation determines whether a query
(‘ ��
������ ’) is a consequence of a program.

It can be shown that if � is the conjunction of ground
literals which are true in all models of

��� �
and

�
and�

are restricted to single Horn clauses, then the following
holds: ������� � � � � �
and so ��� � �
where � is the most specific hypothesis.

The complete set of
�

are those clauses which imply
� . Progol searches for

�
among the clauses which � -

subsumes � . A clause �! "� -subsumes another clause �$# if
and only if there exists a substitution � such that � �&%'� # ,
i.e. � is more general than � # . The hypothesis search space
forms a lattice such that (*) �)�� , where) denotes
� -subsumption and (is the most general hypothesis.

As an example of an ILP program, take the mutagenesis
data set, which is used as a benchmark below. The data
set describes a set of compounds, classified as either “ac-
tive” or “inactive” with respect to mutagenicity, i.e. their
ability to alter DNA. The background knowledge consists
of structural definitions of the compounds. Examples con-
sists of facts describing compounds as either active or inac-
tive. The hypothesis generated by Progol are rules defining
compounds as active if they haver certain structural prop-
erties.

Ohwada and Mizoguchi have presented two approaches
for using hardware to speed up Progol. The first [8] makes
use of parallelism on three levels. First it induces concepts
in parallel, if there are more than one. Secondly it exe-
cutes branches in the hypothesis search in parallel. Finally
it counts positive and negative examples in parallel. Our
approach makes use of the latter form of parallelism, al-
though the architecture is different. The second approach
[9] uses logic programming to solve goals and concurrent
logic programming to dispatch goals to machines. This
ILP engine is distributed over several processors with the
hypothesis search task allocated dynamically. The perfor-
mance scales well with the number of processors.

3 Single WAM Design

The Progol coprocessor is based on the WAM, Warren’s
Abstract Machine [10]. The WAM is an execution model

for Prolog which has become its de facto standard imple-
mentation technique. It is a stack-based architecture with
an instruction set corresponding closely to Prolog code.
The instruction set is small, but the instructions are quite
complex.

Like imperative machines, the WAM has instructions
for sequential control but also for unification and back-
tracking. The local stack (STACK) holds environments (ac-
tivation records) for local variables in addition to choice
points keeping information needed to reset the state of the
machine upon backtracking.

Term data are typed dynamically; data items can change
type at run-time through unification. During unification
variables can be bound, and these bindings are kept in
a separate binding stack (BIND, not present in the origi-
nal WAM). A separate stack, the TRAIL, records (trails)
the bindings which must be undone (detrailed) upon back-
tracking. In addition the WAM has a memory containing
the code (CODE) and a table (WCODE) mapping predicates
(such as ��
��� above) to their corresponding code.

The WAM uses indexing on the first argument of a pred-
icate to reduce the number of clauses that must be unified
with when calling a predicate. The code for clauses defin-
ing a predicate are grouped together according to the type
and value of the first argument. Another two instructions
pass control to the correct code section using another table
(HTAB) which maps constants to code sections.

Our first WAM design for FPGAs, the S-WAM, is a se-
quential adaption of a simplified WAM written for Progol.
It is a 32-bit architecture for compatability with the Progol
host. The S-WAM uses six types of terms: integer, skolem
constant (e.g. �), character string, variable, floating point
number and predicate (e.g. ��
���� � �). The terms are iden-
tified with a 3-bit tag indicating their type, while the re-
maining 29-bits are used to hold the value. For integers the
value is the integer itself. For skolem constants and strings
the value is an index into a Progol table. For variables the
value is a small integer denoting the offset into the asso-
ciated binding frame where its binding is recorded. Floats
require more than 32 bits so the value field is a pointer to
the floating point value itself. The value for the predicate
is a pointer to the main body of the predicate. This consists
of the predicate name, its arity and all the argument terms.

Instructions have a fixed width of 32 bits with a 5-bit op-
code. The fixed format has been chosen to minimise code
fetch and decoding overheads. There are 15 instructions,
each with a 5-bit opcode. The redundant opcode bit is kept
for currently unsupported instructions for cuts and variable
calls.

The organisation of the memory is guided by impera-
tive studies of the access frequencies and size requirements
for the various segments. The memory access frequencies

below, are the percentage of the total number of memory
accesses found in the mutagenesis benchmark. Memory
segments are kept either on-chip in distributed RAM, in
on-chip block RAM and in off-chip RAM.

� The TERM segment, containing all the clauses in the
logic program, is large. The segment is read-only and
frequently accessed (40%). Because of the size of
this segment we have chosen to keep it off-chip, but it
could be kept in on-chip block RAM if there is enough
space. The term data for our mutagenesis benchmark
are too large (440KB) to keep on the XCV2000E chip
we used, but it could fit on in the memory of more
recent chips.

� The CODE segment contains the code for the clauses
in TERM. Since WAM-code corresponds closely to
Prolog-code, the two segments are of roughly equal
size. This segment is read-only but is less frequently
accessed (8%) than TERM. It is therefore kept off-
chip.

�
WCODE maps each defined predicate in TERM into its
code section in CODE. The minimum size for WCODE

is equal to the number of predicates. Clearly this seg-
ment need only be a fraction of the size of TERM.
WCODE is only accessed when a predicate is called
and this happens infrequently (0.3%). It is therefore
kept off-chip.

� The HTAB segment used for indexing contains entries
for distinct constants in first argument position of a
head of a rule. This can be larger than WCODE since
each set of clauses defining a predicate may have sev-
eral such constants. The segment is only accessed in-
frequently (1%) and is therefore kept off-chip.

�
BIND contains binding frames stacked chronologi-
cally. The size of this segment is proportional to the
depth of execution. The execution depth is bounded
by Progol so this segment is quite small. BIND is ac-
cessed when setting up a binding frame, binding vari-
ables, trailing and detrailing bindings and when deref-
erencing variables. This happens frequently (26%) so
BIND should be kept in on-chip block RAM.

� Likewise, STACK, containing environment and choice
point frames, is also stacked chronologically. Effec-
tively, STACK consists of two interleaved stacks. The
size of STACK is proportional to execution depth and
is therefore of limited size, like BIND. Accesses to
STACK are frequent (23%) and it should be kept in
on-chip block RAM.

�
TRAIL contains pointer to a subset of the bindings
found on the binding stack. This segment is therefore
smaller again than BIND. Trailing and detrailing hap-
pens very infrequently (1%), but because of the small
size of the segment it should be kept in on-chip block
RAM.

� The push-down-list (PDL) is a stack used during uni-
fication. This need only be of limited size. It is used
only by unify so this stack is kept local to that instruc-
tion in distributed RAM.

The S-WAM is optimised using fine-grained parallelisa-
tion within each instruction. This is done by grouping as-
signments together and by making speculative assignments
to reduce the cycle count for each instruction. The result-
ing design, the P-WAM, is still a sequential control ma-
chine, but with improved performance. The effect of this
low-level parallelisation varies between the instructions. In
general, memory accesses is the limiting factor of the par-
allelisation, and instructions spending much time process-
ing data rather than reading and writing data, shows better
improvement.

� The unification instruction has a good performance
benefit for all types of unifications, as much time is
spent extracting data fields and determining the types
of data. For example unifying the two terms f(X,b,c)
and f(a,Y,Z), where � , � and � are unbound vari-
ables, is reduced from 189 to 90 cycles.

� The control flow instructions have their cycle counts
halved.

� Stack instructions saving and restoring information on
the run-time stack are memory intensive. Because of
sequential stack accesses the speedup of these instruc-
tions is minimal.

� For the two indexing instructions the cycle count is
halved.

� The five ancillary operations called by the WAM in-
structions vary in the degree to which they can be
parallelised. Three of them are so small that paral-
lelisation has little effect. The most important one,
for dereferencing, gain very little from parallelisation
because the instruction is memory intensive looping
through bindings and terms.

Parallelising instructions means that segments may have
to be accessed in parallel. This can be done at two points.
The first is fetching code in parallel with instruction exe-
cution requiring CODE to be accessed in parallel with the

other segments. The effect of this parallel access is es-
timated to be a 4% speedup. The second point is by trail-
ing unwinding the trail upon backtracking while setting the
values in the choice point frame. The effect of this is also
4%. In our implementation all memory accesses are se-
quential.

4 Multiple WAM Design

The P-WAM is small enough for several to be placed
on the same chip. Fortunately ILP problems have an inher-
ent parallelism which can take advantage of an architecture
with several processors. The test for covering for hypoth-
esised clauses requires that a large number of clauses are
tested against the set of examples, each test being an inde-
pendent call to Prolog.

The M-WAM (figure 1) contains a single controller
communicating with the Progol host and a series of P-
WAM processors. The Progol host places background
knowledge (CODE, TERM, WCODE and HTAB) in mem-
ory accessibly both to the FPGA chip and the host. When
queries for testing covering are created during hypothe-
sis search, the code and term data associated with them
is places in the shared memory. The queries themselves
(pointers into CODE) are then passed to the controller
which dispatches them to the available processors.

The controller and the processors run as independent
threads communicating over channels. The controller
spawns off the processor threads and then waits for the
Progol host to pass a query through the control register.
When a query is received, the controller monitors the avail-
able channels to the processors and dispatches the query as
soon as a channel opens. The individual processors busy-
wait for a request from the controller. When a processors
receives a request, it serves it and waits for another one.

The P-WAM processors have their own run-time data
structures (STACK, TRAIL, BIND and PDL). Like in the
single-WAM designs, the three first of these are kept in
on-chip block RAM, while the PDL is kept in distributed
RAM. Since accesses to CODE are rare, this segment can
be shared between several processors, with a memory ar-
biter keeping several processors from accessing the seg-
ment at the same time. For the P-WAM 4% of cycles are
spent fetching code. TERM is far more frequently accessed
so sharing is a bigger problem. This segment should there-
fore be replicated as much as possible. If there is room in
on-chip RAM it could be kept there as the large number
of small blocks makes sharing easier. We choose to keep
it off-chip, but replicated in each of the available RAM
blocks.

The M-WAM contains a different number of processors
depending on the size of the target chip. In order to sim-

QUERY
DISPATCH

P−WAM

 PRIVATE

SHARED

P−WAM

 PRIVATE

SHARED

P−WAM

SHARED

 PRIVATE

P−WAM

SHARED

 PRIVATE

PROGOL
HOST

Figure 1: M-WAM architecture showing the channels
for query dispatching and buses to the various memories.
Shared memory is accessible to both the host and the M-
WAM, while private memory are the run-time structures of
each processors in the M-WAM.

plify the process of creating code for different targets a
generator is used (figure 2). The code for the M-WAM
can be generated given two inputs: memory layout and
number of processors. The memory layout and interface
must be specified for each chip. The memory description
file defines the memory structure of the target system: size
and number of blocks of both off- and on-chip memory. It
must also define the size and placement of each segment.
The full M-WAM description is created in three stages:

1. Combine memory description with P-WAM descrip-
tion. Shared data accesses are set to point to the cor-
rect block.

2. Replicate the combined P-WAM design. Definitions
private to the P-WAMs (functions and data) must be
kept in separate name spaces.

3. Expand the M-WAM header. This file contains the
controller. The channel communication section must
be expanded to contain the correct number and names

COMBINE

REPLICATIONS

COMBINE

OUTPUTINPUT

MEMORY
LAYOUT

REPLICATE

PWAM
MWAM
HEADER

MWAM

Figure 2: M-WAM generator. Creates an M-WAM descrip-
tion given the number of required P-WAMs as well as a
memory description.

of channels. The header is then combined with the
rest of the code.

5 Evaluation

The designs are implemented on an XCV2000E chip
mounted on an RC1000-PP board and can be clocked at
35MHz. The hardware implementations of the S-WAM
and P-WAM are tested using a benchmark based on the
mutagenesis data set mentioned above. The benchmark
uses the nine rules generated by Progol in [7]. These rules
are used as queries with examples as arguments to the var-
ious WAM implementations with the background knowl-
edge loaded, i.e. each rule is tested to see whether or not
it explains each of the examples correctly. This is done
by Progol with each generated candidate hypothesis. The
benchmark is not a full run since it tests only the final rules,
but is indicative of the performance since the example test-
ing forms the performance bottleneck of the system.

The test returns the execution time for each query. The
tested machines are not optimised with respect to the target
device, so better performance should be attainable. The
software is timed on two different machines. The first is
a Pentium III 450MHz with 256MB RAM. The second is
a Pentium IV 1.8GHz with 512 MB RAM. The amount
of memory is of little significance, since the benchmark
programs fits comfortably within the 8MB available on the
RC1000-PP.

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

H
ar

dw
ar

e
(P

-W
A

M
 a

nd
 S

-W
A

M
),

 r
un

tim
e

in
 s

ec
on

ds

PIII 450MHz, runtime in seconds

S-WAM
P-WAM

Figure 3: Timing comparison for S-WAM and P-WAM
versus the PIII. Each point shows the running time for a
query both for hardware (S-WAM or P-WAM) and soft-
ware. Each query is thus plotted twice. Speedup ratio of
hardware to software is constant and the P-WAM is about
twice as fast as the S-WAM.

Machine PIII PIV
S-WAM 0.43 0.13
P-WAM 0.95 0.27
M-WAM(2) 1.90 0.54
M-WAM(3) 2.84 0.80
M-WAM(4) 3.77 1.07

Table 1: Performance of S-WAM, P-WAM and M-WAM
compared to software running on the PIII and PIV. The
numbers indicate the speedup factor of the hardware imple-
mentation compared to the software implementation. M-
WAM(n) means an M-WAM with n P-WAM processors.

The software is timed for each query. The execution
times are given for 10000 repeated calls to the same query,
as a single query executes too quickly to be detected by
the system diagnostics procedures. The S-WAM and P-
WAM are also timed for each query, while the M-WAM
implementations are timed for the whole benchmark and
the speedup is found relative to the P-WAM.

The timing results for each query from software and
hardware runs for the S- and P-WAM are plotted in fig-
ure 3. The speedup against software is uniform across the
queries in the benchmark, as can be seen from the plot
where all the points for each machine lie on a straight line.
The P-WAM executes queries at about the same rate as the
software implementation on the Pentium III, but about 3.5
times slower than on the Pentium IV. The P-WAM executes
queries about twice as fast as the S-WAM. The aggregate
results are shown in table 1.

Machine Slices Increase
S-WAM 3176 1.09
P-WAM 2910 1
M-WAM(2) 5776 1.99
M-WAM(3) 8635 2.97
M-WAM(4) 11479 3.95

Table 2: Space usage for S-WAM, P-WAM and M-WAMs.
The increase column displays the size relative to the P-
WAM. M-WAM(n) indicates and M-WAM with n P-WAM
processors.

Our implementation of the M-WAM with up to four pro-
cessors shows performance increasing near-linearly (table
1). Like the other designs, the M-WAM is implemented
on the XCV2000E chip on the RC1000-PP board with four
banks of SRAM. A simplified memory is used with each
processor using a separate block of the off-chip memory,
so no on-chip block RAM is used. The clock speed the
different versions are much the same around 35MHz.

The S-WAM and P-WAM each uses roughly 15% of
the XCV2000E chip, which contains 19200 slices. The S-
WAM uses 3176 slices, while the P-WAM uses 2910. The
reason the P-WAM is smaller than the S-WAM is that it
has been optimised more. The space usage of M-WAMs
increases near-linearly with the number of P-WAMs used
for up to four P-WAMs (table 2).

There are limitations on the speedup that can be
achieved by executing processes in parallel. For a set of
problems, the upper bound on the speedup is the speedup
attained by having as many processors as problems, in
which case the execution time is the same as that of the
longest problem. The maximum speedup can also be at-
tained with a smaller number of processors, if several prob-
lems can be solved in the time it takes to solve the longest
one. The maximum speedup is the ratio of total execution
time to execution time of the longest problem. The maxi-
mum attainable speedup for a given number of processors
will tend to increase with the number of problems, since
if the added problems are shorter than the longest one, the
ratio of total to longest execution time will increase. It fol-
lows that for a given number of problems the performance
benefit of adding processors yields diminishing returns.

The mutagenesis benchmark consists of nine disjunct
sets of problems, one for each rule. The total execution
time in a sequential execution is the sum of the execution
times of all the queries. The maximum speedup is achieved
when each of the nine rules is solved in the time it takes
to solve the longest query for that rule. The maximum
speedup factor is then the total execution time divided by
the sum of the longest runs for the nine rules. This speedup

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

S
pe

ed
up

Processors

Unsorted
Descending

Ascending

Figure 4: Upper bound on the speedup of M-WAM for in-
creasing number of P-WAMs using the mutagenesis bench-
mark. The three plots are for queries sorted in descending
and ascending order of execution time as well as unsorted.
Data are taken from simulation and overheads of having a
large number of processors are not taken into account.

factor turns out to be 26.
Maximal speedup can be attained also when there are

fewer processors than problems. This is achieved when
each processors is equally well utilised, essentially a bin
packing problem. Dealing with problems in order of de-
creasing execution time will keep utilisation even, although
not necessarily optimally so. Dealing with problems in or-
der of increasing execution time, on the other hand, will
keep it uneven. Figure 4 shows the speedup for the mu-
tagenesis benchmark for up to 188 processors. The simu-
lation uses the cycles counts for each query found for the
P-WAM. The three lines shows the speedup compared to
a single processor implementation for problems sorted in
ascending and descending order of execution time as well
as a ‘natural’ run where the queries are solved in the order
given by Progol. The two measurements for sorted queries
are interesting in that they indicate the range of speedup
that can be attained for a given problem, although to actu-
ally sort the queries cannot be done as the execution times
are not known.

6 Concluding remarks

This paper demonstrates the feasibility of optimising the
ILP system Progol using an FPGA-based Prolog coproces-
sor. The initial design, the S-WAM, has been improved to
produce the P-WAM. An architecture containing multiple
P-WAMs has been developed to form the M-WAM, which
is capable of running a large number of queries simultane-

ously. To recapitulate the main points of the design:

1. The S-WAM is an adaption of the WAM for use in
FPGA hardware. Terms are simplified and the data
are tagged. The various memory segments used by
S-WAM have been distributed in the different types
of memory available to a typical FPGA-system. This
memory structure is based on the access frequency as
well as segment sizes.

2. The P-WAM is an optimised version of S-WAM. In-
structions are parallelised by means of speculative as-
signments and assignment grouping. This type of op-
timisation doubles the speed of the P-WAM with no
additional space requirements.

3. The M-WAM combines several P-WAMs together on
the same chip. The architecture is general in that it
can be applied to a range of applications facing a large
number of similar independent sub-problems. How-
ever, the architecture fits the nature of ILP problems
well.

The above designs have been evaluated using the mutagen-
esis data set. The main advantage of the resulting design is
scalability. The M-WAM architecture scales well with the
number of processors. The number of processors in turn
depends on the chip-size, which increases rapidly. Thus the
performance gap, where extra chip-space is left un-utilised,
is greatly reduced. Future chips can be filled with a greater
number of processors to deal with ever larger problems.

Current and future work consists of the following. First,
integrate the implementation fully with Progol, with the
compiler targeting the memory available to the FPGA chip.
Second, explore device-specific and platform-specific opti-
misations to improve performance. Third, investigate how
the control complexity increases with a larger number of
processors. Fourth, investigate the extent to which mem-
ory sharing will become a bottleneck for a large number
of processors, in particular in the use of on-chip block
RAM for TERM data. Finally, explore the use of multiple
FPGA-board in order to increase performance while reduc-
ing memory requirements by splitting up the examples to
be tested into disjunct sets.

Acknowledgements. Many thanks to Shay Ping Seng for
his comments and assistance. The support of Xilinx, Inc.,
Celoxica Limited and UK Engineering and Physical Sci-
ences Research Council (Grant number GR/N 66599) is
gratefully acknowledged.

References

[1] R. King, S. Muggleton, R. Lewis, and M. Sternberg.
Drug design by machine learning: The use of in-
ductive logic programming to model the structure-
activity relationships of trimethoprim analogues
binding to dihydrofolate reductas. Proceedings of the
National Academy of Sciences, 89(23):11322-11326,
1992.

[2] C. Feng. Inducing Temporal Fault Diagnostic Rules
from a Qualitative Model. Proceedings Eighth Inter-
national Workshop on Machine Learning, pp 403 -
406, Morgan Kaufmann, San Mateo, C.A., 1991.

[3] I. Bratko. Innovative design as learning from exam-
ples. Proceedings of the International Conference on
Design to Manufacture in Modern Industries, Bled,
Slovenia, June 1993.

[4] I. Bratko and S. Muggleton. Applications of Inductive
Logic Programming. Communications of the ACM,
38(11):65-70, 1995.

[5] S. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic
Programming, 19,20:629-679, 1994.

[6] S. Muggleton. Inverse Entailment and Progol. New
Generation Computing, 13:245-286, 1995.

[7] A. Srinivasan, S. Muggleton, R. King, and M. Stern-
berg. Mutagenesis: ILP experiments in a non-
determinate biological domain. In S. Wrobel, ed-
itor, Proceedings of the Fourth International In-
ductive Logic Programming Workshop. Gesellschaft
für Mathematik und Datenverarbeitung MBH, 1994.
GMD-Studien Nr 237.

[8] H. Ohwada and F. Mizoguchi. Parallel Execution for
Speeding Up Inductive Logic Programming Systems,
Proc. of the Second International Conference on Dis-
covery Science, pp. 277-286, 1999.

[9] H. Ohwada, H. Nishiyama, F. Mizoguchi. Concurrent
execution of optimal hypothesis search for inverse
entailment. Proc. 10th International Conference on
Inductive Logic Programming, pages 165-173, July
2000.

[10] David H. D. Warren. An abstract Prolog instruction
set. Technical Note 309, SRI International, Menlo
Park, CA, October 1983.

