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Abstract. In science, experiments are empirical observations allowing
for the arbitration of competing hypotheses and knowledge acquisition.
For a scientist that aims at learning an agent strategy, performing exper-
iments induces energy costs. To that extent, the efficiency of a learning
process relies on the number of experiments performed. We study in
this article how the cost of experimentation can be reduced with ac-
tive learning to learn efficient agent strategies. We consider an extension
of the meta-interpretive learning framework that allocates a Bayesian
posterior distribution over the hypothesis space. At each iteration, the
learner queries the label of the instance with maximum entropy, it is
the most discriminative over the remaining competing hypotheses, and
thus achieves the highest shrinkage of the version space. We study the
theoretical framework and evaluate the gain on the cost of experimenta-
tion for the task of learning regular grammars and agent strategies: our
results demonstrate that the number of experiments to perform to reach
an arbitrary accuracy level can at least be halved.

Keywords: Bayesian meta-interpretive learning, active learning, agent-
based modelling.

1 Introduction

Once a honeybee has found a rich source of pollen, it shares its location with
other members of the colony by executing a particular figure called waggle dance
[16]. It guides the search for other bees toward flowers yielding nectar and pollen
and thus enhances the efficiency of the colony foraging strategy.

More broadly, strategies are general programs aimed at achieving a goal and
that can provide plans for a multiplicity of initial states. When a scientist mod-
els animal behaviours or other strategies, the learning process generally requires
the realisation of many experiments which set-up is resource exhausting and
time consuming. Thus, the learning efficiency relies on the number of performed
experiments. We investigate in this work how much the experimental cost can
be reduced with active learning to learn agent strategies. An active learner is
allowed to actively choose the experiments to perform to acquire knowledge dur-
ing the learning process. Furthermore, in real-world situations, strategies should
be resource-efficient to be beneficial for agents. Therefore, we additionally want
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waggle dance waggle dance

i)

initial state: [position(5),hive_position(5),flower_position(8), initial state: [position(5),hive_position(5),flower_position(1),
waggle_dance(east),energy(5), weight(0)] waggle_dance(west),energy(9), weight(0)]
final state: [position(8),hive_position(5),flower_position(8), final state: [position(?),hive_position(5),flower_position(1),
waggle_dance(east),energy(2), weight(1)] waggle_dance(west),energy(?), weight(?)]
(a) First observation: the bee starts at (c) Second observation, no matter its
the hive with no weight carried and outcome, it is discriminative for the
ends up at the flower carrying pollen competing hypotheses of Figure
Hypothesis 1 Hypothesis 2
f(A,B):-f1(A,C),grab(C,B). f£(A,B):-f2(A,C),grab(C,B).
£1(A,B) :~until(A,B,at_flower,move_right). f2(A,B) :-until(A,B,at_flower,f1).
£1(A,B) :-ifthenelse(A,B,waggle_east,move_right,move_left).

(b) Two competing hypotheses for the first observation of Figure
Fig. 1: Observations of a bee behaviour

to converge toward efficient strategies.

In section [6] we learn a general strategy for a bee to find pollen in an envi-
ronment. Learnt strategies are logic programs built from observations of bee
behaviour. Observations are labelled as positive if the goal is fulfilled and neg-
ative otherwise. Figure [la] represents a positive observation: the waggle dance
indicates that a flower is at the right of the hive, the bee flies in this direction
and finds pollen. Several hypotheses can be inferred from it, among them the
two represented in Figure To discriminate between them, the experiment of
Figure [1c| could be performed. The flower is now on the left, which is indicated
by the waggle dance. No matter its outcome, positive or negative, it would elim-
inate one of these two hypotheses. Therefore, it is an informative query.
Meta-Interpretive Learning (MIL) has been demonstrated to be a suitable
paradigm to learn strategies since it supports predicate invention and the learn-
ing of recursive programs [2224]. Given the observations so far, consistent hy-
potheses are built from a set of metarules and the background knowledge. A
Bayesian posterior distribution is implemented over the hypothesis space [23]
and introduces a bias toward hypotheses with lowest complexity. The learner
computes at each iteration the entropies of the possible experiments given the
current hypothesis space and the prior distribution. The instance with maximum
entropy is selected: it is the most discriminative between the remaining compet-
ing hypotheses. This process is resumed and more experiments are performed
until some target accuracy is reached.

Specifically, our contributions are the introduction of a framework for learning ef-
ficient agent strategies with reduced cost of experimentation and the description
of its implementation. We evaluate theoretically the expected gain in entropy. We
also demonstrate experimentally that Bayesian MIL Active Learning converges
faster toward efficient strategies than a passive learner in the same conditions.
This article is organised as follows. Section 2 describes some related work. Sec-
tion 3 describes the framework used in this paper together with the learning
protocol. Section 4 details a theoretical analysis. Section 5 describes the imple-
mentation. Section 6 reports experiments in learning regular grammars and bee
strategies. Finally, we conclude and discuss further work in Section 7.
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2 Related Work

Active Learning Active Learning is a protocol in which the learner is able to
choose the data from which it learns by accessing an oracle. It contrasts with
passive learning for which the labeled data is selected at random. The objective
in active learning is to learn a model with high accuracy while ideally making
fewer queries than the number of random data required by a passive learner
to achieve the same accuracy level. It has been widely studied for identifying
classifiers [26] and different query strategy frameworks have been introduced.
In the membership query setting, the learner is allowed to ask for the label of any
points of the instance space, even artificially generated ones [1I2]. However, newly
synthesized instances may be uninterpretable by human oracles. An alternative
is stream-based selective sampling: the learner can sample from the instance dis-
tribution and decide whether to label or discard each sample instance [12], or
directly sample from a subpart of the instance space that is the most informative
[4]. We focus in this work on pool-based active learning: the learner has access
to a large number of initial unlabelled data points, and to an oracle which can
provide the label of any of these points on request [20].

Several measures have been suggested for evaluating the shrinkage of the hy-
pothesis space during the learning process and thus measuring the benefits of
active learning over passive learning. The main ones are the diameter of the ver-
sion space [I1I28], the measure of the region of disagreement [I3/14], the metric
entropy [18] and the size of the version space [2IJT0] which inspired this paper.
We will more specifically operate in a Bayesian setting [12/10] that benefits from
a prior distribution over the hypothesis space.

Similarly, the system presented in this article is based upon active learning for
devising experiments to rule out hypotheses from the version space. However, our
approach is different from the work presented above since we use active learning
within the construction of logic programs and for learning agent strategies in a
Bayesian context.

Decision Trees A search strategy can be representented by a tree whose in-
ternal nodes are experiments and whose leaves are hypotheses: minimizing the
number of queries means building a tree of minimum average size. In that case,
it has been shown that the perfomances of a greedy strategy are not worst than
any other strategy for minimizing the number of label queries [10]. Moreover,
the expected depth of any binary decision tree is lower bounded by the entropy
of the prior distribution [5].

Combining Active Learning with Inductive Logic Programming In [27],
Inductive Logic Programming (ILP) has been combined with Active Learning
for two non-classification tasks in natural language processing: semantic parsing
and information extraction. Also, a closed loop Machine Learning system for
Scientific Discovery applications is described in [3I17]: a robot scientist is intro-
duced, it autonomously proposes and performs a sequence of experiments which
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minimises the expected cost of experimentation for converging upon an accurate
hypothesis generated with ILP. Conversely, our work aims at learning efficient
strategies.

Learning Efficient Strategies A general framework for learning optimal re-
source complexity robot strategies is presented in [6]. It has been extended in [g]
into Metaopt, an ILP system that learns minimal cost logic programs by adding
a general cost function into the meta-interpreter. By contrast, our work focuses
on another aspect of the learning efficiency: we investigate how to reduced ex-
perimental costs for learning efficient agent strategies.

Relational Reinforcement Learning A challenge in reinforcement learning
is the exploration / exploitation trade-off. In [I9], the authors present relational
exploration strategies: the generalisation of learnt knowledge over unobserved
instances in relational worlds allows a generalisation of the notion of known
states compared to propositional settings. It can also applied to largest domains.
In [25], Active Learning is used to select actions to perform for reaching states
that will enforce a revision of the current model. It is shown that the integration
of Active Learning improves learning speed: an accurate action model is obtained
after performing much less actions than when using random exploration only.

To the authors’ best knowledge, this is the first time active learning is integrated
with Bayesian MIL to devise a sequence of experiments to perform for learning
efficient strategies with reduced experimental costs.

3 Theoretical Framework

3.1 Notations

Let & be the instance space, and H a concept class over the instance space X. We
consider ITy the probability distribution over the instance space X and Il the
probability distribution over the hypothesis space H. We assume that the target
hypothesis H is drawn from H and according to IT3. We call E,, = {eq, ..., em }
the set of examples selected up to the iteration m. The version space V,, is the
set of hypotheses H € H consistent with F,,, therefore V,,, C H.

3.2 Meta-Interpretive Learning (MIL)

MIL is a form of ILP [2422]. The learner is given a set of examples E and a back-
ground knowledge B composed of a set of Prolog definitions B, and metarules
M such that B = B, U M. The aim is to generate a hypothesis H such that
B, H = E. The proof is based upon an adapted Prolog meta-interpreter. It first
attempts to prove the examples considered deductively. Failing this, it unifies the
head of a metarule with the goal, and saves the resulting meta-substitution. The
body and then the other examples are similarly proved. The meta-substitutions
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recovered for each successful proofs are saved and can be used into further proofs
by substituting them into their corresponding metarules.

For example, the first clause of the learned hypotheses of Figure
f(A,B):-f1(A,C),grab(C,B) . has been derived from the metarule chain rule
detailed in Figure |2a] by applying the meta-substitution [£/2,f1/2,grab/2].
Two key features of MIL are that it supports predicate invention and the learn-
ing of recursive programs. The former enables decomposition of the learned logic
program into new sub-actions. The latter allows to learn more general programs
and with shorter lengths. Both makes MIL well suited for learning strategies.
The choice of metarules induces a declarative bias on the hypothesis space since
it determines the structure of learnable programs: an appropriate choice helps
minimising the number of clauses in the consistent hypothesis [7]. Also, the use
of higher-order Abstractions supports learning more compact programs [9]. We
focus in this work on learning logic programs built from the metarules chain
rule, precondition and postcondition, whose description is available in the Fig-
ure Indeed, this set of metarules is enough to learn the class of dyadic logic
programs investigated in this paper. The first experiment tackles the task of
learning regular grammars. As shown on the Figure 2B metarules for finite state
acceptors can be expressed with chain rule and postcondition only. The second
experiment considers the task of learning agent strategies. Fluents are treated
as monadic predicates which apply to a situation, while actions are dyadic pred-
icates which transform one situation to another. We will use Metagola; which
supports Abstractions and Inventions [9]. We use the two abstractions until/4
and ifthenelse/5 to reduce the complexity of the learned programs: until// repre-
sents a recursive call to the action Ac while some condition Cond is not fullfilled
and ifthenelse/5 expresses a choice between the actions Then and Else based
upon the realisation of the condition Cond (Figure . Similarly, these Abstrac-
tions can be expressed with the chain rule, precondition and postcondition only
as shown in the Figure 2b]

3.3 Complexity of an Hypothesis

The hypotheses generated with MIL differ by their complexity. We distinguish
two notions to evaluate the complexity of a logic program H. The textual com-
plexity relies on Occam’s principle and represents the length [(H) of H measured
as the number of clauses. However, textually smaller programs are not neces-
sarily the more efficient. The resource complexity r(H) of an agent strategy [0]
represents the amount of resources (eg: energy) consumed by the agent while
executing the strategy. In the following, we will combine the textual complexity
with the resource complexity to learn efficient strategies in terms of a global
complexity:

c(H)=I1(H)+r(H)
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Name Metarule
chain rule |P(A,B) <+ Q(A,C), R(C, B).
precondition | P(A, B) + Q(A), R(A, B).
postcondition| P(A, B) < Q(A, B), R(B).

(a) General metarules

Exp.| Name Metarule
1 | acceptor Q(A, B) < eq(A, B), acceptor(B).
delta QO(A, B) < zero(A,C),Q1(C, B).
QO(A, B) < one(A,C),Q1(C, B).
2 until until(A, B, Cond, Ac) < Ac(A, B), Cond(B).

until(A, B, Cond, Ac) + F(A,C),until(C, B,Cond, Ac).
ifthenelse|I fthenelse(A, B, Cond, Then, Else) < Cond(A), Then(A, B).
Ifthenelse(A, B,Cond, Then, Else) + Else(A,C), eq(C, B).

(b) Metarules used in the experiments

Fig. 2: Metarules considered: the class of dyadic logic program studied in this
article can be expressed with chain rules, preconditions and postconditions only

3.4 Bayesian Prior Distribution

The preference for hypotheses with lowest complexity is encoded in a prior distri-
bution which induces a bias over the hypotheses space and favors more efficient
strategies. We consider the framework described in [23]. A Bayesian prior prob-

ability is defined for any H in H from the complexity ¢(H) as follows and for

2 . . .
1 =3 % =7 being a normalisation constant:

I ({H | e(H) = k}) = 15

Moreover, given a background knowledge B and a set of examples FE, the likeli-

hood of FE is:
1if BHEEFE

p(E | BaH) = {Oelse
According to Bayes’s theorem, the posterior is given by:

11y (H)p(E | B, H)

p(H|B,E) =

The denominator ¢ is a normalization constant. Therefore, the poste-
rior p(H | B, FE) is proportional to the prior IT3(H). The MAP hypothesis
Hpsap is defined as Hyap = argmax(p(H | B, E)).

H

3.5 Active Learning

A set of NV instances is initially sampled from X. The active learner conducts at
each iteration m + 1 an experiment in which it chooses the next instance e, 11
among this set and observes its label returned by an oracle. This information
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helps discriminating between the competing hypotheses built as described pre-
viously since it rules out some proportion of the version space V,, that is not
consistent with it. The shrinkage of the hypothesis space is measured by the ratio
% We associate each sampled instance e with a probability p. given the

version space:

min(IIy({H € V;,, | H(e) = 1}), Iy ({H € V., | H(e) = 0})

ple) = Ty (V)

This value represents the minimal reduction ratio over the version space induced
by the query of the instance e. Moreover, it was noted in [2I] that in general,
the optimal query strategy is to select an instance covered by half of the the
version space. Indeed, no matter its true label, it would halve the size of the
version space. Therefore, the query strategy chosen is to select the instance e,
for which p(e) is the closest to %, that is for which the entropy ent(p(e)) is
maximal:

em = argmax(ent(p.))
€

ent(p(e)) = —p(e)log(p(e)) — (1 — p(e))log(1 — p(e))

In that case, it is the most informative instance from the learner’s point of view,
since it is the most discriminative given the current version space.

From an information-theory point of view, the expected entropy of p(e) is the
expected information gain from the label of e, [15].

3.6 Learning Protocol

The learning protocol is summarised in the Figures [3| and [d] and represents how
the learner acquires information. First, a pool of IV instances is randomly sam-
pled. The training set is initialised with one positive instance randomly selected.
At each iteration, a fresh new set of K hypotheses consistent with the examples
of the training set is sampled. The entropy of each training instance is computed
from the set of sampled hypotheses and the instance with maximum entropy is
selected. The oracle provides its label, and it is added to the training set. This
process is resumed until the maximum number of iterations is reached.

Inputs: oracle O, N, K, I

1. Sample N instances from the instance space

2. Initialization: randomly select a positive initial instance

3. While the number of experiments is lower than I:

- Sample K hypotheses from the hypotheses space

- Select the instance with maximum entropy

- Query its label to the oracle 0 and add it to the training set
Output: hypothesis H with the lowest complexity from the sampled set

Fig. 3: Pseudo-code of the framework studied
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Background
knowledge,
set of N instances

Final

Hypotheses generator: .
hypothesis

sampling a set of
consistent hypotheses

Query of the label of the
instance with maximum
entropy and add it to the
training set

Experiment selection:
computation of the
entropies of the instances

Fig. 4: Diagram of the framework studied: active learning is integrated within
the MIL framework

4 Theoretical Analysis

We evaluate the instantaneous expected gain on entropy, which represents the
expected reduction of the hypothesis space at one iteration. We assume that the
target hypothesis H is drawn from #. Each instance e from X is associated a
probability p(e). We consider an arbitrary probability distribution D over X" at
some iteration m, that is bounded in [0, 3].

Lemma 1. A set of N instances {x1,...xy} is randomly sampled from the in-
stance space X. The active learner selects the instance x; with mazimum entropy
among this sample set of size N. Then, the probability of selecting an instance
with mazximal entropy on D is N times the one of a passive learner in the same
conditions.

Proof. Let’s take € > 0, p. is set to the probability number in [0, %] such that
a e-proportion of the instance space has a probability greater or equal to p..
Let’s call p(x;) the probability of the instance selected. Then p(z;) < p. if and
only if every instance from the sample set has a probability smaller than p.. The

instances being independently sampled, it can be written as following:

N
p(p(xi) < pe) = p(p(w1) < pes s p(xn) < pe) = [ p(p(2k) < pe) = (1 =)V
k=1

Then, the probability for an active learner to select an instance with probability
at least p. is, from the binomial theorem:

N n
pactive(p(l'i) > pe) =1- (]- - G)N =1- Z (k) (—E)k = Ne — 0(6)

k=0
By comparison, the probability for a passive learner to select an instance with
probability at least p. simply is:
ppassive(p(xi) > pe) =€

Therefore, the probability of selecting an instance with maximal entropy on D
is N times bigger for the active learner.
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5 Implementation

5.1 Sampling a Set of Hypotheses

To cope with very large or potentially infinite hypothesis spaces, a set of con-
sistent hypotheses is sampled at each iteration. This sample set is used both to
measure the accuracy and to evaluate the entropies.

We use a process called Regular Sampling [23] which limits the number of dupli-
cates while maintaining a good sampling efficiency. A set of probability fractions
p; is generated from the first K integers and with the following two properties: it
is evenly distributed in [0, 1] and it is isomorphic to N for K infinite. Consistent
hypotheses are ordered in SLD order within the derivation tree. Samples are
selected from the tree leafs and following the probability fractions generated. At
each node of the tree, the different branches are given equal weights, and are as-
sociated a cumulative posterior probability computed as the sum of the posterior
probabilities of the hypotheses on the left side. Starting from the top node, we
browse through the tree and selects at each node the branch whose cumulative
posterior probability interval [min, max] contains the sampling probability frac-
tion p;. This latter is then updated as (p; — min)(max — min), and the process
is repeated within the sub-tree selected. At the end, Regular Sampling repro-
duces sampling without replacement due to the distribution of the sequence of
fractions, and provides a sample set representative of the current version space.
A set of at most K hypotheses is dynamically sampled according to this process.
The first K fractions and corresponding hypotheses are generated. If all of them
are inconsistent with the examples selected so far, a new set of hypotheses is
sampled from the next K natural numbers, and so forth until at least one con-
sistent hypothesis is returned. After removing potential duplicates, this sampled
set is saved for evaluating the accuracy and the entropies.

5.2 Computing the Entropies

As a next step, the entropies are computed from the sampled hypotheses. For
every instance initially sampled from the instance space, we compute the propor-
tion of sampled hypotheses that predict a positive label and weight it according
to the hypotheses prior distribution. The entropy is derived from this probabil-
ity. Finally, the instance with the highest entropy is selected. If several instances
reach the maximum, one of them is selected at random.

6 Experiments

6.1 Experimental Hypothesis

This section describes two experiments for evaluating the benefits of Bayesian
Meta-Interpretive Active Learning over the speed of convergence when learning
efficient agent strategiesﬂ Thus, we investigate the following research hypothesis:

! Code for these experiments available at |https: //github.com/celinehocquette/
Bayesian- MIL-active-learning.git
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q0([OIAT,B) :- qi(A,B).| ' '

qO([1]1A],B) :- q0(A,B).
q1([0lA],B) :- qO(A,B).
q1([1]1A],B) :- q1(A,B).
q0([1,[1).
Target hypothesis

0

Fig. 5: Example of target hypothesis learned and corresponding FSA: the
parity grammar

Research Hypothesis: Bayesian Meta-Interpretive Active Learning requires a
smaller sample complexity for learning efficient agent strategies.

For the sake of comparison, we consider a passive learner which randomly selects
one instance at each iteration. Therefore, we associate to the previous research
hypothesis the following null hypothesis that we will test:

Null Hypothesis: Bayesian MIL Active Learning can not converge faster to-
ward efficient strategies than Bayesian MIL Passive learning.

6.2 Learning Regular Grammars

We learn regular languages, which are equivalent to deterministic Finite State
Automata (FSA). Generally speaking, FSA represent sequences of actions de-
pending on a sequence of events and an input state. Thus, they consist of compact
ways of representing strategies. We additionally require target grammars to have
a generality g(H) = IIx({z | H(z) = 1}) between 1 and Z such that the initial
probability for an instance to be positive is % on average. This also ensures that
trivial grammars are not considered. An example of a target hypothesis and its
corresponding automaton are represented on Figure [B} it accepts any string with
an even number of 0.

Material and Methods Target grammars are generated with Metagol, from
a set of sequences regularly sampled from X* and for X = {0,1}. The number
of states n > 3 is generated according to an exponential decay distribution with
mean 4. The generality of the hypothesis returned is measured against a set of
40 new regularly sampled instances. These steps are repeated until a grammar
with generality in [%, %} is found. A new number of states is similarly generated
to bound the search space.

The metarules provided are acceptor/1 and delta/3 described previously in Fig-
ure [2| The complexity of the hypotheses is set to their length [(H), and the
prior is computed by ﬁ For each target grammar, 150 training instances
are initially regularly sampled from X*: a threshold on the probability fraction
used for sampling is randomly generated for each instance, thus their length is
bounded. Similarly, another 50 instances are sampled for testing.
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f(A,B):- £2(A,C),grab(C,B).
f2(A,B) :- until(A,B,at_flower,f1).
f1(A,B):- ifthenelse(A,B,waggle_east,move_right,move_left).
Target hypothesis

Fig. 6: Target hypothesis for the bee experiment

At each iteration, 50 hypotheses are regularly sampled. The accuracy is mea-
sured as the average accuracy of all sampled hypotheses over the testing set. The
results are presented in the Figure [7] and have been averaged over 50 trials.

6.3 Learning a Bee Strategy

We learn the strategy introduced in section [l and that describes a bee strategy
for finding pollen following information given by a waggle dance. The target
strategy is represented in the Figure [6} until the bee reaches the flower, it flies
in the direction given by the waggle dance, and then grabs pollen.

Material and Methods The world is a one-dimensional space of size 10. The
state of the world is described by a list of facts. Actions are dyadic predicates
that modify the state of the world. The primitive actions are the following:
move_right/2, move_left/2, grab/2, they all have a cost of one unit of energy.
The metarules used are the chain rule and two higher-order abstractions until/4
and ifthenelse/5, they have been described previously on Figure [2| For any hy-
pothesis H with length [(H), the resource complexity r(H) is measured against
the examples selected so far, and the prior of H is then defined as m
The maximum length of an hypothesis is set to 3. The hive is located in the
middle position of the environment. A flower is randomly positioned, and a wag-
gle dance indicates if it is east or west of the hive. In the initial state, the bee
is at the hive with no pollen carried. It has some amount of energy randomly
generated between 0 and 30. In the final state, it is on the flower with one or
zero unit of pollen carried. Positive examples are pairs of states for which the
task of finding pollen is fulfilled, and with a positive amount of energy in the
final state. Negative examples are any pairs of states for which the task is not
fulfilled or resulting in a negative amount of energy in the final state. Training
and test sets are respectively made of 20 and 40 examples, half positive and half
negative. The results are presented in the Figure [8| and have been averaged over
20 trials.

6.4 Results and Discussion

The results are presented on Figures[7]and[8] The learning process takes between
10 minutes and a couple of hours for the grammar experiment according to the
complexity of the target hypothesis, and around a few seconds for each run for
the bee experiment. The entropy (Figure [7a] and is smaller and less regular
for passive learning, which is above all visible for a small number of iterations
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L Entropy of the instance selected versus the number of iterations Number of sampled hypotheses versus the number of iterations

&4 active learning % active learning
-3¢ passive learning 9 passive learning

100 e-a]

°

Entropy

°

Number of sampled hypotheses

-0. -1
5 10 15 20 25 10 15 20 25

Number of iterations Number of iterations

(a) Entropy of the instance selected  (b) Number of sampled hypotheses
versus the number of iterations versus the number of iterations

Gomplexity of the MAP hypothesis versus the number of iterations 1 Average accuracy versus the number of iterations
3 active learning 338 active learning
&3 passive learning &3 passive learning
7
¢ 1.
H JussSRypEN
3 +6-a—9 go gafbe Scsasding
2 @ -
3 - T Re §
> /JI/ .
H 0. o1
A
s
1
04
20 25 20 25
Number of iterations Number of iterations
(c) Complexity of the sampled (d) Accuracy versus the number of
hypothesis with highest prior iterations

Fig.7: Learning a regular grammar with Bayesian MIL: comparison between
active and passive learning; the convergence is faster for active learning.

(smaller than 10). In both cases the entropy is globally decreasing as the version
space shrinks. The difference between the two curves represents the gain over
the reduction of the version space. However, the entropy is smaller to 1 and thus
the number of hypotheses does not decrease by a factor of two as in the ideal
case, even for active learning. The number of sampled hypotheses is represented
on Figures [7h] and it is decreasing with the number of iterations, eventually
converging to one hypothesis. The decay rate gets smaller as the entropy drops.
The complexity of the MAP hypothesis (Figure and increases with the
number of iterations both for passive and active learning. Indeed, the search
is conducted such that the smallest hypotheses that are consistent with the
examples are preferred. Therefore, the prior of the MAP hypotheses is increasing.
Finally, the accuracy (Figure[7d| and [8d)) increases, starting between 0.6 and 0.7
(the default accuracy is around 0.5, and the learning process starts with one
positive instance for initialisation) and converges toward 1. The convergence is
longer and not guaranteed for the grammar experiment, since the hypothesis
space is bounded: a number of states maximum is generated before the learning.
Figure [9] compares the number of queries required to reach some accuracy level
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Fig.8: Learning a bee strategy with Bayesian MIL: comparison between active
and passive learning; the convergence is faster for active learning.

for active and passive learning, it suggests that less iterations are required to
achieve good performances, and that experimental costs can at least be halved
with active learning. A Mann-Whitney U test indicates that the results are
significant at a 0.01 level. According to Lemma [I] the size N of the pool of
instance initially sampled should be big enough to ensure that instances with
high entropy can always be found. Increasing this number should lift up the
entropy of the instance selected, and therefore accelerate the convergence. The
number K of hypotheses sampled should be big enough to ensure that the sample
set is representative of the hypothesis space, and thus relies on the size of the
version space.

Accuracy|Active learning|Passive learning Accuracy|Active learning|Passive learning
0.75 5 12
0.80 2 3
0.80 7 15 0.90 3 6
0.85 11 22 .
(a) FSA (b) Bee experiment

Fig. 9: Number of iterations required to reach some accuracy level for active
and passive learning: experimental costs can be halved with active learning.
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Even though these results seem encouraging, the empirical evaluation has been
performed on a rather small domain and on artificial problems. We plan to
demonstrate the scalability of this approach on a real-world dataset as future
work.

7 Conclusion and Future Work

This article extends previous work on Meta-Interpretive Learning by integrating
active learning for learning efficient agent strategies. We study how automated
experimentation can help reducing the experimental costs required to reach some
target accuracy. Mainly, we show over two examples that one can expect to halve
the experimental costs with active learning and compared to passive learning.
We believe that this approach is of interest in AI domains such as robotics or
agent-based modelling and for a wide range of applications.

A limitation of this article is the lack of theoretical bound on the sample com-
plexity, which we characterise as future work. In the future, we also want to
demonstrate the scalability of this approach by considering real-world datasets.
A next step is to use this framework to uncover novel logic programs instead of
known target hypotheses, to show that it supports scientific knowledge discov-
ery. Another work direction is to improve the sampling process over the instance
space. So far, instances are sampled before the learning. We think about generat-
ing at each iteration a new sample set of instances, sampled given the knowledge
acquired so far. Instances could also eventually be synthesised. Finally, we want
to study other query strategies. Experiments are so far the observation of a bi-
nary output for a particular set-up, which could be extended to probabilistic
observations.
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