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Abstract

Inductive Logic Programming (ILP) is the area of AT which deals with
the induction of hypothesised predicate definitions from examples and
background knowledge. Logic programs are used as a single representation
for examples, background knowledge and hypotheses. ILP is differentiated
from most other forms of Machine Learning (ML) both by its use of an
expressive representation language and its ability to make use of logically
encoded background knowledge. This has allowed successful applications
of ILP in areas such as molecular biology and natural language which
both have rich sources of background knowledge and both benefit from
the use of an expressive concept representation languages. For instance,
the ILP system Progol has recently been used to generate comprehensible
descriptions of the 23 most populated fold classes of proteins, where no
such descriptions had previously been formulated manually. In the natural
language area ILP has not only been shown to have higher accuracies than
various other ML approaches in learning the past tense of English but also
shown to be capable of learning accurate grammars which translate sen-
tences into deductive database queries. The area of Learning Language in
Logic (LLL) is producing a number of challenges to existing ILP theory
and implementations. In particular, language applications of ILP require
revision and extension of a hierarchically defined set of predicates in which
the examples are typically only provided for predicates at the top of the hi-
erarchy. New predicates often need to be invented, and complex recursion
is usually involved. Advances in ILP theory and implementation related to
the challenges of LLL are already producing beneficial advances in other
sequence-oriented applications of ILP. In addition LLL is starting to de-
velop its own character as a sub-discipline of AT involving the confluence
of computational linguistics, machine learning and logic programming.



1 Introduction

Industry is increasingly overwhelmed by large-volume-data. For instance, in the
pharmaceutical industry this is generated both internally as a side-effect of screen-
ing tests and combinatorial chemistry, as well as externally from sources such as
the human genome project. On the other hand industry is also increasingly
knowledge-driven. For instance, knowledge is required within computational
chemistry for pharmacophore identification, as well as for determining biologi-
cal function using sequence analysis.

From a computer science point of view, the knowledge requirements within
industry often give higher emphasis to “knowing that” (declarative or descriptive
knowledge) rather than “knowing how” (procedural or prescriptive knowledge).
Mathematical logic has always been the preferred representation for declarative
knowledge and thus knowledge discovery techniques are required which generate
logical formulae from data. Inductive Logic Programming (ILP) [27, 2] provides
such an approach. This paper shows how advances in application areas of ILP
are dependent on the furtherance of the core theory and implementations.

The structure of the paper is as follows. Section 2 introduces the key ele-
ments of ILP, provides a formal framework (Section 2.1) for the later discussion
and discusses how Bayesian inference (Section 2.3) is used as a preference mech-
anism. Section 3 describes applications of ILP to problems related to discovery
of biological function. ILP has a strong potential for being applied to Natural
Language Processing (NLP). The resultant research area of Learning Language
in Logic (LLL) is described in Section 4 together with some encouraging prelim-
inary results. Conclusions concerning ongoing ILP research are given in Section
5.

2 ILP

ILP algorithms take examples E of a concept (such as a protein family) together
with background knowledge B (such as a definition of molecular dynamics) and
construct a hypothesis A which explains E in terms of B. For example, in the
protein fold domains (Section 3.2.2), E' might consist of descriptions of molecules
separated into positive and negative examples of a particular fold (overall pro-
tein shape). This is exemplified in Figure 1 for the fold “4-helical-up-and-down-
bundle”. A possible hypothesis h describing this class of proteins is shown in
Figure 2. The hypothesis is a definite clause consisting of a head (fold(..,..)) and a
body (the conjunction length(..), .. helix(..)). In this case “fold” is the predicate
involved in the examples and hypothesis, while “length”, “position”, etc. are
defined by the background knowledge. A logic program is simply a set of such
definite clauses. Each of F, B and h are logic programs.

In the context of knowledge discovery a distinct advantage of ILP over black
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Figure 1: A positive and a negative example of the protein fold “4-helical-up-
and-down-bundle”. 3-D arrangement of secondary structure units is shown for
a-helices (cylinders) and [-sheets (arrows). Each secondary structure unit is
labelled according to the index of its first and last amino acid residue.

fold("Four-helical up-and-down bundle’ P) :-
helix(P,H1),
length(H1,hi),
position(P,H1,Pos),
interval(1< Pos < 3),
adjacent(P,H1,H2),
helix(P,H2).

Figure 2: An hypothesised definite clause for 4-helical-up-and-down-bundles



box techniques, such as neural networks, is that a hypotheses such as that shown
in Figure 2 can, in a straightforward manner, be made readable by translating it
into the following piece of English text.

The protein P has fold class “Four-helical up-and-down bundle” if it
contains a long helix H1 at a secondary structure position between 1
and 3, and H1 is followed by a second helix H2.

Such explicit hypotheses can be used within the familiar human scientific discov-
ery cycle of debate, criticism and refutation.

2.1 Formal framework for ILP

The normal framework for ILP [27, 28] is as follows. As exemplified by the protein
folds problem, described in the last sub-section, the learning system is provided
with background knowledge B, positive examples ET and negative examples F~
and constructs an hypothesis h. B, E* E~ and h are each logic programs. A
logic program [15] is a set of definite clauses each having the form

h < by, .., b,

where h is an atom and by, .., b, are atoms. Usually E* and E~ consist of ground
clauses, those for E* being definite clauses with empty bodies and those for £~
being clauses with head ’false’ and a single ground atom in the body.

In the text below the logical symbols used are: A (logical and), V (logical or),
= (logical entailment), O (Falsity). The conditions for construction of h are as
follows.

Necessity: B [~ E*

Sufficiency: BAhE=ET

Weak consistency: BAh E O
Strong consistency: BAhRAE™ O

Note that neither sufficiency nor strong consistency are required for systems that
deal with noise. The four conditions above capture all the logical requirements
of an ILP system. However, for any B and E there will generally be many h’s
which satisfy these conditions. Statistical preference is often used to distinguish
between these hypotheses (see Section 2.3). Both Necessity and Consistency can
be checked using a theorem prover. Given that all formulae involved are definite,
the theorem prover used need be nothing more than a Prolog interpreter, with
some minor alterations, such as iterative deepening, to ensure logical complete-
ness.
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Figure 3: Prior over hypotheses. Hypotheses are enumerated in order of descend-
ing prior probability along the X-axis. The Y-axis is the probability of individual
hypotheses. Vertical bars represent hypotheses consistent with E.

2.2 Deriving algorithms from the specification of ILP

The sufficiency condition captures the notion of generalising examples relative to
background knowledge. A theorem prover cannot be directly applied to derive h
from B and E*. However, by simple application of the Deduction Theorem the
sufficiency condition can be rewritten as follows.

Sufficiency*: BAE*T =h

This simple alteration has a profound effect. The negation of the hypothesis can
now be deductively derived from the negation of the examples together with the
background knowledge. This is true no matter what form the examples take and
what form the hypothesis takes. This approach of turning an inductive problem
into one of deduction is called inverse entailment [21]. Methods for ensuring
completeness of inverse entailment have been a subject of debate recently [35, 22].

2.3 Bayesian framework

It is not sufficient to specify the ILP framework in terms of the logical relation-
ships which must hold between E, B and h. For any given E and B there will
be many (possibly infinitely many) choices for h. Thus a technique is needed for
defining a preference over the various choices for h. One approach to doing so
involves defining a Bayesian prior probability distribution over the learner’s hy-
pothesis space [19]. This is illustrated in Figure 3 *. According to Bayes’ theorem
the hypothesis (hp4p) With maximum posterior probability in hypothesis space

!Note that in the case of the potentially infinite hypothesis space employed in ILP, it is
not possible to have a uniform distribution which assigns non-zero prior probabilities to all
hypotheses



H is as follows.

P(EJh)P(h)
p(E)
= argmax,., P(E|h)P(h)

= argmax,cp

Within ILP Bayesian approaches [20] have been used to investigate the problem of
learning from positive examples only [23] and issues related to predicate invention
[10] (a relational form of feature construction). Learning from positive examples
and predicate invention are important in both natural language domains (see
Section 4) and in problems involving scientific discovery (see Section 3).

3 Discovery of biological function

Understanding of a variety of metabolic processes is at the centre of drug de-
velopment within the pharmaceutical industry. Each new drug costs hundreds
of millions of pounds to develop. The majority of this cost comes from clinical
tests on efficacy and side-effects. The increasing supply of data both from the
human genome project and existing drug databases is producing increasing in-
terest in computational techniques which could reduce drug development costs
by supporting automated discovery of biological function.

Biological functions are regulated by the docking of small molecules (ligands)
with sites on large molecules (proteins). Drugs, such as beta-blockers, mimic
natural small molecules, such as adrenaline. Effectiveness of drugs depends on
the correct shape and charge distribution of ligands. Thus beta-blockers inhibit
the binding of adrenaline, and so stop over-stimulation of heart muscle in patients
prone to heart attacks.

Results on scientific discovery applications of ILP are separated below between
those related to small molecules (such as ligands) and those related to proteins.

3.1 Small molecules
3.1.1 Structure-activity prediction

The majority of pharmaceutical R&D is based on finding slightly improved vari-
ants of patented active drugs. This involves laboratories of chemists synthesising
and testing hundreds of compounds almost at random. The average cost of de-
veloping a single new drug is around $300 million. In [11] it was shown that
the ILP system Golem [25] was capable of constructing rules which accurately
predict the activity of untried drugs. Rules were constructed from examples of
drugs with known medicinal activity. The accuracy of the rules was found to be
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slightly higher than traditional statistical methods. More importantly the eas-
ily understandable rules provided insights which were directly comparable to the
relevant literature concerning the binding site of dihydrofolate reductase.

3.1.2 Mutagenesis

In [12, 31] the ILP system Progol [21] was used to predict the mutagenicity of
chemical compounds taken from a previous study in which linear regression had
been applied. Progol’s predictive accuracy was equivalent to regression on the
main set of 188 compounds and significantly higher (85.7% as opposed to 66.7%)
on 44 compounds which had been discarded by the previous authors as unpre-
dictable using regression. Progol’s single clause solution for the 44 compounds
was judged by the domain experts to be a new structural alert for mutagenesis.

3.1.3 Pharmacophores

In a series of “blind tests” in collaboration with the pharmaceutical company
Pfizer UK, Progol was shown [8] capable of re-discovering a 3D description of the
binding sites (or pharmacophores) of ACE inhibitors (a hypertension drug) and
an HIV-protease inhibitor (an anti-AIDS drug).

3.1.4 Carcinogenicity

Progol was entered into a world-wide carcinogenicity prediction competition run
by the National Toxicology Program (NTP) in the USA. Progol was trained on
around 300 available compounds, and made use of its earlier rules relating to
mutagenicity. In the first round of the competition Progol produced the highest
predictive accuracy of any automatic system entered [30] (see Figure 4).

3.2 Proteins
3.2.1 Protein secondary structure prediction.

In [26] Golem was applied to one of the hardest open problems in molecular
biology. The problem is as follows: given a sequence of amino acid residues,
predict the placement of the main three dimensional sub-structures of the protein.
The problem is of great interest to pharmaceutical companies involved with drug
design. For this reason, over the last 20 years many attempts have been made to
apply methods ranging from statistical regression to decision tree and neural net
learning to this problem. Published accuracy results for the general prediction
problem have ranged between 50 and 60%, very close to majority-class prediction
rates. In our investigation it was found that the ability to make use of background
knowledge from molecular biology, together with the ability to describe structural



Method Type Accuracy P
Ashbyf Chemist 0.77 0.29
Progol ILP 0.72 1.00
RASH{ Biological potency analysis 0.72 0.39
TIPTt Propositional ML 0.67 0.11
Bakale Chemical reactivity analysis 0.63 0.09
Benigni Expert-guided regression 0.62 0.02
DEREK Expert system 0.57 0.02
TOPKAT Statistical discrimination 0.54 0.03
CASE Statistical correlation analysis 0.54 < 0.01
COMPACT | Molecular modelling 0.54 0.01
Default Majority class 0.51 0.01

Figure 4: Comparative accuracies on the first round of the Predictive Toxicol-
ogy Evaluation (PTE-1). Here P represents the binomial probability that Progol
and the corresponding toxicity prediction method classify the same proportion of
examples correctly. The “Default” method predicts all compounds to be carcino-
genic. Methods marked with a f have access to short-term in vivo rodent tests
that were unavailable to other methods. Ashby and RASH also involve some
subjective evaluation to decide on structural alerts.

relations boosted the predictivity for a restricted sub-problem to around 80% on
an independently chosen test set.

3.2.2 Discovery of fold descriptions

Protein shape is usually described at various levels of abstraction. At the lower
levels each family of proteins contains members with high sequence similarity. At
the most abstract level folds describe proteins which have similar overall shape
but are very different at the sequence level. The lack of understanding of shape
determination has made protein fold prediction particularly hard. However, al-
though there are around 300 known folds, around half of all known proteins are
members of the 20 most populated folds. In [34] Progol was applied to discover
rules governing the 20 most populated protein folds. The assignment to folds
was taken from the SCOP (Structural Classification of Proteins) database [3].
Progol was used to learn rules for the five most populated folds of the four classes
(alpha/alpha, beta/beta, alpha/beta and alpha+beta). The rules had an average
cross-validated accuracy of 75+ 9%. The rules identified known features of folds.
For instance, according to one rule the NAD binding fold where a short loop
between the first beta-strand and alpha-helix is required to bind to biological



cofactor molecule NAD. A questionnaire, designed by Mike Sternberg, requested
named folds to be paired with fold descriptions generated by Progol. The ques-
tionnaire was sent to a selection of the world’s top protein scientists. Progol
successfully identified structural signatures of protein folds that were only know
by the world’s top expert (Dr Murzin, Cambridge).

4 Learning Language in Logic

The telecommunications and other industries are investing substantial effort in
the development of natural language grammars and parsing systems. Appli-
cations include information extraction; database query (especially over the tele-
phone); tools for the production of documentation; and translation of both speech
and text. Many of these applications involve not just parsing, but the production
of a semantic representation for a sentence.

4.1 Why is ILP good for NLP?

Hand development of such grammars is very difficult, requiring expensive hu-
man expertise. It is natural to turn to machine learning for help in automatic
support for grammar development. The currently dominant paradigm in gram-
mar learning is statistically-based ([16, 5, 4, 1, 13]). This work is all, with a
few recent small-scale exceptions, focussed on syntactic or lexical properties. No
treatment of semantics or contextual interpretation is possible because there are
no annotated corpora available of sufficient size. The aim of statistical language
modelling is, by and large, to achieve wide coverage and robustness. The nec-
essary trade-off is that depth of analysis cannot also be achieved. Statistical
parsing methods do not deliver semantic representations capable of supporting
full interpretation. Traditional rule-based systems, on the other hand, achieve
the necessary depth of analysis, but at the sacrifice of robustness: hand-crafted
systems do not easily extend to new types of text or application.

In this paradigm disambiguation is addressed by associating statistical pref-
erences, derived from an annotated training corpus, with particular syntactic or
semantic configurations and using those numbers to rank parses. While this can
be effective, it demands large annotated corpora for each new application, which
are costly to produce. There is presumably an upper limit on the accuracy of
these techniques, since the variety of language means that it is always possible
to express sentences in a way that will not have been encountered in training
material.

The alternative method for disambiguation and contextual resolution is to use
an explicit domain theory which encodes in a set of logical axioms the relevant
properties of the domain. While this has been done for small scale domains (e.g.
[9]), the currently fashionable view is that it is impractical for complex domains



What is the highest point of the state with the largest area?
answer (P, (high-point(S,P), largest(A, (state(S), area(S,A))))).

What are the major cities in Kansas?
answer (C, (major(C), city(C), loc(C,S),
equal(S,stateid(kansas)))).

Figure 5: Form of examples

because of the unmanageably large amount of hand-coded knowledge that would
be required. However, if a large part of this domain knowledge could be acquired
(semi-)automatically, this kind of practical objection could be met. From the
NLP point of view the promise of ILP is that it will be able to steer a mid-course
between these two alternatives of large scale, but shallow levels of analysis, and
small scale, but deep and precise analyses. ILP should produce a better ratio
between breadth of coverage and depth of analysis.

4.2 How can ILP be used for NLP?

In grammar learning the logical theory to be synthesised consists of grammar rules
together with semantic representations. Examples are sentences from the lan-
guage being learned and the background knowledge represents an existing partial
grammar, perhaps supplemented with constraints on the possible forms of rules.
In grammatical disambiguation and contextual interpretation the theory to be
synthesised consists of a set of axioms or logical statements prescribing properties
of the domain relevant to these tasks. These properties may include an ontology
or type hierarchy and (perhaps default) statements about typical properties of
and relations holding between the entities in the domain. The examples consist
of both correct and incorrect analyses or contextual interpretations for sentences,
or sentence-context pairs, where contexts can be represented as disambiguated
sentences. The background knowledge may consist of a partial domain theory, or
an encoding of whatever existing constraints on disambiguation or interpretation
are known. The resulting theory is used as a filter on hypothesised alternative
interpretations.

4.3 Geographic database queries

ILP has been used for learning grammar and semantics using the CHILL system
[37]. In this case, background knowledge and examples were taken from an ex-
isting database of US geographical facts. Each example consisted of a sentence
paired with its semantics as shown in Figure 5 (figure taken from [17]).

The data was gathered by asking subjects to generate appropriate questions.
Each question was then paired with appropriate logical queries to give 250 ex-
amples. Figure 6 (taken from [17]) shows CHILL’s accuracy on progressively
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Figure 6: CHILL’s accuracy on learning grammar and semantics

larger training sets averaged over 10 trials. The line labelled “Geobase” shows
the accuracy of an existing commercially-developed hand-coded system for the
same domain. CHILL outperforms the existing system when trained on 175 or
more examples.

4.4 Morphology

Mooney and Califf [18] have applied ILP to learning the past tense of English
verbs. Learning of English past-tense has become a benchmark problem in the
computational modelling of human language acquisition [29, 14]. In [18] it was
shown that a particular ILP system, FOIDL, could learn this transformation more
effectively than previous neural-network and decision-tree methods. FOIDL’s
first-order default rule style representation was demonstrated by the authors as
producing a predictive accuracy advantage in this domain.

However, more recently Muggleton and Bain [24] have shown that ILP predic-
tion techniques based on Analogical Prediction (AP) produce even higher accu-
racies on the same data. AP is a half-way house between instance-based learning
and induction. Thus AP logical hypotheses are generated on the fly for each
instance to be predicted. The form of examples and hypotheses is shown in Fig-
ure 7. A comparison of learning curves for various systems is shown in Figure
8. The horizontal line labelled “Default rules” represents the following simple
Prolog program which adds a ‘d’ to verbs ending in ‘e’ and otherwise adds ‘ed’.

past(A,B) :- split(A,B,[el), split(B,A,[d]), !.
past(A,B) :- split(B,A,[e,d]).

11



Examples Hypotheses

past([w,o,r,r,y],[w,0,r,r,i,e,d]).
past([w,hi,z],[w,hizzed]). | past(A,B) :- split(A,C,[r,r,y]), split(B,C,[r,r,i,e,d]).
past([g,r,i,n,d],[g,r,0,un,d]).

Figure 7: Form of examples and hypotheses for past tense domain

The differences between AP and all other systems are significant at the 0.0001
level with 250 and 500 examples.

4.5 Why is NLP good for ILP?

From the ILP point of view NLP has recently been recognised as a challenging ap-
plication area. Some successes have been achieved in using ILP to learn grammar
and semantics ([37, 36, 38, 6]). The existence within NLP problems of hierar-
chically defined, structured data with large amounts of relevant logically defined
background knowledge provides a perfect testbed for stretching ILP technology
in a way that would be beneficial in other application areas [2, 32, 12, 31, 8|.
The York system Progol [21] is arguably the most general purpose and widely
applied ILP system. Most ILP systems concentrate on the issue of learning a sin-
gle (usually non-recursive) concept and assume a set of completely and correctly
defined background predicates. By contrast NLP applications need techniques
to deal with simultaneous completion and correction of a set of related (often
recursively defined) predicates. It is also expected to be necessary to implement
new techniques for automatic augmentation of the set of background predicates,
[10], in order to handle incompleteness of available vocabulary.

5 Conclusion

In his presentation of ILP biological discovery results to the Royal Society [32]
Sternberg emphasised the aspect of joint human-computer collaboration in sci-
entific discoveries. Science is an activity of human societies. It is the author’s
belief that computer-based scientific discovery must support strong integration
into the existing social environment of human scientific communities. The dis-
covered knowledge must add to and build on existing science. The ability to
incorporate background knowledge and re-use learned knowledge together with
the comprehensibility of the hypotheses, have marked out ILP as a particularly
effective approach for scientific knowledge discovery.

In the natural language area ILP has not only been shown to have higher
accuracies than various other ML approaches in learning the past tense of English
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Figure 8: Learning curves for alphabetic English past tense. Comparisons were
made between AP, CProgol4.4, FOIDL, FOIL, IFOIL and a hand-coded set of
default rules. Results were averaged over 10 random chosen training sets of sizes
25,50,100,250,500 with accuracies measured over test sets of size 500.
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(see Section 4.4) but also shown to be capable of learning accurate grammars
which translate sentences into deductive database queries [37] (see Section 4.3).
In both cases, follow up studies [33, 7] have shown that these ILP approaches to
natural language problems extend with relative ease to various languages other
than English.

The area of Learning Language in Logic (LLL) is producing a number of
challenges to existing ILP theory and implementations. In particular, language
applications of ILP require revision and extension of a hierarchically defined set
of predicates in which the examples are typically only provided for predicates at
the top of the hierarchy. New predicates often need to be invented, and complex
recursion is usually involved. Similarly the term structure of semantic objects is
far more complex than in other applications of ILP. Advances in ILP theory and
implementation related to the challenges of LLL are already producing beneficial
advances in other sequence-oriented applications of ILP. In addition LLL is start-
ing to develop its own character as a sub-discipline of Al involving the confluence
of computational linguistics, machine learning and logic programming.
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