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Abstract

Recently there has been increasing interest in systems which induce first order logic
programs from examples. However, many difficulties need to be overcome. Well-known
algorithms fail to discover correct logical descriptions for large classes of interesting predi-
cates, due either to the intractability of search or overly strong limitations applied to the
hypothesis space. In contrast, search is avoided within Plotkin’s framework of relative least
general generalisation (rlgg). It is replaced by the process of constructing a unique clause
which covers a set of examples relative to given background knowledge. However, such a
clause can in the worst case contain infinitely many literals, or at best grow exponentially
with the number of examples involved. In this paper we introduce the concept of h-easy rlgg
clauses and show that they have finite length. We also prove that the length of a certain
class of “determinate” rlgg is bounded by a polynomial function of certain features of the
background knowledge. This function is independent of the number of examples used to
construct them. An existing implementation called GOLEM is shown to be capable of in-
ducing many interesting logic programs which have not been demonstrated to be learnable
using other algorithms.

1 Introduction

Imagine that a learning program is to be taught the logic program ! for “quick-sort”. The
following definitions are provided as background knowledge.

partition(X.[J,[,[).

partition(X,[Head|Tail],[Head|Sublist1],Sublist2) «
lte(Head,X),
partition(X,Tail,Sublist1,Sublist2).

partition(X,[Head|Tail],Sublist1,[Head|Sublist2]) <
gt(Head,X),
partition(X,Tail,Sublist1,Sublist2).

!For formal definitions of logic programs and other concepts used in logic programming see [5].
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append([],List,List).
append([Head|Tail],List,[Head|Rest]) <
append(Tail,List,Rest).

1te(0,0).
1te(0,1).

The program is then provided with a set of positive ground examples of quick-sort, such as
gsort([],[]), gsort([0],[0]), gsort([1,0],[0,1]), ... together with some negative examples such as
gsort([1,0],[1,0]). In this case we might hope that the algorithm would, given a sufficient number
of examples, suggest the following clauses for “quick-sort”.

gsort([],[])-
gsort([Head|Tail],Sorted) «+

partition(Head, Tail,List1,List2),
gsort(List1,Sortedl),
gsort(List2,Sorted2),
append(Sortedl,[Head|Sorted2],Sorted).

The general setting for such a learning program can be described as follows. Given background
knowledge K (in this case partition, append, etc.), a set of positive examples ET (ground instances
of quick-sort) and negative examples £~ for which K I/ €T, find a hypothesised set of clauses H
such that CAH = £ and KAH / £~. Many existing algorithms [7, 2, 12, 13, 11, 6] operate within
this theoretical framework [8, 7]. However, not many of these have reached a sufficient state of
maturity to be widely applicable in practice. We believe that first-order learning programs must
have the following properties to achieve wide-scale application.

e Effective. The program can learn at least the class of efficient Prolog programs, such as
quick-sort.

e Efficient. A hypothesis can be constructed from up to 10,000 examples in a reasonably
short time (eg. 1 minute).

e Mode. Examples can be provided either incrementally or as a “batch”.

e Invention. The program can “invent” some of its background knowledge by introducing
auxiliary predicates. In the case of quick-sort it might have to invent partition.

e Noise. The program can deal with errors in the descriptions of examples or background
knowledge.

In this paper we will concentrate on the problems of effectiveness and efficiency.

Existing learning programs divide into “top-down” or model-driven methods and “bottom-
up” or data-driven methods. Top-down methods such as Shapiro’s MIS [13] and Quinlan’s FOIL
[11] search the hypothesis space of clauses from the most general towards the most specific.
MIS employs a breadth-first search through successive levels of a “clause refinement” lattice,
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considering progressively more complex clauses. The combinatorics of this search are such that
Shapiro failed to demonstrate that clauses as complex as the recursive clause of quick-sort were
learnable within reasonable time limits. To achieve greater efficiency Quinlan’s FOIL greedily
searches the same space guided by an information measure similar to that used in ID3 [9]. This
measure supports the addition of a literal in the body of a clause on the basis of its ability to
discriminate between positive and negative examples. This gains efficiency at the expense of
completeness. For instance the literal partition(Head, Tail, List1,List2) in the recursive quick-sort
clause does not produce any discrimination between positive and negative examples. As a result
quick-sort cannot be learned by FOIL. The problem recurs throughout a large class of predicates
in which new variables in the body are functionally derived from terms in the head of the clause.
Such predicates include arithmetic multiply, list reverse and many real-world domains.

Bottom-up algorithms based on inverting resolution [12, 6] also have problems related to
search strategies. In the framework of inverse resolution clauses are constructed by progressively
generalising examples with respect to given background knowledge. Fach step in this process
inverts a step of a resolution derivation of the examples from the clause and background knowl-
edge. Search problems are incurred firstly since there may be many inverse resolvents at any
stage, and secondly because several inverse resolution steps may be necessary to construct the
required clause. Clauses such as the recursive quick-sort clause are difficult to learn without
carefully chosen examples due to local minima in the search space.

Thus problems related to search hamper both top-down and bottom-up methods. In search-
based methods efficiency is gained only at the expense of effectiveness.

2 Relative least general generalisations

Plotkin’s [8, 7] notion of relative least general generalisation (rlgg) replaces search by the process
of constructing a unique clause which covers a given set of examples. Firstly Plotkin defines
f-subsumption, a partial ordering of generality over clauses in the absence of background knowl-
edge. Thus clause ' #-subsumes clause D, or C' < D, if and only if there exists a substitution
6 such that C'0 C D. Next he defines the least general generalisation (Igg) C of two clauses D,
and D, as being the greatest lower bound within the clause lattice induced by the relation <.
In the following discussion we restrict Plotkin’s least general generalisation of two clauses with
respect to given background knowledge (rlgg) to the case of the rlgg of a pair of ground atoms.
Let K be a set of background clauses, e¢; and e; be two ground atomic examples (e1,e; € ET)
for which K t/ ¢; and K I e3. Clause C' is said to be the least general generalisation of e; and e,
relative to K whenever C' is the least general clause within the #-subsumption lattice for which
K ACFE e A ey, where €' is used only once in the derivation of both e¢; and e;. A method for
constructing rlggs can be derived as follows.

KANC F e
C F K—=e
F C—(K—e)
F C— (KVe)
F C— ((ar Naz A7) V) (1)
F C—=((@VvaV...)Ve)

In step 1 K is replaced by a set of ground atoms a; A ay A ... representing a model of K. Clearly
various models of K could be chosen here. Later in this section we will discuss the implications
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of various choices for the model of K. Similarly for e,
F C—({(@VvaV...)Ve)
If we let Cy and Cy be (@ VazV...)Ve) and ((GTVazV...)V e;) respectively it follows that
- C = 1gg(Cy, Cy)

where lgg(Cy, C3) is the least general generalisation of the clauses C; and C;. In fact by definition
C = lgg(Cy, C).

Plotkin [8, 7] describes the following method for constructing lggs. The lgg of the terms
f(s1,.,8,) and f(ty,..,t,) is f(lgg(s1,t1),..,1gg(sn,tn)). The lgg of the terms f(sy,..,s,) and
g(t1,..,t,) where f # g is the variable v where v represents this pair of terms throughout.
The lgg of two atoms p(si,..,s,) and p(t1,..,t.) is p(lgg(si,t1),..,lgg(sn, 1)), the lgg being
undefined when the sign or predicate symbols are unequal. The lgg of two clauses C and C} is
{l:l; € Cyand l; € Cy and | = lgg(ly,l3)}. In the following the length of a clause is the number
of literals contained within it.

Theorem 1 [gg(Cy,Cy) has length at most |Cy| - |Cs|.
Proof. Every element oflgg(Cy, C3) is the lgg of an element of the set Cy xCy. Thus |lgg(Cy, Cs)| <
[C1 x Ca| = |Ch] - |G B

In the case of rlggs |Cy| = |Cs| and thus the length of the rlgg clause is at most |C}]|?. The
lgg of n clauses lgg(C1, Cs, .., Cy) is lgg(C1,1lgg(Cy, .., Cy)).

Corollary 2 The length of lgg(C1,Cs,..,Cy) is at most |Cq] - |Cs| - .. |Cy].

Proof. Trivial extension of theorem 1. O

Consider the computation of rlgg for quick-sort. Assume that K consists of the defini-
tions of partition and append given at the beginning of this paper together with the unit
clauses gsort([],[]), gsort([1,0],[0,1]) and qsort([4,3],[3,4]). Let e; = gsort([1],[1]) and ey =
gsort([2,4,3,1,0],[0,1,2,3,4]). In this case

Cy = gsort([1],[1]) «
append([],[1],[1]),
append([0,1],[2,3.,4],[0,1,2,3,4]), ...,
partition(L,[].[].[]),
partition(2,[4,3,1,0
gsort([[.[]),

gsort([1,0],[0,1]),
gsort([4,3],[3,4]), ...

Cy = gsort([2,4,3,1,0],]0,1,2,3,4]) «
append([],[1],[1]),
append([0,1],[2,3,4],[0,1,2,3,4]), ...,
partition(L,[L,[],[]),
partition(2,[4,3,1,0
gsort([],[]),
gsort([1,0],[0,1]),
gsort([4,3],[3,4]), ...

1,[1,0],[4,3]), .. .,

1,[1,0],[4,3]), .. .,



C= 599(01702)
= gsort([A|B],[C[D])«

append(E,[A[F][C|D]),
append([],[1],[1]),
append(G,[H|I],[J|K]),
append([0,1],[2,3,4],0,1,2,3.4]),
partition(A,B,L,M),
partition(L,[].[].[]),
partition(H,N,0,P),
partition(2,[4,3,1,0],[1,0],[4,3]),
gsort(L,E),

gsort([},[]),

gsort(0,G),

gsort([1,0],[0,1]),

gsort(M,F),

gsort(P, I)

gsort([4,3],[3,4]) ..

Note that C' contains all the literals of the recursive quick-sort clause. However, it also con-
tains many other literals. There are various logical and practical problems involved with the
construction of rlgg clauses.

e Ground model of K. In the derivation of rlgg, step 1 replaces K by a ground model of K.
Buntine [2] suggests the use of a finite subset of the least Herbrand model of K. Clearly it
is not possible to construct an infinite model of K, though it would seem desirable to use
a finite subset with some well-defined properties.

e Intractably large rlggs. Even when a finite subset M of a ground model of K is used the
rlgg of n examples can be of length |M|* 4 1. Buntine [2] reports a clause of length 2,000
literals for the relatively simple problem of learning list membership. We have experience
of clauses containing tens of thousands of literals when learning arithmetic multiplication.
In the case of constructing a rlgg of 6 quick-sort examples, with 15 ground elements of the
model (instances) of partition, 49 instances of append and 16 instances of quick-sort, the

clause will have length 15% 4+ 49° + 16° + 1 = 13, 869, 455, 043.

e Infinite rlggs. Plotkin [8, 7] shows that in some cases, a logically reduced rlgg (see below)
can be infinite in length. Thus in some sense any use of finite models can restrict the ability
to construct ‘true’ rlggs.

e Logical clause reduction. Plotkin [8, 7] suggests the use of logical clause reduction to
eliminate redundant literals in rlgg clauses. A literal [ is logically redundant in clause
C with respect to K whenever X A C F (C — {l}). A clause is logically reduced if and
only if it contains no logically redundant literals. Clearly this approach is at worst semi-
decidable and at best highly inefficient since it requires theorem proving. Moreover, even
after logical reduction clauses can remain very large. Buntine [2] reports a reduced list-
membership clause containing 43 literals. The following is typical of a logically irreducible
clause for reversing lists.

reverse([A|B],[C|D]) «+

reverse(B,E),



append(E,[A],[C[D]),
reverse(D,F),
append(F,[C],[A|B]).

3 Restricted forms of background knowledge

3.1 The use of ground facts as background knowledge

In the case in which K contains only ground facts the problem of choosing a ground model M
disappears. We simply take M as being equal to K. According to corollary 2 the rlgg of n
examples in this case is finite and has length at most |[K|* + 1.

3.2 h-easy models

We have already noted that in the case that K consists of arbitrary clauses the model M of K can
be infinite, leading to possibly infinite rlgg clauses. The notion of h-easiness suggested originally
by Blum and Blum [1] and adapted by Shapiro [13] can be applied to this problem. Whereas h
is a total recursive function within [1, 13], in our definition A is simply a natural number.

Definition 3 Given a logic program K an atom a is h-easy with respect to K if and only if there
exists a derivation of a from K involving at most h binary resolutions. The Herbrand h-easy
model of K, M, (K) is the set of all Herbrand instantiations of h-easy atoms of K.

Theorem 4 For any finite h the number of h-easy atoms of K s finite.
Proof. This follows from the fact that there are only a finite number of such derivations. O

However this does not imply that M} (K) is finite. For example, consider the case in which
K = {member(X,[X|Y])}. Although there is only one h-easy atom derivable from K, M,(K)
is the infinite set {member([],[[]]),member([],[[[]]]),. ..}, using [| as the constant to construct the
Herbrand base.

3.3 Generative clauses

In this section we describe a restricted form of Horn clause program for which My(K) is finite.
First we define the notion of derivation more formally.

Definition 5 The n-atomic-derivation set of K, D"(K) is defined recursively as follows. D°(K)

is the set of unit clauses in K. D"(K) = D""*(K) U {Ab6,..0,, : A < By, .., B,, € K and for each B; there
exists B;' € D""Y(K) such that 0; is the mgu of B; and B;'}. The atomic-derivation-closure D*(K)

is the set D°(K) U DYK) U....

Definition 6 The logic program K is said to be semantically generative if and only if every
element of D*(K) is ground.

The following syntactic constraint on logic programs corresponds to this semantic definition.

Definition 7 The clause A « By, .., B,, is syntactically generative whenever the variables in A
are a subset of the variables in By, .., B,,. The logic program K is syntactically generative if and
only if every clause in K is syntactically generative.
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Not all semantically generative logic programs are syntactically generative, as the follow-
ing example shows. Let K contain only the clause append([Head|Tail],List,[Head|Rest]) « ap-
pend(Tail,List,Rest). Clearly K is semantically generative since D*(K) is empty. However, K
is not syntactically generative although X' = {append([Head|Tail], List, [Head|Rest]) < ap-
pend(Tail,List,Rest), natural_ number(Head)} is both semantically and syntactically generative.
The following theorem establishes the correspondence between these two definitions.

Theorem 8 Fuvery syntactically generative logic program K is semantically generative.

Proof. We prove the result inductively for all n. For n =0 D°(K) contains the unit clauses of
K, which must each be ground since they have empty bodies. Suppose every element of D™(K)
is ground. Let A + By, .., B, be a clause in K and A#,..0,, be an element of D™*(K) — D"~ 1(K)
such that for each B; there exists B;' € D" (K) for which 0; is the mgu of B; and B;'. By the
inductive assumption each B € D" 1(K) is ground thus each B;0; is ground. Since each 0; is
a ground substitution and every variable in A is found in the domain of 0,..0,, it follows that
Ab,..0,, is ground, which completes the proof. O

It is worth noting that the least Herbrand model, the success set and the atomic-derivation-
closure of a semantically generative logic program are all equal. Throughout the rest of this
paper we use the phrase ‘generative’ to mean ‘syntactically generative’.

Theorem 9 For every generative logic program K and every h My (K) is finite.
Proof. Follows from theorem 4, theorem 8 and definitions 6 and 7. O

Corollary 10 For every generative logic program K and set of examples ey, .., €, the rlgg of
€1, .., €, with respect to My(K) is finite and has length at most | M, (K)|™ + 1.
Proof. Follows from corollary 2 and theorem 9. O

In an incremental learning system, learned clauses are added to the background knowledge.
Thus it is reasonable to constrain hypothesised clauses to also being generative. However, this
is generally not a very strong constraint since any clause which is not generative can be made so
by the addition of literals stating type information about variables in the head of the clause.

4 Restrictions on the hypothesis language

The results of the previous sections show that although finite, the length of the rlgg of n examples
can grow exponentially in n. In this section we show that by placing certain ‘weak’ restrictions
on the hypothesis language we find that the number of literals in rlgg clauses is bounded by a
polynomial function independent of n. In order to see the significance of this language restriction
consider the following unreduced rlgg clause for list membership.

member(A,[B,C|D]) «+
member(A,[C|D]),
member(E,[F|G]),
member(A,[A,C|D]),
member(A,[E,F,C|D]),
member(H,[I|J]), ...

The literals member(H,[I|J]) and member(A,[A,C|D]) could be logically reduced. However, al-
most all literals introduce variables not found in the head of the clause. In our experience such
literals account for most of the exponential growth of rlgg clauses. The vast majority of these
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literals can be avoided by considering only those which introduce ‘determinate terms’. First we
will define the notion of determinate terms. In this definition we use the phrase ‘ordered Horn
clause’ to mean that there exists a total ordering over the literals in the body of the clause.

Definition 11 Let K be a logic program and the examples £ be a set of ground atoms. Lel
A+« By, ...Bn,Bnt1.., B, be an ordered Horn clause and t be a term found in B,11. t is a
determinate term with respect to B,, 41 if and only if for every substitution § such that Af € £
and {Bi, .., B }0 C M(K) there is a unique atom B, 1100 in M(K), i.e. for any such 0 there is

a unique valid ground substitution  whose domain is the variables in t.

Thus given appropriate background knowledge concerning decrement, plus and multiply, the vari-
ables D and F are determinate with respect to the literals decrement(B,D) and multiply(A,D,E)
in the clause

multiply(A,B,C) «
decrement(B,D),
multiply(A,D,E),
plus(A,E,C).

Notice that the valid substitutions for a determinate term ¢ in any literal B,,; are a function of
the substitutions applied to a certain number of other terms sy, .., sg within B,, ;. In this case we
say that literal B,,+1 has degree d with respect to t. In the case of the literal decrement(B,D) the
valid substitutions for D are dependent on the substitutions applied to only one term, B. Thus
decrement(B,D) has degree 1 with respect to D. In the case of the literal multiply(A,D,E), the
values for E are dependent on the substitutions to the two terms A and D, i.e. multiply(A,D,E)
has degree 2 with respect to E. We can define a restricted hypothesis language by placing a limit
7 on the maximum degree of any literal with respect to any term.

Notice also that the dependencies between variables induce a partial ordering over the literals
within the recursive multiply clause. Thus we might say that the literal decrement(B,D) is found
at depth 1 within the multiply clause since its determinate variable D is a function of B, a
variable found in the head of the clause. On the other hand the literal multiply(A,D,E) is found
at depth 2 since its determinate variable E is a function of A and D, where D is determined
by a literal at depth 1. However, the literal plus(A,E,C) has depth 1 since the variable E is
determined by A and C, which are both found in the head of the clause. Again we can define
a restricted hypothesis language by placing a limit ¢ on the maximum depth of any literal in an
hypothesised clause. Combining the parameters of depth and degree of literals we get the the
following definition of ij-determination.

Definition 12 Let K be a logic program and the examples € be a set of ground facts. Fvery unit
clause is (j-determinate. An ordered clause A < By, .., B, Byy1,.., B, ts ij-determinate if and
only if a) A < By, .., By, is (i-1)j-determinate, b) every literal By in By, .., B, contains only
determinate terms and has degree at most j.

In the following we use the phrase ‘ij-determinate rlgg of n examples’ to mean a clause
containing all and only those literals from the rlgg which form an ij-determinate clause.

The following clauses are typical of the various classes of determinate clause up to but not
including 22-determination.

11-determinate: class(A,mammal) <

has_milk(A,true).



12-determinate: double(A,B) «
plus(A,A,B).

21-determinate: grandfather(A,B) «
father(A,C),
father(C,B).

Despite the fact that the predicates member and append are thought of as being ‘non-
deterministic’ predicates by logic programmers, they both conform to the definition of being
ij-determinate. In fact most logic programs found in standard texts conform to this definition.
For instance the standard definitions of quick-sort, partition, list-reverse, arithmetic addition
and multiplication are all ij-determinate with respect to their ground instances. An example
of a clause which is not ij-determinate is the transitive definition of ‘less-than’: less_than(A,B)
+ less_than(A,C), less_than(C,B). The variable C is not determinate with respect to any of the
literals in the body of the clause. However, even this clause can be restated as the ij-determinate
clause less_than(A,B) < successor(A,C), less_than(C,B).

Although this restriction on the hypothesis space is relatively weak, it has the effect of re-
ducing the above example of a clause for ‘member’ to member(A,[B,C|D]) + member(A,[C|D]),
member(A,[A,C|D]). The general effect of this language constraint is described by the follow-
ing theorem. This theorem uses the notion of ‘place’ within an atom which can be defined
recursively as follows. The term at place ((g,m,¢)) within g(¢,..,%,,) is ¢;. The term at place
({g1,m1,01), ey (G, My 1)) within gi(ty,..,¢m,) is the term at place ((ga2,m2,%2), .., (Gny M, i)
within ¢;,.

Theorem 13 Let M,(K) consist of facts concerning the predicates py,..,pn. Let the number
of distinct places in the facts of each predicate be represented by the numbers fi,.., f,, where
f = max(fi,..,fm). Let e1,..,e, be a set of facts and the atom lgg(ey,..,e,) contain t terms.
The number of literals in the body of the ij-determinate rlgg of €1, .., e, with respect to My(K) is
at worst O((tfm)”").

Proof. Consider first the case of 1j-determinate rlggs. Fach literal [ in the body of the rlgg s
determined by the j terms sy, .., s; from the head of the clause found at at places ay, .., a; within [.
Supposing [ is a literal of predicate py, a1, .., a; must be a set chosen from a mazimum of fi, places.

This can be done in a mazimum of tjC]f’“ ways. Summing for all predicates we get /37, C]f’“
literals. This can introduce at most t7 f 37, C]fk terms not found in the head of the clause. Thus
a 2j-determinate rlgg can contain up to (# f 37, C']fk ¥, C]fk literals, or fjtJQ(EZ”ZI C]f’“ YT

In the general case this is fji_ltji( i Cf’“)ji_l"'l literals, which is O((tfm)ji), O

Note that whereas corollary 10 states that the size of the unreduced rlgg of n examples grows
exponentially in n, theorem 13 demonstrates that for fixed values of i and j, the size of the
ij-determinate rlgg is independent of n. Clearly i and j must be kept small to limit this worst
case. However, a setting of i=j=2 is sufficient for a class of predicates which includes quick-sort,
partition, append, member, arithmetic plus, multiply, n-choose-m and list reverse. For this class
of predicate the rlgg has a polynomial upper bound of O((¢fm)?*). Note also that when i = 1
the rlgg length does not grow exponentially in m.
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n 2 3 4 5 6 7 8 9| 10| 11|12 |13 | |M(K)|
Reverse 16 | 23| 25| 21 8 42
Multiply 48 | 81| 52| 49| 48| 47| 43 278
N-Choose-M | 116 | 105 | 88 | 87| 71| 66 273
Quick-sort 470 | 650 | 734 | 632 | 650 | 598 | 593 | 535 | 534 | 524 | 36 | 20 84

Table 1: Clause lengths based on varying numbers of randomly chosen examples

The upper bound of theorem 13 is very conservative. Table 1 demonstrates the typical effect
of n on the length of 22-determinate rlgg clauses constructed using our implementation. In the
table M(K) is the number of ground facts used as background knowledge. Successive examples
were chosen randomly without replacement from a large set of positive examples. The sequence
was terminated when the rlgg clause covered all positive examples. The length of the rlgg clause
is given for each corresponding value of n. From the table it can be observed that rlgg clause
size does not increase exponentially. In fact it seems to have a tendency to eventually decrease
with increasing n.

Intuitively one might expect rlggs to decrease in length with increasing n. The following ex-
ample demonstrates why this is not the case. Let K contain the facts s(1,2) and s(2,3). The rlgg of
the examples p(1,1) and p(2,2) is the ij-determinate clause p(A,A) < s(A,B). However the rlgg of
p(1,1), p(2,2) and p(1,2) is the larger clause p(A,B) < s(A,C), s(B,D), where p(A,B)=lgg(p(1,1),
p(2,2), p(1,2)), s(A,C)=lgg(s(1,2), s(2,3), s(1,2)), and s(B,D)=lgg(s(1,2), s(2,3), s(2,3)). Notice
that the clause length increases because the arguments of the third fact p(1,2) are unequal, which
results in an additional variable in the head of the clause.

5 Clause reduction

ij-determination has been found to avoid the exponential size explosion of rlggs. However it does
not completely avoid the need to reduce clauses following their construction. As we have shown
earlier, logical clause reduction is too weak to produce computationally useful clauses. In this
section we present various alternative approaches to clause reduction.

5.1 Functional reduction

Shapiro [13] introduced the idea of describing the input and output status of arguments of
a predicate as an additional constraint for constructing Horn clauses. We use a similar ap-
proach to this in order to reduce clauses which represent functions. Mode declarations such as
mode(append(in,in,out)) allow the construction of a partially ordered graph which defines the
computation of output variables from input variables. Figure 1 shows this ‘functional’ graph
for quick-sort. The graph can be constructed by searching an and/or graph based on the liter-
als within the unreduced rlgg clause. The and/or graph can be represented as a propositional
Horn clause program which can be constructed as follows. For each literal [ in the body of the
rlgg clause which computes variables vy, .., v, from variables uy, .., u,, there is associated a set
of propositional Horn clauses (vy < uy, .., Usm), .., (Vy = U1, .., Uy). For each input variable 7 in
the head of the rlgg clause there is an associated propositional fact . A functional graph can
be constructed if and only if for each output variable o in the head of the rlgg clause there is
at least one refutation with respect to this propositional program. It is well-known that this
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can be decided in time linear in the size of the propositional program. Multiple refutations of
the output variables lead to multiple functional reductions of the rlgg clause. This can provide
multiple algorithmic solutions which compute the target predicate (see quick-sort example in
section 6).

5.2 Negative-based reduction

Many machine learning programs, including MIS [13] make use of both positive and negative
examples. A common assumption is that the hypothesised clause should cover as many positive
examples as possible without covering any negative examples. This approach can be used to
reduce clauses. Given a clause A «+ By, .., B,, we need a method which avoids the requirement
of having to test all subsets of By, .., B,. Our approach is as follows. Let B; be the first literal in
the ordered set By, .., B, such that the clause A < By, .., B; covers no negative examples. Now
reduce the clause A <+ B;, By,.., B;_; in the same manner and iterate. The reduction process
terminates when the clause length remains the same within a cycle. Clearly the algorithm will
terminate after at most O(n?) cycles.

6 Implementation and results

RELEX [4] was an early Prolog implementation which used the rlgg framework. RELEX adopted
an incremental control strategy similar to CIGOL [6]. RELEX was demonstrated on learning
a definition of Fibonacci numbers and a greatest common denominator algorithm. RELEX did
not employ the ij-determinate constraint described in section 4 and consequently had difficulties
in constructing clauses as complex as the recursive quick-sort clause from a large set of randomly
chosen examples (though it was able to do so with carefully chosen examples such as those in
section 2). In the remainder of this section we will describe implementation details of GOLEM,
a C-coded program which uses the ij-determinate constraint.

Given a set of positive and negative examples £ and £~ and background knowledge K we
are often not interested in constructing a single clause which is the rlgg of £*, but rather a set
of hypothesised clauses which of £, but rather a set of hypothesised clauses H which together
cover all examples in £t and do not cover any elements of £~. The following ‘greedy’ control
strategy has been adopted.

Let £ be a set of positive examples.

Let £~ be negative examples.

Let M,(K) be an h-easy model of background knowledge K.
Let s be a given sample limit.

Let Pairs(s) be a random sample of pairs from £F.

Let Lggs = {C: {e, €'} € Pairs(s) and C=rlgg({e,e'}) wrt M,(K) and C consistent wrt £~ }.

Figure 1: Functional graph for quick-sort([A|B],[C|D]).
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| Predicate | [€] | IMAn(K)]| | Single rlgg(sec) | Complete Search | Reduction

Propositional-animals 10 70 0.1 1.3 0.02
Member 14 20 0.2 2.4 0.02
Less-than 15 116 0.08 1.4 0.03
Reverse 12 42 0.1 2.6 0.03
Multiply 21 278 0.2 13.2 0.08
N-Choose-M 15 273 0.5 8.1 0.12
Quick-sort 15 84 6.8 11.6 0.07

Table 2: Times taken for constructing and reducing various clauses

Let S be the pair {e, ¢’} whose rlgg has the greatest cover in Lggs.
DO
Let £*(s) be a random sample of size s from E7.
Let Lggs = {C: ¢/ € £ (s) and C=rlgg(S U {€'}) consistent wrt £~ }.
Find ¢’ which produces the greatest cover in Lggs.
Let S =S U {¢'}.
Let £ = &1 - cover(rlgg(9)).
WHILE increasing-cover

If the sample limit is set to be twice the expected number of clauses, where the cover of each
clause is disjoint, it can easily be shown that a randomly chosen pair of examples will be covered
by one of the clauses with high probability. The above algorithm constructs a clause which can
be reduced using the clause reduction methods of the previous section. By iterating over this
process removing covered examples from £t at each stage a set of clauses is produced which
covers all the positive examples.

Table 2 gives times and number of examples used for various Prolog clauses constructed
using GOLEM. Times quoted are for runs carried out on Sun SPARCStation/330. The times are
given in seconds for a) construction of a single rlgg clause from a pair of examples, b) complete
search for a single clause using the greedy algorithm above and c¢) reducing the clause using
a combination of functional and negative reduction. The reduced clauses constructed for the
tabulated cases above are as follows.

Propositional-animals:  class(A,mammal) <

has_milk(A true).

Member: member(A,[B,C|D]) «+
member(A,[C|D]).

Less-than: lte(A,B) «
successor(A,C),
lte(C,B).

Reverse: reverse([A|B]7[C|D]) —

reverse(B,E),
append(E,[A],[C|D]).
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Multiply: multiply(A,B,C) «
decrement(B,D),
multiply(A,D,E),
plus(A,E,C).

N-Choose-M: choose(A,B,C) «
decrement(B,D),
decrement(A,E),
choose(E,D,F),
multiply(F,A,G),
divide(G,B,C).

Quick-sort: gsort([A|B],[C|D]) «
partition(A,B,E,F),
gsort(F,G),
gsort(E,H),
append(H.[A |G, [C[D]).

In the case of quick-sort GOLEM gives multiple solutions as a result of the reduction method.
GOLEM suggests the following clause as an alternative hypothesis to the above quick-sort clause.

gsort([AB][CID])
gsort(B,E),
partition(A,E,F,G),
append(F,[A|G],[C|D]).

The clause represents a way of expressing insertion sort, an inefficient algorithm compared to
quick-sort. Although not implemented, these hypotheses could be distinguished on the basis of
choosing the clause which produces the minimal proofs of the examples, i.e. the one with lower
time complexity. A similar case occurs with n-choose-m, in which the choice is between the
clause above and a clause which recurses in the manner of Pascal’s triangle. Without tabulation
the Pascal’s triangle method is NP in the size of the arguments.

7 Conclusion

In the introduction we introduced various properties that first-order learning programs should
possess. In this paper we have shown that methods based on relative least general generalisation
can be both efficient and effective according to our criteria. We believe that the main advantages
of using rlgg as an underlying hypothesis generator lies in the ability to avoid search in the
construction of clauses. In fact we have found that GOLEM produces robust and rapid behaviour
when tested on problems involving up to 10,000 examples. At present we are applying GOLEM
to the real-world problems of secondary structure prediction for proteins and qualitative model
construction for fault diagnosis of satellites.

Although we have presented some theoretical analysis of rlgg within this paper, we believe
that characterisation within Valiant’s PAC model [14] of learnability is a challenging problem.

We see the main extensions of this research being in the areas of dealing with noise and
predicate invention. A simple method of handling noise is to allow hypotheses to cover a certain
number of negative examples based on information theoretic thresholds. This would be similar
to the approach taken in C4 [10] and CN2 [3]. We hope to achieve predicate invention within
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this framework by extending the methods used in CIGOL [6].
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