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Abstract. Inductive Logic Programming (ILP) involves constructing an
hypothesis H on the basis of background knowledge B and training ex-
amples E. An independent test set is used to evaluate the accuracy of H.
This paper concerns an alternative approach called Analogical Predic-
tion (AP). AP takes B, E and then for each test example 〈x, y〉 forms an
hypothesis Hx from B, E, x. Evaluation of AP is based on estimating the
probability that Hx(x) = y for a randomly chosen 〈x, y〉. AP has been
implemented within CProgol4.4. Experiments in the paper show that on
English past tense data AP has significantly higher predictive accuracy
on this data than both previously reported results and CProgol in induc-
tive mode. However, on KRK illegal AP does not outperform CProgol
in inductive mode. We conjecture that AP has advantages for domains
in which a large proportion of the examples must be treated as excep-
tions with respect to the hypothesis vocabulary. The relationship of AP
to analogy and instance-based learning is discussed. Limitations of the
given implementation of AP are discussed and improvements suggested.

1 Introduction

1.1 Analogical prediction (AP)

Suppose that you are trying to make taxonomic predictions about animals. You
might already have seen various animals and know some of their properties.
Now you meet a platypus. You could try and predict whether the platypus was
a mammal, fish, reptile or bird by forming analogies between the platypus and
other animals for which you already know the classifications. Thus you could
reason that a platypus is like other mammals since it suckles its young. In doing
so you are making an assumption which could be represented as the following
clause.

class(A,mammal) :- has_milk(A).
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Fig. 1. Comparison of AP, ILP and IBL. Instances x are pairs 〈u, v〉 from {1, .., 7} ×
{1, .., 8}. Each x can have a classification y ∈ {+,−}. The test instance x to be classified
is denoted by ‘?’. The rounded box in each case defines the extension of the hypothesis
H. Below each box the corresponding prediction for x is given.

It might be difficult to find a consistent assumption similar to the above which
allowed a platypus to be predicted as being a fish or a reptile. However, you
could reason that a platypus is similar to various birds you have encountered
since it is both warm blooded and lays eggs. Again this would be represented as
follows.

class(A,bird) :- homeothermic(A), has_eggs(A).

Note that the hypotheses above are related to a particular test instance, the
platypus, for which the class value (mammal, bird, etc.) is to be predicted. We
will call this form of reasoning Analogical Prediction (AP).

1.2 AP, induction and instance-based learning

In the above AP is given a test instance x, a training set E and background
knowledge B. It then constructs an hypotheses Hx which not only covers some
of the training set but also predicts the class y of x. This can be contrasted with
the normal semantics of ILP [10], in which hypotheses H are constructed on the
basis of B and E alone. In this case x is presented as part of the test procedure
after H has been constructed.

AP is in some ways more similar to Instance-Based Learning (IBL) (see for
example [3]), in which the class y would be attributed to x on the basis of its
proximity to various elements of E. However, in the case of IBL, instead of
constructing H, a similarity measure is used to determine proximity.

Figure 1 illustrates the differences in prediction between AP, standard ILP
and IBL on a 2D binary classification problem. The test concept, ‘insign’, is
actually a picture of the symbol ‘⊢’ made out of +’s. If AP is restricted to



making a single clause maximally general hypothesis, it would predicts x to be
positive based on the following.

insign(U,V) :- 3=<U=<6, 4=<V=<5.

Assuming the closed world assumption is used for prediction, normal ILP will
predict x to be negative based on the following hypothesis (note the exception
at 〈5, 4〉).

insign(U,V) :- 3=<U=<4, 2=<V=<7.

Finally IBL will predict x to be negative based on the fact that 5/6 of the
surrounding instances are negative. Note that IBL’s implicit hypothesis in this
case could be denoted by the following denial.

:- insign(U,V), near(U,V,6,5).

The background predicate near/4 in the above encodes the notion of ‘nearness’
used in a k-nearest neighbour type algorithm.

1.3 Motivation

AP can be viewed as a half-way house between IBL and ILP. IBL has a number
of advantages over ILP. These include ease of updating the knowledge-base and
the fact that theory revision is unnecessary after the addition of new examples.
AP shares both these advantages with IBL. On the other hand IBL has a number
of disadvantages with respect to ILP. Notably, IBL predictions lack explanation,
and there is a need to define a metric to describe similarity between instances.
Generally, similarity metrics are hard to justify, even when they can be shown
to have desirable properties (eg. [5, 11, 12]). In comparison AP predictions are
directly associated with an explicit hypothesis, which provides explanation. Also
AP does not require a similarity measure since predictions are made on the basis
of the hypothesis.

This paper has the following structure. A formal framework for AP is pro-
vided in Section 2. Section 3 describes an implementation of AP within CPro-
gol4.4 (ftp://ftp.cs.york.ac.uk/pub/ML GROUP/progol4.4). This implementa-
tion is restricted to the special case of binary classification. Experiments using
this implementation of AP are described in Section 4. On the standard En-
glish past tense data set [7] AP has higher predictive accuracy than FOIDL,
FOIL and CProgol in inductive mode. By contrast, on KRK illegal AP performs
slightly worse than CProgol in inductive mode. In the discussion (Section 5)
we conjecture that AP has advantages for domains in which a large proportion
of the examples must be treated as exceptions with respect to the hypothesis
vocabulary. We also compare AP to analogical reasoning. The results are sum-
marised in Section 6, and further improvements in the existing implementation
are suggested.



Aleave(B,E)
Let AP=Ap=aP=ap=0
For each e = 〈x, y〉 in E

(a) Construct ⊥B,x

E′ := E \ e

(b) Using E′ find most compressive Hx º ⊥B,x

if y = Hx(x) then
if y = True then AP := AP + 1
else ap := ap + 1

else
if y = True then Ap := Ap + 1
else aP := aP + 1

Print-contingency-table(AP,Ap,aP,ap)

Fig. 2. Aleave algorithm. Algorithms from CProgol4.1 are used to (a) construct the
bottom clause and (b) search the refinement graph.

2 Definitions

We assume denumerable sets X,Y representing the instance and prediction
spaces respectively and a probability distribution D on X. The target theory
is a function f : X → Y . An AP learning algorithm L takes background knowl-
edge B together with a set of training examples E ⊆ {〈x′, f(x′)〉 : x′ ∈ X}. For
any given B, E and test instance x ∈ X the output of L is an hypothesised
function Hx. Error is now defined as follows.

error(L,B,E) = Prx∈D[hx(x) 6= f(x)] (1)

3 Implementation

AP has been implemented as a built-in predicate aleave in CProgol4.4 (avail-
able from ftp://ftp.cs.york.ac.uk/pub/ML GROUP/progol4.4). The algorithm,
shown in Figure 3, carries out a leave-one-out procedure which estimates AP
error as defined in Equation (1). In terms of Section 2 each left out example e
is viewed as a pair 〈x, y〉 where x is a ground atom and y = True if e is positive
and y = False if e is negative.

AP error (see Equation 1) is estimated using the counters AP, Ap, aP and ap
(‘a’ and ‘p’ stand for actual and predicted, and capitalisation/non-capitalisation
stands for the value being True/False). For each example e = 〈x, y〉 left out, a
bottom clause ⊥B,x is constructed which predicts y := True. A refinement graph
search of the type described in [8] is carried out to find a maximally compressive
single clause Hx which subsumes ⊥B,x. In doing so compression is computed
relative to E \ e. If no compressive clause is found then the prediction is False.
Otherwise it is True.



English past tense KRK illegality

past([w,o,r,r,y],[w,o,r,r,i,e,d]). illegal(3,5,6,7,6,2).
past([c,l,u,t,c,h],[c,l,u,t,c,h,e,d]). illegal(3,6,7,6,7,4).
past([w,h,i,z],[w,h,i,z,z,e,d]). :- illegal(2,5,5,2,4,1).
past([g,r,i,n,d],[g,r,o,u,n,d]). :- illegal(5,7,1,2,0,0).

Fig. 3. Form of examples for both domains

English past tense KRK illegality

illegal(A,B,A,B, , ).
past(A,B) :- split(A,C,[r,r,y]), split(B,C,[r,r,i,e,d]). illegal(A,B, , ,C,D) :- adj(A,C), adj(B,D).

illegal(A, ,B, ,B, ) :- not A=B.
illegal( ,A,B,C,B,D) :- A<C, A<D.

Fig. 4. Form of hypothesised clauses

The procedure Print-contingency-table(AP,Ap,aP,ap) prints a two-by-two ta-
ble of the 4 values together with the accuracy estimate, standard error of esti-
mation and χ2 probability.

4 Experiments

The experiments were aimed at determining whether AP could provide increased
predictive accuracy over other ILP algorithms. Two standard ILP data sets were
chosen for comparison (described in Section 4.2 below).

4.1 Experimental hypotheses

The following null hypotheses were tested in the first and second experiments
respectively.

Null hypothesis 1. AP does not have higher predictive accuracy than any
other ILP system on any standard data set.

Null hypothesis 2. AP has higher predictive accuracy than any other ILP
system on all standard data sets.

Note that hypothesis 1 is not the negation of hypothesis 2. If both are rejected
then it means simply that AP is better for some domains but not others.

4.2 Materials

The following data sets were used for testing the experimental hypotheses.

English past tense. This is described in [15, 6, 7]). The available example set
Epast has size 1390.



KRK illegality. This was originally described in [9]. The total instance space
size is 86 = 262144.

For both domains the form of examples are shown in Figure 3 and the form
of hypothesised clauses in Figure 4. Note that in the KRK illegality domain
negative examples are those preceded by a ‘:-’, while the English past tense
domain has no negative examples. The absence of negative examples in the
English past tense domain is compensated for by a constraint on hypothesised
clauses which Mooney and Califf [7] call output completeness. In the experiments
output completeness is enforced in CProgol4.4 by including the following user
defined constraint which requires that past/2 is a function.

:- hypothesis(past(X,Y),Body,_), clause(past(X,Z),true), Body, not(Y==Z).

4.3 Method

English past tense Mooney and Califf [7] compared the predictive accuracy of
FOIL, IFOIL and FOIL on the alphabetic English past tense task. We interpret
the description of their training regime as follows. Training sets of sizes 25, 50,
100, 250 and 500 were randomly sampled without replacement from Epast, with
10 sets of each size. For each training set E a test set of size 500 was randomly
sampled without replacement from Epast \E. Each learning system was applied
to each training set and the predictive accuracy assessed on the correspond-
ing test set. Results were averaged for each training set size and reported as a
learning curve.

For the purposes of comparison we followed the above training regime for
CProgol4.4 in inductive mode. We also ran AP with the aleave predicate built-
in to CProgol4.4 (Section 3) on each of the training sets and then for each
training set size averaged the results over the 10 sets.

KRK illegality Predictive accuracies were compared for CProgol4.4 using AP
with leave-one-out (aleave) against induction with leave-one-out (leave). Training
sets of sizes 5, 10, 20, 30, 40, 60, 80, 100, 200 were randomly sampled with
replacement from the total example space, with 10 sets of each size. For each
of the training sets both aleave and leave were run. The resulting predictive
accuracies were averaged for each training set size.

4.4 Results

English past tense The five learning curves are shown in Figure 5. The hor-
izontal line labelled “Default rules” represents the following simple Prolog pro-
gram which adds a ‘d’ to verbs ending in ‘e’ and otherwise adds ‘ed’.

past(A,B) :- split(A,B,[e]), split(B,A,[d]), !.

past(A,B) :- split(B,A,[e,d]).

The differences between AP and all other systems are significant at the 0.0001
level with 250 and 500 examples. Thus null hypothesis 1 is clearly rejected.
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KRK illegality The two learning curves are shown in Figure 6. The horizontal
line labelled “Majority class” shows the percentage of negative examples in the
domain. Only the accuracy difference between induction and AP for 200 exam-
ples is significant at the 0.05 level, though taken together the differences are
significant at the 0.0001 level. Thus null hypothesis 2 can be rejected.
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Fig. 6. Learning curves for KRK illegality.

5 Discussion and related work

The strong rejection of the two null hypotheses indicate that the advantages of
AP relative to induction are domain dependent. The authors believe that AP has
advantages for domains, like the English past tense, in which a large proportion
of the examples must be treated as exceptions with respect to the hypothesis
vocabulary. Note that KRK illegal contains exceptions, though they fall into a
relatively small number of classes, and have relatively low frequency (a 2 clause
approximation of KRK illegal has over 90% accuracy). By contrast, around 20%
of the verbs in the past tense data are irregular.

It should be noted that our implementation of AP has a tendency to over-
generalise. This stems from the assymetry in constructing only clauses which
make positive predictions in the aleave algorithm (Section 3). The tendency to
overgeneralise decreases accuracy in the KRK illegal domain but increases accu-
racy in the past tense domain, due to the lack of negative examples. Even when



negative examples are added to the past tense training set, predictive accuracy
is unaffected due to the output completeness constraint.

The AP accuracies on English past tense data shown in Figure 5 are the
highest on this data set in the literature. However, it is interesting to note
that CProgol’s induction mode results are as good as FOIDL. This contradicts
Mooney and Califf’s claim that FOIDL’s decision list representation gives FOIDL
strong advantages in this domain.

5.1 Relationship of AP to analogy

Evans’ [4] early studies of analogy concentrated on IQ tests of the form shown
in Figure 7. Evans in was the first to implement a program for solving geometric

?

Fig. 7. IQ test problem of the type studied by Evans.

analogy problems. These are problems of the form “A is to B as C is to ?”
where the answer is one of five possible solutions, i.e. a multiple-choice format.
The problems solved by his program were taken from actual high-school level
test papers. The program, called ANALOGY, comprised two parts. Part 1 is
given two line drawings A and B as input and calculates a set of properties,
relations and “similarities” such as rotations and reflections which take A into
B and relate C to each of the five possible answers. Part 2 forms a set of theories
or transformation rules taking A into B. It then attempts to generalize these
theories to cover additional data (C and the answer figures). This results in a
subset of the admissible theories, i.e. transformation rules which take A into B
and C into exactly one answer figure. Finally, the program chooses the most
specific theory from these admissible theories.

Evans notes that the program does very little search, which indicates that
the hypothesis space of ANALOGY is highly constrained. The solution is chosen
on the basis of a specificity bias. Although Part 1 of the program includes a large
amount of domain-specific knowledge, Evans is careful to point out that Part 2
is a general purpose method for finding analogies of this form.



Analogical reasoning is often viewed as having a close relationship to induc-
tion. For instance, both Peirce and Polya suggested that analogical conclusions
could be deduced via an inductive hypothesis [13, 14]. Similar views are expressed
in the Artificial Intelligence literature [2]. For instance, Arima [1] formalises the
problem of analogy as involving a comparison of a base B and target T . When
B and T are found to share a similarity property S analogical reasoning pre-
dicts that they will also share a projected property P . This is formalised in the
following analogical inference rule.

P (B)
S(T ) ∧ S(B)
P (T )

The rule above can be viewed as involving the construction of the following
inductive hypothesis.

∀x.S(x) → P (x)

From this P (T ) can be inferred deductively. Note that S and P can obviously be
extended to take more than one argument. For instance, given the Evans’ type
problem in Figure 7 we might formulate the following hypothesis as a Prolog
clause.

is_to(X,Y) :- invertall(X,Y).

In this way we can view analogical reasoning as a special case of AP, in which
the example set contains a single base example and the test instance relates to
the target. According to Arima the following issues are seen as being central in
the discussion of analogy.

1. What object (or case) should be selected as a base with respect to a target,
2. which property is significant in analogy among properties shared by two

objects and
3. what property is to be projected w.r.t. a certain similarity.

These three issues are handled in the CProgol4.4 AP implementation as follows.

1. A set of base cases is used from the example set based on maximising com-
pression over the hypothesis space,

2. relevant properties are found by constructing the bottom clause relative to
the test instance and

3. the relevant projection properties are decided on the basis of modeh decla-
rations given to CProgol.

6 Conclusions and further work

In this paper we have introduced the notion of AP as a half-way house between
induction and instance-based learning. An implementation of AP has been in-
corporated into CProgol4.4



(ftp://ftp.cs.york.ac.uk/pub/ML GROUP/progol4.4). In experiments AP pro-
duced the best predictive accuracy results to date on the English past tense data,
outstripping FOIDL by around 10% after 500 examples. However, on KRK illegal
AP performs consistently worse than CProgol4.4 in inductive mode. We believe
that AP works best with domains in which a large proportion of the examples
must be treated as exceptions with respect to the hypothesis vocabulary.

The present implementation of AP is limited in a number of ways. For in-
stance, for any test instance x predictions must be binary, i.e. y ∈ {True,False}.
Also, because no constructed hypotheses are ever stored, AP cannot deal with
recursion. It is envisaged that a strategy which mixed both induction and AP
might work better than either. Thus some, or all, of the AP hypotheses could
be stored for later use. However, it is not yet clear to the authors which strategy
would operate best.
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