Theories for mutagenicity: a study in first-order and
feature-based induction

Ashwin Srinivasan S.H. Muggleton

Ozford Universily Compuling Laboratory, Wolfson Building, Parks Road, Ozford

M.J.E. Sternberg R.D. King

Biomolecular Modelling Laboratory, Imperial Cancer Research Fund, Lincoln’s Inn
Fields, London.

Abstract

A classic problem from chemistry is used to test a conjecture that in domains for
which data are most naturally represented by graphs, theories constructed with In-
ductive Logic Programming (ILP) will significantly outperform those using simpler
feature-based methods. One area that has long been associated with graph-based or
structural representation and reasoning is organic chemistry. In this field, we con-
sider the problem of predicting the mutagenic activity of small molecules: a property
that is related to carcinogenicity, and an important consideration in developing less
hazardous drugs. By providing an ILP system with progressively more structural in-
formation concerning the molecules, we compare the predictive power of the logical
theories constructed against benchmarks set by regression, neural, and tree-based
methods.

1 Introduction

Constructing theories to explain observations occupies much of the creative
hours of scientists and engineers. Programs from the field of Inductive Logic
Programming (ILP) [14] are being developed to assist in this activity. By
using problem-specific background knowledge encoded as logic programs, these
programs have constructed restricted first-order logic solutions for problems
in molecular biology [12,17], stress analysis in engineering [6] and electronic
circuit diagnosis [8]. One feature common to all these applications is that the
data involved are most naturally represented by graphs (that is, they involve
“structure”). That a technique capable of constructing relational theories can
be used in such situations is, in itself, unsurprising. More interesting however
is the following conjecture:

Preprint submitted to Elsevier Science 16 November 1995

Conjecture. In domains that are “naturally” structural, ILP will signifi-
cantly outperform simpler feature-based methods that can only use pre-
selected attributes.

The intuition underlying the conjecture is that it would be impossible to an-
ticipate all relevant structural features required for a problem. While an ILP
algorithm would automatically discover such features “from first principles”,
a feature-based learner would be restricted to the ones given to it ab initio. In
an area that is usually associated with structural data, we test this hypoth-
esis by studying the theories constructed by the ILP program Progol, and
comparing them against those constructed by three feature-based methods of
data-fitting: linear regression, neural network and classification trees.

The problem we consider in this paper comes from the field of organic chem-
istry where the constructs used by chemists in normal discourse are clearly
graph-based. These are either based on atom/bond connectivities or on Carte-
sian co-ordinates. In this naturally structural setting, we consider discovering
rules for mutagenicity in nitroaromatic compounds. These compounds occur in
automobile exhaust fumes and are also common intermediates in the synthesis
of many thousands of industrial compounds [5]. Highly mutagenic nitroaro-
matics have been found to be carcinogenic [1]. Clearly, it is of considerable
interest to the chemical industry to determine accurate methods for predict-
ing mutagenicity. Besides directing the development of less hazardous new
compounds, such methods would also have applicability in areas such as an-
timicrobial agents where it is not possible to determine mutagenicity using
standard tests (this is because of the toxicity of the agents to test organisms).
Traditionally, explanations for mutagenicity are constructed in two stages.
First, regression-like models using pre-selected features (or attributes) are ob-
tained. Second, these models are re-interpreted using basic chemical constructs
to give a better understanding of the principles underlying mutagenic action.
The experiments reported here seek to determine if there is any advantage in
dealing directly with the actual structural representation of molecules.

Even when restricted to a particular problem, a direct comparison of algo-
rithms can be difficult. Suppose a theory constructed by an ILP algorithm
does perform better than one constructed by a propositional one. It could
then be claimed that the propositional method performed worse because 1)
the features provided were inappropriate; or 2) the background knowledge for
the ILP algorithm somehow “gave” it the answer; 3) the propositional algo-
rithm was not the best in its class or inappropriate values were provided for
its parameters. Similar claims could be made, of course, if situations were
reversed. For the data used here, we have taken the following measures to
counter such claims:

Attributes. The attributes used for propositional learning are those that
highly experienced chemists believe to be relevant. We rely on their profes-
sional judgement in this matter.

Background knowledge. To clarify the role played by background knowl-
edge in constructing ILP theories, we commence with an extremely sparse
representation consisting only of atom and bond properties of the molecules.
This is then enriched, and results are compared against the propositional
benchmarks at each step.

Algorithms. We have used algorithms that should be amongst the most pow-
erful. In [15] the advantages of Progol over other ILP systems have been
tabulated. We use standard techniques for linear regression. The learning
rule used by the neural technique relies on the back-propagation of errors.
Changes in weight are calculated by solving a set of differential equations
as described in [9]. This technique removes the need for learning-rate or
momentum parameters [18]. Finally, the procedure embodied by the CART
algorithm [2] as implemented by the Ind package [3] is used to construct
classification trees. The choice of propositional algorithms is supported by
their good performances on a variety of general test problems (as reported
in [13]) and chemical structure activity problems in particular (as reported
in [10,11]). The CART procedure (as implemented by Ind) determines au-
tomatically the parameter settings that minimise the tree’s estimated error-
rate.

The paper is organised as follows. Section 2 clarifies the precise scope of this
study. Materials available are described in Section 3, the design of experiments
in Section 4, and results in Sections 5. Section 6 concludes this study.

2 The Mutagenesis Problem: Experimental Aim

Our intentions here are to investigate if an ILP algorithm can utilise the
natural encoding of molecules in terms of atom and bond connectivities to
significantly outperform an algorithm that is only capable of using pre-selected
structural attributes.

Figure 1 shows different representations that could be of interest for compar-
ative studies of ILP and feature-based learners. The scope of this study is the
shaded box.

ILP algorithm

NSonly PSonly | NS+PS Sonly NS+S PS+S NS+PS+S

Feature- NSonly
based
algorithm PSonly

o]

Fig. 1. Potential studies comparing ILP and feature-based algorithms. The repre-
sentation used by the algorithms is as follows: NS: non-structural attributes; PS:
pre-coded structural attributes; S: explicit representation of structure. The study
in this paper falls in the shaded square.

3 Materials

3.1 Data

We have chosen to study the mutagenicity of 230 compounds listed in [5]. The
authors of [5] propose a linear regression model to predict mutagenicity. They
use the following independent variables:

logP: log of the compound’s octanol/water partition coefficient (hydropho-
bicity);

ervmo: energy of the compounds lowest unoccupied molecular orbital. This
is obtained from a quantum mechanical molecular model,;

I1: an ‘indicator variable’ that is set to 1 for all compounds containing 3 or
more fused rings; and

I,: an ‘indicator variable’ that takes the value 1 for “

... five examples of acen-
thrylenes and shows that these are much less active than expected for some

unknown reason” ([5], pp 788).

In the terminology of Figure 1 logP and ey are NS attributes, and [; , are
PS attributes. The latter were chosen specifically, based on chemical knowl-
edge of mutagenicity. The authors of [5] further identify 188 compounds as
being amenable to a regression analysis with these 4 attributes. The remain-
ing 42 compounds were not used in constructing the regression model.

We confine this study to the simple task of discriminating compounds with
positive log mutagenicity from those which have zero or negative log muta-
genicity. Of the 230 compounds, 138 have positive levels of log mutagenicity

(as reported in [5]). These are labelled “active” and constitute the source
of positive examples. The remaining 92 are labelled “inactive” and constitute
the source of negative examples. Figure 2 shows the distribution of compounds
into these classes for the different subsets identified in [5].

Compounds “Active” “Inactive” Total
“Regression friendly” 125 63 188
“Regression unfriendly” 13 29 42
All 138 92 230

Fig. 2. Class distribution of compounds.

3.2 Structural representation of molecules

We now consider an explicit structural representation of the molecules (the S
component of Figure 1). This will be used as background knowledge for the
ILP algorithm. A prominent study involving the analysis of drug structures
with ILP was first reported by [12]. While it highlighted the advantages of
logic-based learning, all drugs studied were variants of a basic template, and
all that was required was substitutions into 3 positions on that template (see
Figure 3). This is reflected by the fact that the rules obtained in that study
were largely propositional.

In contrast, the compounds in this study are considerably more diverse and
incapable of being represented by one or more templates (see Figure 4). The
most primitive structural representation of molecules that is practical is in
terms of the atomic and bonding properties of the molecule.

The atom and bond structures of the 230 compounds were obtained from
the standard molecular modelling package QUANTA. For each compound
QUANTA automatically obtains the atoms, bonds, bond types (for exam-
ple, aromatic, single, double etc.), atom types (for example, aromatic carbon,
aryl carbon etc.), and the partial charges on atoms. QUANTA automatically
classifies bonds into one of 8 types, and atoms into one of 233 types (most
of which relate to different types of carbon atoms). The output was a set of
Prolog facts of the form:

bond(compound,atom1,atom2,bondtype), stating that compound has a bond
of bondtype between the atoms atom1 and atom2. For example, an aro-
matic bond between atoms d2_1 and d2_2 in compound d2 is represented by
QUANTA as bond(d2,d2_1,d2_2,7).

atm(compound,atom,element, atomtype,charge), stating that in compound atom
has element element of atomtype and partial charge charge. For example,

R3

NH \N/

Rq

Rs
B NH,
cl
HN \
/
NH; \N NH,
CHs

Fig. 3. Typical data format for compounds used in the analysis of drug structures
with ILP. A) Template of 2,4-diamino-5(substituted-benzyl)pyrimidines R3, R4, and
R5 are the three possible substitution positions. B) Example compound: 3 — C1,
4— NH,, 5—-CHs.

QUANTA encodes the fact that atom d2_1 in compound d2 is an aromatic
carbon atom with partial charge 0.067 by the fact atm(d2,d2_1,¢,22,0.067).

The resulting 12203 ground unit clauses on atomic structure and bonding
generated by QUANTA form the basic building blocks for the structural rep-
resentation of the 230 molecules. In this paper, we will refer to this set of
clauses as S1, and it forms the most primitive structural description of the
chemical compounds under study.

Using the atom and bond description, it is possible to define libraries of elemen-
tary chemical concepts. Appendix A does this, providing definitions of methyl
groups, nitro groups, aromatic rings, hetero-aromatic rings, connected rings,
ring length, and the three distinct topological ways to connect three benzene
rings. The ILP algorithm used here can directly utilise the non-ground defini-
tions in Appendix A. However, for reasons of efficiency, an equivalent ground
tabulation of these definitions is used. This ground tabulation, comprised of
1433 ground unit clauses, along with the clauses in S1 are here termed S2.
In turn, clauses in sets S1 and 52 (Figure 5) will be provided as background

NO,

A

N " N
B

cl Cl

CH,

CH, CH, NO,
CH,
\ \
gl { 7
/ /

Cl

C

o, /:o:\ i N/ - \

Fig. 4. Examples of the diverse set of aromatic and heteroaromatic nitro com-
pounds used here. A) 3,4, 4’-trinitrobiphenyl B) 2-nitro-1,3,7, 8-tetrachlorodi-
benzo-1,4-dioxin C) 1,6-dinitro-9,10,11, 12-tetrahydrobenzo[e|pyrene D) nitrofuran-
toin.

Set of clauses Structural definitions in the set of clauses
S1 atm/5, bond/4
S2 atm /5, bond/4, tabulation of definitions in Appendix A

Fig. 5. Structural definitions available for an ILP learner.
knowledge to the ILP algorithm.! We note here that 52 = S1.

What is the difference in providing the definitions in 52 to an ILP learner,
and the specialised structural attributes [; , (as described in Section 3.1) to a
feature-based learner? The definitions S2 state no more than generic chemical
concepts that can be used as “building-blocks” to construct arbitrarily com-
plex chemical descriptions. In contrast, the attributes Iy , were developed by
the authors of [5] specifically for the compounds studied here.

L All data described in this paper, along with the Prolog definitions comprising

background knowledge S1 and S2 are available by ftp access to fip.comlab.oz.ac.uk.
The relevant directory is pub/Packages/ILP/Datasets/mutagenesis.

-3

3.3 Algorithms

In [15], the shortcomings of various ILP algorithms are discussed, along with
possible methods of overcoming them using a form of generalisation known
as “mode-directed” inverse resolution. This forms the basis of the Progol al-
gorithm [16] that is capable of dealing efficiently with non-determinate, non-
ground logic programs. We use an early Prolog implementation of Progol,
called P-Progol. At the time of writing this paper S.H. Muggleton has imple-
mented a version called CProgol in the C language. Details of obtaining this
version can be found in [16]. P-Progol is available on request from Ashwin
Srinivasan (electronic mail: ashwin@comlab.ox.ac.uk). The implementation in-
cludes on-line documentation that clarifies the points of difference with the C
version. The theory underlying both versions is the same and is described fully
in [16]. However, they have different search strategies and pruning facilities.
Consequently, given the same restrictions on output language and computa-
tional resources the two versions will typically compute different answers to a
given problem from the set of allowable answers. For convenience, in the rest
of this paper, we shall refer to P-Progol as Progol.

The dataset of aromatic nitrocompounds used here has previously been studied
using linear regression [5] and in part, by a neural network algorithm using
back-propagation of errors [22]. We repeat these experiments here. ?

The non-parametric classification tree algorithm CART [2] completes the triad
of feature-based algorithms used here. The CART algorithm used was as im-
plemented in the Ind package.® Following the terminology used in [13] we will
refer to “the Ind implementation of CART” as IndCART'. Results on a variety
of test problems in [13] show the performance of IndCART to be slower, but
comparable in accuracy to the commercial version of CART.

4 Method

The data have previously been split into two subsets in [5]. 188 compounds
were found to be amenable to regression on the 4 attributes described earlier
(Section 3.1). For the remaining 42, regression was found to give poor results.
To avoid bias against linear regression, we continue to treat these as two
distinct subsets.

2 The regression was achieved using the Minitab package (Minitab Inc, Pennsylva-
nia State University, Pa). The implementation of the back-propagation algorithm
was supplied by J Hirst of the Imperial Cancer Research Fund.

3NASA Ames Research Centre, MS 269-2, Moffat Field, CA 94035-1000).

For each of the two sets of compounds under study, we adopt the following
k-fold cross-validation design:

(i) Randomly assign the compounds in the set to k (approximately) equal
partitions. Each partition will, in turn, be withheld to form a “test” set.
The compounds in the other partitions will provide the “training” data
for constructing theories for predicting members in the “active” class (see
Section 3.1).

(ii) For each of the k training data sets:

(a) Construct theories using linear regression, neural network, and Ind-
CART, with the 4 pre-selected attributes listed in Section 3.1;

(b) Construct a theory using Progol, using the two non-structural at-
tributes in Section 3.1, and in turn, the sets S1 and 52 of structural
definitions described in Section 3.2; and

(c) Record the predictions of each theory so constructed on the data set
withheld from the algorithm.

(iii) Estimate the performance of each algorithm by counting the proportion
of errors of prediction.

(iv) Analyse for any significant difference in performance by the ILP algo-
rithm. In turn, the null hypothesis here is that the proportion of exam-
ples correctly classified by the ILP algorithm is the same as that by linear
regression, neural network, and IndCART.

For the purposes of this study, & is assigned the value 10 for the subset of 188
compounds, and 42 for the remaining 42 compounds (that is, on the latter,
a leave-one-out procedure is adopted). The empirical estimates of predictive
accuracy derived in Step 3 above are used to complete the table in Figure 6.

Algorithm and representation Data set

188 42

Linear regression + NS + PS
Neural network + NS + PS
IndCART + NS + PS
Progol + NS + S1

Progol + NS + S2

Fig. 6. Predictive accuracy estimates to be determined. Legend: NS refers to the
non-structural attributes logP and e;paro; PS refers to the pre-selected structural
attributes Iy 4; 51,2 are the sets of structural definitions described earlier.

A quantitative analysis for significant differences in Step 4, should account for
the fact that all algorithms are tested on the same sample. The appropriate
statistical test for this is the McNemar’s test for changes [7]. Given a pair

of algorithms being compared, the null hypothesis is that the proportions of
examples correctly classified by both algorithms is the same. By “correctly
classified” we mean that compounds with positive log mutagenicity in the test
set are classified as active, and those with zero or negative values are classified
as inactive. An quantitative assessment of the level of significance is rendered
difficult because of repetitive cross-comparisons. More details on this can be
found in Appendix C. Here, in the spirit of statistical corrections available
for other situations, (for example, the Bonferroni adjustment), we adopt a
cautious interpretation of the level of significance.

Finally, the algorithm Progol requires a specification of a hypothesis language,
before it can construct theories. For reference, the specification statements
used in this study and other details required for repeating the experiments
with Progol are in Appendix B.

5 Experimental results and discussion

Figure 7 tabulates the estimates of predictive accuracy following the experi-
mental method of Section 4. The method used to calculate these entries and
contingency tables for evaluating significant differences in accuracy estimates
are in Appendix C.

On the data set of 188 compounds, the estimated predictive accuracies for
theories constructed by Regression, Neural Network, IndCART, and Progol +
NS + S2 are all approximately 89%. It is instructive to examine the classifica-
tion errors made by these 4 algorithms. Figure 8 is a tabulation of examples
misclassified by none, 1, 2, 3 and all 4 algorithms. The figure also shows the
distribution of these cases into the “active” and “inactive” decision classes.

A simple chi-squared test reveals a highly significant heterogeneity in the
misclassification. That is, the 188 examples in Figure 8 are from sub-groups
whose members vary in classifiability in some generic sense: some cases being
more difficult than average for sufficiently competent classifiers of whatever
kind (such as those considered in the figure) and easy cases being more easy
for all kinds. Likening the algorithms to four guns of different make but with
similar hit frequency firing at 188 distant targets, we can consider the following
3 scenarios:

(i) Inter-target variability does not exist, and any variation is due to chance.
In the absence of intrinsic inter-target variation the number of cases where
4 hits, 3 hits etc. are observed will follow a binomial law (approximating
to Poisson when misses are rare).

(ii) There is some inter-target variability, and some targets are generically

10

Algorithm Data set

188 42
Linear regression + NS + PS 0.89 (0.02) 0.67 (0.07)
Neural network + NS + PS 0.89 (0.02) 0.69 (0.07)
IndCART + NS + PS 0.88 (0.02) 0.83 (0.06)
Progol + NS + 51 0.82 (0.03)' 0.83 (0.06)*
Progol + NS + 52 0.88 (0.02) 0.83 (0.06)*
Default class 0.66 (0.03) 0.69 (0.07)

Fig. 7. Predictive accuracy estimates of theories of mutagenicity. Estimates in the
first column are from a 10-fold cross-validation, and those in the second from a
leave-one-out procedure. The “Default class” algorithm is one that simply guesses
majority class. Estimated standard error is shown in parentheses after each accuracy
value. NS refers to the non-structural attributes logP and erypr0; PS refers to the
pre-selected structural attributes Iy ,; S12 are the subsets of structural definitions
described in Figure 5. Superscripts on Progol results refer to the pairwise comparison
in turn of Progol against regression, neural network and IndCART. With the null
hypothesis that Progol and its adversary classify the same proportions of examples
correctly, superscript 1 indicates that the probability of observing the classification
obtained is < 0.05 for each of regression, neural network and IndCART; and 2
indicates that this probability is < 0.05 for regression and neural network only (but
not IndCART).

easier to miss than others, but this variability takes the form of an increase
in the size of the variance over that given by the binomial (or Poisson)
curve, but with no change in general form.

(iii) There is gross inter-target variability, and the targets are drawn from 2
different sub-populations exemplifying radically different difficulty levels.
Most are easy, and all guns score hits almost every time. A minority are
hard, and all guns almost always miss. An extreme case of this has been
termed the ‘ceiling’ effect, and is the subject of an interesting discussion

in [4].

The tabulations in Figure 8 contradict (i). As to discriminating between
(ii) and (iii), the results are indecisive. Pending more data (should they be-
come available), most data analysts would lean towards (ii) as it departs less
abruptly from (i). If (ii) were correct, new data would be expected to fill out
the concavity in the third row of Figure 8, making more of a ‘tail’. If (iii) were
to be the case. then the frequency in the last row would build, producing a
clearly bimodal distribution.

11

Algorithm disagreeing Number of examples

with oracle class Active Inactive Total
0 105 48 153
1 6 6 12
2 3 2 5
3 6 3 9
4 5 4 9
188

Fig. 8. Classification errors made by none, 1, 2, 3 and all of Linear regression, Neural
network, IndCART and Progol + NS + S2 on subset of 188 “regression friendly”
compounds.

What then, is to be made of the central claim being investigated here? Figure 7
suggests that a structural representation of molecules consisting only of atom
and bond definitions (the column headed Progol + NS + S1) is inadequate.
With this there appears little to recommend Progol over its propositional
adversaries, despite its positive contributions on the “regression unfriendly”
data (here, also seen to be “neural net unfriendly”). Matters improve with
the inclusion of the elementary structural concepts described in Appendix A
(the column headed Progol + NS + S2). With this, there appears to be no
disadvantage in using Progol, and their is evidence of an advantage in some
cases (for example, when data are unsuitable for regression). With this struc-
tural representation, it appears that the results support the following (weaker)
claim instead:

In domains that are naturally structural, with modest require-
ments of the background knowledge ILP will perform compa-
rably to a feature-based method that can only use pre-selected
attributes.

Do the definitions in Appendix A qualify under “modest” background knowl-
edge requirements? We believe that they do, as they express little more than
very elementary concepts that are generic to chemistry. In comparison, the
propositional attributes hide the realities of complex assays (for logP), quan-
tum mechanical calculations (for eryam), and specialised chemical expertise
with mutagenicity (for I ,).

While experimental results point to the weaker claim above, there appear to

be good reasons to recommend Progol over both linear regression and neural
net methods. Progol does as well when the latter do well, and there is some

12

evidence that it outperforms them when they fail to do so (for the subset
of 42 compounds, the regression and neural net algorithms little better than
one that simply guesses the default class). This is not the case however with
IndCART: estimates of the predictive performance of Progol’s theories are
virtually indistinguishable from IndCART’s on either subset of the data.

In the light of findings here, what then are the main advantages of using an
ILP program in structural domains? The results show that it is possible to ob-
tain theories with high predictive accuracy even without access to the specific
chemical expertise that led to encoding the specialised structural attributes
I 4. In [5] the authors decided on these particular attributes specifically to
suit this data-set of 230 compounds. Indeed, without access to attributes [; ,,
theories from the propositional algorithms are not nearly as effective (see Fig-
ure 9). In this situation Progol theories are never significantly worse than
that from a propositional method (even with only the structural definitions in

subset S1).

Algorithm Data set
188 42
Linear regression + NS 0.85 (0.03) 0.67 (0.07)
Neural network + NS 0.86 (0.03) 0.64 (0.07)
IndCART + NS 0.82 (0.03) 0.83 (0.06)

Fig. 9. Predictive accuracy estimates of theories of mutagenicity for propositional
learners, without pre-selected structural features [; ,. Accuracy estimates in the
first column are from a 10-fold cross-validation, and those in the second from a
leave-one-out procedure. Estimated standard error is shown in parentheses after
each accuracy value. NS refers to the non-structural attributes logP and e ynmo.

The primary edge that an ILP learner like Progol retains is the ability to
discover concepts other than those expressed by the pre-selected attributes.
This is highlighted in the results obtained on the subset of 42 compounds.
For these, the Progol theory is a single rule that encodes the structure shown
in Figure 10. This is a new structural alert for high mutagenicity in chemical
compounds. The conjugated double bond should stabilise the five-membered
aromatic ring, thus allowing for a greater time for the compound to diffuse to
the target site, which in turn causes an increase in mutagenicity.

Further evidence is provided by a closer examination of the the pre-selected
structural attribute I,. This was devised specifically to flag five compounds
in the data set. In [5] the authors state “...The very low activity of the
[five] acenthrylenes is surprising in that most of the other large polycyclic
aromatic compounds are reasonably well fit. This deviant group cries out
for further investigation.” ([5], pp 793). No such special consideration was

13

0=N*"¢g CH=N—NH-C—NH, OOO
Il
o \

o NZ [e)
|
nitrofurazone 4-nitropentalcd]pyrene O
‘Active’
o o
N N +//
|
00 Qe
Nt N H
N
o O
6-nitro-7,8,9,10-tetrahydrobenzo[a] pyrene 4-nitroindole
‘Inactive’
(A)
U
\Y Y=Z
W X

Fig. 10. (A) Some ‘regression unfriendly’ compounds and (B) the structural property
found by Progol

needed for Progol. The explanation as discovered by Progol states that all five
acenthrylenes are in a class of compounds whose ¢;p0 values are at most
—1.145, and have at least one five-membered ring.

6 Conclusions

In this paper, we have looked at whether an ILP algorithm can significantly
outperform feature-based algorithms in a domain that is most naturally de-
scribed by relational definitions. The resulting study is an intense cross-examination
of an ILP algorithm on a real-world problem: the experiments reported in
[13] do much towards clarifying the comparative worth of propositional algo-
rithms, but they were not specifically designed to test ILP techniques. The
experiments here are a first step towards this goal, and the results amount to
a single “data point” concerning the value of using the ILP algorithm Progol.
Further insight stands to be gained by repeating the experimental procedure
on other task domains, and by comparing the performance of Progol with that

14

of other structure-based induction techniques like FOIL [20] and FOCL [19].

Some initial results towards this latter goal are available in [21].

For the problem considered here, empirical results appear to support the the-
sis that given moderate background knowledge, Progol is capable of outper-
forming linear regression and neural network techniques. Interestingly, taken
together, the symbolic machine-learning algorithms IndCART and Progol do
better than their subsymbolic counterparts. Although the results do not demon-
strate any real difference in predictive accuracy in using either Progol or a
non-parametric classification tree method, this does not detract from the role
for an ILP algorithm in such domains. That an algorithm like Progol is able
to well without access to “expert” structural features is not an insignificant
achievement, and suggests that including further basic structural descriptions
(for example, the Cartesian coordinates of atoms) could prove useful. Finally,
the ability of an algorithm like Progol to discover unexpected new concepts,
such as the one in Figure 10 or the explanation for the acenthrylene com-
pounds, will continue to be an important asset in its favour, and one that is
unlikely to be matched by a feature-based algorithm.

Acknowledgements

This research was supported partly by the Esprit Basic Research Action ILP
(project 6020), the SERC project ‘Experimental Application and Develop-
ment of ILP” and an SERC Advanced Research Fellowship held by Stephen
Muggleton. Stephen Muggleton is also supported by a Research Fellowship of
Wolfson College Oxford. Ross King and Michael Sternberg are supported by
the Imperial Cancer Research Fund. The authors are indebted to to Donald
Michie for his advice and interest in this work. Thanks are also due to Rui
Camacho and David Page for discussions on Progol, and the referees of this
paper for their valuable comments.

References

[1] J. Ashby and R.W. Tennant. Definitive relationships among chemical structure,
carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP.
Mutation Research, 257:229-306, 1991.

[2] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and
Regression Trees. Wadsworth, Belmont, 1984.

[3] W. Buntine. Ind package of machine learning algorithms. Technical Report 244-
17, Research Institute for Advanced Computer Science, NASA Ames Research
Center, Moffett Field, CA 94035, 1992.

15

[4] P.R. Cohen. FEmpirical methods for Artificial Intelligence. MIT Press,
Cambridge, MA, 1995.

[5] A.K. Debnath, R.LL Lopez de Compadre, G. Debnath, A.J. Schusterman,
and C. Hansch. Structure-Activity Relationship of Mutagenic Aromatic and
Heteroaromatic Nitro compounds. Correlation with molecular orbital energies
and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786 — 797, 1991.

[6] B. Dolsak and S. Muggleton. The application of Inductive Logic Programming
to finite element mesh design. In S. Muggleton, editor, Inductive Logic
Programming, pages 453-472. Academic Press, London, 1992.

[7] B.S. Everitt. The analysis of contingency tables. Chapman and Hall, London,
second edition, 1992.

[8] C. Feng. Inducing temporal fault diagnostic rules from a qualitative model. In
S. Muggleton, editor, Inductive Logic Programming, pages 473-486. Academic
Press, London, 1992.

[9] C.W. Gear. Numerical Initial Value Problems is Ordinary Differential
Equations. Prentice-Hall, Edgewood Cliffs, NJ, 1971.

[10] J.D. Hurst, R.D. King, and M.J.E. Sternberg. Quantitative structure-activity
relationships by neural networks and inductive logic programming. ii. the

inhibition of dihydrofolate reductase by pyrimidines. Journal of Computer-
Aided Molecular Design, 8:421-432, 1994.

[11] J.D. Hurst, R.D. King, and M.J.E. Sternberg. Quantitative structure-activity
relationships by neural networks and inductive logic programming. ii. the
inhibition of dihydrofolate reductase by triazines. Journal of Computer-Aided
Molecular Design, 8:421-432, 1994.

[12] R. King, S. Muggleton, and M.J.E. Sternberg. Drug design by machine
learning: The use of inductive logic programming to model the structure-activity

relationships of trimethoprim analogues binding to dihydrofolate reductase.
Proc. of the National Academy of Sciences, 89(23):11322-11326, 1992.

[13] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, editors. Machine Learning,
Neural and Statistical classification. Ellis-Horwood, New York, 1994.

[14] S. Muggleton. Inductive logic programming. New Generation Compuling,
8(4):295-318, 1991.

[15] S. Muggleton. Inductive logic programming: derivations, successes and
shortcomings. SIGART Bulletin, 5(1):5-11, 1994.

[16] S. Muggleton. Inverse Entailment and Progol. New Gen. Comput., 1995. to
appear.

[17] S. Muggleton, R. King, and M. Sternberg. Predicting protein secondary
structure using inductive logic programming. Protein Engineering, 5:647-657,
1992.

16

[18] A. J. Owens and D. L. Filkin. Efficient training of the back-propagation network
by solving a system of stiflf ordinary differential equations. In Proceedings
IEEE/INNS International Joint Conference of Neural Networks, pages 381—
386, Washington DC, 1989.

[19] M. Pazzani and D. Kibler. The role of prior knowledge in inductive learning.
Machine Learning, 9:54-97, 1992.

[20] J.R. Quinlan. Learning logical definitions from relations. Machine Learning
5:239-266, 1990.

[21] A. Srinivasan, S.H. Muggleton, and R.D. King. Comparing the use of
background knowledge by inductive logic programming systems. Technical
Report PRG-TR-9-95, Oxford University Computing Laboratory, Oxford, 1995.

[22] D. Villemin, D. Cherqaoui, and J.M. Cense. Neural network studies:
quantitative structure-activity relationship of mutagenic aromatic nitro
compounds. J. Chim. Phys, 90:1505-1519, 1993.

A Some elementary chemical concepts defined in terms of the atom
and bond structure of molecules

The following are Prolog definitions for some simple chemical concepts that
can be defined directly using the atomic and bond structure of a molecule.

% In the following QUANTA bond type 7 is aromatic.

h Three benzene rings connected linearly
anthracene(Drug, [Ringl,Ring2,Ring3]) :-
benzene (Drug,Ringl),
benzene (Drug,Ring2),
Ringl @> Ring2,
interjoin(Ringl,Ring2,Joinl),
benzene (Drug,Ring3),
Ringl @> Ring3,
Ring2 @> Ring3,
interjoin(Ring2,Ring3,Join2),
\+ interjoin(Joinl1,Join2,_),
\+ members_bonded(Drug,Joinl,Join2).

h Three benzene rings connected in a curve
phenanthrene(Drug, [Ringl,Ring2,Ring3]) :-
benzene(Drug,Ringl),
benzene (Drug,Ring2) ,
Ringl @> Ring2,
interjoin(Ringl,Ring2,Joinl),

17

benzene (Drug,Ring3),

Ringl @> Ring3,

Ring2 @> Ring3,
interjoin(Ring2,Ring3,Join2),

\+ interjoin(Joinl1,Join2,_),
members_bonded(Drug,Joinl,Join2).

h Three benzene rings connected in a ball
ball3(Drug, [Ringl,Ring2,Ring3]) :-
benzene(Drug,Ringl),
benzene(Drug,Ring2),
Ringl @> Ring2,
interjoin(Ringl,Ring2,Joinl),
benzene (Drug,Ring3),
Ringl @> Ring3,
Ring2 @> Ring3,
interjoin(Ring2,Ring3,Join2),
interjoin(Joinl,Join2,_).

members_bonded(Drug,Joinl,Join2) :-
member (J1,Joinl),
member (J2,Join2),
bondd(Drug,J1,J2,7).

ring_size_6(Drug,Ring_list) :-
atoms (Drug,6,Atom_list,_),
ring6(Drug,Atom_list,Ring_list,_).

ring_size_5(Drug,Ring_list) :-
atoms (Drug,5,Atom_list,_),
ring5(Drug,Atom_list,Ring_list,_).

/ benzene - 6 membered carbon aromatic ring
benzene(Drug,Ring_list) :-
atoms (Drug,6,Atom_list, [c,c,c,c,c,cl),
ring6(Drug,Atom_list,Ring_ 1ist,[7,7,7,7,7,7]1).

carbon_5_aromatic_ring(Drug,Ring_list) :-
atoms (Drug,5,Atom_list, [c,c,c,c,c]l),
ring5(Drug,Atom_list,Ring_1ist,[7,7,7,7,7]1).

carbon_6_ring(Drug,Ring_list) :-
atoms (Drug,6,Atom_list, [c,c,c,c,c,c]),
ring6(Drug,Atom_list,Ring_list,Bond_list),
Bond_list \== [7,7,7,7,7,7].

18

carbon_5_ring(Drug,Ring_list) :-
atoms (Drug,5,Atom_list, [c,c,c,c,c]l),
ring5(Drug,Atom_list,Ring_list,Bond_list),
Bond_list \== [7,7,7,7,7].

hetero_aromatic_6_ring(Drug,Ring_list) :-
atoms (Drug,6,Atom_list,Type_list),
Type_list \== [c,c,c,c,c,c],
ring6(Drug,Atom_list,Ring_ 1ist,[7,7,7,7,7,7]1).

hetero_aromatic_5_ring(Drug,Ring_list) :-
atoms (Drug,5,Atom_list,Type_list),
Type_list \== [c,c,c,c,c],
ring5(Drug,Atom_list,Ring_1ist,[7,7,7,7,7]1).

atoms (Drug,1, [Atom], [T]) :-
atm(Drug,Atom,T,_,_),
T \== h.
atoms (Drug,N1, [Atoml| [Atom2|List_a]]l,[T1|[T2|List_t]1]) :-
N1 > 1,
N2 is N1 - 1,
atoms (Drug,N2, [Atom2|List_a], [T2|List_t]),
atm(Drug,Atoml,T1,_,_),
Atoml @> Atom2,
T1 \== h.

ring6(Drug, [Atom1|List], [Atoml,Atom2,Atom4,Atom6,Atom5,Atom3],

[Typel,Type2,Type3,Type4,Type5,Type6]) :-
bondd(Drug,Atoml,Atom2,Typel),
memberchk (Atom2, [Atoml|List]),
bondd(Drug,Atoml,Atom3,Type2),
memberchk (Atom3, [Atoml|List]),

Atom3 @> Atom2,
bondd(Drug,Atom2,Atom4,Type3),

Atom4 \== Atoml,
memberchk (Atom4, [Atoml|List]),
bondd(Drug,Atom3,Atom5,Typed),

Atom5 \== Atoml,
memberchk (Atom5, [Atoml|List]),
bondd(Drug,Atom4,Atom6,Type5),

Atom6 \== Atom2,
memberchk (Atom6, [Atoml|List]),

bondd (Drug,Atom5,Atom6, Type6) ,

Atom6 \== Atom3.

19

ring5(Drug, [Atom1|List], [Atoml,Atom2,Atom4,Atom5,Atom3],

[Typel,Type2,Type3,Type4,Type5]) :-
bondd(Drug,Atoml,Atom2,Typel),
memberchk (Atom2, [Atoml|List]),
bondd(Drug,Atoml,Atom3,Type2),
memberchk (Atom3, [Atoml|List]),
Atom3 @> Atom2,
bondd(Drug,Atom2,Atom4,Type3),
Atom4 \== Atoml,
memberchk (Atom4, [Atoml|List]),
bondd(Drug,Atom3,Atom5,Typed),
Atom5 \== Atoml,
memberchk (Atom5, [Atoml|List]),
bondd(Drug,Atom4,Atom5,Types),
Atom5 \== Atom2.

nitro(Drug, [AtomO,Atoml,Atom2,Atom3]) :-

atm(Drug,Atoml,n,38,_),
bondd(Drug,Atom0,Atoml,1),
bondd(Drug,Atoml,Atom2,2),
atm(Drug,Atom2,0,40,_),
bondd(Drug,Atoml,Atom3,2),

Atom3 @> Atom2,
atm(Drug,Atom3,0,40,_).

methyl (Drug, [AtomO,Atoml,Atom2,Atom3,Atom4]) :-
atm(Drug,Atoml,c,10,_),
bondd(Drug,Atom0,Atoml,1),
atm(Drug,Atom0,Type,_,_),
Type \== h,
bondd(Drug,Atoml,Atom2,1),
atm(Drug,Atom2,h,3,_),
bondd(Drug,Atoml,Atom3,1),
Atom3 @> Atom2,
atm(Drug,Atom3,h,3,_),
bondd(Drug,Atoml,Atom4,1),
Atom4 @> Atom3,
atm(Drug,Atom4,h,3,_).

% intersection(+Setl, +Set2, 7Intersection)
interjoin(A,B,C) :-
intersection(4,B,C),

C \==[].

bondd(Drug,Atoml,Atom2,Type) :- bond(Drug,Atom2,Atoml,Type).

20

member (X, [X]_]1).
member (X, [_|T]) :-
member (X,T) .

connected(Ringl,Ring2):-
Ringl \= Ring2,
member (Atom,Ringl),
member (Atom,Ring2), !.

B Using Progol

B.1 Defining a hypothesis language for Progol

The language £ is defined in terms of

— Mode declarations which state the ‘forms’ that atoms in hypothesis can take
in terms of
- the places where variables are allowed an whether they are inputs or out-
puts (indicated by + or —);
- the places where constants are allowed (indicated by #);
- the types of these variables and constants; and
- the degree of indeterminacy when making such a call to the background
knowledge. This is either a number or * meaning finite but unbounded
recall of the goal.
~ the maximum number of layers of variables introduced by atoms in the body
of the clause from variables in the head of the clause;
— the acceptable level of consistency in terms of the maximum number of
negatives that can be covered by any clause; and
— the maximum cardinality of any clause.

For the mutagenesis problem, the hypothesis language £ for Progol is defined
in Figure B.1.

In addition to the structural definitions, Progol was also provided the follow-
ing information as background knowledge. These concern type-definitions and
definitions for inequalities.

% compounds are named by an alphabet followed by a number

compound (D) : -
name (D, [_1X]), name(Num,X), int(Num),

21

Mode declarations mode(*,bond (+compound,—atomid,—atomid,#integer))
mode(*,bond (+compound,—atomid,+atomid,#integer))
mode(*,bond (+compound,+atomid,—atomid,#integer))
mode(*,bond (+compound,+atomid,+atomid,#integer))
mode(*,atm(*,+compound,+atomid,#element,#integer,-charge))
mode(*,atm (*,4compound,—atomid,#element,#integer,-charge))

mode(1,(+charge)=(#charge))

(

(

(

(

(

(

(
mode(1,lumo(4+compound,—energy))
mode(1,logp(4compound,—hydrophob))
mode(1,gteq(+charge,#real))
mode(1,gteq(+energy,#real))
mode(1,gteq(+hydrophob,#real))
mode(1,lteq(4charge,#real))
mode(1,lteq(+energy,#real))
mode(1,lteq(+hydrophob,#real))
Depth of variables 2

Maximum negatives 5

Maximum literals 4

Fig. B.1. Language specification for the mutagenesis problem.

Num >= 1, Num =< 230, !.

% atoms are identified by the compound name, followed by an "_",
% followed by a unique number
atomid(A) :-

name (A, [_|X]1),
append(Z, [951Y],X),
name(N1,Y),
name(N2,Z),
int(N1), int(N2),
N2 >= 1, N2 =< 230,
N1 =< 500, !.

append([],4,4).
append([H|T] ,A, [H|T1]):-
append(T,A,T1).

h charge, epsilon lumo and log P are all floating point numbers.

22

charge(X) :-
number(X) .

energy(X) :-
number(X) .

hydrophob(X) : -
number (X) .

% chemical elements comprising the atoms
element(br). element(c). element(cl). element(f).
element(h). element(i). element(n). element(o). element(s).

% inequality definitions
gteq(X,Y):-
not(var(X)), not(var(Y)), !,
number (X), number(Y),
X>=Y.
gteq(X,X):-
not(var(X)),
number (X) .

lteq(X,Y):-
not(var(X)), not(var(Y)), !,
number (X), number(Y),
X =<Y.
lteq(X,X):-
not(var(X)),
number (X) .

C Methods of contingency tables analysis used for results

For reference, we first provide a brief description of the analysis tools used.

Readers familiar with the calculations may wish to skip these details. For

others, more information can be found in any standard statistical textbook on

analysing contingency tables (for example, [7]).

Accuracy estimates in Figure 7 are obtained as follows. For each algorithm, a

2 x 2 tabulation of actual values against those predicted by an algorithm is

obtained as in Figure C.1

Before estimating the predictive accuracy, the first question to answer is
whether there is any association between actual and predicted values. This

is adequately catered for by obtaining the y? value for the table. The relevant

23

Actual

Active Inactive

Active n1 ny Ng

Predicted (e1) (€2)
Inactive ns N4 7}

(€3) (€4)
Ne ng N

Fig. C.1. Tabulating the performance of an algorithm. ny is the number of com-
pounds known to be active, and predicted as such. Similarly for entries ny34. €1
is the expected value of for the Active/Active cell, under the hypothesis that the
actual class is independent of the predicted one. It is calculated as e; = (ngn.)/N.
Similarly for e 3 4.

formula for this is as follows:

2

X2 _ Z (n; ; €)

=1

A routine correction for non-continuous numbers (referred to as Yates’ cor-
rection) is introduced by replacing the numbers n; 4 by numbers which are
0.5 of a unit less when they exceed the expected value, and 0.5 of a unit more
when they lie below the expected value. The y? probability is obtained from
standard tables with v = 1 degree of freedom.

A high x? value indicates a low probability of a chance association between
predicted and actual values. In this study, we have stipulated that this prob-
ability is no more than 0.05. That is, x* values must be at least 3.84. The
predictive accuracy for theories that satisfy this constraint is then estimated
as p = (n1 + n4)/N. The error in this estimate is +1/pg/N where ¢ = 1 — p.
For brevity, we do not reproduce the contingency tables for obtaining the
accuracy and error estimates. These are available on request from Ashwin
Srinivasan (electronic mail: ashwin@comlab.ox.ac.uk). Here we only tabulate
the y? values.

McNemar’s test for changes is used to obtain the significance results in Figure
7. For a pair of algorithms, this is done by a cross-comparison of the compounds
correctly and incorrectly classified as shown in Figure C.3.

The null hypothesis is that the proportions of examples correctly classified by
both algorithms is the same. If there is no significant difference in the perfor-
mance of the two algorithms, half of the ny + n3 cases whose classifications
disagree should be classified correctly by A; and A, respectively. Because of

24

Algorithm Data set
188 42

Linear regression + NS + PS 106.2 0.2
Neural network + NS + PS 107.7 2.4

IndCART + NS + PS 102.1 11.7
Progol + NS + 51 66.7 12.1
Progol + NS + S2 94.1 12.1
Default class 0 0

Fig. C.2. x? values for theories

Predicted (A;)

Correct Incorrect

Correct ny N9 Ng

Predicted (As)
Incorrect ns N4 g
N, ng N

Fig. C.3. Cross-comparison of the predictions of a pair of algorithms A, n; is
the number of compounds whose class is correctly predicted by both algorithms.
Similarly for the entries nj 3 4.

small numbers, we directly estimate the probability of a chance classification
using the binomial distribution, with probability of success at 0.5. In effect,
this is likened to probability of obtaining at least ny (or ns, if greater) heads
in a sequence of ny + n3 tosses of a fair coin.

McNemar’s test calculations

These calculations refer to tabulations in Figure 7. The analysis here calls for
a repeated cross-comparison of Progol, with different amounts of background
knowledge, against 3 other feature-based learners. For reasons of space, we
report only those numbers that are relevant to the procedure described in
the preceding paragraphs (the numbers ny and ns3 in Figure C.3). We further
adopt the convention of using n, to denote the situation where Progol classifies

25

an example correctly and a feature-based learner classifies the same example
incorrectly. Conversely ns will be used to denote the scenario that Progol
misclassifies an example and the feature-based learner does not.

It is evident that repeated cross-comparisons of this form will yield occasions
when Progol’s performance will apparently seem better than its propositional
adversary. For repeated comparisons of a given pair of algorithms on different
random samples of data, it is possible to apply a correction (known as the
Bonferroni adjustment) for this problem. The situation of repeated compar-
isons of different pairs of algorithms on a given set of data (as is here) does
not, on the surface, appear to be amenable to the same correction. However,
adopting the spirit of the correction, we shall refrain from any quantitative
interpretation of the binomial probabilities (P) obtained.

Feature-based Progol
learner NS + S1 NS + 52

9 N3 P 19 n3 P

Regression 2 15 00019 6 0.304
Neural net 6 19 0.007| 9 12 0.332
IndCART 6 17 0.017 |10 11 0.500

Fig. C.4. Cross-comparisons on “regression {riendly” compounds.

Feature-based Progol
learner NS + S1 NS + 52

ny ns P ny nNs P

Regression 7 0 0.008] 7 0 0.008
Neural net 7 1 0017} 7 1 0.017
IndCART 1 1 07501 1 0.750

Fig. C.5. Cross-comparisons on “regression unfriendly” compounds.

26

